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Abstract 

Flight Delays, Capacity Investment and Welfare under  

Air Transport System Equilibrium 

by 

Bo Zou 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

University of California, Berkeley 

Professor Mark Hansen, Chair 

 

Infrastructure capacity investment has been traditionally viewed as an important means to 

mitigate congestion and delay in the air transportation system. Given the huge amount of 

cost involved, justifying the benefit returns is of critical importance when making 

investment decisions. This dissertation proposes an equilibrium-based benefit assessment 

framework for aviation infrastructure capacity investment. This framework takes into 

consideration the interplays among key system components, including flight delay, 

passenger demand, flight traffic, airline cost, and airfare, and their responses to 

infrastructure capacity investment. We explicitly account for the impact of service 

quantity changes on benefit assessment. Greater service quantity is associated with two 

positive feedback effects: the so-called Mohring effect and economies of link/segment 

density. On the other hand, greater service quantity results in diseconomies of density at 

nodes/airports, because higher traffic density at the airport leads to greater airport delays. 

The capacity-constrained system equilibrium is derived from those competing forces. 

Two approaches are developed to investigate air transport system equilibrium and its shift 

in response to infrastructure capacity expansion. In Chapter 2, we first view the system 

equilibrium from the airline competition perspective. We model airlines' gaming behavior 

for airfare and frequency in duopoly markets, assuming that airlines have the knowledge 

of individuals' utility structure while making decisions, and that delay negatively affects 

individuals' utility and increases airline operating cost. The theoretical airline competition 

model developed in Chapter 2 provides analytical insights into the interactions among 

various system components. Under a symmetric Nash equilibrium, we find that the 

presence of flight delay increases passenger generalized cost and discourages air travel. 

Airlines would not pass delay cost entirely onto passengers through higher fare, but also 

account for the impact of service degradation on passenger willingness-to-pay and 

consequently passenger demand. To avoid exorbitant flight delays, airlines would use 

larger aircraft, meanwhile taking advantage of economies of aircraft size. The resulting 

unit cost reduction partially offsets operating delay cost increase. The equilibrium shift 

triggered by capacity expansion reduces both schedule delay and flight delay, leading to 

lower passenger generalized cost and higher demand, despite slightly increased airfare. 
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Airlines will receive larger profit, and consumer welfare will increase, as a result of the 

expansion. Although delay reduction is less than expected because of induced demand, 

the overall benefit, which encompasses reduction in both schedule delay and flight delay, 

would be much greater than estimated from a purely delay-based standpoint.  

The equilibrium analysis can be alternatively approached from a traveler-centric 

perspective. The premise of an air transport user (i.e. traveler) equilibrium is that each 

traveler in the air transportation system maximizes his/her utility when making travel 

decisions. The utility depends upon market supply and performance characteristics, 

consisting of airfare, flight frequency, and flight delay. The extent of airline competition 

is implicitly reflected in the determination of airfare and flight frequency. Given the 

limited empirical evidence of the delay effect on air transportation system supply, two 

econometric models for airfare and flight frequency are estimated in Chapter 3. We find 

positive delay effect on fare, which should be interpreted as the net effect of airlines' 

tendency to pass delay cost to passengers while also compensating for service quality 

degradation. Higher delay discourages carriers from scheduling more flights on a 

segment. Both delay effects, however, are relatively small. The estimated fare and 

frequency models, together with passenger demand and airport delay models presented in 

Chapter 4, are integrated to formulate the air transport user equilibrium as fixed point and 

variational inequality problems. We prove that the equilibrium existence is guaranteed; 

whereas equilibrium uniqueness cannot be guaranteed. We apply the user equilibrium to 

a fully connected, hypothetical network with the co-existence of direct and connecting air 

services. Using a simple, heuristic algorithm, we find that the equilibrium is insensitive to 

initial demand values, suggesting that there may be a single equilibrium for this particular 

model instance. Hub capacity investment attracts spoke-spoke passengers from non-stop 

routes, and generates new demand on hub-related routes. At the market level, hub 

capacity expansion would result in greater total demand and consequently passenger 

benefits in almost all markets—except for ones where a predominant portion of 

passengers choose non-stop routes due to extremely high circuity for one-stop travel. In 

the latter set of markets, after capacity expansion passenger demand and benefits would 

be both reduced. This counter-intuitive result carries important implications that capacity 

increase does not necessarily benefit everyone in the system. Similar to the findings from 

the airline competition model, with changes in flight delay, schedule delay, airfare, and 

total demand, the user equilibrium model yields much higher passenger benefits from 

capacity investment than the conventional method; whereas hub delay saving is offset by 

traffic diversion and induced demand. With continuous capacity investment, the air 

transportation network will witness substantial changes in service supply and traffic 

patterns. 
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1. Introduction 
 

1.1 Background and Problem Statement 

Flight delay is a serious and widespread problem in the United States. Between 2002 and 

2007, flight traffic increased by about 22%, but the number of late-arriving flights more 

than doubled. One in every four flights was delayed for more than 15 minutes in 2007 in 

the National Airspace System (NAS) (BTS, 2012). The total economic impact of flight 

delays accruing to passengers, airlines, and the remaining of the economic system 

amounted to $32 billion in 2007 (Ball et al., 2010). Although traffic and delay have 

declined somewhat over the past few years due to the economic recession, the Federal 

Aviation Administration (FAA) expects demand growth to resume, with total Revenue 

Passenger Miles (RPMs) forecast to increase at an average annual rate of 3.2%, from 

814.6 billion in 2011 to 1.57 trillion in 2032 (FAA, 2012a). This will impose 

unprecedented challenges on operational punctuality in the future NAS. 

A major cause of flight delay is demand-capacity imbalance in the air transportation 

system, particularly in the airport terminal area. At many major US airports, air traffic is 

often scheduled close (sometimes even above) the maximum airfield capacity. Capacity 

constraints can result from persistent shortfalls in physical aviation infrastructure, such as 

runways, or as the result of a capacity drop under inclement weather conditions. The 

imbalance between demand and capacity implies that the flight delay problem can be 

approached from the perspective of either demand or capacity. Classic demand-side 

solutions include introducing congestion fees and limiting the number of slots at 

congested airports. The other solution is to add more capacity to the existing aviation 

infrastructure, either through deploying new technologies , or building new physical 

infrastructure. In the US, the major program for technology deployment is FAA's $160 

billion-dollar Next Generation Air Transportation System (NextGen), (GAO, 2010), 

which aims to transform the NAS from a ground-based into a satellite-based system, 

through the deployment of seven major technology elements (FAA, 2012b). Physical 

infrastructure improvement refers to the reconstruction and extension of runways, which 

may involve concurrent taxiway and airspace reconfiguration. According to FAA (2007a), 

four major airports in the US currently need more capacity. The number will grow to 

more than two dozen by 2025. Between 2010 and 2015, the reported investment needs for 

airport capacity expansion amounts to $19 billion (Hansen, 2010). In order to estimate 

the return on this investment, appropriate benefit assessment methodologies are of critical 

importance. 

This research proposes a novel, equilibrium-based framework to assess benefits from 

aviation infrastructure capacity investment. Different from the conventional approach 

which often focuses exclusively on flight delay reduction, our work takes a more holistic 

view of aviation system response to capacity investment. We recognize delay as one of 
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the several integral components in the air transport supply-demand equilibrium, and that 

capacity investment triggers further interactions among system components, leading to an 

equilibrium shift. System equilibrium, equilibrium shift and the associated benefits are 

modeled from both airline competition and user behavior perspectives. Our research fills 

an important gap in the literature and can lead to improvements of the current benefit 

assessment methodologies for aviation capacity investment.  

1.2 Current Practices, Existing Studies, and Research Framework 

While conventional aviation capacity investment analysis are conducted at the airport 

level (FAA, 1999), over the years the ability to assess the economic value of aviation 

infrastructure investment has become increasingly sophisticated. Considerable strides 

have been made in NAS-wide simulation tools, such as NASPAC, ACES, and LMINET, 

to incorporate flight trajectories, weather, en-route and airport capacity constraints to 

perform capacity investment analysis at the system level (Post, 2006; Post et al., 2008). 

On the other hand, the measurement of benefits is still largely delay based, with delay 

reduction benefits taking the form of passenger travel time and airline cost savings (e.g. 

Steinbach and Giles, 2005). The underlying assumption is that the only changes arising 

from a capacity investment that need to be considered are the increase in capacity and 

consequent reduction in delay. Very limited attention has been paid to the mechanisms 

through which airlines and air travelers respond to flight delay reduction. This delay-

centric approach sometimes causes problems. In practice, delays predicted by the 

simulation models can appear too high to be realistic. To cope with this, analysts resort to 

ad hoc remedies such as smoothing the flight schedule, or simply truncating delay 

estimates. Thus, despite the added capability to simulate operations, the lack of 

comprehensive understanding of the system response may lead to a biased and 

incomplete representation of the investment benefits.  

Air transport system response to capacity investment has been considered more in the 

academic arena, but with the majority of the studies conducted at the airport level. There 

is a long tradition in theoretical studies to model passenger demand as a function of either 

delay alone (Morrison and Winston, 1983), or one part of the passenger generalized cost 

(Morrison and Winston, 1989, 2007; Oum et al., 2004; Pels and Verhoef, 2004; Zhang 

and Zhang, 2006). But the systemic impacts of flight delay impact certainly extend 

beyond that. Jorge and de Rus (2004) highlight the inclusion of delay savings for both 

existing and diverted passenger traffic in airport investment benefit analysis. With delays 

aircraft have to spend more time either on the ground or in the air, increasing airline 

operating expenses. The impact of delay on airline cost has been empirically tested and 

quantified in Hansen et al. (2001) and Zou and Hansen (2012). Part of these delay-

induced expenses will be passed onto passengers through higher fare, which in turn leads 

to lower demand, as modeled in Miller and Clarke (2008). However, theoretical and 

empirical knowledge about the extent of delay cost passage is still lacking. As a result, 

modeling of the percentage of delay cost transfer in Miller and Clarke (2008) has to rely 

on simulation techniques.  
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In addition to demand and fare responses, an important piece that has not been adequately 

captured in aviation capacity investment analysis is service quality. The aviation system, 

like urban transit systems, offers scheduled transportation services. Flight delay is 

certainly one dimension in the service quality. Another is the quantity of services 

provided, which has been extensively studied in the urban transit context (e.g. Mayworm 

et al., 1980; Frankena, 1983; Else, 1985). In air transportation research, metrics for 

system-wide service quantity include Available Seat Miles (ASM), Available Plane Miles 

(APM), and Revenue Passenger Miles (RPM); at the more disaggregate, flight segment 

level, service quantity is measured in flight frequency. Flight frequency determines 

passenger schedule delay (Panzar, 1979; Abrahams, 1983; Hansen, 1990; Ghobrial and 

Kanafani, 1995), which measures the difference between a passenger's preferred 

departure time and the nearest flight departure time, and is therefore part of an 

individual's total trip time. Most studies assume that flight traffic is invariably 

proportional to passenger demand before and after investment, with only a few 

exceptions. Jorge and de Rus (2004) argue that new capacity would enable increase in 

departure frequency, and encourage the use of smaller aircraft. Hansen and Wei (2006) 

perform an empirical investigation on the impact of a major capacity expansion at Dallas-

Fort Worth airport. They find that the delay reduction benefit may be partially offset by 

flight demand inducement and airline schedule adaptations. Nonetheless, neither of them 

gives explicit calculation of passenger schedule delay change.  

Associated with flight frequency adjustment is a feedback loop between frequency and 

passenger demand, first found and commonly known in public transit as the Mohring 

effect (Mohring, 1972), which refers to the fact that frequency increase reduces schedule 

delay, and travelers' generalized cost. As a consequence, more demand will be generated, 

leading to an even higher frequency. This positive feedback effect has been generalized 

to other scheduled transportation services, including air transport (Hansen, 1995; Pels and 

Verhoef, 2002). However, only limited attention to this effect has been paid in aviation 

infrastructure investment research (Martin and Socorro, 2007). The Mohring effect 

becomes even more important in hub-and-spoke air transport networks, where frequency 

increase on a hub-spoke segment will benefit passengers on many routes that share the 

same segment. The resulting demand increase on these many routes then leads to higher 

segment passenger traffic and further frequency increase. The enhancement of  Mohring 

effect in hub-and-spoke networks has been rarely recognized in the literature.  

Perhaps equally important to the Mohring effect is economies of density, another intrinsic 

feature that has not been fully considered in the aviation infrastructure investment 

analysis. Economies of density refers to airlines' declining average cost from denser 

traffic within a given network. The existence of the economies of density has been 

empirically identified at both airline (Cave et al., 1984; Gillen et al., 1985, 1990) and 

route (Brueckner and Spiller, 1994; Brueckner et al., 2011) levels. As pointed out above, 

aviation infrastructure investment reduces delay and invites more traffic. This results in 

reduced airline average cost. Lower unit cost allows airlines to offer passenger less 

expensive fares. As a result, more passengers will be induced. Like the Mohring effect, 

the economies of density induces positive feedback loop. 
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While reduced flight delay and schedule delay improve the quality of the air service 

product, plausibly resulting in higher airfare, it is our belief that the overall effect of 

flight delay reduction, schedule delay decrease, and the economies of density is lower 

traveler generalized cost. We illustrate this in Figure 1.1, where travelers generalized cost, 

measured in $/mile, is plotted against total demand in the system, quantified as 

passenger-miles. With no congestion, the traveler supply curve will be a downward 

slopping curve S0 because of the Mohring effect and the economies of density, 

intersecting with the demand curve at point G. When congestion occurs, the new 

constrained traveler supply curve, S1, will track the unconstrained one S0 until delay 

appears in the system, after which S1 starts to veer upwards, intersecting the demand 

curve at point B. The purpose of investing in infrastructure capacity is to shift the point at 

which this deviation occurs to the right, and hence downward, such that the new 

constrained traveler supply curve will intersect with the demand curves at point C. 

Infrastructure investment then leads to a reduction in traveler generalized cost and higher 

system demand, denoted respectively by the distance AD and CE. The area ABCD 

represents passenger welfare gains from the investment. However, because profit change 

involves changes in passenger demand, airfare, flight frequency, and unit operating cost,  

it is difficult to discern graphically airlines' (producers') surplus. 

 

Figure 1.1: Traveler generalized cost as a function of system demand 

To explicate the various causal relationships mentioned above, we propose the following 

equilibrium-based framework to model system response to aviation infrastructure 

investment, as shown in Figure 1.2. We consider flight delay, passenger demand, airfare, 

flight traffic, and airline cost as five endogenous system components. An equilibrium is 

characterized by a set of consistent values of the system components. We hypothesize 

that, once infrastructure investment is made, increased capacity leads to lower flight 

Demand (passenger-miles) 

Traveler generalized 

cost ($/mile) 

Demand 
S1 

S2 

S0 

S0: Unconstrained supply (congestion free) 

S1: Constrained supply 1 (before investment) 

S2: Constrained supply 2 (after investment) 

A 
B 

C 
D E 

F G 



5 

 

delay, which induces more travelers to use the air transportation system, encourages 

airlines to schedule more flights, and reduces airline unit operating cost. With unit cost 

reduction, airlines will make necessary fare adjustment in their profit maximization 

process, which also depends upon the market structure. New airfare and flight traffic 

affect traveler generalized cost, and therefore passenger demand. Other demand-

influencing factors, including socio-economic characteristics, competition from other 

modes, can be reasonably regarded as exogenous to system responses. Change in demand 

in turn affects airfare, again through airlines' profit maximization, and the amount of 

flight traffic. Like airfare, the determination of flight traffic depends further upon the 

market structure. New flight traffic suggests a new level of flight delay in the system. The 

changes in flight traffic and delay enter airlines' production process, in which input prices 

are assumed exogenous, resulting in an updated airline cost. It is clear that, once capacity 

investment is made, it will trigger a complicated set of interactions among the system 

components, the final outcome of which is characterized by an equilibrium shift. We use 

a dashed line to represent the potential feedback from delay to investment decisions, in 

that the response of capacity investment is on a much longer time scale than those of the 

boxed system components. For this reason, investment decisions are assumed exogenous 

in the dissertation. 

 

Figure 1.2: Equilibrium framework 
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1.3 Research Methods and Organization of the Dissertation 

Based upon the dual relationship between supply and demand, we can model the air 

transport system equilibrium from two complementary perspectives. On the one hand, the 

system equilibrium is the result of airlines' profit maximization. Airlines seek their best 

pricing and scheduling strategies taking into account the reaction of passenger demand, 

which is determined by the utility structure of travelers. In particular, we assume that 

airlines, in maximizing profit, explicitly recognize the delay impact on passenger utility 

structure as well as their own operating cost. Since it is likely that multiple airlines 

compete in an air transportation system, the achievement of the equilibrium will involve 

gaming behavior. Following this logic, in the first approach an analytical model will be 

developed to study the air transport equilibrium from the airline competition perspective. 

While airport capacity constraints have been considered in some recent airline game-

theoretic modeling (e.g. Evans, 2010; Li et al., 2010; Vaze and Barnhart, 2012), our 

airline competition model deals with simultaneous price and frequency competition 

specifically in the context of capacity investment. The analytical nature of our model also 

provides some useful theoretical insights into the interplays among the system 

components. 

Alternatively, the equilibrium problem can be viewed from travelers' vantage point. It is 

reasonable to assume that every traveler tries to maximize her/his utility when making 

travel decisions, with full knowledge about the market supply (i.e. fare and frequency) 

and performance (i.e. flight delay) characteristics, which change with the passenger 

demand pattern. An equilibrium is achieved when no traveler can improve her/his utility 

by unilaterally changing the demand choice. This characterizes the user equilibrium 

condition. In the second approach, we examine the air transport user equilibrium with 

system components all based upon empirical models. We will demonstrate that the air 

transport user equilibrium combines features from both classic supply-demand 

equilibrium and demand-performance equilibrium, the latter of which widely applied to 

the urban traffic context. To our knowledge, it is the first time to introduce user 

equilibrium in the air transport context. We will show that our key findings from both 

approaches are largely consistent. 

The remainder of this dissertation is organized as follows. In Chapter 2, we first present 

the formulation of an analytical, airline competition equilibrium model. Comparative 

static and numerical analyses of equilibrium shift in response to capacity change are then 

discussed. We estimate the associated benefit gains and compare them with those from 

the conventional approach. The discussions then switch to the modeling of air transport 

user equilibrium. In Chapter 3 we perform an empirical investigation of the delay impact 

on airfare and flight frequency, the two most important supply-side characteristics. 

Chapter 4 then proceeds to the full investigation of the air transportation user equilibrium. 

Equilibrium components, the formulation of the equilibrium, and solution algorithm are 

discussed in order. We apply the user equilibrium concept to a hypothetical air transport 

network, in which—similar to Chapter 2—we examine the initial equilibrium and 

equilibrium shift, and compare benefit gains from the equilibrium approach with 
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estimates using the conventional method. We offer conclusions and point out directions 

for future research in Chapter 5. 

  



8 

 

2. An Analytical Airline Competition 
Equilibrium Model 

 

2.1 Introduction 

In this chapter, we first apply the research framework proposed in Section 1.2 to an 

airline competition model to explore the capacity-related air transport supply-demand 

equilibrium and how the equilibrium shifts in response to capacity expansion. We assume 

that airlines determine their fare and frequency in a competitive environment, taking into 

account individuals' utility structure. Flight delay affects both travel utility of individuals 

and operating cost of airlines. Despite the existence of a large body of theoretical 

literature analyzing the economics of airline competition behavior, so far relative few 

efforts have been devoted to airline behavior vis-à-vis infrastructure capacity constraints 

and investment. The following analytical model intends to provide some helpful insights 

into the interplays among passenger demand, air fare, airline cost, flight traffic and delay, 

from a microscopic, airline competitive point of view. 

