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Abstract We introduce a powerful and yet seldom used numerical approach in statis-
tics for solving a broad class of optimization problems where the search space is
discretized. This optimization tool is widely used in engineering for solving semidef-
inite programming (SDP) problems and is called self-dual minimization (SeDuMi).
We focus on optimal design problems and demonstrate how to formulate A-, As-,
c-, I-, and L-optimal design problems as SDP problems and show how they can be
effectively solved by SeDuMi in MATLAB. We also show the numerical approach
is flexible by applying it to further find optimal designs based on the weighted least
squares estimator or when there are constraints on the weight distribution of the sought
optimal design. For approximate designs, the optimality of the SDP-generated designs
can be verified using the Kiefer–Wolfowitz equivalence theorem. SDP also finds opti-
mal designs for nonlinear regression models commonly used in social and biomedical
research. Several examples are presented for linear and nonlinear models.

Keywords Approximate design · Convex optimization · Equivalence theorem ·
Nonlinear model · Weighted least squares

Mathematics Subject Classification 62K05 · 62K20
1 Introduction

The aim of this paper is to demonstrate the utility of a seldom used numerical approach
for finding optimal experimental designs. Semi-definite programming (SDP) is a pow-
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erful tool commonly used in traditional convex constrained optimization, control
theory, and combinatorial optimization, to name a few. There are increasing appli-
cations of SDP to new areas of research, including in solving clustering problems,
principal component analysis, fuzzy sets for multiple-objective optimization prob-
lems and high-dimensional relaxation problems. Examples of such work are available
in Bie and Cristianini (2006), d’Aspremont et al. (2007) and Macedo (2015). SDP
extends linear programming problems and has desirable theoretical properties and
computational efficiencies (Boyd and Vandenberghe 2004). It is therefore a curiosity
that this powerful approach is not more frequently used in statistics as a methodology
for solving various types of optimization problems.

Our focus is on formulating design problems as SDP problems and show SeDuMi
(self-dual minimization) can efficiently generate various types of optimal designs,
such as A-, As-, c-, I-, and L-optimal designs, for linear and nonlinear models. Our
setup assumes a given regression model with unknown parameters with a set of inde-
pendent variables x defined on a given compact design space S and our goal is to
find an optimal design under a specified optimality criterion. Design issues involve
the judicious choices of the levels of the x’s to observe the responses and whether
replicates are necessary.

Optimal designs can be constructed analytically for relatively simple regression
models and optimality criteria. In general, it can be difficult to derive formulae for
optimal designs even for linear models, especially so if the design criterion is not
differentiable. Various numerical methods have been proposed for finding optimal
designs; some examples aremultiplicative algorithm (Silvey et al. 1978;Yu 2010;Bose
and Mukerjee 2015), semi-infinite programming algorithm (Duarte and Wong 2014;
Duarte et al. 2015), coordinate exchange algorithm (Meyer and Nachtsheim 1995;
Cuervo et al. 2016), interior point method (Lu and Pong 2013), and CVX (convex
optimization) program in MATLAB (Papp 2012; Gao and Zhou 2015). Mandal et al.
(2015) provides a brief review of current numerical approaches for finding optimal
designs.

In this paper, we use the powerful and efficient algorithm, SeDuMi, for computing
various types of optimal designs. SeDuMi (Sturm 1999) is an algorithm in MATLAB
to solve SDP problems, which are a special class of convex optimization problems.
Boyd and Vandenberghe (2004) discussed the SDP problems for finding A-, D- and
E-optimal designs briefly. Ye et al. (2015) provided detailed procedures for comput-
ing only A- and E-optimal designs via SeDuMi. This paper extends results in Ye
et al. (2015) in the following ways: (i) we develop a general theory for transform-
ing various optimal design problems into SDP problems, (ii) we provide a general
SeDuMi-based algorithm for finding optimal designs, (iii) generate A-, As-, c-, I- and
L-optimal designs for linear and nonlinear models, (iv) provide optimal designs based
on the weighted least squares estimator (WLSE), and (v) provide optimal designs for
heteroscedastic models or design problems with one or more constraints on the distri-
bution of replicates at the design points. The methodology requires the design space
S be discretized with a user-selected number of points, which are typically uniformly
spaced across the design space. These points are candidate support points of the opti-
mal design and the optimization problem reduces to finding a weight distribution at
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these points; those points that receive a positive weight under the design criterion are
the support points of the optimal design.

Section 2 provides the statistical background, a brief review of SeDuMi and SDP
formulationswith an example.We also provide an algorithm for solving optimal design
problems using SeDuMi and showhow to checkwhether a design is optimal. In Sect. 3,
we show how to transform various optimal design problems into SDP problems and
Sect. 4 presents optimal designs for models with one or multiple covariates. Section 5
shows broad applicability of the SDPbyfinding (i) optimal designs based on theWLSE
and (ii) optimal designs with user-imposed weight constraints. Section 6 contains a
discussion and the Appendix contains proofs and an illustrative sample of aMATLAB
program for finding an optimal design.

2 Background

To fix ideas, suppose we have resources to take a predetermined number n of obser-
vations from the following model with a response variable yi at the i th level of the
vector of independent variables xi :

yi = g(xi ; θ) + εi , i = 1, . . . , n, (1)

Here θ ∈ Rq is an unknown regression parameter vector and g(x; θ) is a known
function of θ and xi ∈ S, i = 1, . . . , n. The errors εi ’s are independent and identically
distributed each with mean 0 and constant variance σ 2. The least squares estimator
(LSE) of θ is defined by

θ̂ = argminθ

n∑

i=1

(yi − g(xi ; θ))2

and its covariance matrix is Var(θ̂) = σ 2

n A−1, where

A = 1

n

n∑

i=1

∂g(xi ; θ∗)
∂θ

∂g(xi ; θ∗)
∂θ� (2)

is the information matrix and θ∗ is the nominal value for the parameter θ . Nominal
values are best guesses of the unknown model parameters and typically come from
prior studies or expert opinion. For linear regression models, the matrix A does not
depend on θ∗ and the covariance matrix of θ̂ is exact.

Given a design criterion, an optimal design selects the best choices of settings
x1, . . . , xn from the design space S ⊂ Rp to perform experiments and obtain obser-
vations y1, . . . , yn , subject to the fixed total number of observations. Most of design
optimality criteria are based on the covariance matrix of θ̂ and it is well known that
different criteria can produce optimal designs that are very different, depending on
the criteria and the model of interest; see, for example, Fedorov (1972), Pukelsheim
(1993), Dette and Studden (1997) and Berger and Wong (2009). Frequently, optimal
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designs are sought to provide the most accurate estimate for some or all model param-
eters θ or for making inference on part or all of the fitted response surface of g(x; θ)

in a drug response study.
We now introduce generic SDP problems and show how the SeDuMi program in

MATLAB can be used to solve a broad class of design problems. We derive results
that link optimal design problems with SDP problems and develop a general algorithm
using SeDuMi to solve them. In addition, we discuss a practical condition to verify
optimality of the SDP-generated design.

2.1 SDP and SeDuMi

SeDuMi (Sturm 1999) is a powerful algorithm to solve SDP problems in MATLAB.
It can find solutions for problems with hundred of variables to optimize. To apply
SeDuMi, the first step is to convert the optimal design problem into a SDP problem.
This may be straightforward or not; in this paper, we have derived effective ways
to transform various types of optimal design problems into SDP problems. We also
provide a general algorithm that uses SeDuMi to find various types of optimal designs,
such as A-, As , c-, E-, I-, L-optimal designs for regression models using the weighted
or unweighted least squares approach for estimating the parameters. These criteria are
commonly used in practice. For example, A-optimal designs in Hardin and Sloane
(1993) and Gao and Zhou (2014), As-optimal designs in Berger and Wong (2009), c-
optimal designs in Han and Chaloner (2003) and Dette et al. (2004), E-optimal designs
in Pukelsheim and Studden (1993) and Imhof and Studden (2001), I-optimal designs in
Dette and O’Brien (1999) and Gianchandani and Crary (1998), and L-optimal designs
in He et al. (1996). Several of them also demonstrated the benefits of implementing
optimal designs in real problems.

The grid points used to discretize the design space S are usually equally spread
out across the design space. Clearly, when more points are used to discretize S, the
SDP-generated design is closer to the optimal design found without discretizing the
design space. Here closenessmay bemeasured in terms of their criterion values or their
relative efficiency. The cost in having a larger grid set is the additional computational
burden. In Sect. 4, we show that SeDuMi performs well for finding optimal designs
even when there are many grid points.

Convex optimization generally refers to optimization problems with convex objec-
tive functions, with or without constraints. Such optimization problems arise in many
research fields, such as business, economics, engineering and statistics. Boyd and
Vandenberghe (2004) provides examples, along with a good overview and research
problems in this area. SDP problems are a special class of convex optimization prob-
lems, which have a linear objective function and linear matrix constraints. A general
form of SDP problems is given as follows:

{
minv a�v
subject to: H0 + v1H1 + · · · vmHm � 0,

(3)
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where v = (v1, . . . , vm)� is the vector to optimize, a is a constant vector, Hi ’s are
constant square matrices, i = 0, 1, . . . ,m, and the notation “ � 0′′ means that the
matrix to its left is positive semi-definite. The vector a and the constant matrices
Hi , i = 0, . . . ,m are user-specified and depend on the optimization problem of inter-
est. Below is an illustrative case.

Example 1 SDP formulation for finding an E-optimal designWe discretize the design
space [−1, 1] into three points,−1, 0,+1, and find an E-optimal design for the simple
linear regression model using SeDuMi. We recall that an E-optimal design minimizes
themaximumeigenvalue of the inverse of the informationmatrix over all designs on the
design space, or equivalently, the design that maximizes the minimum eigenvalue of
the information matrix among all designs on the design space. Ye et al. (2015) showed
that such an optimization problem can be written as a SDP problem as follows.

With 3 points, we set m = 3, a = (0, 0,−1)� in (3) and optimize the vector
v = (v1, v2, v3)

� after setting

H0 =

⎛

⎜⎜⎜⎜⎝

1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
, H1 =

⎛

⎜⎜⎜⎜⎝

0 −2 0 0 0
−2 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 −1

⎞

⎟⎟⎟⎟⎠
,

H2 =

⎛

⎜⎜⎜⎜⎝

0 −1 0 0 0
−1 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 −1

⎞

⎟⎟⎟⎟⎠
, H3 =

⎛

⎜⎜⎜⎜⎝

−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
.

Details are available in Ye et al. (2015). The first two optimized values of the com-
ponents in v are the optimal design weights at the points −1 and 0 and the optimized
third component in v is the value of the optimized criterion, i.e. the smallest eigenvalue
of the information matrix of the optimal design. The MATLAB code listed below
uses SeDuMi to solve the problem. The minimizer obtained from the algorithm is
v∗ = (0.5, 0, 1)�. Thismeans that theE-optimal design is supported at−1 and+1with
equal weights and the smallest eigenvalue of the information matrix of the design is 1.