2.2 Model setup 

2.2.1 Demand 

We consider a duopoly city-pair airline market, a special case of oligopolistic markets. 

Two carriers are engaged in price and frequency competition. Following most theoretical 

and applied literature of this kind (e.g. Schipper et al., 2003; Brueckner and Girvin, 2008; 

Brueckner and Zhang, 2010), we restrict our attention to the symmetric equilibrium, i.e. 

the two airlines are identical, to preserve analytical tractability. As previously discussed, 

travelers consider both fare and service quality when making travel decisions. In the 

absence of capacity constraints, the primary service quality dimension is schedule delay, 

defined as the difference between a traveler’s desired departure time and the closest 

scheduled departure time of all flights. Although individual passengers are concerned 

about their specific departure time, it is reasonable to use frequency to capture the overall 

schedule delay effect when market demand is concerned. Empirical studies often use the 

inverse of frequency (Eriksen, 1978; Abrahams, 1983), which is intuitive if we consider a 

situation where flight departures and passenger demand are uniformly distributed along a 

time circle of length T. Then the expected schedule delay equals T/4f, with flight 

frequency being f (flights). The schedule delay cost is the expected schedule delay 

multiplied by some cost parameter 0 . This kind of treatment is adopted by many 

similar studies (e.g. Richard, 2003; Brueckner and Flores-Fillol, 2007; Brueckner and 

Girvin, 2008). 



9 

 

In the absence of traffic delay, a representative consumer will face two generalized costs 

(prices) corresponding to the services provided by two airlines:
i

ii
f

PP


 , for i=1,2. We 

assume the representative consumer has the following utility function: 

)2(
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  (2.1) 

where q0 represents the numeraire good. 
020100 ,,  are positive parameters. The 

concavity condition requires 0201   . The representative consumer maximizes

),,( 210 qqqU , subject to the following income (budget) constraint: 

IqPqPq  22110
 (2.2) 

where I denotes income. The first-order conditions of the corresponding Lagrangian L, 

)(),,( 22110210 IqPqPqqqqU   with  being the Lagrange multiplier, are 
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(2.3.3) 

0)( 22110 



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(2.3.4) 

The second-order conditions are guaranteed since the Hessian is negative semi-definite 

given the concavity of the utility function. Substituting (2.3.1) into (2.3.2) and (2.3.3) 

yields the following system of linear inverse demand functions: 

2,1   ,
2

02

2

01

02

2

02

2

01

01

0201

00 








  iqqP iii











 (2.4) 

where the subscript –i denotes the competing airline. Incorporating the generalized cost 

expression and solving (2.4) for i=1,2 lead to the following “symmetric” demand function 

2,1   ,0201
020100 



 i
ff

PPq
ii

iii


  (2.5) 

The market-level airline demand functions, Qi (i=1,2), are obtained by aggregating qi’s 

over all consumers 
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2,1   ,21
210 



 i
ff

PPQ
ii

iii


  (2.6) 

where 
022011000 ,,  nnn  , with n being the number of consumers in the market. 

Obviously 21   , suggesting that the services provided by the two airlines are imperfect 

substitutes. The above demand function presents a general carrier-level demand 

functional form, which differs from a recent paper studying airport congestion by Flores-

Fill (2010), where a fixed total demand is assumed. From one perspective, the assumption 

of fixed total demand is a nice property for analytical tractability since the focus of their 

study is on congestion. On the other hand, under our demand setup, an increase in ticket 

price of airline 1 will divert some passengers to airline 2. Our specification further allows 

some passengers who would have chosen airline 1 if price were not increased to not 

travel by either airline–they may choose alternative modes, or not traveling at all. 

Likewise, if airline 1 increases its frequency, then it can not only draw passengers from 

firm 2 but also generate additional demand. In effect, this market-level demand response 

presents another important phenomenon caused by congestion. 

When congestion emerges due to limited capacity, passengers will suffer directly from 

flight delay because they value the extra trip time. This adds a new component into the 

generalized cost. We assume the congestion cost to passengers is identical across 

passengers regardless of which airline was chosen. We use the average flight delay L and 

multiply it by a cost factor k to represent the contribution of delay to passenger 

generalized cost. Following the same derivations as above, the new demand function can 

be written as 

2,1   ,21
210 



 iL
ff

PPQ
ii

iii 


  (2.7) 

where )()( 210201   knk  is the coefficient indicating the unit impact of delay 

on demand. Previous studies model L at the airport level and to be a function of total 

traffic volume and capacity (e.g. Morrison and Winston, 2008; Zhang, 2010). As one city 

pair is considered here, we assume L to be a function of the larger of the traffic 

volume/capacity ratios from the two airports in the city pair.  The airport with the larger 

ratio is defined as the “focal” airport. In the subsequent analysis, we assume the arrival 

end of the city pair presents the focal airport, which is the terminus of N identical markets, 

and is the only airport with a significant capacity limitation. We further assume that the 

decision-making of each market is independent. Then the total traffic volume of arriving 

flights at the focal airport is N(f1 + f2).
1
 The traffic volume/capacity ratio is N(f1 + f2)/K, 

                                                 
1
 Since at an airport departure and arrival traffic volumes are almost equivalent, it would suffice to only 

consider the arrival traffic volume in modeling airport delay. In effect, Morrison and Winston (2008) find 

that no significant difference would result from considering total flight operations and departures/arrivals 

separately. For other airport delay studies, the primary concern is often flight arrival delays (e.g. Hansen, 

2002; Hansen et al., 2010). Therefore, in this study we focus on the arrival traffic volume at the focal 

airport, and the term traffic volume in the rest of the chapter refers specifically to traffic volume of arrivals. 
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with K denoting the arrival capacity at the focal airport. Given a fixed capacity and the 

number of markets, L is simply a function of f1 + f2, i.e. )( 21 ffLL  . 

2.2.2 Supply 

We follow Brueckner and Flores-Fillol (2007), by assuming that an airline operates 

aircraft with size s and a load factor of 1 (in fact, for the latter all we require is a constant 

load factor). A flight’s operating cost is given by sc 0
, where c0 is a positive fixed cost 

independent of aircraft size and  the marginal cost per seat. This specification reflects in 

part the economies of density on the supply side,
2
 as cost per passenger is decreasing with 

aircraft size. For airline i (i=1,2), flight frequency (fi), aircraft size (si), and demand (Qi) 

are related by the equation iii sfQ  . Additional expenses will be generated when flight 

delay occurs, as it is associated with more fuel burn, additional crew cost, etc. These are 

incorporated in a third term in the flight operating cost: 

LsscC iii   0
 (2.8) 

where is a cost factor associated with a unit time of delay per seat. The delay cost per 

flight is assumed to be a function of aircraft size (si) and the length of delay (L). Given L, 

a larger plane requires more extra fuel consumption and higher crew cost than a smaller 

one. 

2.2.3 Competition and equilibrium 

In this duopoly market, airlines compete on fare and frequency to maximize profits. The 

profit function for each airline is: 
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 (2.9) 

Depending on the assumptions made, the competition between the two airlines can follow 

different game models. We consider the case that flight frequency and fare can be 

adjusted simultaneously in a Nash fashion. The reasoning rests on the fact that typically 

airlines adjust schedules every 3 month (Ramdas and Williams, 2008) and travelers may 

also purchase tickets months in advance. The first order conditions (FOC) for airline 1 

are: 

                                                 
2
 From carriers’ perspective, the economies of density includes four aspects: the use of larger and more 

efficient aircraft, higher load factors, more intensive use of fixed ground facilities, and more efficient 

aircraft utilization (Brueckner and Spiller, 1994). In this chapter as load factor is assumed to be 1, 

economies of density on the supply side are primarily embodied in the first aspect. 
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according to (2.10.1) and (2.10.2). For the delay 

function L, we further expect marginal delay increase is greater when traffic is at a higher 

level, i.e. 022  fL .Then the second-order derivatives 
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are easily seen to be negative. The remaining of the second-order condition (i.e. negative 

definitiveness of the Hessian matrix of
1 ) is assumed to hold.

3
  

The first and second order optimality conditions also apply to airline 2. The FOCs are 

obtained by interchanging subscripts 1 and 2 in (2.10.1) and (2.10.2). Given the 

symmetry set-up, under equilibrium P1 = P2 = P, f1 = f2 = f. Replacing fare and frequency 

by P and f in the FOC of the fare equation (10.1), we have 

21

1
21

0

2

)(
)(

















LL
f

P  
(2.12) 

Substituting the above into the FOC frequency equation (2.10.2) yields 
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conditions are always satisfied in the following numerical analyses. 
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(2.13) 

In order to discern potential frequency changes when delay occurs, Equation (2.13) needs 

to be simplified. The last term on the right hand side (RHS) of (2.13) is positive, as

21   . So is the second-to-last term on the RHS, since substituting (2.12) into this term 

yields ))()(( 1 fLLP   , which is greater than zero following the FOC 

discussion. Then the RHS of (2.13) is positive.  Note that all terms except c0 on the RHS 

are due to the presence of congestion. For simplicity we denote them by D. The RHS then 

becomes c0 + D. The left hand side (LHS) is only a function of f.  

The increase on the RHS due to congestion leads to an equivalent increase on the LHS, 

through changing the value of f. To study the monotonicity of the LHS, we define a new 

function 2

21
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[ f
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 
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 . Taking its first order derivative with 

respect to f, we obtain 

4

21021 /]})([2)(3{ ff
f

F
 




 (2.14) 

Our a priori expectation is that airlines tend to schedule fewer flights when delay occurs. 

This suggests that F be monotonically decreasing, or 0 fF , which is equivalent to: 

])([
3
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21 
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


f
 (2.15) 

Empirical evidence suggests that it is plausible for (2.15) to hold. More details are 

provided in appendix A. Therefore, 0/  fF and the LHS of (2.13) is a monotonic 

decreasing function. When traffic delay occurs, the RHS of (2.13) is increased by D. 

Consequently, the equilibrium frequency should adjust downwards. Let f0 and 0

~
f denote 

the optimal frequency with and without delay. We have 00

~
ff  . This fact will serve as the 

starting point to derive a set of other results in the ensuing comparative static analysis 

section. 

2.3 Comparative static analysis 

2.3.1 Impact on air fare, passenger generalized cost and demand 

The primary objective of this section is to further our qualitative insight into the impact 

of capacity constraint on air transportation service, by comparing the equilibrium values 
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with and without congestion. When congestion occurs, according to (2.12) air fare will 

respond in two different ways: reduced frequency (represented by

)]2(/[)( 2121   f ) and flight delay (represented by )2/( 21   L ) degrade the 

service quality and therefore reduce the willingness-to-pay (out of their pocket) of 

travelers. Therefore, the new equilibrium fare tends to be lower. On the other hand, 

congestion imposes L on airline operating cost for each passenger carried. The term

)2/( 211  L  in (2.12) shows that airlines would pass )2/( 211   portion of their 

delay-induced operating cost to passengers. This term also implies that, when the 

substitution effect between the two airlines is stronger (that is, as 12   ), airlines tend 

to pass a larger portion of their delay cost to passengers. In normal cases, the portion 

should be greater than ½ since 120   . Overall, the two opposing tendencies of price 

response blur the changes in ticket price. The changes in fare will be explored 

numerically in the next section.  

Recall that the generalized cost to each passenger consists of air fare, frequency, and 

traffic delay. The demand can be written as a function of a single generalized cost P . 

At equilibrium, demand for each carrier is 
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Recall in section 3.1 that the contribution of delay to each passenger’s generalized cost is 

kL, and  is defined as )( 21  k . Substituting (2.12) into P above, the generalized cost 

under equilibrium, 0P , becomes 
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When there is no delay, generalized cost equals 
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10
0

















f
P  (2.18) 

Comparing (2.17) with (2.18), two delay-related terms are added in (2.17) when 

congestion occurs: )2( 211  L and )2)(( 21211  L . The first term corresponds 

to the aforementioned delay cost transfer from carriers; the second term denotes the 

passenger delay cost, which is the net of direct passenger delay cost ( )( 21  L ) and 

the price drop due to delay ( )2( 21   L ) described before. Considering further that

00

~
ff  , it is easy to show 00

~
PP  , i.e. generalized cost will increase. 
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A direct consequence of passenger generalized cost increase is suppressed demand for 

each airline and in the market. Alternatively, airline demand can be expressed as only a 

function of frequency, by substituting (2.12) for P into the demand function (2.16) 

2,1   ,])([
2

]
)(

)([
2

21

21

1

0

21
210

21

1
,0 








 iL

f
Q i 









 (2.19) 

When there is no delay, the corresponding iQ ,0

~
equals 

2,1   ],~
)(

)([
2

~

0

21
210

21

1
,0 





 i

f
Q i







 (2.20) 

Given 00

~
ff  and the additional delay effect term ( L])([)2( 21211   ) in 

(2.19), demand for each airline becomes less when delay occurs, i.e. 2,1,
~

,0,0  iQQ ii . 

2.3.2 Impact on aircraft size and unit operating cost 

Although aircraft size is not considered as a decision variable, in our model context it is 

implicitly determined by passenger demand and the number of flights scheduled. Since 

flight load factor is assumed to be 1, the aircraft size is obtained by dividing (2.19) by f0: 

0

21

21

1

0

0

21
210

21

1
0

])([

2

]
)(

)([

2 f

L

f

f
s












 








  

(2.21) 

For the first term on the RHS, both the denominator and numerator become smaller when 

traffic delay is considered. Nonetheless, it is plausible for the first order derivative to be 

negative.
4
 This just confirms that demand is inelastic with respect to frequency. However, 

the second term presents an opposite effect, the effect of delay on suppressing demand. 

Therefore, the changing direction of aircraft size is inconclusive. The change in the unit 

operating cost L
s

c
 

0

0 is also left indeterminate as a consequence. 

2.3.3 Changes in consumer welfare 

The increase in passengers’ generalized cost and the reduction in demand that result from 

delay are shown in Figures 2.1 and 2.2, for airlines 1 and 2 respectively, where the 

abscissa and ordinate denote airline passenger demand and generalized cost. Because 

demand for one airline also depends upon the generalized cost of the other airline, both 

                                                 
4 2

2102121210 /}])([)(2{/}/])()({[ fffff   . Focusing on the numerator, 

as P  we have  ])([)(2])([)(2 2102121021 Pff 

Qf  /)( 21  . Since in general 0

f is less than 1, the RHS of the above is negative. Therefore, it is 

plausible that the first term on the RHS of (18) is a decreasing function of f. 
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demand curves move outward when delay takes place. The overall outcomes are 

equilibrium shifts from B to A and from F to E, for airlines 1 and 2. 

To measure changes in consumer welfare, the classical tool is consumer surplus. Since 

the utility function is specified as quasi-linear, consumer surplus is also an exact measure 

of consumer welfare (Varian, 1992). When delay occurs, CS loss arises from increase in 

both airlines’ generalized cost. Despite the many potential paths realizing this generalized 

cost change, the fact that 
1

2

2

1

p

q

p

q









guarantees the calculation of CS to be path 

independent (Mishan, 1977; Turnovsky, 1980). Here we choose the following two-step 

path, as indicated in Figures 2.1 and 2.2. In the first step, we increase the generalized cost 

of airline 1 from 
1,0

~
P  to 

1,0P , with the generalized cost of airline 2 being provisionally 

unchanged. The corresponding CS loss is the area DBPP 1,01,0

~
in Figure 2.1. As a direct 

result of the rise in airline 1’s generalized cost, the demand curve for airline 2 now moves 

outward from 0

2D
 
to 1

2D . Following the adjustment, in the second step the generalized 

cost of airline 2 rises from 
2,0

~
P  to 

2,0P , with the further loss of CS given by the area 

EHPP 2,02,0

~
in Figure 2.2. Concurrent with this is the horizontal move of airline 1’s 

demand curve from D to A (Figure 2.1). The total CS loss is calculated by adding 

together the two areas: DBPP 1,01,0

~
and EHPP 2,02,0

~
, in which loss for foregone demand 

consists of two triangular areas: DBJ and EHG. If this is considered as an infrastructure 

investment problem with reduced delay after capacity enhancement, then the sum of 

DBPP 1,01,0

~
and EHPP 2,02,0

~
is the overall CS gain, and the areas DBJ plus EHG represent 

the CS gain for induced demand. Given the symmetry setup, the sum of DBPP 1,01,0

~
and 

EHPP 2,02,0

~
is equal to twice the area of the trapezoid ABPP 1,01,0

~
 (or trapezoid EFPP 2,02,0

~
), 

and the two triangles DBJ and EHG are of equal size.  

 
Figure 2.1: Demand as a function of generalized cost for airline 1 
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Figure 2.2: Demand as a function of generalized cost for airline 2 

The welfare changes on the supply side remains analytically indeterminate due to the opposing 

effects of delay on ticket price, aircraft size, and flight operating cost. The ensuing section 

extends the comparative static analysis by numerically exploring the response of both demand 

and supply sides under a number of capacity scenarios. 

2.4 Numerical analysis 

To gain further insights into the supply-demand equilibrium, especially those elements 

that are left indeterminate in the preceding comparative static analysis, this section 

performs a set of numerical analyses. The direction–and to some extent magnitude as 

well–of the delay effects on the various elements in the equilibrium are examined. We 

first look at how the congestion-free equilibrium will shift when airport capacity 

constraint appears. We also investigate the sensitivity of the equilibrium to different 

capacity levels, including changes in both the supply-demand characteristics and welfare. 

Furthermore, since the equilibrium approach is not incorporated in the current practice of 

investment analysis, the differences in benefit assessment from using the conventional 

and equilibrium methods are compared, which shows that the equilibrium method yields 

more realistic and plausible estimates. 

In conducting numerical analyses, the first step is to determine the parameter values of 

the model. Many parameter values are based on literature; some assumptions are made 

when empirical numbers are not available. In this section, we consider a market of 

roughly 1000 passengers per day in each direction, with 10 daily flights serving the 

market. Therefore each airline schedules approximately 5 flights per day. One-way fare is 

set to be $100. In light of the estimated elasticity values in literature (Oum et al., 1993; 

Jorge-Calderón, 1997; Gillen et al., 2002; Hsiao, 2008), price elasticities are set to be -

1.25 and -2.5, at market and airline level respectively. The market frequency elasticities 
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are assumed to be 0.6. Based on the above elasticities and baseline market assumptions, 

the values for  ,,, 210
can be derived.

5
 The travel distance is assumed to be 1000 miles, 

with nominal trip time being 2 hours. According to GRA (2004), aircraft operate at $4000 

per hour, in which the fixed part holds $1000. Following this, the fixed operating cost c0 

equals $2000 per flight. The unit variable operating cost 100/23000$  =$60 per seat. 

We adopt an estimate cited in Barnett et al. (2001) for the average aircraft delay cost 

(measured in $/hr), when inflated to current value, equal to about $3000/hr. As a result

=$3000/(60 100)=$0.5/seat-min. The value of delay parameter   is inferred from 

passenger value of travel time. Recall the generalized cost: 

21 






L

f
PP  (2.22) 

Ceteris paribus, a one-minute delay increases one passenger’s generalized cost by

)/( 21    in the market. We use the value of travel time to approximate this amount. 

Using a value of $37.5/hr as in US DOT (2003, updated to 2007 value), 

60/)(5.37 21   =37.5  (12.5-6.25)/60=3.9 passenger/min. We choose a power 

function to depict increasing delay growth as traffic volume increases: 
]/)([ 21 KffNdL   , where d and  are parameters. This functional form also implies 

that the persistence of some level of delay even when traffic volume is low. We assume 

there are N=60 city-pair markets connected to the focal airport under study. This number 

of connections roughly corresponds to a medium-sized hub in the US. d and  are set to 

be 10 and 5 respectively. The parameter values are summarized in Table 2.1. In the 

subsequent analysis, all variables are treated as continuous.
6
 

Table 2.1 Derived parameter values. 

Parameter Value Unit Parameter Value Unit 

0  1300 Passengers   3.9 Passenger/min 

1  12.5 Passengers/$   0.5 $/seat-min 

2  6.25 Passengers/$ n  60 Markets 

  240 flight$     5
 

(-)
 

  60 $/seat d  10 Min 

0c  2000 $    

 

                                                 
5
 Certainly, the market demand and flight frequency under equilibrium will be different from the ones used 

to determine the parameter values. The presumed numbers above are just to derive plausible parameter 

values for the numerical analysis. Also note that the elasticities are not constant according to the demand 

function form. Using these parameter values, in the subsequent analysis we find the majority of elasticities 

calculated under various equilibria are within the range of existing estimates from literature.  
6
 One may argue it may not be very realistic. However, this assumption should have little impact on 

illustrating the qualitative insights. In fact, this type of treatment has been seen in transportation research 

literature of this type, for example, Schipper et al. (2003) and Brueckner and Girvin (2008). 
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2.4.1 Equilibrium shift when congestion occurs 

We first look at the ideal case of infinite capacity and no congestion. All the terms 

involving L in Equation (2.13) become zero. We find the equilibrium solution with the 

second-order conditions satisfied. The first line in Table 2.2 reports flight frequency, air 

fare, passenger generalized cost, demand for each airline, aircraft size, flight operating 

cost, and the traffic/capacity ratio under this equilibrium. 

If some airport capacity constraint exists, the above results will be changed. We set the 

airport capacity for arriving flights, K, to be 720 aircraft per day (if assuming the airport 

operates 18 hrs per day, then this is equivalent to 40 arrivals/hr).
7
 Solving Equation (2.13) 

yields a new set of equilibrium values (the second line in Table 2.2). Compared to the 

ideal case, delay results in smaller frequency, higher passenger generalized cost, and 

reduced demand, confirming our analytical conclusions. 

Table 2.2 Comparison of scenarios with and without capacity constraint. 

Scenario Frequency 
Air 

fare 

Generalized 

cost 

Airline 

Demand 

AC 

size 

Unit 

operating 

cost 

Traffic/ 

capacity 

ratio 

Average 

delay 

K=  7.6 98.9 130.3 485.7 63.6 91.4 0 0 

K=720 5.6 96.0 143.2 405.0 71.9 91.5 0.94 7.3 

 

The results also indicate a lower air fare, suggesting the effect of passengers’ reduced 

willingness-to-pay due to degraded service quality dominates over the effect of airlines 

passing part of delay cost to passengers. Larger aircraft will be chosen, suggesting in 

(2.21) the effect of frequency reduction outweighs the effect of delay on suppressing 

demand. The use of larger aircraft takes advantage of the economies of aircraft size. Due 

to the delay cost added, however, the overall flight operating cost is slightly increased. 

2.4.2 Sensitivity of equilibrium to different capacities 

The previous sub-section shows the response of the equilibrium when traffic delay 

appears, by comparing the extreme case of infinite capacity and a finite capacity. More 

intriguing is to see how sensitive the equilibrium is to different capacity levels. In what 

follows we examine the response of relevant supply-demand elements to an equal amount 

of capacity increase at a range of baseline levels escalating in a 36-operation increment, 

from 540 to 1260 arrival operations per day. Corresponding welfare gains are also gauged 

at these different capacity levels. 

                                                 
7
 As a reference, we provide here the actual arrival capacity (measured by airport acceptance rate, or AAR, 

in terms of the number of arrivals per day) as well as the number of connections at four US hub airports in 

August, 2007: Newark (EWR, AAR: 718, No. connections: 84), Philadelphia (PHL, AAR: 799, No. 

connections: 50), Denver (DEN, AAR: 1948, No. connections: 106), St Louis (STL, AAR: 1042, No. 

connections: 47). 
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2.4.2.1 Changes in the supply-demand characteristics 

Holding the market potential constant, capacity increase reduces the traffic 

volume/capacity ratio and delay. Figure 2.3 shows more significant average delay 

reduction (as measured by the slope of the average delay curve) at lower baseline 

capacity levels. Delay reduction induces new demand in the market, at a decreasing rate 

as shown in Figure 2.4. Despite the additional demand and associated new traffic, 

incremental delay savings—measured as the product of delay savings per flight and the 

number of flights at the respective baseline capacity level follows a diminishing trend as 

well. 

 
Figure 2.3: Delay and volume/capacity ratio vs. airport capacity 

With increasing airport capacity and continuing rise in passenger demand, airlines tend to 

schedule more flights (Figure 2.4). Frequency seems more sensitive to capacity level than 

does passenger demand, because airlines also decrease aircraft size as traffic increases. 

Figure 2.4 shows that, the equilibrium aircraft size continuously decreases. The decrease 

is moderate in the beginning, due to the concern of incurring higher congestion, as delay 

remains large in the system. As capacity increases, the impact of flight delay becomes 

secondary, whereas frequency competition plays a major role. The primary source of 

aircraft size change now comes from the 1
st
 term on the RHS of (2.21). As capacity 

further increases, the rate of frequency increase slows, presumably because of 

diminishing returns from schedule delay savings and more limited induced passenger 

demand. Concomitant with this is a less strong tendency to reduce aircraft size (Figure 

2.5).  

Capacity augmentation also leads to a lower unit operating cost per seat. When capacity 

constraint is tight, delay savings contribute more substantially to reducing unit cost than 

does smaller aircraft size to increasing it. As capacity increases, the cost impact from 

delay reduction becomes less significant. As this point unit cost increases because the 

benefits from using smaller aircraft and offering more frequent service so as to attract 
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more passengers offset the loss of economies of aircraft size. Airlines gain more profits 

despite some slight increase in unit operating cost (Figure 2.5). 

 

Figure 2.4: Demand and market frequency vs. airport capacity 

Figure 2.6 shows that, as capacity increases, airlines raise fares. Since the other two parts 

(schedule delay and flight delay) continue to decrease, the fare component holds an 

increasingly important portion in the overall passenger generalized cost. The effect is 

modest, however, since competition and demand elasticity limit airlines’ incentive to 

increase prices. From the passengers’ vantage point, capacity increase enables passengers 

to enjoy a more substantive reduction in generalized cost. These effects diminish as 

airport congestion eases.   

 

Figure 2.5: Aircraft size and unit operating cost vs. airport capacity 
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Figure 2.6: Air fare and generalized cost vs. airport capacity 

2.4.2.2 Changes in welfare 

The changes in equilibrium supply-demand characteristics analyzed above imply the 

importance of baseline capacity to assessing welfare gains. The following experiment 

makes this explicit. For the range of baseline capacity levels chosen (i.e. from 540 to 

1224 daily operations), an investment enhancing capacity by 36 arrival operations per 

day is made. Following section 2.3.3, at each baseline capacity, we calculate total CS 

change as ))((
2

1
))((

2

1 1

2

0

2

1

2

0

2

1

1

0

1

1

1

0

1 QQPPQQPP  , where superscripts 0 and 1 denote 

the states before and after capacity change, and subscripts 1 and 2 indicate airlines. Given 

the symmetry, the two products are equal; therefore only the calculation of 

))(( 1

1

0

1

1

1

0

1 QQPP  is needed. By the same token, CS gain for induced demand is 

obtained as ))(( 2

1

1

1

1

1

0

1 QQPP  , in which 2

1Q is defined as the hypothetical demand for 

airline 1 under the old generalized cost of its own and the new generalized cost of airline 

2. Note that ))(( 2

1

1

1

1

1

0

1 QQPP  equals twice the illustrative area DBJ in Figure 2.1. CS 

gain for existing passengers is then the difference between the total CS change and the 

CS change for induced demand. On the producer side, PS change is the change in airlines’ 

profit. The estimates for a single market are multiplied by N to approximate the aggregate 

effect across markets. All numbers are on a yearly basis. Figure 2.7 shows the results. 

Among the three welfare components, the largest gain comes to CS gains for existing 

passengers, followed by airlines’ profit. For the induced demand, the welfare gain is 

substantially lower, playing only a secondary role in investment analysis. This is not 

surprising, since the induced passenger demand only accounts for 0.4 to 4 percent in the 

total demand for each capacity increment in our analysis. The percentage diminishes as 

the imbalance between airport capacity and flight demand becomes less severe, which is 

reflected in the decreasing average delay shown in Figure 2.3. Similar to this and the 

results obtained in the previous sub-section, we observe decreasing welfare increment in 

all three components as baseline capacity increases, confirming the conventional wisdom 
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that investment is more beneficial when capacity is more seriously constrained. This 

gives rise to the question of investment timing. While beyond the scope of the present 

research, it is important to recognize that investing in capacity will not bring significant 

benefit–at least immediately–when capacity shortage is not a serious problem. By 

contrast, although investment at times when there is already severe congestion seems to 

generate much larger benefit, this must be weighed against the huge delay cost that 

already occurred due to delayed decisions on expanding capacity.  

 
Figure 2.7: Welfare gain under different baseline capacity  

levels for a fixed capacity increment 

2.4.3 Benefit assessment using equilibrium and conventional methods 

Benefit assessment by incorporating the supply-demand equilibrium would generate 

different results than the conventional method which is commonly employed in practice. 

In the conventional method, response from the supply side is usually absent, and in many 

cases the induced demand part is not considered either. In this sub-section we compare 

the benefit assessment using the two different methods. Suppose the baseline capacity is 

720 operations/day, and some capacity expansion is just completed which increases the 

capacity by 50%. The evaluation time frame is set to be 10 years, with a 3% discount rate 

per year. Along the timeline, accounting for the effects of socio-economic development 

on demand is necessary, and they are primarily embodied in income increase, population 

growth, and taste variation. Given the quasi-linear utility set-up, income effect is not 

present in the demand model. Population growth is materialized by simultaneously 

increasing the values of 
210 ,,  by 100  percent each year. On top of that, we further 

allow
0 to increase by another 100 percent, to reflect the fact that people increasingly 

place more importance on air travel. In the following analysis, we set both  and to be 

0.01. 

We assume in the conventional method, demand is invariant to capacity change. In the 

starting year, the conventional method calculates delay savings using the same delay 

1

10

100

1000

10000

100000

1000000

10000000

100000000

520 620 720 820 920 1020 1120 1220

W
el

fa
re

 C
h

an
ge

s 
($

/y
r)

Baseline Capacity (arrivals/day)

CS Gain for Existing Passengers
CS Gain for Induced Demand
PS Gain



24 

 

function L defined above. Under the original capacity, the average delay is 7.29 

min/flight; after the capacity increase, the “new” delay becomes only 0.96 min/flight. The 

difference between the two is multiplied by passengers’ value of time
8
 and delay-related 

unit operating cost (  = $0.5/seat-min), and then by passenger demand, to obtain the 

savings of passenger and carrier delay cost respectively. For the subsequent nine years, 

the conventional method assumes annual demand increases as result of population growth, 

which amounts to  portion of the previous year’s demand, as well as taste variation, 

whose contribution is  )1(0  .
9
 Since demand increase directly translates into higher 

frequency, when passenger demand is very large, delay becomes excessively high. In 

practice, airports experiencing severe delays will not be able to accommodate rising 

demand for air service. Practical guidance, such as the one issued by FAA (1999), 

suggests using adjusted traffic levels which reflect a flat or only slightly escalating rate of 

growth once delay reaches a certain threshold. The FAA guidance states that average 

delay per operation of 10 minutes or more may be considered severe; at a 20 minutes 

average delay, growth in operations at the airport will largely cease. In light of this, we 

cap delay at 20 minutes under the conventional method. 

Because of different capacity levels, however, such capping will occur at different times 

with and without capacity investment. The demand levels will differ starting from the 

year that demand is capped in the low capacity alternative. FAA (1999) attributes the 

demand difference to “the availability to airport users of alternative actions to simply 

waiting in line” (FAA, 1999). Jorge and de Rus (2004) define a similar term of “deviated 

users”, who divert to a substitute in the baseline scenario but switch back when capacity 

is expanded. Unfortunately, how to cope with this demand inconsistency in benefit 

analysis is rarely mentioned. In Jorge and de Rus (2004) the delay saving benefits per 

deviated and existing user are treated as identical. We follow their approach here: to 

calculate passenger benefits delay saving minutes is multiplied by the number of 

passengers in the larger capacity case. We use the same approach to calculate airline cost 

savings. Performing this generates an estimate of annual (present value) benefits for 

passengers and airlines, which amounts to $1.52 and $1.21 billion respectively, or a total 

of $2.73 billion over the entire 10-year period.  

Using the equilibrium method, benefit assessment requires the calculation of equilibrium 

values with and without capacity expansion. Following the same procedure as described 

in section 2.4.2.2, consumer and producer surplus gains are calculated. The present 

values of gains in PS, CS for existing passengers, CS for induced demand over the 10-

year horizon are $0.68, $1.52, and $0.21 billion respectively, with a total at 2.41 billion 

dollars. Although the overall welfare estimate does not depart substantially from the total 

                                                 
8
 We use the same passenger value of time ($37.5/hr), the one used to determine the parameter  before. 

9
 Suppose demand for airline 1 in year k equals kkk PPQ ,22,110,1   . According to our treatment of 

socio-economic impact on parameters, airline 1’s demand in the following year becomes

1,221,1101,1 )1()1()1)(1(   kkk PPQ  . Since response from the supply side is not 

considered, kkkk PPPP ,21,2,11,1 ,   and 1,1 kQ can be re-expressed as  )1()1( 0,1  kQ , where 

the second term corresponds to the additional demand resulting from taste variation effect. 
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benefit using the conventional method, the temporal patterns are very different. As shown 

in Figure 2.8, the equilibrium approach yields more consistent welfare gains over the 

timeline. In contrast, when delay capping becomes active, benefits using the conventional 

method continue to shrink. Therefore, one might expect a total benefit from the 

conventional method to be even smaller than from the equilibrium approach with a longer 

planning horizon.  

Further interpretation of the results is accompanied by delay savings and changes in 

demand resulting from the capacity increase, as shown in Figure 2.9. Looking at the first 

year, delay savings are greater using the conventional method since it disregards 

passenger and flight frequency adjustment. The equilibrium method predicts more flights 

because of induced demand. This reduces schedule delay for passengers, and adds to the 

benefit gain for existing passengers. On the carrier side, although the induced demand 

allows for additional revenue, the adjustment in fare and flight operating cost produces a 

total airline profit very similar to the one obtained from the conventional method. 

In the successive years, we observe a steady growth of welfare under the equilibrium 

method, for both airlines and passengers. This results from the growth of market size and 

the ability of the equilibrium method to internalize passenger and airline adjustment 

facing delays, which keeps delay at a reasonable level (we observe the average delay at 

equilibrium is always less than 10 minutes). Failing to incorporate this adjustment, the 

conventional method provides a distorted delay saving picture. Following a more 

substantial delay reduction, the welfare gains increases at a much faster rate after the 1st 

year. The conventional method then avoids excessive delays through a delay cap, which 

results in reduced delay savings in the latter years. Nevertheless, delays saving estimates 

remain greater than those from the equilibrium method throughout the 10-year period.  

  

Figure 2.8: Welfare gain using conventional and  

equilibrium methods (in present values) 
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Figure 2.9: Delay savings and demand after capacity increase 

using conventional and equilibrium methods 

As a final remark, the equilibrium method contributes to a more plausible demand 

forecast. Compared to the conventional method, the equilibrium predicts a high demand 

in the beginning due to demand inducement, but a relative slow growth afterwards 

(Figure 2.8). As illustrated before, the equilibrium permits demand to self-adjust so that 

exceedingly high delay can be prevented. 

2.5 Summary 

Appropriate assessment methodology for aviation infrastructure investment has become 

increasingly critical with growing demand and delay in the air transportation system. 

Recognizing that infrastructure capacity change would trigger a supply-demand 

equilibrium shift, this chapter proposes a new assessment framework that takes into 

consideration the interplay among passenger demand, air fare, flight frequency, aircraft 

size, and flight delay. By developing and analyzing an airline competition model, we find 

that capacity constraint suppresses demand and increases passenger generalized cost. 

Facing delays, passengers’ willingness-to-pay is reduced; airlines tend to lower frequency 

and pass part of the delay cost they bear to passengers. In addition to scheduling fewer 

flights, our numerical analyses further reveal that airlines respond to delay by using larger 

aircraft and reducing fares. The extent of equilibrium shift depends on how capacity is 

constrained. The marginal effect of increasing capacity on equilibrium shift and benefit 

gain diminishes as the imbalance between capacity and demand is mitigated. Through 

comparing the benefit assessment using the equilibrium and conventional methods, we 

conclude that the equilibrium method generates more plausible estimates, and prevents 

the occurrence of unrealistically high delays which often present an issue in the 

conventional approach. 

This chapter presents a first step towards incorporating competitive supply-demand 

equilibrium into aviation infrastructure investment. There are many opportunities to 

extend this work. In the model presented here, a simultaneous price-frequency game is 

assumed. It may be interesting to examine the results under alternative market conditions, 

such as sequential competition or monopoly. Certainly, empirical investigation of the 
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findings and benefit assessment simulation using real world data are important next steps, 

and will be incorporated into our future work. 
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3. Empirical Investigation of Flight 
Delay Impact on Air Transportation 
Supply 

 

3.1 Introduction 

Understanding the supply in the air transportation system has traditionally been an 

important area in empirical airline economics research. Despite the large body of 

literature in this area, and growing concerns from airlines and the general public about 

flight delay and demand for more capacity, the responses of two most critical supply 

components—airfare and flight frequency—to flight delay remain a less well understood 

subject. The lack of understanding is in sharp contrast with the record high delay 

experienced by the air transportation system, especially in the US, as a consequence of 

ever increasing travel demand. The phenomenon of air traffic congestion and delay will 

likely become more prominent given the projected demand growth in the coming decades 

(Boeing, 2011).  

Flight delay makes airline operations more expensive, but airlines do not necessarily 

transfer the delay cost entirely to passengers through higher fare. As shown in the 

theoretical analysis from the previous chapter, airlines strike a balance between delay 

cost recovery and maintaining demand despite travelers' decreased willingness-to-pay 

due to service quality degradation. Decisions on frequency reduction to avoid excessive 

delays must be weighed against aircraft size economics, higher pricing power, the 

positive feedback between demand and frequency, and the fear of market share loss. It is 

of critical importance for policy makers to be cognizant of these interplays, and able to 

quantitatively gauge airlines' pricing and frequency scheduling responses to delay and 

delay mitigation strategies.  

The objective of this chapter is to enrich the current knowledge base of such responses. 

We conduct a systematic examination of the delay impact on route airfare and segment 

flight traffic using data from the US air transportation system. Structural fare and 

frequency models are estimated, providing empirical evidence that confirms our 

theoretical conjecture in the previous chapter. 