MATLABprogram1
H0= [1 1 0 0 0; 1 1 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 1];
H1= [0 −2 0 0 0; −2 0 0 0 0; 0 0 1 0 0; 0 0 0 0 0; 0 0 0 0 −1];
H2= [0 −1 0 0 0; −1 −1 0 0 0; 0 0 0 0 0; 0 0 0 1 0; 0 0 0 0 −1];
H3= [−1 0 0 0 0; 0 −1 0 0 0; 0 0 0 0 0; 0 0 0 0 0; 0 0 0 0 0];
bt=−[0 0 −1];
ct= vec(H0);
At=−[vec(H1) vec(H2) vec(H3)];
K.s= size(H0,1);
[u,v,info]=sedumi(At,bt,ct,K); v

�
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2.2 Computing optimal designs via SeDuMi

Optimal design problems for regression models are often convex optimization prob-
lems. Here we first show that many optimal design problems can be transformed into
SDP problems as in (3) before we apply the SeDuMi algorithm to find them.

To implement SDP strategies, we need to discretize the design space S into a set
SN = {u1, . . . ,uN } ⊂ Rp. The number and the distribution of the points u1, . . . ,uN

over the design space is user-chosen and represent the candidate design points of the
optimal design from S. The distinguishing feature of an approximate design is that
only the proportion wi of the total observations to be taken at each support point ui
has to be determined, and not the number of observations at each of the support points.
We denote such an approximate design by

ξ =
(
u1 . . . uN

w1 . . . wN

)
,

wherew1, . . . , wN are weights at the points u1, . . . ,uN , respectively, and they satisfy

wi ≥ 0, i = 1, . . . , N , and
N∑

i=1

wi = 1. (4)

Points with positive weights after the optimization become the support points of the
optimal design. If there are pre-determined n observations to be taken for the exper-
iment, such an approximate design is implemented by taking [nwi ] observations at
each of its support point ui subject to each [nwi ] is a positive integer rounded from
nwi and they sum to n. The normalized information matrix A for ξ in (2) is

A(w) =
N∑

i=1

wi
∂g(ui ; θ∗)

∂θ

∂g(ui ; θ∗)
∂θ� (5)

and w = (w1, . . . , wN )� is the weight vector of the design ξ .
Let φ(w) = trace

(
T(A(w))−1T�)

, where T is a r × q constant matrix with
rank(T) = r ≤ q. If the matrix A(w) is singular, we define φ(w) to be ∞. Accord-
ingly, we focus on designs with non-singular information matrices only. Our class of
approximate optimal design problems can be stated as

{
minw φ(w)

subject to: wi ≥ 0, i = 1, . . . , N , and
∑N

i=1 wi = 1.
(6)

This class includes common design criteria and Sects. 3 and 4 provide examples.
LetWN = diag(w1, . . . , wN−1, 1− ∑N−1

i=1 wi ) be an N × N diagonal matrix and
let ei be the i th unit vector in Rq , i = 1, . . . , q. The following theorem, whose proof
is in the appendix, gives a general result for transforming the design problem in (6)
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into a SDP problem in (3). We recall the direct sum of two square matrices B1 and B2

is denoted and defined by B1 ⊕ B2 =
(
B1 0
0 B2

)
.

Theorem 1 Let T be a r × q(r ≤ q) full row rank matrix of constants specified in
the design criterion φ(w), let Ir be the r × r identity matrix, let Tr = (Ir , 0) be the
r × q matrix, let 0 be the r × (q − r) matrix of zeros and let

D =
(
T
U

)

q×q
(7)

have rank q for some matrix U. The design problem (6) is equivalent to the problem

{
minw trace

(
TrD(A(w))−1D�T�

r

)

subject to: wi ≥ 0, i = 1, . . . , N , and
∑N

i=1 wi = 1,
(8)

which can then be transformed into the following SDP formulation:

{
minv vN + · · · + vN+r−1
subject to: B1 ⊕ · · · ⊕ Br ⊕ WN � 0

}
. (9)

Here

Bi =
(
B(w) ei
e�
i vN+i−1

)
, (10)

i = 1, . . . , r , B(w) = D−�A(w)D−1 and vN , . . . , vN+r−1 are components in the
vector v = (w1, . . . , wN−1, vN , . . . , vN+r−1)

�.

The main application of Theorem 1 is that if v∗=(w∗
1, . . . , w

∗
N−1, v

∗
N , . . . ,

v∗
N+r−1)

� solves problem (9), w∗ = (w∗
1, . . . , w

∗
N−1, 1 − ∑N−1

i=1 w∗
i )

� solves prob-
lem (8). We note that the formulation in (8) is straightforward and is a useful step
to check if an optimal design problem can be transformed into a SDP problem. The
matrix D is important in the formulation of the SDP problem in (9) even though the
matrix U which makes D non-singular is not unique. We also notice that the problem
in (9) does not have the same form as in (3).

To find matricesH0, . . . ,HN+r−1 so that the constraint in (9) can be written in the
form as in (3), we define vectors

f(ui ) = ∂g(ui ; θ∗)
∂θ

, i = 1, . . . , N , (11)

and q × q matrices,

Ci = D−�f(ui )(f(ui ))�D−1, i = 1, . . . , N . (12)
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Then we express the constraint in (9) as

B1⊕· · ·⊕Br⊕WN = H0+w1H1+· · ·+wN−1HN−1+vNHN+· · ·+vN+r−1HN+r−1,

where H0, . . . ,HN+r−1 are (r(q + 1) + N ) × (r(q + 1) + N ) constant symmetric
matrices given by

H0 =
(
CN e1
e�
1 0

)
⊕

(
CN e2
e�
2 0

)
⊕ · · · ⊕

(
CN er
e�
r 0

)
⊕ diag(0, . . . , 0︸ ︷︷ ︸

N − 1

, 1),

H1 =
(
C1 − CN 0

0� 0

)
⊕ · · · ⊕

(
C1 − CN 0

0� 0

)

︸ ︷︷ ︸
r

⊕ diag(1, 0, . . . , 0︸ ︷︷ ︸
N − 2

,−1),

...