Together with existing insights about the delay impact on passenger demand, which will 

be presented in Chapter 4, the results from this chapter form a comprehensive basis for 

future policy analysis and decision making to mitigate delays in the system. We proceed 

first with a review of the key factors in the determination of airfare and frequency, based 

on which we the contribution made in this chapter is highlighted. Fare and frequency 

models are specified in Sections 3.3 and 3.4, respectively, with discussion also covering 
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data, econometric issues, and estimation results. Summary of key findings and directions 

for future research conclude the chapter.  

3.2 Literature review and contribution of the research 

3.2.1 Fare 

The majority of the previous research on airline pricing behavior has been focused on the 

relationship between average fare and market structures (Gillen and Hazledine, 2011). 

Specific factors considered include individual airlines' market share, route and endpoint 

airport concentration (impacts of which are sometimes referred to as "hub premiums"), 

and low-cost carrier (LCC) competition (e.g. Baily et al., 1985; Borenstein, 1989; 

Dresner et al., 1996; Morrison, 2001; Hofer et al., 2008; Goolsbee and Syverson, 2008; 

Chi and Koo, 2009; Brueckner et al., 2011; Zou et al., 2011, to name a few). In addition 

to market structure, demand and cost characteristics are also considered in structural fare 

model specifications. Instrumental variable regression and simultaneous equation 

estimation are the most commonly used techniques to account for the simultaneity 

between demand and airfare. On the cost side, the straightforward link between fare and 

distance has been widely acknowledged. Researchers have also paid attention to the 

existence of the economies of density and its impact on airfare, hitherto at the airline-

route level (Brueckner and Spiller, 1994; Berry et al., 1996; Brueckner et al., 2011). 

On the other hand, very limited empirical attempts have been made on investigating how 

delay affects airfare. Theoretically, flight delay causes aircraft to spend more time either 

on the ground or in the air, increasing fuel consumption and crew time, resulting in 

additional operating expenses. Anticipating delays, airlines may pad extra time in their 

published schedules, resulting in less efficient aircraft utilization and therefore higher 

capital cost. It is natural for airlines to pass these additional costs onto passengers by 

charging higher fares. Meanwhile, airlines also have to weigh in the demand response to 

delays, in order to maximize profit. Focusing on short-haul (<500 miles) routes, Britto et 

al. (2012) find that, controlling for route passenger demand, delay has an upward impact 

on airfare. Forbes (2008) studies fare response to exogenous delay shock created by the 

Aviation Investment and Reform Act for the 21st Century (AIR-21), and finds falling 

airline prices in response to longer flight delays. The airfare reduction found by Forbes 

should be construed as the net effect of a marginal operating cost increase, combined 

with reduced demand and passenger willingness-to-pay. This is different from the 

empirical framework in Britto et al. (2012) which explicitly controls for passenger 

demand. In addition to the econometric models, there have been recent efforts (e.g. Evans, 

2010) that examine price response to delay from the airline gaming perspective. 

This chapter takes a comprehensive and novel view to investigate fare determination and 

in particular the impact of delay on airfare. It is comprehensive because supply, demand, 

market structure, and delay factors are all considered in the empirical model specification. 

The novelty lies on the development of separate models for direct and connecting routes. 

This attempt is, to our knowledge, the first of its kind. Our approach recognizes the 
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intrinsic differences in unit fare (yield) between the two types of routes (Belobaba, 

2009a), and allows for the impact of economies of segment and hub airport density, hub 

congestion, and route circuity, an important feature of one-stop routes that in effect 

penalizes airlines for exploiting economies of density, to be explicitly investigated. Our 

fare models are built upon a more inclusive set of routes which covers a broader range of 

market types than in previous studies, thus providing a more complete picture of delay 

impact on airline pricing. The separate consideration of direct and connecting routes 

provides more detailed insights into the extent to which airlines transfer operating cost 

increase due to delay to passengers through high fare.  

3.2.2 Frequency  

In airline practice, the decision on frequency and aircraft choice are closely intertwined 

and entails multiple stages, starting from the more strategic fleet planning process, often 

performed 2-5 years in advance, to frequency planning beginning a year or more ahead of 

flight departure, to more tactical fleet assignment process 2-6 months prior to departure 

date (Belobaba, 2009b). The relationship between frequency and aircraft size has been 

extensively studied in airline economics literature. Passenger demand growth on a flight 

segment may lead airlines to adapt by increasing either the aircraft size, or flight 

frequency, or both.
10

 Which option to choose reflects the tradeoffs between schedule 

delay reduction and economies of aircraft size, as well as shorter run fleet constraints. In 

principle, airlines may have the incentive to upgauge aircraft because the unit operating 

cost may become smaller when larger aircraft is utilized (Douglas and Miller, 1974; 

Morrison and Winston, 1986; Hansen and Kanafani, 1989; Wei and Hansen, 2003). This 

size economies effect may be offset by pilot wage structures (Meyer and Oster, 1984), 

which are partially responsible for airlines' choice of smaller aircraft especially on short-

haul, high-density markets (Wei and Hansen, 2003). 

On the other hand, both historic data and industry outlook suggest that passenger demand 

growth will be primarily accommodated by more frequent service, with only slight 

increase in aircraft size (Wei and Hansen, 2003; Givoni and Rietveld, 2009; Boeing, 

2011). Higher frequency reduces the average passenger schedule delay, contributing to 

reduced passenger generalized cost and resulting in higher travel demand, which induces 

further frequency increase. This positive feedback relationship, known as the Mohring 

effect, provides one important explanation that airlines prefer to increase flight frequency 

to accommodate demand growth. In addition, reduced passenger schedule delay leads to 

an upward shift of travelers' willingness to pay, enabling airlines to charge higher fares, 

as shown analytically in both monopoly (Brueckner and Zhang, 2001) and duopoly (see 

the preceding chapter) cases. Further incentive for airlines to increase frequency stems 

from its association with market power: airlines' market share is superproportional to 

airlines' frequency share when frequency goes above a certain level, or the S-curve effect 

(Wei and Hansen, 2005). Schipper et al. (2002) find that the number of airlines on a 

segment has a significant positive effect on frequency. In effect, the competitive pressure 

                                                 
10

 While in principle demand growth can be accommodated by higher load factor, airlines commonly 

assume some targeted load factors in their planning process. So the load factor is of minor concern in 

airlines' decision making. 



31 

 

gives airlines little choice but to operate smaller-capacity aircraft with higher frequency 

and unit operating costs (Belobaba, 2009b). 

It is part of our hypothesis, as set out in the research framework, that airlines may choose 

to cut back the schedule and use larger aircraft to avoid excessively high delays. Under 

the assumption of constant demand, schedule reduction and aircraft upgauging would be 

essentially equivalent. The delay effect can be regarded as imposing additional penalty on 

airlines if using smaller aircraft, since doing so incurs higher delay and airline delay cost. 

On the other hand, airlines have been observed to progressively pad extra minutes in their 

published schedules in order to make operations more robust to delays and improve their 

published on-time performance statistics (Zou and Hansen, 2012). This reduces aircraft 

utilization, i.e. the number of hours or legs an aircraft can fly in a day. Empirical studies 

reveal a 0.37 correlation between total airport delay and average aircraft size in Europe 

(Reynolds-Feighan and Button, 1999) whereas the number of runways at airports has 

virtually no effect on aircraft size (Givoni and Rietveld; 2009). Using US data at the 

airline-segment level, Pai (2010) finds that every one minute delay increase at the origin 

and destination airports result in 2 and 3 fewer flights per month. However, the model 

does not account for the frequency response to segment passenger demand and airline 

competition (aside from the presence of LCCs). 

In what follows we contribute to the existing literature by specifying and estimating an 

airlines frequency model that more comprehensively captures the causal relationship 

between frequency and its influencing factors. The model provides quantitative insights 

into airlines' choice between frequency and aircraft size facing passenger demand change, 

examines various competition effects on frequency at the segment, airport, and 

metropolitan area pair levels, and offers up-to-date evidence about the impact of 

congestion on flight frequency—through the inclusion of both airport delays and other 

indirect effects.  

3.3 Effects of delay on fare 

In this section we specify and estimate non- and one-stop route fare models. Air travelers 

making two stops are only a small fraction of system total in the U.S. (1.1-1.4% between 

2004 and 2008), and are therefore not considered in the fare modeling.  Each fare model 

is a function of cost characteristics, demand, competition, and flight delay on the route. 

For one-stop routes, the impact of segment passenger density and connecting airport 

characteristics are further incorporated in the fare model.  

3.3.1 Empirical model specification 

For a given route, we employ the average yield, i.e. the total revenue generated from the 

route across all airlines divided by the total passengers-miles flown on the route, as the 

dependent variable in the fare models. Yield is modeled as a function of a set of route-, 

segment-, market-, and airport-specific variables. The models have log-linear forms, i.e. 

all continuous variables take logarithmic values. This specification is to approximate the 
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non-linear relationship between the yield and its explanatory variables, and helps reduce 

the impact of outlying observations and heteroskedasticity. The resulting coefficients 

represent yield elasticities with respect to the continuous explanatory variables. As the 

model is estimated using data aggregated across carriers, the coefficients may be viewed 

as an average of the underlying, carrier-specific coefficients.  

The two econometric models to explain yields are specified as follows: 

Non-stop routes: 
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where subscript i, j and t denote a non-stop route, a one-stop route, and a time period, 

respectively. 
it and 

it are error terms. Table 3.1 below provides a description of all 

variables in the two models. 

Table 3.1 Definition of fare model variables. 

 Definition 

Common variables  

Y Average yield, calculated as total revenue (dollars) on a given route divided 

by total passenger miles flown a given route and time period. 

RoutePax Total number of passengers on the route per quarter. 

Dist Airport-to-airport non-stop distance in statute miles. 

OriginL4Delay Average flight delay at the origin airport (four quarters lagged). 

DestL4Delay Average flight delay at the destination airport (four quarters lagged). 

MarketHHI Market-level Herfindahl-Hirschman Index (HHI), measured as the sum of 

squared market shares of all carriers flying in the market. A market 

encompasses all routes that connect the corresponding metropolitan area 

pair. 
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OriginHHI HHI at the origin airport. 

DestHHI HHI at the destination airport. 

AirportPairLCC Dummy variable, equal to 1 if at least one low cost carrier (LCC) is present 

on the origin-destination airport pair. 

AdjacentRouteLCC Dummy variable, equal to 1 if LCC's are present on at least one of the 

adjacent route. An adjacent route is defined as one of which both origin and 

destination airports are within the same metropolitan area as the origin and 

destination airports, respectively.  

SlotControl Dummy variable, equal to 1 if at least one of the origin and destination 

airports is slot controlled. 

Vacation Dummy variable, equal to 1 if at least one of the origin and destination 

airports is in the States of Florida, Nevada, and Hawaii. 

  

Variables only in the fare model for non-stop routes  

RouteHHI HHI on the route. 

  

Variables only in the fare model for one-stop routes 

Circuity Ratio of total itinerary miles over O-D miles 

SumDensity Sum of the number of passengers on the two segments that were used by 

the route under study 

ConnectL4Delay Average flight delay at the connecting airport (four quarters lagged). 

LegMeanHHI Geometric mean of the two flight segments' HHI's 

ConnectHHI HHI at the connecting airport 

 

As pointed out in the outset of this sub-section, the explanatory variables encompass cost, 

demand, competition, and flight delay effects. Airport O-D distance (Dist) represents the 

major cost-side effect on fare. Even though yield is expressed in terms of revenue per 

passenger-mile, it remains a function of the airport O-D distance because ending point 

operations such as takeoffs and landings have significant cost not related to distance 

(Hurdle et al., 1989). Therefore economies of distance may exist (Wei and Hansen, 2003). 

For connecting routes, the actual traveling distance is different from O-D distance, and 

involves an additional takeoff and landing. The Circuity variable, which measures the 

ratio between the route distance and O-D distance, is introduced. Higher Circuity raises 

production costs and lower product quality. The former effect would tend to increase 

price, while the latter would tend to lower it (Borenstein, 1989).  

The existence of economies of density suggests that operating cost on a route may depend 

upon route demand density (RoutePax) (Graham et al., 1983; Baily et al., 1985; Hurdle et 

al., 1989; Dresner and Trethway, 1992; Dresner et al., 1996). Meanwhile, RoutePax 

would affect airfare through the demand side effect (Dresner and Trethway, 1992). On 

non-stop routes, the economies of density effect may be better captured by using segment 

passenger volume. However, we find very high correlation between RoutePax and 

segment passenger volume in the dataset (correlation coefficient: 0.88). Only RoutePax is 

included to avoid multi-collinearity. In contrast, RoutePax on connecting routes is often 

much smaller than segment passenger volume, because the two flight segments are used 

by many other connecting routes and two local, non-stop O-D routes. RoutePax on one-

stop routes would no longer be a valid proxy for the density effect. Segment passenger 
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density is therefore included in the one-stop fare model. We follow Brueckner and Spiller 

(1994) by specifying the sum of segment passenger volumes (SumDensity) to capture the 

density effect. The RoutePax variable, then, would only convey the demand side effect on 

airfare.  

Competition manifests itself in many ways in fare determination. We first use the 

Herfindahl-Hirschman Index (HHI), the sum of squared shares from all incumbent 

airlines, to characterize the concentration. In general, lower HHI's means more intense 

competition and therefore lower airfare. Route-, market-, and airport-specific HHI's 

(RouteHHI, MarketHHI, OriginHHI, DestHHI) are included in the non-stop fare model. 

A market consists of all routes connecting the corresponding metropolitan area pair.
11

 

Multiple non-stop routes may exist when Multiple Airport Systems (MAS) present at 

either origin or destination metropolitan area or both. A connecting route involves 

transferring at an intermediate airport which is often an airline's hub, resulting in very 

high route concentration (RouteHHI close to 1). It is therefore less sensible to incorporate 

RouteHHI in the one-stop fare model. However, each of the two flight segments could 

involve substantial competition. As an example, while American Airlines may be the 

only carrier operating on SFO-DFW-ATL route, on DFW-ATL segment both American 

and Delta would schedule many flights, since the two ending airports are their respective 

hubs. We include the geometric mean of segment HHI's (LegMeanHHI) in the one-stop 

route fare model. While higher concentration at the origin and destination airports would 

allow the dominant carriers to charge higher fare,
12

 the effect at the connecting airport 

may be different. The market effect may be dominant as an airline intends to attract 

passengers to use the circuitous routes and connect at the hub. In addition, consolidation 

of operations at the hub reduces unit operating cost, and therefore airfare.  

Besides different HHI's, LCC's present another dimension in the competition effect 

(Dresner et al., 1996; Morrison, 2001; Brueckner et al., 2011). Here we introduce two 

dummy variables, AirportPairLCC and AdjacentRouteLCC, to capture the competition 

effect on the same airport pair and on adjacent routes. The latter case occurs when at least 

one ending airport of a route is within an MAS. An adjacent route is defined as a route 

whose ending airport is either the same one as that of the route under study, or in the 

same metropolitan region.  

Since airlines cannot predict flight delay prior to departure, a key hypothesis we make in 

the study is that, based upon the delay they experienced in the past, airlines tend to pass 

part of the delay cost onto passengers through higher fare. As the time unit for fare 

observations is one quarter, the most relevant delay experience would be from the 

previous quarter as well as one year before due to the same season. While it is tempting 

                                                 
11

 The coverage of each metropolitan area in the present study is adopted from the definitions of 

metropolitan statistical areas (MSA), micropolitan statistical areas, combined statistical areas (CSA), and 

metropolitan divisions in the Bureau of Economic Analysis (2011). 
12

 The fringe competitors might either increase airfare because of the "umbrella" effect or be forced to 

charge lower fare in order to gain foothold at the airport. As the measured fare is weighted averaged of 

fares from dominant airlines and these fringe competitors, the average fare would likely be higher at 

airports with higher concentration. 
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to include both one- and four-quarter lagged airport departure and arrival delays in the 

fare model, we observe high correlation among these four delay variables. Again, to 

avoid multi-collinearity, only four-quarter lagged airport arrival delays are included in the 

fare models.  

Finally, two dummy variables, SlotControl and Vacation, are introduced to capture the 

effects on fare of a route being slot controlled or connected to a vacation destination. 

SlotControl equals 1 if at least one ending airport is slot controlled. The coefficient for 

the SlotControl variable should be interpreted as the effect of this policy after controlling 

for flight delays. Slot controlled airports increases the resource scarcity, which may 

effectively ration air travel, creating the potential for price increase on relevant routes 

(Swaroop et al., 2012). The Vacation variable is expected to account for the lower ratio of 

business and leisure travelers. One would therefore expect a negative impact on yield 

(Dresner et al., 1996).  

3.3.2 Data 

The data for fare model estimation are based on airport O-D pairs among top 100 U.S. 

airports (based on passenger enplanement in the 4th quarter of 2004), for all quarters 

from 2004 to 2008. These years represent periods where travel demand ratcheted up from 

the 9/11 terrorism attacks, reached its record high in 2007, and slumped in the following 

year because of hiking oil prices, therefore providing sufficient variability in passenger 

demand and flight delay. The routes included in the dataset also cover a wide range of 

route characteristics such as traffic volume, distance, the extent of delay and competition. 

The dataset for model estimation is compiled from several sources. Passenger demand, 

fare, and HHIs at route, segment, market, and airport levels are either directly obtained, 

or constructed using the U.S. Bureau of Transportation Statistics (BTS) Airline Origin 

and Destination Survey (DB1B), a 10% sample of all U.S. domestic air travel tickets. 

Yield is converted into constant dollars based on the 2nd quarter of 2004. Information 

about segment passenger density and distance between airports is extracted from BTS 

T100 Domestic Segment Traffic Database. The average airport delay is calculated using 

the BTS Airline On-Time Performance Database, which details flight activities for each 

scheduled domestic flight by major U.S. carriers. AirTran Airways, American West 

Airlines, ATA Airlines, Frontier Airlines, JetBlue Airways, Southwest Airlines, Spirit 

Airlines, and Sun Country Airlines are considered as low cost carriers.
13

 Between 2004 

and 2006, DCA, LGA, JFK, and EWR were slot controlled airports under the High 

Density Rule (HDR). Information about airport slot control after the expiration of HDR, 

starting from January 1, 2007, is collected from FAA (2008, 2009a).  The coverage of 

metropolitan areas is adopted from the definitions of metropolitan statistical areas, 

micropolitan statistical areas, combined statistical areas, and metropolitan divisions in the 

Bureau of Economic Analysis Regional Economic Accounts (BEA, 2011). We also 

extract population and income per capita information for each metropolitan area from the 

same source. The definition of MAS follows those in Hansen and Weidner (1995), and 

                                                 
13

 American West Airlines merged with US Airways in January 2006. ATA Airlines ceased its service 

starting from April 2008. 
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Hsiao (2008). The correspondence between MAS and metropolitan areas included in our 

dataset is presented in Appendix B. 

To ensure reliable data for model estimation, the dataset is filtered by applying several 

rules. We preserve routes with average yield greater than or equal to three cents per mile. 

Segments with flight frequency less than 60 flights per quarter are excluded from the 

dataset. Also removed are very short-haul routes for which both origin and destination 

airports are within the same metropolitan area. For one-stop travel, we restrict connecting 

itineraries to those that through one of 30 major airports.
14

 In total, the dataset contains 

67,443 non-stop route-quarter and 1,206,282 connecting route-quarter observations from 

4,035 non-stop and 90,242 connecting routes. Descriptive statistics of the variables are 

provided in Tables 3.2 and 3.3. 

Table 3.2 Descriptive statistics for variables in the non-stop fare model (N=67,443). 

Variable Mean Std. Dev. Min Max 

Y ($/passenger-mile) 0.255 0.236 0.040 2.795 

Dist (miles) 873.124 627.956 55 4962 

RoutePax (passengers) 20321.530 26247.460 10 272710 

RouteHHI 0.780 0.227 0.166 1 

MarketHHI 0.466 0.192 0.133 1 

OriginHHI 0.259 0.153 0.067 0.942 

DestHHI 0.259 0.153 0.067 0.942 

AirportPairLCC 0.661 0.473 0 1 

AdjacentRouteLCC 0.119 0.323 0 1 

OriginL4Delay (min/flight) 12.640 3.870 4.584 31.020 

DestL4Delay (min/flight) 12.641 3.870 4.584 31.020 

SlotControl 0.094 0.291 0 1 

Vacation 0.221 0.415 0 1 

 

Table 3.3 Descriptive statistics for variables in the one-stop fare model (N=1,206,282). 
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 The airports are: Atlanta Hartsfield International Airport (ATL), Logan International Airport (BOS), 

Baltimore–Washington International Airport (BWI), Charlotte Douglas International Airport (CLT), 

Cincinnati–Northern Kentucky International Airport (CVG), Ronald Reagan National Airport (DCA), 

Denver International Airport (DEN), Dallas–Ft. Worth International Airport (DFW), Detroit Metro-Airport 

(DTW), Newark International Airport (EWR), Washington Dulles International Airport (IAD), George 

Bush Intercontinental Airport (IAH), John F. Kennedy International Airport (JFK), McCarran International 

Airport (LAS), Los Angeles International Airport (LAX), LaGuardia Airport (LGA), Orlando International 

Airport (MCO), Memphis International Airport (MEM), Miami International Airport (MIA), Minneapolis–

St. Paul International Airport (MSP), Chicago O’Hare International Airport (ORD), Philadelphia 

International Airport (PHL), Phoenix International Airport (PHX), Pittsburgh International Airport (PIT), 

San Diego International Airport (SAN), Seattle–Tacoma International Airport (SEA), San Francisco 

International Airport (SFO), Salt Lake City International Airport (SLC), Lambert–St. Louis International 

Airport (STL), and Tampa International Airport (TPA). The inclusion of hub airports is consistent with 

Hsiao (2008) and the set of airports in FAA 2001 airport capacity benchmarking (the Honolulu 

International Airport is removed from the list as only trips in the continental US is considered). 
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Variable Mean Std. Dev. Min Max 

Y ($/passenger/mile) 0.130 0.105 0.035 4.022 

Dist (miles) 1354.045 771.292 45 5107 

RoutePax (passengers) 340.193 532.186 10 10400 

Circuity 1.304 0.348 0.996 24.438 

SumDensity (passengers) 1232079 887438 30930 7041750 

MarketHHI 0.354 0.152 0.124 1 

OriginHHI 0.219 0.131 0.067 0.942 

DestHHI 0.219 0.131 0.067 0.942 

ConnectHHI 0.337 0.137 0.093 0.634 

LegMeanHHI 0.644 0.195 0.193 1 

AirportPairLCC 0.686 0.464 0 1 

AdjacentRouteLCC 0.071 0.257 0 1 

OriginL4Delay (min/flight) 12.649 3.648 4.584 31.020 

DestL4Delay (min/flight) 12.647 3.641 4.584 31.020 

ConnectL4Delay (min/flight) 13.015 4.463 4.584 31.020 

SlotControl 0.097 0.296 0 1 

Vacation 0.253 0.435 0 1 

 

3.3.3 Estimation, results and discussion 

In estimating the fare models specified above, accounting for potential endogeneity is 

important. An important source of endogeneity arises from the RoutePax variable. The 

models are estimated using the two-stage least square (2SLS) method to correct for the 

potential endogeneity bias from using the Ordinary Least Square (OLS) estimation. For 

non-stop route fare model, we introduce the income and population in the origin and 

destination metropolitan areas, the number of connected airports and the ratio of 

connecting to local O-D passengers at the origin and destination airports (based on 

outbound traffic), all taken logarithmic values, as additional instruments. The socio-

economic instruments are clearly exogenous and related to demand generation on the 

non-stop route. The number of segment connections at the ending airports is often highly 

correlated with the size and strength of economic activities of the local metropolitan area, 

therefore affecting air travel passenger demand. The ratio between connecting and local 

passengers at airports reflects the extent of hubbing at the airports, which affects non-stop 

demand through competition between connecting and local passengers for aircraft seating 

capacity provided on the non-stop route (segment). On the other hand, because any one 

route accounts for only a small share of the total traffic at an airport, those airport-

specific instruments are largely exogenous to fare changes on any given route and will be 

determined by the incumbent carriers' entire routing structure.  

The choice of instruments in the one-stop fare model follows a similar rationale. 

Instruments excluded from the structure equation for the RoutePax variable consist of the 

income and population at the origin and destination metropolitan areas, the maximum and 
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minimum flight frequency on the two segments, the number of segments connected at the 

intermediate airport, and non-stop O-D passenger volumes on the two segments, all in 

logarithmic forms. The income and population variables are the natural choices for 

instruments for O-D demand. Flight frequencies on the two segments affect one-stop 

passenger demand, but the frequencies are segment characteristics and one such segment 

serves many routes. As a consequence, segment flight frequencies are largely exogenous 

to fare change on one connecting route. In much the same way, the number of segments 

connected at the intermediate (hub) airport, which captures the connection attractiveness 

of the airport, is determined by airlines' routing structure. Finally, the local O-D 

passengers affect one-stop route demand because of the competition between the two 

types of travelers for the seating capacity provided on the shared segment. Following the 

similar argument that one segment serves many connecting routes, local, direct O-D 

demand can be reasonably assumed to be uncorrelated with the random shocks of airfare 

on the connecting route.
15

 

One might argue that the RouteHHI variable in the non-stop fare model may also be 

endogenous, since a carrier's share of passengers on a route could be a function of the 

price it charges. On the other hand, as suggested by Brueckner and Spiller (1994) and 

Bamberger and Carlton (2003), airlines' decisions on entry and exist are usually a 

network-wide decision rather than a decision based on characteristics of the individual 

markets. Baily et al. (1985) argue that, while technology and demand are the key 

determinants of market structure, if average costs are flat over a wide range of outputs, 

there may be a wide range of viable scales of operation and hence a wide range of 

possible industry structures. The observed structure may thus reflect a history of random 

shocks that determine the relative sizes of the existing firms. Following these 

considerations we still treat RouteHHI as exogenous in the present study. We also note 

that no consensus has been achieved as to whether concentration variables should be 

treated as endogenous. In addition, finding proper instruments for RouteHHI is not 

straightforward, and could even lead to counter-intuitive coefficient estimates (Baily et 

al., 1985). 

Tables 3.4 and 3.5 present the estimation results for the direct and connecting route fare 

models respectively. Results from OLS estimation are also reported to serve as a point of 

reference. In both models, observations are clustered by market, in order to account for 

the dependence of unobservables among routes within a market. Consequently, the 

standard errors are robust to heteroskedasticity, serial correlation, and market clustering 

effect.
16

  

                                                 
15

 It is possible that one-stop route demand could inversely affect local, O-D demand; then local O-D 

demand may itself be endogenous and depend on the one-stop fare. However, as the segment serves many 

connecting routes, we believe that the effect of the demand on one single connecting route on the local, O-

D demand is rather marginal. Any potential endogeneity, therefore, would not be significant. 
16

 As the non-stop and connecting route fares are estimated separately, each cluster in the non-stop fare 

model only contains non-stop routes servicing the corresponding market. The same for clusters in the 

connecting fare model. While clustering both non- and one-stop routes would further improve the 

estimation efficiency, this would require simultaneous estimation approach which is beyond the scope of  

the current models. 



39 

 

Table 3.4 Estimation results for the non-stop route fare model. 

Variable 
OLS 2SLS 

Est. Std. Err. Est. Std. Err. 

RoutePax -0.0827*** 0.0043 -0.0218** 0.0096 

Dist -0.6535*** 0.0068 -0.6762*** 0.0083 

OriginL4Delay 0.0459*** 0.0113 0.0459*** 0.0116 

DestL4Delay 0.0516*** 0.0112 0.0505*** 0.0114 

RouteHHI -0.0590*** 0.0114 0.0379* 0.0195 

MarketHHI 0.0701*** 0.0124 0.0381*** 0.0144 

OriginHHI 0.0248*** 0.0067 0.0118* 0.0071 

DestHHI 0.0280*** 0.0068 0.0147** 0.0072 

AirportPairLCC -0.2883*** 0.0111 -0.3676*** 0.0159 

AjacentRouteLCC -0.1468*** 0.0129 -0.2138*** 0.0161 

SlotControl 0.1042*** 0.0133 0.0685*** 0.0139 

Vacation -0.1582*** 0.0076 -0.1813*** 0.0089 

Constant 3.5055*** 0.0643 3.1225*** 0.0760 

Number of Observations 67,443 67,443 

R
2
 0.8579 0.8505 

First stage partial F-stat   78.1848 

Partial R
2
   0.2474 

*** p<0.01, ** p<0.05, * p<0.10 

 

Table 3.5 Estimation results for the one-stop route fare model. 

Variable 
OLS 2SLS 

Est. Std. Err. Est. Std. Err. 

RoutePax -0.0781*** 0.0011 0.0446*** 0.0036 

SumDensity 0.0874*** 0.0023 -0.0140*** 0.0037 

Circuity -0.7558*** 0.0092 -0.3171*** 0.0165 

Dist -0.6889*** 0.0047 -0.6435*** 0.0055 

OriginL4Delay -0.0008 0.0065 0.0174** 0.0071 

DestL4Delay 0.0042 0.0063 0.0198*** 0.0069 

ConnectL4Delay 0.0014 0.0037 0.0248*** 0.0040 

LegMeanHHI 0.0662*** 0.0039 0.0908*** 0.0044 

MarketHHI 0.0499*** 0.0048 0.0638*** 0.0053 

OriginHHI 0.0020 0.0032 0.0355*** 0.0035 

DestHHI 0.0074** 0.0032 0.0410*** 0.0036 

ConnectHHI -0.0464*** 0.0029 -0.1152*** 0.0042 

AirportPairLCC -0.2234*** 0.0040 -0.2565*** 0.0045 

AdjacentRouteLCC -0.1078*** 0.0065 -0.0942*** 0.0068 

SlotControl 0.0203*** 0.0043 0.0397*** 0.0044 

Vacation -0.0829*** 0.0045 -0.1036*** 0.0048 

Constant 2.2144*** 0.0442 2.5176*** 0.0461 

Number of Observations 1,206,282 1,206,282 

R
2
 0.5593 0.5135 

First stage partial F-stat   743.888 

Partial R
2
   0.0754 

*** p<0.01, ** p<0.05, * p<0.10 
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Overall, the coefficients obtained from 2SLS have the expected signs and most of them 

are significant. In contrast, some counter-intuitive results would appear if OLS is 

employed. The non-stop fare model has a better goodness of fit than the one-stop model. 

The fairly large values for the first stage F-statistics of the added instruments and partial 

R
2
, the latter of which measures the relevance of the instruments to the endogenous 

variable purged of the effect from exogenous variables included in the fare models,  

suggest the chosen instruments are sufficiently strong.  

The coefficient for RoutePax in the non-stop model has a negative sign, indicating that 

the cost effect due to economies of density dominates the demand side effect. However, 

the estimated elasticity of -0.0218 is relatively small: all else being equal, fare on a non-

stop route with 25 passengers per day is about 6 percent higher than another non-stop 

route with 500 passengers per day. On the one-stop route, the cost side effect is stripped 

off from RoutePax by the SumDensity variable. The positive coefficient for RoutePax, 

which represent only the demand side effect, is expected. Ceteris paribus, a one-stop 

route with 100 passengers per day would have airfare that is 11% higher than a thinner 

route that only has 10 daily passengers. The negative coefficient of the SumDensity 

variable clearly suggests the existence of economies of density. While the estimate is 

about one fourth that for RoutePax, SumDensity often has a much greater value than 

RoutePax since each segment consolidates passengers on many routes, including the local, 

non-stop route which often transports more passengers than any single connecting route. 

As a consequence, one may expect the positive effect of RoutePax to be neutralized to a 

great extent by that from SumDensity.  

We observe that yield falls with O-D distance, with close coefficients in the two models. 

The Dist coefficients imply that 10% O-D distance increase would reduce yield by 6.762% 

and 6.435%, leading to 2.6% and 2.9% ticket price increase. These estimates are 

comparable to the yield elasticity with respect to distance in the early deregulation era 

(around -0.5, as in Baily et al., 1985). Controlling for O-D distance, if one connecting 

route is 20% more circuitous than another, fare on the first route would increase by 

12.4%, suggesting the associated cost increase effect is stronger than that of reduced 

product quality.  

The coefficients for the HHI's at route, segment, market, and airport levels support the 

view that higher concentration enable airlines to charge higher fare on average. This is 

consistent with the negative relationship between yields and competition as found in the 

large body of airline literature. For non-stop travel, the results implies that the fare with 

four equal-sized competitors (i.e. RouteHHI=0.25) on a route would be 2.8% lower than 

on a monopoly route. Higher concentration at the airports also increases fare, but the 

effect is smaller than at the route level. Airfare on one-stop routes seems to be more 

sensitive to variations in concentration. The price elasticity with respect to market HHI is 

0.0638 as compared to 0.0381 on direct routes. The most significant effect of HHI on fare 

comes from LegMeanHHI, which, analogous to the RouteHHI variable in the non-stop 

model, captures the route level competition effect. Higher HHI's at the origin and 

destination airports contribute to higher fare, but the effects are smaller than at the market 

and route levels. A strong, negative coefficient is associated with ConnectHHI, 
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confirming our conjecture that airlines deliberately lower one-stop fares to attract 

connecting traffic at highly concentrated hubs in order to reduce unit operating cost. 

Reduced unit operating cost then allows airlines to charge lower fare. The presence of 

LCC's imposes drastic downward pressure on fares. The average fare on a non-stop route 

will be reduced by 37% and 21% if an LCC is present on the same and adjacent routes 

respectively. This is very close to recent estimates of 34% and 19% in Brueckner et al. 

(2011). On one-stop routes, the effects of LLC are smaller in magnitude but are still 

significant. This could be attributed to the fact that the two segments in the one-stop route 

serve many other markets; legacy carriers as a consequence are less concerned about 

passengers being attracted by their low cost rivalries. On-route LCC lowers fare by 25.7% 

whereas adjacent competition from LCC results in a fare reduction of only 9.4%.  

Routes involving slot controlled airports have airfares that are 6.9% and 4.0% higher, 

respectively, on non- and one-stop routes. This reflects the scarcity value of airport slots. 

Finally, because there are more leisure travelers on vacation routes, airfares on such 

routes are 18.1% lower on non-stop routes, and 10.4% lower on one-stop routes, than on 

comparable non-vacation routes.  

Turning now to the airport delay coefficients, which are the focus of the present study, 

we find that all coefficients are positive and significant, confirming our hypothesis that 

airlines pass part of their delay cost onto travelers through higher fare. The delay 

elasticities are small, and differ on the two types of routes. If average flight arrival delay 

at their origin or destination airport involved in a direct route is increased from 5 min to 

20 min, then fare would increase by 6.6% and 7.3% respectively. In contrast, one would 

observe only about 2-3.5% fare increase for the same delay increase at the origin, 

destination, or connecting airport on a connecting route. The difference may be explained 

by several reasons. First, it is likely that non-stop routes serve passengers who have 

higher time values and are less sensitive to price change. Airlines thus feel more 

comfortable to transfer delay cost to passengers on such routes. In addition, non-stop 

passengers travel more than connecting passengers during peak, congested times, when 

airlines are also prone to charging higher price premium. As a consequence, non-stop 

passengers are likely to see greater fare increase than one-stop passengers for a given 

amount of delay increase. Airlines' lower willingness to pass delay costs onto connecting 

passengers may be further associated with the cost-side effect on the connecting routes. 

In order to be economically competitive against non-stop routes, airlines are more 

concerned about maintaining high load factors and taking advantage of economies of 

traffic density on the connecting routes. High load factors due to passenger consolidation 

would lead to low delay cost borne by each individual passenger.  

Figures 3.1 and 3.2 plot the predicted yield as a function of destination airport delay 

observed in the datasets, at 25th, 50th, and 75th percentile O-D distance values, for direct 

and connecting routes. All other explanatory variables take their sample means. An 

increase in delay from the lower to the upper extreme (4.58 min/flight vs. 31.02 

min/flight), would cause fare to increase by $15 for a long-haul flight and $6 for a short-

haul, contributing 9.2% and 5.8%, respectively, to the total fare at the highest delay level. 
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On average, one minute delay change would only be associated with $0.40-0.55 fare 

variation on non-stop routes, and $0.16-0.21 on connecting routes.  

 

Figure 3.1: Non-stop airfare as a function of delay at the destination airport at 25th, 50th, 

and 75th percentiles of route O-D distance (411, 718, 1116 miles) 

 

Figure 3.2: One-stop airfare as a function of delay at the destination airport at 25th, 50th, 

and 75th percentiles of non-stop O-D distance (772, 1173, 1868 miles) 

3.4 Delay impact on flight frequency 

3.4.1 Empirical model specification 

The dependent variable in the frequency model is the total number of flights on a 

segment, summed over all carriers. Frequency is modeled as a function of passenger 

demand on the segment, segment distance, competition, delay, and among other variables. 

Similar to the fare models, all continuous variables take the logarithmic form. The 
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coefficients denote the frequency elasticities with respect to the explanatory variables. 

The model is specified as follows: 
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 (3.3) 

 

 

 

where subscripts i and t are indicators of a segment and a time period. 
it  the error term. 

The meanings of all variables are described in Table 3.6. 

Table 3.6 Definition of frequency model variables. 

Name Definition 

f Total number of flights flown for a given flight segment and time period. 

SegmentPax Total number of passengers on the flight segment. 

Dist Flight segment distance. 

SegmentHHI HHI on the flight segment. 

OriginHHI HHI at the origin airport. 

DestHHI HHI at the destination airport. 

OriginL4Delay Average flight delay at the origin airport (four quarters lagged). 

DestL4Delay Average flight delay at the destination airport (four quarters lagged). 

Vacation Dummy variable, equal to 1 if at least one of the origin and destination 

airports is in the States of Florida and Nevada. 

SlotControl Dummy variable, equal to 1 if at least one of the origin and destination 

airports is slot controlled. 

OriginMAS Dummy variable, equal to 1 if the origin airport is in a multiple airport 

system (MAS). 

DestMAS Dummy variable, equal to 1 if the destination airport is in an MAS. 

LCC Dummy variable, equal to 1 if LCC's are present on the flight segment. 

PortionLCC The portion of passengers transported by LCC's on the flight segment. 

MASPair The number of segments whose origin and destination share the same 

metropolitan areas as the origin and destination of the flight segment under 

study (including the segment itself). 

 

The most important variable explaining frequency variation is segment passenger volume. 