Hi =
(
Ci − CN 0

0� 0

)
⊕ · · · ⊕

(
Ci − CN 0

0� 0

)

︸ ︷︷ ︸
r

⊕ diag(0, . . . , 0︸ ︷︷ ︸
i − 1

, 1, 0, . . . , 0︸ ︷︷ ︸
N − i − 1

,−1),

...

HN−1 =
(
CN−1 − CN 0

0� 0

)
⊕ · · · ⊕

(
CN−1 − CN 0

0� 0

)

︸ ︷︷ ︸
r

⊕ diag(0, . . . , 0︸ ︷︷ ︸
N − 2

, 1,−1),

HN+ j = diag( 0, . . . , 0︸ ︷︷ ︸
( j + 1)(q + 1) − 1

, 1, 0, . . . , 0), j = 0, 1, . . . , r − 1. (13)

For a given regression model, a design space SN and a design criterion, we compute
vectors f(ui ) in (11) and specify the matrixD. The SDP problem in (9) or (3) becomes
well defined and all the Hi ’s in (3) are given in (13). Here is a general algorithm that
applies SeDuMi to find optimal designs.

Algorithm1 : UseSeDuMiforcomputingoptimaldesigns

Step 1: For a given regression model and a discrete design space SN , write down the
information matrix A(w) as in (5).
Step 2: Find a matrix T of rank r so that the design criterion can be written as in (6),
and construct the nonsingular matrix D.
Step 3: Let B(w) = D−�A(w)D−1 and WN = diag(w1, . . . , wN−1, 1 − ∑N−1

i=1 wi ).
Step4:Use (10) and the linearmatrix constraint in (9) tofindmatricesH0, . . . ,HN+r−1
so that the constraint in (9) has the form in (3). The details are given in (11), (12) and
(13).
Step 5: Follow MATLAB program 1 to apply SeDuMi for finding a solution to
problem (9).
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2.3 Kiefer–Wolfowitz equivalence theorem

The celebrated Kiefer–Wolfowitz equivalence theorem allows us to verify whether a
design is globally optimal when the design criterion is convex or concave. We refer
the reader to design monographs, for example, Fedorov (1972), Pukelsheim (1993)
and Berger and Wong (2009) that commonly illustrate how to derive an equivalence
theorem for a convex design criterion to verify optimality of a design. For example,
to check optimality of the solutions found for problem (6) or (8), we first define

φAi (w) = (f(ui ))�(A(w))−1T�T(A(w))−1f(ui ), i = 1, . . . , N , (14)

and apply Lemma 2 below.

Lemma 1 Function φ(w) is convex in w.

Lemma 2 A weight vector ŵ is an optimal design if and only if the matrix A(ŵ) is
nonsingular and φAi (ŵ) ≤ φ(ŵ) for all i = 1, . . . , N.

These results are similar to those in Bose and Mukerjee (2015), and the proofs are
given in the Appendix. For practical purposes, we treat a design as optimal if its weight
vector ŵ satisfies:

φAi (ŵ) − φ(ŵ) ≤ δ, for all i = 1, . . . , N , (15)

and δ is a small positive number, say δ = 10−5.

3 Optimal design problems and transformations

In this section, we discuss various optimality criteria and provide transformations to
form SDP problems. Many optimal design problems belong to the class of problems
in (6), and they include A-, As-, c-, I-, and L-optimal design problems. For each of
these design problems, we now discuss how to obtain matrices T and D, and also the
value of r in Algorithm 1.

3.1 A- and As-optimal designs

For A-optimal design problem, we minimize the average variance of θ̂ , i.e.,

min
w

trace
(
Var(θ̂)

)
,

which is equivalent to minw trace
(
A(w)−1

)
. Clearly, A-optimal design problems

belong to (6) with the matrix T = Iq . Since this matrix T is full rank, we may
let D = T = Iq , which leads to B(w) = A(w) and r = q in Algorithm 1.

AnAs-optimal designminimizes the average variance of a user-selected subset of θ̂ .
Such designs are useful when not all model parameters have meaningful interpretation
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and the user’s interest is in making inference for a few selected parameters. One may,
without loss of generality, let θ̂ s = (θ̂1, . . . , θ̂s)

� be the subset of parameters of interest
out of the q parameters in the model and s < q. The As-optimal design problem then
seeks to find a vector of weights w∗ that minimizes

trace
(
Var(θ̂ s)

)
.

This is equivalent to minw trace
(
TA(w)−1T�)

with T = (Is, 0s×(q−s)). In this case,
we choose D = Iq , so B(w) = A(w) and we have r = s in Algorithm 1.

3.2 c-optimal design

A c-optimal design is used to estimate a given function of the model parameters, say
c(θ), by minimizing the asymptotic variance of its estimated function. The optimiza-
tion problem is

min
w

c�Var(θ̂)c = min
w

σ 2c�A(w)−1c,

where c = (c1, . . . , cq)� ∈ Rq is a user-selected constant vector. We may assume
that c1 �= 0, write T = c�, a 1 × q matrix,

D =
(

c1 c2 . . . cq
0(q−1)×1 Iq−1

)

q×q

and choose r = 1 in Algorithm 1.