Since in principle airlines have the flexibility of changing aircraft size, we expect the 

frequency to be inelastic to passenger volume change. Distance also plays a significant 

role in determining frequency, as the least-cost aircraft type varies by stage length: in 

shorter markets smaller aircraft often have lower costs; as market distance increases, so 

does the size of the least-cost aircraft (Baily et al., 1985). Controlling for segment 

passenger demand, longer distance then suggests lower flight frequency. An alternative 

explanation could be that only larger aircraft can fly on longer-haul segments, resulting in 

lower frequency.  
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Similar to the fare model specification, competition effects are captured in multiple facets. 

HHI variables are included to characterize the extent of concentration at the segment 

(SegmentHHI) and airport (OriginHHI and DestHHI) levels. Lower concentration implies 

more severe frequency competition, and higher number of flights on the segment, 

everything else being equal. We further include two variables to capture the impact from 

LCCs: a dummy (LCC) indicating the presence of LCCs, and the portion of segment 

passengers transported by LCCs (PortionLCC), which captures the market power of 

LCC.
17

 Competition would further arise when there are parallel segments, i.e. segments 

whose origin and destination are within the same MAS's. We expect higher frequency on 

these segments not only because of the competition effect, but also possibly the higher 

incomes and therefore time values for the metropolitan areas involved. The presence of 

MAS's may further suggest additional congestion effect because of the complex terminal 

airspace associated with multiple airport systems; this could partially countervail the 

aforementioned frequency increase effect due to competition and higher time values of 

travelers.  To capture the parallel segment effect we introduce two dummies, OriginMAS 

and DestMAS, indicating respectively whether the origin and destination are in MAS's, 

and MASPair, which denotes the number of total segments servicing a metropolitan area 

pair.  

To test the hypothesis that congestion and delay discourage airlines from scheduling 

more flights on a segment, we include in the model the origin and destination airport 

delays with four quarters' lag, which is consistent with the lead time in the frequency 

planning process mentioned in Section 3.2.2. We do not include the one-quarter lag delay 

variables because of the similar collinearity concern discussed in the context of the fare 

model specification (correlation with their respective four-quarter lagged delay variables 

above 0.7). When an ending airport is slot controlled, we expect the frequency on the 

segment to be further restricted.  

Lastly, everything else being equal, we expect vacation segments to have fewer flights, 

because of a higher portion of leisure passengers with lower travel time values. This 

effect will be captured by the Vacation dummy.  

3.4.2 Data 

We use a panel dataset, by segment-quarter, spanning from the first quarter of 2004 to the 

fourth quarter of 2008 for model estimation. The dataset consists of domestic flight 

segments connecting the top 100 airports by throughput in the contiguous US (based on 

the 4th quarter of 2004) and having at least 60 flights per quarter. The average airport 

delay variables are constructed using the BTS Airline On-Time Performance Database. 

Again, airport slot control information is extracted from FAA (2008, 2009). Definitions 

about MAS and LCC follow those in the fare models. Metropolitan area population and 

income information, used for constructing instruments in model estimation, is obtained 

from the Bureau of Economic Analysis Regional Economic Accounts (BEA, 2011). All 

the remaining variables can be either directly obtained from or calculated based on data 

                                                 
17

 Because PortionLCC takes the logarithmic form, we use ln(PortionLCC+1) to avoid the occurrence of 

ln(0). 
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in the BTS T100 Domestic Segment Traffic Database. The final dataset for model 

estimation contains 3,858 segments and 65,033 segment-quarter observations. Table 3.7 

provides descriptive statistics of all the variables. 

Table 3.7 Descriptive statistics for variables in the frequency model (N=65,033). 

Variable Mean Std. Dev. Min Max 

f (flights/quarter) 523.987 459.087 60 3899 

SegmentPax (passengers) 43131.07 47055.93 223 376616 

Dist (miles) 836.929 571.339 36 2724 

SegmentHHI 0.748 0.256 0.170 1 

OriginHHI 0.260 0.154 0.067 0.942 

DestHHI 0.260 0.153 0.067 0.942 

OriginL4Delay (min/flight) 12.666 3.872 4.584 31.020 

DestL4Delay (min/flight) 12.672 3.872 4.584 31.020 

Vacation 0.203 0.403 0 1 

SlotControl 0.095 0.294 0 1 

OriginMAS 0.305 0.461 0 1 

DestMAS 0.304 0.460 0 1 

LCC 0.380 0.485 0 1 

PortionLCC 0.240 0.379 0 1 

MASPair 2.010 1.805 1 14 

 

3.4.3 Estimation, results and discussion 

The potential simultaneity between flight frequency and SegmentPax suggests the 

necessity to use instruments for the SegmentPax variable and that model be estimated 

using 2SLS. While the intuitive instruments include those socio-economic variables such 

as population and income (Schipper et al., 2002), it is equally important to include 

instruments that capture connecting passenger traffic on that segment, which often 

account for an important portion in total segment passenger traffic. To account for both 

sources of passenger traffic we use the log of total income in the origin and destination 

metropolitan areas, and the ratio of connecting to local O-D passengers at origin and 

destination airports (based on outbound traffic) as the instruments. The portions do not 

take the logarithmic form as some segments are overwhelmingly dominated by local, O-

D passengers. One further concern is the potential endogeneity of SegmentHHI, in that 

frequencies provided by incumbent carriers would determine the concentration through 

the S-curve phenomenon. We argue that, in airline practice, determination of flight 

frequency on a segment involves system-wide considerations, especially given aircraft 

rotation and hubbing constraints. As a consequence, we still treat SegmentHHI as 

exogenous. Table 3.8 below reports estimation results using both OLS and 2SLS by 

instrumenting only the SegementHHI variable. Standard errors are clustered by 

metropolitan area pair. 



46 

 

Table 3.8 Estimation results for the frequency model. 

Variable 
OLS 2SLS 

Est. Std. Err. Est. Std. Err. 

SegmentPax 0.6400*** 0.0052 0.6561*** 0.0118 

Dist -0.3652*** 0.0072 -0.3662*** 0.0073 

SegmentHHI -0.3250*** 0.0102 -0.3087*** 0.0137 

OriginHHI -0.0349*** 0.0082 -0.0415*** 0.0092 

DestHHI -0.0385*** 0.0082 -0.0451*** 0.0092 

OriginL4Delay -0.0220* 0.0120 -0.0222* 0.0119 

DestL4Delay -0.0238** 0.0121 -0.0238** 0.0121 

Vacation -0.1395*** 0.0108 -0.1435*** 0.0111 

SlotControl 0.0106 0.0130 0.0118 0.0130 

OriginMAS 0.1087*** 0.0136 0.1069*** 0.0136 

DestMAS 0.1105*** 0.0137 0.1088*** 0.0137 

LCC 0.0252** 0.0113 0.0124 0.0140 

PortionLCC -0.3722*** 0.0237 -0.3643*** 0.0239 

MASPair -0.0408*** 0.0116 -0.0451*** 0.0118 

Constant 1.7242*** 0.0775 1.5611*** 0.1294 

Number of Observations 65,033 65,033 

R
2
 0.8949 0.8947 

First stage partial F-stat   160.577 

Partial R
2
   0.1606 

*** p<0.01, ** p<0.05, * p<0.10 

 

The results from OLS and 2SLS are remarkably close in both coefficient estimates and 

their significance levels—except for the instrumented SegmentPax which is natural 

because instruments are to generate predicted, less precise value of SegmentPax. This 

suggests that the endogeneity effect of SegmentPax might not be very strong.
18

 All the 

coefficients have the expected signs and most of them are significant. SegmentPax has a 

coefficient of 0.66, comparable to previous estimates of 0.65 in Givoni and Rietveld 

(2009) and 0.75 in Schipper et al., (2002), implying frequency is inelastic to passenger 

demand. Nonetheless, this also suggests that the majority of segment passenger increase 

will be absorbed by frequency increase. Under the assumption of constant load factor, 

aircraft size would respond to demand only with an elasticity of 0.34. As expected, longer 

distance entails larger least-cost aircraft type and a smaller set of available aircraft types. 

Therefore frequency tends to be lower. Alternatively, the negative coefficient may be 

interpreted as the result of diminishing contribution of schedule delay in total travel time, 

and less intense competition from surface modes in longer distance. 

The negative coefficients for HHI's indicate that higher concentration leads to lower 

frequency. Frequency on a segment with four equally-sized competitors would be 23% 

higher than a segment operated by one single carrier everything else being equal. This 

effect, however, is much weaker at the airport level. When LCC's operate on one segment, 

frequency will increase by 2.54% (OLS). This effect is much smaller and insignificant 

                                                 
18

 We also note similar conclusions drawn in Givoni and Rietveld (2009) when regressing aircraft size on 

market size. 



47 

 

when 2SLS is employed. Frequency decreases with LCC share, offsetting any positive 

effect of LCC presence. The coefficient for PortionLCC suggests that a segment with 50% 

LCCs' share would have 22.3% fewer flights than an otherwise same segment but with 25% 

LCCs' share. This is because LCCs tend to use larger LCC aircraft size and lower 

frequency, the latter of which because of a higher portion of point-to-point service in 

LCC's network. If both origin and destination regions have two airports each (i.e. 

OriginMAS and DestMAS equal one), and four parallel segments exist, then segment 

frequency would increase at 15% compared to a non-MAS case. This may also be 

attributed to the likely higher portion of business passengers and income level when 

MAS's are involved. Similar to the LCC effect, after controlling for OriginMAS and 

DestMAS the positive effect of parallel routes attenuates with the increase in the number 

of parallel segments, as shown by the negative coefficient for MASPair.
19

  

The estimated coefficients clearly indicate that high delay at either origin or destination 

airport tends to reduce the number of scheduled flights. If the average delay per flight at 

the destination airport increases from 5 min to 20 min, then frequency would be reduced 

by about 3.3%. This rather insensitive response to delay increase reflects airlines' concern 

about losing market share and therefore reluctance to cut back their schedules. The 

insignificant SlotControl coefficient, which has a positive sign, might be interpreted by 

the higher travel time values for passengers in the relevant metropolitan areas. As a result, 

airlines tend to schedule more flights despite operation restrictions imposed by slot 

controls; or alternatively, grandfather and “use it or lose it” rules for allocating runway 

capacity at these airports encourage airlines to increase frequency to maintain their share 

of runway capacity (Givoni and Rietveld, 2009). The potential airspace congestion effect 

due to the presence of MAS may not be a major concern in airline scheduling, given the 

positive coefficients of OriginMAS and DestMAS.   

As suggested by the negative coefficient for the Vacation dummy, when one ending 

airport is either in Nevada or Florida, frequency on the segment will be about 14% lower 

than on an otherwise identical segment.  

The predicted segment frequencies are plotted as a function of average flight delay at the 

destination airport, for three segment distances (25th, 50th, and 75th percentiles in the 

dataset) and with all other variables taking the sample average (Figure 3.3). Comparing 

the highest and lower delay scenarios (4.58 min/flight and 31.02 min/flight) as appearing 

in the dataset, daily frequency would only be reduced by up to 0.3 flights (in the 25th 

percentile case), or 4.4%. The resulting schedule delay increase would be hardly 

perceivable to passengers. 

                                                 
19

 For all possible cases in the number of parallel segments, we find that the overall MAS effect on 

frequency is always positive.  
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Figure 3.3: Segment frequency as a function of delay at the destination airport at 25th, 

50th, and 75th percentiles of segment distance (405, 693, 1082 miles) 

3.5 Summary 

Understanding airlines' behavior in the presence of congestion has become increasingly 

important in the U.S., given the unprecedented delay in the past decade and the projected 

future travel demand growth. This chapter has empirically examined the pricing and 

scheduling responses of U.S. airlines. We find clear evidence that airlines tend to increase 

fare and decrease frequency facing delay in the air transportation system. The delay effect 

on airfare is found to be small, and particularly so on connecting routes. This is because, 

as has been explicitly shown in Chapter 2, airlines, when passing part of the delay cost 

onto passengers through higher fare, also consider passengers' reduced willingness-to-pay 

due to degraded air service quality in maximizing the profit. Flight frequency is even less 

sensitive to delays. Airlines' upgauging possibility facing delay is constrained by the loss 

of pricing power, the Mohring effect, and frequency competition pressure. Airlines, as a 

consequence, seem willing to maintain a "robust" schedule to delays despite operating 

cost increase. It could also imply that the cost penalty imposed by delays is not sizable 

enough to alter airlines' scheduling decision making.  

One should bear in mind that the previous discussion of the delay impact on air transport 

supply rests on the assumption that fare and frequency respond only to delay change. A 

more complete evaluation of system response to delay change, for instance, from airport 

runway expansion, necessitates additional considerations of travelers' perception of delay 

in their total generalized travel cost, and the interactions between supply and demand. 

Travelers may choose to switch routes to avoid congested airports, or be discouraged 

from taking air travel at all. New fare and frequency resulting from delay change would 

also affect passenger demand. Demand adjustment then feeds back to the supply side. 

From the model estimates, one would expect major change occurs to flight frequency as 
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driven by the new passenger demand. Upgauging is more likely to happen on segments 

with higher passenger traffic rather than higher delay. Variation in fare would be much 

limited, given its low elasticities with respect to both delay and demand. The feedback 

then goes from supply to demand, and continues until an exact match between new 

system demand and supply is achieved. More detailed presentation of the interactions is 

deferred to the ensuing chapter.  

This chapter presents one of the very few attempts to date that provide systematic insights 

about the delay impact on air transportation supply. The empirical modeling framework 

can be extended in several ways in future research. First, further efficiency gains can be 

achieved by jointly estimating airfare on non- and one-stop routes. Given the endogeneity 

of frequency and aircraft size, simultaneous estimation of frequency and aircraft size 

would not only increase efficiency, but offer further insights about the split among 

frequency, aircraft size, and load factor facing passenger demand increase. Another 

direction is to fine-tune the measurement of delay. With increasing availability of on-time 

statistics to the traveling public, airlines may adopt different pricing strategies for flights 

prone to delays from those that are more punctual. Capturing the heterogeneity of pricing 

strategies would require segmentation of markets/routes. To further investigate the non-

linear delay effect on airfare, it may be worthwhile to consider alternative model 

specification, such as piecewise functional forms. It would also be interesting to extend 

the investigation to the impact of schedule padding, since buffer reduces the "discernible" 

delay incurred by flights. Airlines' operational performance can be measured using 

alternative metrics, for instance, metrics that describe the coherence between the actual 

flight time and the schedule (Zou and Hansen, 2012).  
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4. User Equilibrium Model 
 

4.1 Introduction  

In Chapter 2, the supply-demand equilibrium is formulated from the airline competition 

perspective. There profit-maximizing airlines make decisions on price and frequency in a 

competitive environment, with full knowledge about travelers' utility structure. The dual 

relationship between air travelers and airlines can be approached in a reverse manner: 

utility-maximizing travelers make air travel decisions based upon supply characteristics, 

such as airfare, flight frequency, and delay, which are directly or indirectly determined by 

airlines. While an individual's decision can only alter system supply to a very minimum 

extent, decisions made by the population as a whole would lead to perceivable, 

systematic changes in airlines' pricing and scheduling behavior, which in turn shapes 

individuals' travel decision making.  

The discussion of system equilibrium in this chapter centers on travelers' decision making 

while taking into consideration constraints and feedback from system supply. The 

travelers, each viewed as an economic agent, interact in the air transportation system such 

that, under equilibrium no one can unilaterally change her/his decision to be better off. 

This user (traveler)-centered equilibrium presents a special instance of Nash equilibrium 

with a large number of players (travelers). Once capacity investment is made, the 

resulting delay reduction will lead travelers to reinteract and adjust their decisions, which 

change airfare and flight frequency, and subsequently delay in the system. Travelers 

further interact in response to the updated supply. The process continues until an exact 

match between demand and supply is achieved, featuring the completion of the system 

shift to a new equilibrium state. 

Building upon this rationale, the remainder of this chapter provides a detailed exposition 

of the air transport user equilibrium (ATUE). We first discuss the equilibrium 

components, based on which ATUE is formulated in both fixed point and variational 

inequalities contexts. Equilibrium solution properties are then investigated, followed by a 

discussion about the differences between ATUE and the reminiscent Urban Traffic 

Stochastic User Equilibrium (UTSUE). We propose a solution procedure from the fixed 

point perspective in Section 4.3, and apply the algorithm to solve for ATUE in a 

hypothetical network setting in Section 4.4, where we present in detail the initial 

equilibrium, equilibrium shift in response to airport capacity change, associated 

passenger welfare gains, as well as some sensitivity analysis of capacity investment. We 

summarize our analysis and discuss potential extensions in Section 4.5. 
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4.2 Equilibrium formulation 

The formulation of ATUE requires, in the first step, specifying equilibrium components. 

On the supply side, the fare and frequency components have already been empirically 

determined in the previous chapter. Following the equilibrium framework proposed in 

Chapter 1, there remain two missing components: passenger demand, which is the center 

piece in ATUE, and flight delay. With full specification of the equilibrium components, 

ATUE can be formulated as a fixed point problem, or alternatively, a variational 

inequality problem with some mild restrictions. While ATUE bears some analogy with 

the Stochastic User Equilibrium in urban transportation, recognizing the fundamental 

differences is important. We discuss these issues in sequence in this section. 

4.2.1 Equilibrium component 

4.2.1.1 Demand 

The centerpiece in ATUE is travelers' trip decision making, which consists of whether to 

take air travel, and if so, which air travel product to choose. At the aggregate level, these 

decisions correspond to demand generation and assignment respectively. While in 

general the demand assignment process entails the choice of both routes and airlines, here 

we only focus on routing choice, since infrastructure investment analysis does not 

necessarily require airline-specific information. On the other hand, compared to modeling 

only route choice, simultaneous consideration of routing and carrier choice would involve 

a considerable amount of extra modeling work and impose much heavier computational 

burden in the equilibrium process. Such a price may not be worth paying given the 

purpose of our equilibrium analysis. 

To model the air travel decision process we employ a previously estimated three-level 

Nested Logit (3NL) model by Hsiao and Hansen (2011). The nesting structure is shown 

in Figure 4.1. The model assumes a maximum number of potential trips, or saturated 

demand, for each individual on a given metropolitan-area-pair market. At the top level of 

the nest, an individual first decides on whether to travel by air or not. Aggregated over all 

individuals, this gives the number of realized air trips in the saturated demand. The two 

lower-level choice decisions deal with demand assignment: once air travel is chosen, the 

individual selects an O-D airport pair. This is relevant when at least one of the end-point 

metropolitan areas involves an MAS. Given the O-D airport pair choice, at the bottom 

level the traveler chooses a specific route, which can be non-stop, or connecting through 

a specific hub airport. This aggregate passenger demand model was estimated using air 

travel records in the US air transportation system between 1995 and 2004. The estimation 

results of the 3NL model are summarized in Table 4.1. Interested readers can refer to 

Hsiao and Hansen (2011) for further details.  
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Figure 4.1: Nesting structure of the 3NL model 

Table 4.1 Main estimation results of the 3NL model. 

Variable Est. 

Level 3  

Fare (hundreds of 2004 dollars) -1.546*** 

ln(Frequency)—Direct (flights per quarter) 1.240*** 

ln(Max frequency of two segments)— Connecting (flights per quarter) 0.627*** 

ln(Min frequency of two segments)— Connecting (flights per quarter) 0.957*** 

Scheduled flight time—Direct (minutes) -0.004 

Scheduled flight time— Connecting (minutes) -0.006** 

Dummy for direct routes 6.066*** 

Positive hub arrival delay (1 quarter lag, minutes per flight) -0.006*** 

Positive hub arrival delay (4 quarters lag, minutes per flight) -0.007*** 

Constant (level 3) -0.005 

Level 2  

Inclusive value of level 3 0.664*** 

Constant (level 2) 0.007 

Level 1  

Inclusive value of level 2 0.795*** 

Inclusive value of level 2*market distance -0.012*** 

Market distance (hundreds of miles) -0.024*** 

ln(market distance) 1.575*** 

Per capita personal income of market (in 000, 2004 dollars) 0.038*** 

Constant (level 1) -16.229*** 

*** p<0.01, ** p<0.05, * p<0.10 

 

4.2.1.2 Supply 

As mentioned in the beginning of this section, airfare, flight frequency, and flight delay 

are considered to be endogenous supply-side components in the ATUE. The 
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determination of fare and frequency is governed by the econometric models in Chapter 3. 

Here we briefly present the specification and estimation of the delay model.  

We consider flight delay at the airport level, and focus on arrival delay, because airport 

arrival delay has the most direct impact on air travelers, and also to be consistent with the 

delay specification in the demand, fare and frequency models. Among the primary 

influencing factors of airport arrival delay are total traffic volume, airport capacity, and 

weather conditions, whose effect may be non-linear. In light of these, we specify the 

following semi-log delay function: 
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 (4.1) 

 

where subscripts i and t are indicators of an airport and a day. 
it  is the error term. Each 

observation therefore requires flight delay, operational, and weather information for an 

airport-day pair. Data are collected from the FAA ASPM (Aviation System Performance 

Metrics) database for US OEP 35 airports in 2007.
20

 Since the data has a panel form, we 

introduce airport dummies as individual airports in the panel could have features that 

consistently increase or decrease delay. Similarly, monthly dummies are included to 

capture the time fixed effect. The meanings of the dependent and explanatory variables 

are provided in Table 4.2 below. 

Table 4.2 Description of variables in the airport delay model. 

Name Definition 

Delay Average daily delay (min/flight) at the airport. 

IFR Portion of time during a day in which the airport operated under Instrument 

Flight Rules (IFR) conditions. 

IFR
2
 Square term of IFR. 

Wind Average wind speed in a day at the airport. 

VC Ratio of daily total flight traffic volume to runway capacity at the airport. 

VC
2
 Square term of VC. 

AAR Daily airport arrival acceptance rate. 

Peakedness Standard deviation of scheduled arrival operations throughout the quarter-

hours for the airport and in a day (except for hours between 12am and 

6am). 

Connection Number of airports with non-stop flight segments connecting to the airport 

under study. 

Temp Average temperature at the airport in a day. 

                                                 
20

 The OEP 35 (Operational Evolution Partnership) airports are commercial U.S. airports serving major 

metropolitan areas and as airline hubs with significant flight activities. More than 70 percent of passengers 

move through these airports (FAA, 2009b). A full list of OEP 35 airports can be found in http:// 

aspmhelp.faa.gov/index.php/OEP_35.  
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Aj Airport dummy, equal 1 if the observation corresponds to airport j (TPA as 

the base airport). 

Mk Monthly dummy, equal to 1 if the observation corresponds to month k (Dec 

as the base month). 

 

Several econometric issues are considered in the model estimation. First, since airport 

operations are interdependent in the National Airspace System (NAS), it is important to 

account for this interdependency in estimating the model. Second, errors in econometric 

delay models are often found to be heteroskedastic (Wei and Hansen, 2006). Third, serial 

correlation among error terms may exist because, among other reasons, delay at the end 

of a day could possibly affect the operations of the next day. A Prais-Winsten regression 

is performed by allowing a first-order autocorrelation between observations for the same 

airport. We use panel corrected standard errors, in which error terms are assumed 

heteroskedastic and contemporaneously correlated across panels (i.e. errors are correlated 

across airports at a given point in time). Estimation results are reported in Table 4.3. 

Table 4.3 Estimation results for the airport delay model. 

Variable Est. Std. Err. Variable Est. Std. Err. 

IFR 1.1283*** 0.0682 DEN -0.7216*** 0.1334 

IFR
2
 -0.7089*** 0.0738 DFW -0.4513*** 0.1613 

Wind 0.0168*** 0.0019 DTW -1.3578*** 0.1262 

VC 1.0192*** 0.2265 EWR -0.6812*** 0.0772 

VC
2
 1.1747*** 0.1758 FLL -0.2309*** 0.0372 

AAR -0.0017*** 0.0002 HNL -0.3350*** 0.0708 

Peakedness 0.1774*** 0.0124 IAD -0.6532*** 0.0639 

Connection 0.0065*** 0.0020 IAH -1.1405*** 0.1293 

Temp -0.0030*** 0.0009 JFK -0.6409*** 0.0702 

Constant 2.1330*** 0.1327 LAS -0.5996*** 0.0771 

Jan -0.3102*** 0.0625 LAX -0.5346*** 0.1110 

Feb -0.0649 0.0640 LGA -0.7632*** 0.0811 

Mar -0.1115* 0.0640 MCO -0.1446*** 0.0394 

Apr -0.3013*** 0.0639 MDW -0.6656*** 0.0410 

May -0.2875*** 0.0651 MEM -0.7108*** 0.0548 

Jun 0.1396** 0.0672 MIA 0.3761*** 0.0416 

Jul 0.0554 0.0679 MSP -1.2095*** 0.1214 

Aug 0.0083 0.0681 ORD -0.9874*** 0.2053 

Sep -0.4559*** 0.0666 PDX -0.3270*** 0.0508 

Oct -0.3530*** 0.0642 PHL -0.8576*** 0.0821 

Nov -0.4470*** 0.0644 PHX -0.8567*** 0.0895 

ATL -1.2723*** 0.2576 PIT 0.1381*** 0.0532 

BOS -0.5232*** 0.0582 SAN -1.0321*** 0.0557 

BWI -0.6002*** 0.0376 SEA -0.8436*** 0.0598 
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CLE -0.9261*** 0.0445 SFO -0.5518*** 0.0557 

CLT -1.1863*** 0.0920 SLC -1.1125*** 0.0949 

CVG -1.3299*** 0.1079 STL -0.1563*** 0.0325 

DCA -0.8784*** 0.0525    

Number of  

Observations 
12,605 

R
2
 0.5064 

*** p<0.01, ** p<0.05, * p<0.10 

 

In general, the estimated coefficients are consistent with a priori expectations. Both the 

ratio between airport flight traffic volume and airport capacity (VC) and its square term 

(VC
2
) have positive coefficients and are highly significant, suggesting that, for a given 

airport capacity, average flight delay would rise at a highly nonlinear, increasing rate 

with flight traffic. Greater prevalence of IFR conditions results in high delay, although 

the negative coefficient for the quadratic term suggests that at extremely high IFR values 

predicted delay would be slightly lower. Higher delay values are associated with stronger 

winds and lower average temperature, as also found in Hansen and Hsiao (2005), and 

Hansen and Kwan (2010). Larger AAR seems to reduce average delay, because high 

AAR's tend to be set more conservatively—that is, at a lower level relative to the 

absolute maximum throughput—than low AAR's (de Neufville and Odoni, 2003). The 

positive coefficient for Connection suggests that greater connectivity would complicate 

aircraft turnaround operations and increase the exposure of the airport to delay 

propagated from other airports, therefore making the airport more susceptible to delays. 

Ceteris paribus, the months of February, July, and August would experience the same 

level of delays as that in December because of their statistically insignificant dummy 

coefficients. Airport delay in June would be on average 15% higher than in December; 

whereas delay would be lower in the remaining months than in December—ranging from 

10% in March to 37% in September. Interestingly, the bulk of airport dummy coefficients 

are negative and significant, implying that, all else equal, delays at most airports will be 

lower than at TPA. 

4.2.2 Equilibrium formulation 

4.2.2.1 ATUE as a fixed point problem 

With full specification of the equilibrium component models, attention can now be 

directed toward formalizing ATUE. In this chapter we consider a generic, strongly 

connected air transportation network (N, A), where N is the set of airports and A the set of 

segments. Let K be the set of feasible routes. Recall the equilibrium framework in 

Chapter 1. It is assumed that, except for passenger demand, airfare, frequency, and airport 

delay, all other variables in the component models are predetermined and exogenous to 

the equilibrium process. We further assume that equilibria considered in this chapter are 

in steady states. As a consequence, lagged delays in demand, fare, and frequency models 

would be indifferent from contemporary delays. The resulting equilibrium predicts the 

long-run system behavior. With the above assumptions, the equilibrium component 

models can be succinctly expressed in vector forms: 
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Route passenger demand D = G1(P, f, d) (4.2) 

 

Route airfare P = G2(D, Q, d) (4.3) 

 

Segment flight traffic f = G3(Q, d) (4.4) 

 

Airport delay
21

 d = G4(v) (4.5) 

 

where 

D Route passenger volume vector (K×1) 

P Route airfare vector (K×1) 

f Segment flight frequency vector (A×1) 

Q Segment passenger volume vector (A×1) 

v Airport flight traffic vector (N×1) 

d Airport delay vector (N×1) 

 

Equilibrium exists when the spatial distribution of passenger flows on different routes 

satisfies (4.2). It is a user equilibrium because underlying (4.2) is utility maximization of 

individual travelers. Utilities are modeled as stochastic because they cannot be fully 

perceived by researchers. Under the user equilibrium, no traveler can be better off by 

unilaterally changing her/his air travel decision.  

The level of route passenger demand, as denoted by (4.2), depends upon the supply-side 

inputs P, f, and d, whose values are determined by (4.3)-(4.5). In addition to D, P, f, and 

d, two additional endogenous vectors, Q and v, are involved in (4.3)-(4.5). They can be 

conveniently expressed as functions of D and f, following the regular network constraints: 

 

Q = ∆D (4.6) 

 

v = Фf (4.7) 

 

where ∆ is a |A|×|K| route-segment incidence matrix in which the element in the ath row 

and rth column,

 

δar, equals 1 if route r uses segment a and 0 otherwise. Ф is a |N|×|A| 

                                                 
21

 Recall that the airport delay model also includes the Peakedness variable, which may be endogenous in 

the equilibrium process. A simplification is made that Peakedness varies in proportion to airport flight 

traffic volume.  
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segment-airport incidence matrix where the element in the nth row and ath column, φna, 

equals 1 if segment a goes into airport n and 0 otherwise.  

The user equilibrium (4.2), combined with relationships (4.3)-(4.5) determining supply-

side inputs and network flow constraints (4.6)-(4.7), equates to solving for the unknowns 

D, P, Q, f, v, d in the simultaneous equation system. Stacked together, (4.2)-(4.7) can be 

viewed as a fixed point problem:  

Y = S(Y) (4.8) 

 

where Y = (D
T
, P

T
, Q

T
, f

T
, v

T
, d

T
)

T
. This fixed point formulation can be further reduced 

to only involve D and d through the following substitutions:  

i) Substitute (4.6) into (4.3): 

P = G2(D, ∆D, d) = 
2G (D, d) (4.9) 

 

ii) Substitute (4.6) into (4.4):

  
f = G3(∆D, d) = 

3G (D, d) (4.10) 

 

iii) Substitute (4.7) and (4.10) into (4.5): 

d = G4(Фf) = 
4G (f) = 

4G (
3G (D, d)) (4.11) 

 

iv) Substitute (4.9) and (4.10) into (4.2):  

D = G1(P, f, d) = G1( 2G (D, d), 
3G (D, d), d) = 

1G (D, d) (4.12) 

 

Let X = (D, d)
T
. (4.11) and (4.12) form a new fixed-point problem: 

X = F(X) (4.13) 

 

where F(X) = 














)),((

),(

dD

dD

34

1

GG

G
.  Any fixed point for problem (4.8) is clearly a solution for 

(4.13). Conversely, for any given solution to (4.13), we can always derive corresponding 

P, Q, f, v using (4.9), (4.6), (4.10) and (4.7), such that (D
T
, P

T
, Q

T
, f

T
, v

T
, d

T
)
T

 satisfies 

(4.8). Therefore fixed problems (4.8) and (4.13) are equivalent.  
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The existence of equilibrium solution for (4.13) can be shown as follows. In the 

passenger demand model, the probability for an individual to choose a route is always 

less than 1. Saturated demand exists on each metropolitan O-D pair, because each 

individual has a maximum number of potential trips and the population is finite. One 

upper bound for route demand 
1G (D, d) is the saturated demand on the corresponding 

metropolitan O-D pairs. Let Dsat denote a K×1 vector of such upper bounds. Then 

mapping 
1G (D, d) satisfies 0 ≤ 

1G (D, d) ≤ Dsat. f is a non-decreasing function of Q and 

therefore D, and a non-increasing function of d. (4.10) implies that an upper bound fsat 

governed by Dsat applies: 0 ≤ f ≤ fsat. Following the second equality in (4.11) and the fact 

that d is non-decreasing with v and therefore f, d should be bounded as well: 0 ≤ d ≤ dsat. 

Let Ω denote set {D: 0 ≤ D ≤ Dsat; d: 0 ≤ d ≤ dsat}. Ω is both convex and compact. The 

above analysis shows that, the continuous mappings of X on Ω: FΩΩ. Brower’s fixed 

point theorem (Ortega and Rheinboldt, 1970) implies that F has at least one fixed point in 

Ω. 

The uniqueness of the fixed point problem solution, however, cannot be guaranteed under 

the model specification. One sufficient condition for the solution uniqueness requires F 

be a contractive mapping, i.e. 1 such that  

||F(X1) - F(X2)|| ≤  ||X1 - X2||, X1, X2Ω (4.14) 

  

where || . || denote the norm of the vector, which measures the distance of the vector space. 

Using the mean-value theorem, ||F(X1) - F(X2)|| = F(ξ)||X1 - X2||, where ξ is some 

value that lies between X1 and X2. If the norm of the Jacobian satisfies ||F(X) ||<1, then 

F is a contractive mapping and the fixed point problem has a unique solution. Due to 

highly non-linear nature of F(X), however, the functional form Jacobian would be 

extremely complicated for any further investigation. We show in a simplified case that 

the Jacobian can be greater than one, i.e. in general the necessary conditions is not held 

(Appendix C).  

4.2.2.2 ATUE as a VI problem 

Under two mild modifications, we can also convert ATUE into a Variational Inequality 

(VI) formulation, providing a different angle to investigate equilibrium properties and 

solution procedure. This is the first attempt, to our knowledge, to establish the 

mathematical equivalence between a VI formulation and a user equilibrium problem with 

demand governed by a three-level NL structure. We demonstrate that the equivalent VI 

leads to the same conclusions about the existence and uniqueness of the equilibrium 

solution. 

The two mild modifications are made on the equilibrium component models. First, we 

assume that flight traffic is independent of airport delays. Considering the rather small 

estimated delay coefficients in the frequency model, ignoring delay impact on frequency 

would generate little difference in the equilibrium results. The benefit of doing so is to 

permit "one-shot" calculation of perceived passenger utilities. Second, the proof of the 

equivalence is based on a more generic 3NL specification in which—unlike the 3NL 
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model in Section 4.2.1.1—we do not consider the interaction term between inclusive 

values and distance. We expect this simplification to only affect demand estimation and 

subsequent equilibrium outcomes marginally, meanwhile providing more general insight 

into the equivalence between a multi-level NL-based ATUE and the corresponding VI 

formulation.  

We begin the proof by recalling the nesting structure in Figure X and introducing some 

additional notations. Let K, Q, W denote the sets of routes, airport pairs, and metropolitan 

areas pairs in an air transport network. We define Dw as the passenger demand on 

metropolitan area pair w; Dq,w passenger demand on airport pair q within metropolitan 

area pair w; Dk,q,w passenger demand route pair k within both airport pair q and 

metropolitan area pair w. Given the three-level nesting structure with no interaction 

between inclusive value terms and other variables, Dk,q,w is calculated as follows: 
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 (4.15) 

 

where cw, cq,w, ck,q,w denote the perceived metropolitan area pair, airport pair, and route 

specific utilities. Iq,w and Iw are the inclusive values of routes serving q within w, and of 

all routes serving w. λR, λP, λM are scale parameters associated with different nest levels. 

In the 3NL model specification, ck,q,w is the generalized costs composed of route fare, 

segment frequency, hub airport delay, among other exogenous variable values. Given 

passenger route flows and that frequency is independent of delay, we compute segment 

flight traffic, airport delay, and airfare sequentially using a modified version of (4.4) that 

disregards delay effect on frequency, (4.5) and (4.3), respectively. Their values are then 

used to calculate ck,q,w, and subsequently Iq,w and Iw. cq,w and cw do not involve any 

endogenous variables, and are held constant in system equilibration. If the delay impact 

on frequency is not ignored, achieving consistent values for segment flight traffic, airport 

delay, and airfare conditional on passenger route flows would require some additional 

iterative procedure. However, the delay coefficient in the flight frequency model is so 

small that results from the above "one-shot" calculation would be only slightly different 

from those when the delay impact is fully considered.  

The ATUE is defined by (4.15), together with the supply side constraints: the modified 

version of (4.4), (4.3), (4.5), and the following regular network and non-negativity 

requirements:  
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where Rq,w denotes the set of feasible routes for airport pair q within metropolitan area 

pair w; Rw the set of feasible airport pairs within metropolitan area pair w; W the set of all 

metropolitan area pairs in the air transportation network.  

Now let us define vector X and its vector function H(X) as follows: 
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(4.17) 

where vector X consists of passenger flows on each route, airport pair, and metropolitan 

area pair, therefore having (|K|+|Q|+|W|) elements. H(X) has the same dimension. The 

calculation of ck,q,w, cq,w, and cw in H(X) reflects the supply-side constraints and follows 

the procedure elucidated above. With these supply-side constraints, a corresponding VI 

problem is to find a vector X
*
 such that 

 XXXX     0)()( **
H

T  (4.18) 

 

where Ω is defined by (4.16). Having the same supply-side constraints and regular 

network and non-negativity requirements, it remains to see how (4.18) is equivalent to 

(4.15).  
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We express (4.16) in the following matrix form 
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where 
qkΔ is the airport pair-route incidence matrix with dimension |Q|×|K|; 

wqΔ the O-D 

pair-airport pair incidence matrix with dimension |W|×|Q|. 

A sufficient and necessary condition for the solution X
*
 in (4.18) is (Facchinei and Pang, 

2003): 
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Passenger flow in the air transport network is always positive, i.e. 0X  . This together 

with 
|)W||Q||K(|I A  and (4.20.5) implies that 0η  , under which (4.20.1) can be expressed 

in scalar form as in (4.21.1)-(4.21.3):  
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It follows from (4.21.1) that 
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Summing all routes within airport-pair q yields 
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After some algebra, 
wq, can be expressed as 
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which gives the logsum of alternatives in nest (q, w). Substituting (4.24) into (4.22) yields 
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Performing similar exercise on (4.21.2) and substituting (4.24) for 
wq, lead to 
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Sum over airport pairs that belong to market w: 
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which leads to  
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Substituting (4.28) into (4.26) gives 
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Now substitute (4.29) into (4.21.3): 
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which can be re-written as 
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Combining (4.25), (4.29) and (4.31) gives  
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which suggests that the VI problem (4.18) is equivalent to the equilibrium condition 

(4.15). 

The feasible set Ω, composed of linear and non-negativity constraints, is non-empty, 

closed, and convex. In addition, the saturated demand provides upper bounds for 

metropolitan area pair demand. Therefore, Ω is compact. It is also obvious that H(X) is 

continuous. Following Facchinei and Pang (2003), at least one solution exists for the VI 

problem. In other words, the original ATUE has at least one equilibrium point.  