3.3 I-optimal design

Researchers are frequently interested to learn how the mean response varies over the
whole or selected part of the x-domain. Typically the x-domain is the design space, but
it can be any user-specified region of interest. An I-optimal design seeks to minimize
the average predicted variance over the design space, i.e.,

min
w

trace
(
A(w)−1M

)
,

where M = ∫
S f(x)(f(x))

�dx or M = 1
N

∑N
i=1 f(ui )(f(ui ))

�. The matrix M is
positive definite, so its rank is q. Let M1/2 be the symmetric square root of M, i.e.,
(M1/2)� = M1/2, andM1/2M1/2 = M and for this criterion, we setT = M1/2, which
is a q×q matrix with rank q. We then chooseD = T and set r = q in Algorithm 1.We
note that theMmatrix needs not be confined to having a uniform weight measure and
can be generalized to include different weighting measure across S after appropriate
changes in the problem formulation.
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3.4 L-optimal design

Another popular class of designs is L-optimal designs that seek tominimize the average
variance of several functions of θ̂ , i.e., we selects points from the grid set that satisfy

min
w

trace
(
LA(w)−1

)
,

where L is a q × q semi-positive definite matrix selected by the research to reflect the
interest in the problem. (Berger and Wong 2009, p. 242) provides examples. Writing
L as L = L1L�

1 , where L1 is a q × r matrix with q ≥ r , it follows that

min
w

trace
(
LA(w)−1

)
= min

w
trace

(
L1L�

1 A(w)−1
)

= min
w

trace
(
L�
1 A(w)−1L1

)
.

Thus, for this criterion, we have T = L�
1 and we choose D in (7).

4 Applications

Wenow apply Algorithm 1 to find a variety of optimal designs for different models and
show that the algorithm is both efficient and flexible. Example 2 constructs c-optimal
designs, and Examples 3 and 4 find I-optimal designs for a linear and a nonlinear
model, respectively.

Example 2 An optimal extrapolation design for estimating the mean response at a
single point.

Suppose we have a continuous response y with normally distributed error ε with
mean zero and constant variance and we wish to model it using a quadratic model,
y = θ0 + θ1x + θ2x2 + ε on the design space S = [−1, 1]. In drug studies, it is
common to infer drug mean response at a dose higher than the safety limit using a
simplemodel by taking independent observations fromdifferent subjects. For example,
if we are interested in estimating the average response at drug level x = 2 outside
the scaled dose space [−1, 1] using the quadratic model, the mean response is θ0 +
2θ1 + 4θ2. The design question is how to select the doses and the number of them
to minimize the asymptotic variance of the LSE of θ0 + 2θ1 + 4θ2. This design
problem is a c-optimal design problem and discussed in (Berger and Wong 2009,
page 240). We now show SDP can easily produce the same c-optimal design reported
earlier.

Following convention, we discretize the design space S = [−1, 1] into equally
spaced points to form the discrete design space SN = {ui = −1 + 2(i−1)

N−1 : i =
1, . . . , N }. To use Algorithm 1 to find the c-optimal design for various values of N ,
we first calculate the matrix D from Sect. 3.2 and obtain

D =
⎛

⎝
1 2 4
0 1 0
0 0 1

⎞

⎠ .
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Table 1 The I-optimal design
for Example 3

(x1, x2, x3) wi

(−1, −1,−1) 0.125

(−1, −1,+1) 0.125

(−1, +1,−1) 0.125

(−1, +1,+1) 0.125

(+1, −1,−1) 0.125

(+1, −1,+1) 0.125

(+1, +1,−1) 0.125

(+1, +1,+1) 0.125

Our MATLAB program given in the Appendix finds the optimal design and it is
very fast. For instance, when N = 501, it takes about 97.2 s of CPU time on a PC
with Intel(R) Core(TM) i7-2620M CPU@2.7GHz to get the solution. Note that we
used the long format in MATLAB to get the accurate result. The c-optimal design
is

ξ =
( −1 0 1
0.1428572 0.4285714 0.4285714

)
.

The points with zero weights are not listed as support points of ξ . This gener-
ated design can be directly verified to be optimal using the condition in (15) with
δ = 10−5. It also agrees with the optimal design in (Berger and Wong 2009, page
240).

Example 3 I-optimal designs for a cubicmodel with all pairwise interactions Consider
a linear model with three regressors,

y = θ0 + θ1x1 + θ2x2 + θ3x3 + θ12x1x2 + θ13x1x3 + θ23x2x3 + ε,

and the design space S is discretized into N = 27 points with each regressor space
broken down by three values −1, 0 and 1. This grid set includes 8 vertices, one
point at the center of the cube, and 18 others. Using Algorithm 1 with matrix M =
1
N

∑N
i=1 f(ui )(f(ui ))

�, we find the design in Table 1 in less than 1 s. The design has
nonzero weights at the 8 vertices and it is easy to verify that this 23 factorial design
satisfies the condition in (15) with δ = 10−10. We also computed the I-optimal design
for five regressors with N = 243 and obtained the 25 factorial design. It should be
noted that the definition of an I-optimal design allows for having a weight measure
other than the uniformweightmeasure inmatrixM. SDP can accommodate this feature
without problems. �

Example 4 I-optimal designs for a nonlinear model
Consider a nonlinear regression model given by

yi = θ1

θ1 − θ2
(e−θ2xi − e−θ1xi ) + εi ,
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where θ1 > θ2 > 0, and xi ∈ S = [0, 20]. Here y is the continuous response
and x may represent sampling times. The key difference between designing for a
linear and a nonlinear model is that in the latter case, the information matrix now
depends on the model parameters, which we want to estimate. The simplest case to
handle such an situation is to assume nominal values are known from prior studies or
similar experiments. By substituting the nominal values into the information matrix,
the information matrix now depends on the design only and so techniques for finding
optimal designs in a linearmodel apply.Optimal designs have been extensively studied,
for example, in Dette and O’Brien (1999) and Han and Chaloner (2003), and the many
real applications described in Berger and Wong (2009).

A direct calculation shows that the matrix M = 1
N

∑N
i=1 f(ui )(f(ui ))

�, where
f(u) is the gradient of the mean response function evaluated at the nominal values
at the point u. Our interest is to find an I-optimal design for this model and we
do so by discretizing the design space into N = 501 equally spaced points given by
SN = {ui = 20(i−1)/(N−1), i = 1, . . . , N }. For this problem, the initial parameter
estimates were θ∗

1 = 0.70 and θ∗
2 = 0.20 and the locally I -optimal design was found

by Algorithm 1 in about 85.8 s. The I -optimal design has two support points given by

ξ =
(
1.32 6.76
0.32798 0.67202

)
.

It is easy to verify that this optimal design satisfies the condition in (15) with δ = 10−6

and the design is consistent with the result in Dette and O’Brien (1999).
We have also computed I -optimal designs on various design spaces S with different

nominal values for the parameters, and representative optimal designs are shown in
Table 2. The design space is SN = {ui = a+(b−a)(i−1)/(N−1), i = 1, . . . , N } ⊂
S = [a, b] with N = 501. Notice that all the I-optimal designs in Table 2 have two
support points, and the designs depend on the nominal values of the parameters and
the design space. �

5 Other optimal design problems

There are other design problems that can be solved bySeDuMi program. In this section,
we show two classes of design problems that can be transformed into SDP problems
and solved by SeDuMi. One class includes design problems based on the WLSE and
another includes design problems with linear constraints on the design weights.

5.1 Optimal design for a heteroscedastic model

When the error variance in model (1) depends on x, say Var(εi ) = σ 2/λ(xi ), and
λ(x) is a known positive function, theWLSE is more efficient than the LSE. For linear
models yi = θ�f(xi ) + εi with n independent observations, the WLSE of θ is
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Table 2 I-optimal designs for the nonlinear model in Example 4

Initial estimates of θ1 and θ2 and S Optimal designs

θ∗
1 = 0.9, θ∗

2 = 0.3, S = [0, 20] ξ =
(
1.00 4.76
0.3374 0.6626

)

θ∗
1 = 1.2, θ∗

2 = 0.5, S = [0, 20] ξ =
(
0.72 3.12
0.3528 0.6472

)

θ∗
1 = 1.8, θ∗

2 = 1.2, S = [0, 20] ξ =
(
0.40 1.60
0.3798 0.6202

)

θ∗
1 = 0.5, θ∗

2 = 0.05, S = [0, 20] ξ =
(
1.88 20.0
0.3641 0.6359

)

θ∗
1 = 0.5, θ∗

2 = 0.05, S = [0, 25] ξ =
(
1.85 22.10
0.3189 0.6811

)

θ∗
1 = 0.09, θ∗

2 = 0.04, S = [0, 20] ξ =
(
7.56 20.00
0.6026 0.3974

)

θ∗
1 = 0.09, θ∗

2 = 0.04, S = [0, 30] ξ =
(
9.24 30.00
0.5524 0.4476

)

θ∗
1 = 0.09, θ∗

2 = 0.04, S = [0, 50] ξ =
(
9.70 39.30
0.4318 0.5682

)

θ∗
1 = 0.8, θ∗

2 = 0.08, S = [0, 10] ξ =
(
1.20 10.00
0.4111 0.5889

)

θ∗
1 = 0.8, θ∗

2 = 0.08, S = [0, 15] ξ =
(
1.17 13.83
0.3265 0.6735

)

θ̂λ =
(

n∑

i=1

λ(xi )f(xi )(f(xi ))�
)−1 n∑

i=1

λ(xi )f(xi )yi ,

and Var(θ̂λ) = σ 2

n

( 1
n

∑n
i=1 λ(xi )f(xi )(f(xi ))�

)−1
. If the grid set has N points, the

information matrix based on the WLSE is

Aλ(w) =
N∑

i=1

wi λ(ui )f(ui )(f(ui ))� =
N∑

i=1

wi

√
λ(ui ) f(ui )(

√
λ(ui ) f(ui ))� (16)

and we may formulate such design problems based on the WLSE as

{
minw trace

(
T(Aλ(w))−1T�)

subject to: wi ≥ 0, i = 1, . . . , N , and
∑N

i=1 wi = 1.
(17)

They are similar to those in (6) for finding A-, As-, c-, I-, and L-optimal design
problems and Algorithm 1 can be used to find optimal designs based on the WLSE
after we make a change in equation (12). From the information matrix in (16), the
required change is

Ci = D−�λ(ui )f(ui )(f(ui ))�D−1, i = 1, . . . , N .
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To check whether the generated design ŵ is numerically optimal, we use (15) and
verify if the below inequality is satisfied for a very small user-specified positive value
of δ:

φAiλ(ŵ) − φλ(ŵ) ≤ δ, for all i = 1, . . . , N ,

where

φλ(w) = trace
(
T(Aλ(w))−1T�)

,

φAiλ(w) = λ(ui )(f(ui ))�(Aλ(w))−1T�T(Aλ(w))−1f(ui ), i = 1, . . . , N .

Example 5 An A-optimal design for a polynomial model with heteroscedastic errors
Consider the cubic regression model,

yi = θ0 + θ1xi + θ2x
2
i + θ3x

3
i + εi , i = 1, . . . , n,

and the design space is S = [−1, 1]. The random errors εi ’s are independent, each
with mean 0 and variance that depends where the observation is taken. Suppose the
variance of the response at x , Var(εi ), is inversely proportional to a known positive
function λ(x). For our example, we select λ(xi ) = (1 + x2i )

−4 but other forms can
also be used, see for example, Dette et al. (1999). The design space is discretized into
SN = {−1 + 2(i − 1)/(N − 1), i = 1, . . . , N } with N = 501. Using Algorithm 1,
the generated design is

ξ =
(−1.000 −0.328 0.328 1.000
0.25273 0.24727 0.24727 0.25273

)
,

which can be verified to be A-optimal using the Kiefer–Wolfowitz’s equivalence the-
orem. �

5.2 Optimal design with linear constraints on weights

Sometimes there are linear constraints on the design weights to ensure that the optimal
designs have certain structure or properties. For example, it may be desirable that the
optimal designs be symmetric or rotatable. For linear equality constraints onw, we can
easily incorporate them by reducing the number of independent weights in the design
problem. For linear inequality constraints, we can put them in the matrix constraint
WN � 0 by modifying WN . Suppose we have two constraints on the weights given
by

w1 = wN , w2 ≥ w3.

Since
∑N

i=1 wi = 1 and w1 = wN , there are only N − 2 independent weights. The
information matrixA(w) is a linear function ofw1, w2, . . . , wN−2 after replacingwN

and wN−1 by w1 and 1 − w1 − ∑N−2
i=1 wi , respectively. The matrixWN becomes
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W′
N = diag

(
w1, w2, . . . , wN−2, 1 − w1 −

N−2∑

i=1

wi , w2 − w3

)
,

which is positive-semidefinite and includes both constraints w1 = wN , w2 ≥ w3.

The results in Theorem 1 are still valid after replacing WN withW′
N .

6 Discussion

We have shown that SeDuMi in MATLAB can find different types of optimal approx-
imate designs after the optimization problems are transformed into SDP problems.
Some are easier to do than others and our results in Sect. 2 are helpful for accomplish-
ing the transformations. The SDP approach is flexible not only for finding various
types of optimal designs on a given discrete design space but also for finding opti-
mal designs when there are linear constraints on the weight distribution of the sought
optimal design (Sect. 5).

When the number of points in the design space is large, it can be challenging for
traditional algorithms, such as algorithms based on the coordinate exchange method,
to find optimal designs. SeDuMi is fast and can handle situations when the design
space is discretized using a large number of points. For our examples, the average
computation times required to find the optimal designs in Examples 2, 4 and 5 are
about 97.2, 90 and 100 s, respectively. For Example 3, it took less than 1 s for the
3 x-variable problem and about 80 s for the 5 x-variable problem. We recall that the
uniformly-spaced grid points used in Examples 3, 4 and 5 were N = 243, 501 and 501
and each time SeDuMiwas able to find different types of optimal designs over a fine set
of grid points efficiently; other algorithms, such as the multiplicative algorithm may
not work or will take a much longer time to find the optimal designs. Additionally, we
presented theoretical results for formulating design problems for SeDuMi to solve, and
for approximate designs, we presented a condition to check if the SeDuMi-generated
design is optimal among all designs.

Another advantage of working with the SDP approach is that it can also be used
to directly find various optimal designs for nonlinear models. Nonlinear models are
widely used in social and biomedical research, which includes areas in economics,
pharmacology, dose-response studies, crop growth, agronomy, and algae formulation
in lakes. For nonlinear models, the important difference is that matrix A in (2) now
depends on θ∗ and is only an approximation to the covariance matrix when the sample
size is large (Seber and Wild 1989, p. 24). Consequently, optimal designs depend on
some or all the nominal parameter values in θ∗, and they are called locally optimal
designs. The nominal values are either from prior experiments or from similar studies.
Our SDP codes only require somemodification to capture the features in the nonlinear
model but otherwise remains intact with little changes.

In summary, SDP is a broadly applicable tool and not limited to finding a single
type of optimal design for a specific model, or, for solving only design problems as
mentioned at the onset. Despite its popularity in other disciplines and increasing appli-
cations to solve high dimensional problems, SDP is still very under-used in statistics.
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We hope this work will stimulate interest in exploring further use of SDP to solve
optimization problems in statistics.
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Appendix: Proofs and MATLAB program

Proof of Theorem 1: For the design problem in (6), we first note that there exists a
(q − r) × q matrix U such that the matrix

D =
(
T
U

)

q×q
(18)

has rank q. This implies that Tr = (Ir , 0) and it is clear that TrD = T. Thus, problem
(8) is the same as problem (6).

Next we claim that problem (9) is a SDP problem. By (5), all the elements of
A(w) are linear functions of weights w1, . . . , wN−1, so are the elements of B(w).
From (10) and WN , all the elements of B1, . . . ,Br and WN are linear functions of
v = (w1, . . . , wN−1, vN , . . . , vN+r−1)

�, so the constraint in (9) is a linear matrix
constraint. It is obvious that the objective function in (9) is a linear function of v and
our claim holds.

Now we show that a solution to problem (9) provides a solution to problem
(8). Since B(w) = D−�A(w)D−1, it is easy to verify that TrD(A(w))−1D�T�

r =
Tr (B(w))−1T�

r . Let bii (i = 1, . . . , q) be the diagonal elements of (B(w))−1. Then
we have

trace
(
TrD(A(w))−1D�T�

r

)
= trace

(
Tr (B(w))−1T�

r

)
=

r∑

i=1

bii . (19)

The constraints in (8) is equivalent to haveWN � 0. Thus, problem (8) is to minimize∑r
i=1 bii over the design weights subject toWN � 0. By (10) and Bi � 0, we have

vN+i−1 ≥ e�
i B(w))−1ei = bii , i = 1, . . . , r. (20)

Since we minimize
∑r

i=1 vN+i−1 in (9), a solution to (9) must have v∗
N+i−1 = bii

from (20) and
∑r

i=1 bii is minimized. By (9), the solution satisfies WN � 0. It
follows that if v∗ = (w∗

1, . . . , w
∗
N−1, v

∗
N , . . . , v∗

N+r−1)
� is a solution to problem (9),

w∗ = (w∗
1, . . . , w

∗
N−1, 1 − ∑N−1

i=1 w∗
i )

� is a solution to problem (8). �
Proof of Lemma 1: Let w0 and w1 be two weight vectors and α ∈ [0, 1], and define
wα = (1−α)w0 +αw1. AssumeA(w0) andA(w1) are nonsingular. We need to show
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that φ(wα) is a convex function of α. It is easy to get

∂φ(wα)

∂α
= −trace

(
TA−1(wα)(A(w1) − A(w0))A−1(wα)T�)

,

∂2φ(wα)

∂α2 = 2 trace
(
TA−1(wα)(A(w1) − A(w0))A−1(wα)(A(w1)

−A(w0))A−1(wα)T�)
.

Since the information matrices A(w0) and A(w1) are positive definite, A(wα) is also

positive definite. Then it is clear that ∂2φ(wα)

∂α2 ≥ 0, which implies that φ(wα) is a
convex function of α. �
Proof of Lemma 2: For anyw, definewα = (1−α)ŵ+αw. If ŵ is an optimal design,
then we must have ∂φ(wα)

∂α
|α=0 ≥ 0 for any w. Similar to the proof of Lemma 1, we

have

∂φ(wα)

∂α
|α=0 = −trace

(
TA−1(ŵ)(A(w) − A(ŵ))A−1(ŵ)T�)

,

= −trace
(
TA−1(ŵ)A(w)A−1(ŵ)T�)

+ φ(ŵ)

= −trace

(
TA−1(ŵ)

N∑

i=1

wi f(ui )(f(ui ))�A−1(ŵ)T�
)

+
N∑

i=1

wiφ(ŵ),

by (5) and (11),

= −
N∑

i=1

wi
(
φAi (ŵ) − φ(ŵ)

)
, by (14),

≥ 0, for any w,

which leads to φAi (ŵ) − φ(ŵ) ≤ 0, for all i = 1, . . . , N . �
MATLAB program for Example 2

% Model y = θ0 + θ1x + θ2x2, design space S = [−1, 1]
% c-optimal design with vector c� = (1, 2, 4)
% N is the number of design points, design space S=[a,b],
% q is the number of parameters in the model,
% vector u stores all the design points in SN ,
% h1, h2 and h3 store all the values for f (u), f (u) ∗ f (u)�, and they are used to
% compute matrices H′

i s.
clear
format long
N=501; a=-1; b=1; q=3;
u=zeros(1,N);
h1=zeros(q,N); h2=zeros(q,q,N); h3=h2;
D=[1 2 4;0 1 0;0 0 1]; % Matrix D : 3 × 3
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D1=inv(D’); D2=inv(D);
% Compute h1, h2 and h3 at each design point
for i=1:N

u(1,i)=a+(i-1)*(b-a)/(N-1);
for j=1:q
h1(j,i)=u(i) ∧(j-1);

end
h2(:,:,i)=h1(:,i)*h1(:,i)’;
h3(:,:,i)=D1*h2(:,:,i)*D2;

end
% Construct matrices H′

i s, i = 0, ..., N .
H=zeros(q+1+N,q+1+N,N+1);
% In MATLAB, H(.,.,1) is for H0.
H(1:q,1:q,1)=h3(:,:,N);
H(q+1+N,q+1+N,1)=1;
H(1,q+1,1)=1;
H(q+1,1,1)=1;
% H(.,.,2),...,H(.,.,N) are for H1, . . . ,H(N−1).
for i=2:N

H(1:q,1:q,i)=h3(:,:,i-1)-h3(:,:,N);
H(q+1+N,q+1+N,i)=-1;
H(q+i,q+i,i)=1;

end
% H(.,.,N+1) is for HN .
H(q+1,q+1,N+1)=1;
% Objective function is 0 ∗ w1 + · · · + 0 ∗ w(N−1) + 1 ∗ vN .
c=zeros(N,1);
c(N)=1;
bt=-c;
ct=vec(H(:,:,1));
for i=1:N

At(:,i)=-vec(H(:,:,i+1));
end
K.s=size(H(:,:,1),1);
pars.eps=0;
[x,v,info]=sedumi(At,bt,ct,K,pars);
answer=zeros(N,1);
answer(1:N-1,1)=v(1:N-1,1)’;
answer(N)=1-sum(v(1:N-1));
design=[u([find(answer>0.0009)]);answer(find(answer>0.0009))’] % a solution
% Check for optimality
z=zeros(q,q,N);
A=zeros(q,q);
for i=1:N

z(:,:,i)=answer(i)*h2(:,:,i);
A=A+z(:,:,i);
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end
T=[1 2 4];
phi=trace(T*inv(A)*T’);
for i=1:N

phi_A(i)=h1(:,i)’*inv(A)*T’*T*inv(A)*h1(:,i);
check(i)=phi_A(i)-phi;

end
delta=max(check)
% If delta is a small number, say 10−5, then the solution is an optimal design.
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