If H(X) is monotone, then the uniqueness of the VI solution will also be guaranteed. 

Proving the monotonicity is difficult given the highly non-linear form of H(X). The 

challenge in examining the monotonicity is reminiscent of the difficulty in investigating 

the Jacobian matrix in the fixed point problem context. The uniqueness issue will be 

further explored in the following model application section.  
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4.2.3 Differences between ATUE and UTSUE 

To obtain further insights into ATUE, it is worthwhile to draw some analogy between 

ATUE and equilibria in other transportation modes. In the first instance, one may seek to 

compare ATUE with urban transit user equilibrium, because of the shared nature of being 

schedule transportation services. Closer scrutiny implies that ATUE may bear more 

similarities with SUE in the urban traffic context. However, we are not aware of any 

previous attempts that employ the UTSUE concept to study congestible air transport 

system equilibrium, which may be attributed to several important departures of ATUE 

from UTSUE, as discussed below. 

First, ATUE combines urban traffic performance-demand equilibrium and classic supply-

demand equilibrium. Similar to UTSUE, ATUE contains infrastructure performance 

functions that define the physical relationship between flight traffic and delay. On the 

other hand, in contrast to UTSUE, market behavior is captured in ATUE: air carriers 

compete against each other and maximize profit by providing air service with certain 

price and quality. The competition effect and profit maximization behavior are implicitly 

reflected in the empirical fare and frequency models. ATUE also differs from UTSUE in 

that air travelers’ interaction with aviation infrastructure is mediated through airlines. 

Airlines have the flexibility to adjust frequency and the number of passengers onboard in 

response to delays. In contrast, car-passenger rate is assumed predetermined and invariant 

to UTSUE. Travelers, as a consequence, can be viewed to have direct interaction with 

infrastructure in UTSUE. In effect, the passenger-airline-infrastructure interaction in 

ATUE is more analogous to the demand-supplier-performance taxonomy proposed in 

Florian and Gaudry (1980; 1983). 

Second, ATUE involves a simpler network representation but more complex travel cost 

calculation. Treating a flight segment as a link in urban road networks, an air route will 

consists of only a limited number of links since it is very rare for an air traveler to make 

more than one stop in a trip. In addition, the number of links is relatively small because 

of the hub-and-spoke topology of airline networks. As a result of these two factors, the 

number of feasible routes for air travel between an O-D pair is relatively small compared 

to the number of potential paths in road networks. Therefore, identifying the set of 

"feasible" paths is relatively easy in ATUE compared to UTSUE, substantially reducing 

the computational burden in the passenger assignment process. On the cost side, route 

travel cost under UTSUE is often modeled as only a function of travel time, which in 

many instances is assumed additive of travel time on individual links. Air passengers' 

generalized travel cost, in contrast, involves not only total trip time, which is the sum of 

scheduled flight time, schedule delay, and congestion delay,
22

 but out-of-pocket money to 

purchase the air ticket. In UTSUE, out-of-pocket money is considered only in the 

presence of tolls. Among these utility components, only scheduled flight time is additive 

by segment under our demand model specification. Schedule delay on a one-stop route is 

collectively determined by the max and min frequencies on the two segments, and fares 

                                                 
22

 In principle, airport access and egress time are also integral components in the total trip time. As our 

focus is airside congestion, they are assumed constant and not explicitly considered in the study. 
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for routes are not additive across links. Moreover, both frequency and fare are functions 

of airport delays, which depend upon flight traffic from many other segments.  

Focusing on travel time, a further distinction can be made between ATUE and UTSUE. 

Travel time in UTSUE is positively related to passenger flow on a link, and in some 

extensions, modeled as an increasing function of traffic volume at a node. In other words, 

the diseconomies of traffic density manifest itself at both link and node levels. Under 

ATUE, diseconomies of traffic density only hold at the airport (node) level. On a segment, 

higher frequency reduces passenger schedule delay, and therefore total travel time. 

Economies, instead of diseconomies, of traffic density exist at the link level. This 

important distinction stems from the scheduled nature of air transportation system where 

the Mohring effect takes effect. Link travel delay, if it ever exists, would be the result of 

airspace congestion, the extent of which is often much smaller than at airports, at least in 

the US.   

4.3 Solution algorithm 

The solution algorithm is designed based on the fixed point formulation. To arrive at 

equilibrium passenger flows, airfare, flight traffic, and airport delay that are consistent 

with the fixed point system (4.2)-(4.7), the Newton-Raphson method seems the natural 

path. However, the complex model forms (especially the demand model) and the size of a 

reasonable air transportation network prevent us from doing so because evaluation and 

inversion of Jacobian becomes cumbersome and even impossible. With all the departures 

of ATUE from UTSUE as discussed above, many of the existing algorithms to solve for 

the equivalent VI will be computationally challenging to implement even with the two 

mild modifications. In light of these difficulties, we resort to a more conventional, 

Cobweb style heuristic algorithm to solve for the equilibrium system. The procedure is 

outlined below. 

Step 0: Initialization.  

 Step 0.1: Use mean yield values from the dataset for fare model estimation to  

     generate initial airfare P
(0)

 over all routes; 

 Step 0.2: Generate initial flight frequency f
(0)

. 

 Step 0.3: Calculate the initial airport traffic v
(0)

 and delays d
(0)

 using frequency  

     information in Step 0.2. 

 Step 0.4: Apply airfare, segment frequency, and airport delay from Steps 0.1-0.3  

     to the demand model to produce initial passenger flow distribution on  

     the network, D
(0)

. 

 Step 0.5: Set iteration counter n = 1 and convergence tolerance g = 0.01.  

Step 1: Update segment passenger flows Q
(n)

 using passenger route demand D
(n-1)

.  

Step 2: If n ≥ 2, then perform convergence check: if ||(Q
(n)

 - Q
(n-1)

)/Q
(n-1)

||∞ > g, then stop  

 and report the solution; otherwise go to Step 3. 
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Step 3: Update segment flight frequency f
(n)

 using Q
(n)

 and d
(n-1)

. 

Step 4: Update airport flight traffic v
(n)

 and delay d
(n) 

using f
(n)

. 

Step 5: Compute airfare P
(n)

 from D
(n-1)

, Q
(n)

, d
(n)

. 

Step 6: Perform 3NL demand generation and network loading based on P
(n)

, f
(n)

, d
(n)

.  

 Update passenger flows D
(n)

. Set n = n + 1. 

4.4 Model application 

4.4.1 Network setup 

We consider a hypothetical air transportation network, shown in Figure 4.2, which has a 

circular form with radius R = 400 miles. The network has one hub city located at the 

center and n = 50 identical spoke cities, numbered 1, 2, … , 50, uniformly distributed 

along the circle. Each city has one airport. The network is fully connected. Each spoke-

spoke air travel market has two routing options: non-stop or connecting at the hub. In 

contrast, only a direct route is available for travel between a spoke city and a hub city. 

The non-stop distance between two spoke cities, ranging from 50 miles (two spokes cities 

are neighbors) to 800 miles (two spoke cities are aligned with the hub), is calculated as 
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Figure 4.2: Network topology and circuity of one-stop routes 

Because of the symmetric setup, all spoke-hub routes are identical and have a distance of 

400 miles. Connecting routes in spoke-spoke markets are also identical, but the routing 
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distance is twice the radius (800 miles). The circuity of connecting routes, defined as the 

ratio between routing and airport-pair distances, depends upon the relative positions of 

the ending airports on the circle, and therefore the city-pair distance (Figure 4.2). 

We assume the population in the hub city and each spoke city to be 10 million and 2 

million respectively, roughly corresponding with the size of Chicago and Kansas city 

metropolitan areas (also note that the non-stop distance between ORD and MCI Airports 

is 403 miles, very close to the radius). All cities have the same personal income per capita, 

assumed to be 10,000 dollars each quarter (2004 values).  

Values for other variable that are exogenous to the equilibrium process are determined 

using empirical data. Scheduled flight time on each segment, which is closely related to 

the segment distance, is calculated based on the following OLS regression results using 

BTS Airline On-time Performance Database (standard errors in parentheses): 

(0.0950)        (0.0001)                                                    

9681.0 Adj    )ilesDistance/m(1205.09000.39)Time/minFlight  Scheduled( 2  R

 

(4.33) 

 

Determination of concentration values is largely based on historic averages (2004-2008) 

in the US air transportation system. We assume spoke-hub and spoke-spoke RouteHHI's 

to be 0.6 and 0.8. We use the empirical relationship that market-level HHI is about 0.58 

times non-stop RouteHHI (regression without constant, R
2
 = 0.87) to construct spoke-

spoke MarketHHI's. Because each spoke-hub market only has one, direct route, 

MarketHHI's on these routes are equal to the corresponding RouteHHI's. Similarly, as 

spoke-spoke segments serve exclusively non-stop passengers on the respective spoke-

spoke routes, SegmentHHI's on these segments should be the same as the RouteHHI's. 

Based on results from regressing SegmentHHI on RouteHHI (again without constant, R
2
 

= 0.95), we let SegmentHHI of spoke-hub segments be 0.93 times RouteHHI. 

Considering that concentration at hub airports is often higher than at spoke airports, we 

assume concentration at each spoke airport to be 0.2 and 0.6 at the hub airport. For 

simplicity, any presence of LCC's, airport slot controls, and vacation routes is precluded. 

Initial fares are calculated based on the sample means as shown in Tables 3.2 and 3.3 in 

Chapter 3. Initial flight frequency on spoke-hub segments is set as 1000 flights per 

quarter (~11 flights per day). As a point of reference, we observe that on ORD-MCI 

segment about 1100 flights were scheduled in each quarter between 2004 and 2008. Since 

spoke-spoke segments entail different distances, frequency on these segments is based on 

a reduced form regression using the same dataset for frequency model estimation. 

Regression results are presented in Appendix D. We assume airport AAR to be 1,000 

operations per day at the hub, which is roughly the size of a medium-sized hub airport 

like Charlotte (Table 4.4), and 500 at each spoke airport. In the equilibrium analysis, we 

further assume that peakedness is 5 across all airports, and its change is proportional to 

airport traffic volume change (i.e. holding coefficient of variation constant). Since neither 

airport nor monthly dummies will be considered in the hypothetic network, finding 

reasonable values for the constant in the delay regression model is needed. In light of the 
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dummy estimates and after having experimented with an array of values, we take 1.5 and 

1.2 as the constants for hub and spoke airports. Finally, values for the weather variables 

in the delay model take their respective means in the data sample.  

Table 4.4 Daily AAR's and number of connections in our analysis  

and real world hub airports (based on 2007 average daily values).  

 Daily AAR Number of connections 

ORD 1,533 134 

CLT 1,121 62 

PHL 822 49 

EWR 708 83 

DFW 1,869 127 

DEN 1,892 105 

Hub airport in our analysis 1,000 50 

 

4.4.2 Initial equilibrium 

The convergence to the equilibrium state from initial supply and demand values is 

achieved within 8 iterations. We have experimented with different starting values of 

demand which, as implied by the component model estimates, presents the key driver in 

the system equilibration process. Specifically, we take random draws from a uniform 

distribution between 0 and 10,000 as the starting values for passenger demand on each 

route. Such demand is then used to generate initial flight traffic,
23

 airport delay, and 

airfare, whose values replace those from the Step 0 in the algorithm as inputs for the 

subsequent steps. This procedure is repeated 500 times. Let vectors Q[0] denote the 

equilibrium passenger flow precisely following the algorithm in Section 4.3; Q[k] the 

equilibrium passenger flow from the kth experiment above (k = 1, … , 500). We employ 

||(Q[k] – Q[0])/Q[0]||∞ to measure the deviation of experimental equilibrium flows from the 

baseline flow. The distribution of ||(Q[k] – Q[0])/Q[0]||∞ over the 500 trials is illustrated in 

histogram in Figure 4.3. All values are less than 2%, part of which may be attributed to 

the convergence tolerance chosen (g, which equals 0.01). The results suggest that, at least 

from the segment passenger flow perspective, the equilibrium seems unique and 

insensitive to the start demand values.  

Given the symmetric setup, all spoke-hub markets will share the same set of equilibrium 

values, shown in Table 4.5. Similarly, we would observe identical supply and demand 

characteristics in spoke-spoke markets with the same O-D distance. Thus it suffices to 

examines only the set of routes originating from one city to fully describe the system 

equilibrium. Figures 4.4-4.6 plot various equilibrium values, as a function of city-pair 

distance.  

 

                                                 
23

 Initial frequencies are calculated based on the structural rather than reduced form frequency model, in 

which we assume that delay is almost zero (to avoid meaningless logarithm we take 0.01).  
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Figure 4.3: Distribution of ||(Q[k] – Q[0])/Q[0]||∞ 

Table 4.5 Initial equilibrium values in spoke-hub markets. 

Component Value 

O-D demand (passengers/quarter) 57,928 

Segment passenger volume (per quarter) 155,410 

Airfare ($) 154.8 

Yield ($/passenger-mile) 0.387 

Segment frequency (flights/day) 1545 

Number of passengers per flight 101 

 

 
Figure 4.4: Passenger demand in spoke-spoke markets 
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Figure 4.5: Yield and fare in spoke-spoke markets 

 
Figure 4.6: Flight frequency and number of passengers per flight in spoke-spoke markets 
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to draw passengers from non-stop to connecting routes. In the longest-haul markets, 

connecting routes transport more than one third in the total number of passengers. 

In spoke-spoke markets, changes in yield are primarily shaped by the negative 

coefficients for distance and—in the case of connecting routes—circuity in the fare 

models. The effects of route passenger demand and delay are only marginal due to their 

much smaller coefficients. The drastic declining yield curve for non-stop routes is 

directly associated with the distance effect; whereas the much moderate change for one-

stop yield reflects the net outcome of the distance and circuity effects, the latter of which 

tends to increase yield with city-pair distance.  

Airfare, the product of yield and route distance, manifests itself somewhat differently. 

Despite the declining yield, non-stop fare increases with city-pair distance, and almost 

linearly at longer ranges, where only marginal change in yield is observed and distance 

becomes the major driving force for fare change. On the other hand, as all one-stop routes 

have the same itinerary distance, the fare curve is essentially a scaling-up of its yield 

curve. In short-haul markets, because the connecting itinerary distance is much longer 

than the non-stop distance, remarkable discrepancies exist between fares on the two types 

of routes. With the continuous decline of one-stop fare and steady increase in non-stop 

fare, their difference is reduced. The distance of 600 miles marks the crossover point, 

beyond which connecting routes becomes even cheaper. 

Frequency and the average number of passengers per flight vary greatly between spoke-

spoke and spoke-hub segments. On the latter ones we observe very high frequency, 

because these segments serve not only local travelers but connecting passengers on 49 

spoke-spoke one-stop routes. 17 flights per day operate on each spoke-hub segment. Each 

flight has 101 passengers onboard. In contrast, each spoke-spoke segment only serves 

local non-stop passengers. Not surprisingly, frequency is much lower. The shape of the 

frequency curve strongly depends upon non-stop passenger volume, with its peak 

achieved before the point where passenger volume reaches its maximum, because 

distance dampens the increase in frequency. Consequently, as distance increases, so does 

the number of passengers per flight. This explains why at longer distances, the number of 

passengers per flight stays almost constant even with shrinking segment passenger 

volume. 

We compare the above equilibrium values with those observed from a number of U.S. air 

travel markets with similar population size and distance, some of which are documented 

in Tables 4.6 and 4.7 (averaged quarterly value between 2004 and 2008). For comparison, 

we also list equilibrium values for a set of selected segments/markets from the 

hypothetical network with similar distances (in italics). The equilibrium values obtained 

from the hypothetical air transportation network are, by and large, in line with the 

empirical observations. However, the hypothetical network under study has a denser 

distribution of spoke cities (recall that two neighboring cities are only 50 miles away), 

passenger consolidation then results in higher hubs-spoke segment passenger traffic. On 

the other hand, multiple connecting airport choices in the real world contribute to higher 

total market demand and a greater share of passengers using one-stop routes. The 
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difference in extent of direct and indirect competition, and the presence of LCC's (which 

is not assumed in this study), may also explain the differences between the observed and 

computed fare and yield. 

Table 4.6 Supply-demand characteristics of selected segments. 

Segment 

Origin 

population 

(millions)* 

Destination 

population 

(millions) 

Passengers 

per quarter 

Distance 

(miles) 

Flights  

per 

quarter 

Passengers 

per flight 

Spoke → Spoke 
OMA→MCI 0.86 2.06 1126 152 101 10 

GSO→PIT** 1.48 2.46 6460 332 304 19 

SDF→RDU  1.38 1.66 5784 416 218 27 

MCI→PIT  2.06 2.48 6941 773 136 49 

RDU→MSY 1.66 1.24 5682 779 158 36 

Segment 1*** 2.00 2.00 2233 150 132 17 

Segment 2 2.00 2.00 6779 385 194 35 

Segment 3 2.00 2.00 7165 775 155 46 

Spoke → Hub 

MSY→ATL 1.22 5.44 126087 425 1169 108 

RDU→ATL 1.58 5.44 145409 356 1365 108 

MCI→ORD 2.06 9.63 103960 403 1146 91 

PIT→ORD 2.46 9.63 85605 412 1250 70 

OMA→ORD 0.85 9.63 69276 416 1064 65 

Segment 4 

(spoke→hub) 
2.00 10.00 155410 400 1545 101 

* Population is calculated based on Metropolitan Statistical Areas (MSA). 

** We treat PIT as a spoke airport as substantial debubbing of US Airways at the airport 

started in 2004 (Smith et al., 2006). 

*** Italic segments are ones chosen from the hypothetical network. 

Besides the segment and route characteristics, the equilibrium is featured by substantial 

delay at the hub and more moderate delay at the spoke airports, on average about 27.3 

min/flight and 11.5 min/flight respectively (first column in Table 4.8). The exorbitant 

delay at the hub is largely due to connecting traffic, which accounts for two thirds in the 

total, which is also comparable to observed values in real hub airports in the US (Table 

4.9) Compared to real world airport delays, the delay numbers do not seem unreasonable. 

According to Ball et al. (2010), the system-wide average delay against schedule (schedule 

padding not included) in 2007 reached 15 min/flight in the US air transportation system, 

and over 20 min at some of the busiest hub airports (e.g. ORD, JFK, EWR). 

The equilibrium results suggest that the hub airport suffers severe capacity constraints 

and delay. It may seem a sensible decision to increase capacity at the hub. In what 

follows, we investigate how such capacity investment would mitigate delay, and trigger  

the system equilibrium shift. 
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Table 4.7 Supply-demand characteristics of selected markets. 

 
O-D distance 

(miles) 
Circuity 

Passengers  

per quarter 

Fare 

(dollars) 

Yield ($/ 

passenger-mile) 

Spoke-spoke markets* 

OMA→MCI 152 
1 408 82 0.54 

5.39 1 288 0.35 

GSO→PIT 302 
1 2032 142 0.47 

1.60 1210 163 0.34 

SDF→RDU 416 
1 4430 118 0.28 

1.54 3968 110 0.18 

MCI→PIT 773 
1 3033 148 0.19 

1.29 3203 134 0.14 

RDU→MSY 779 
1 4815 140 0.18 

1.19 6082 108 0.12 

Market 1** 150 
1 2233 114 0.76 

5.34 106 241 0.30 

Market 2 385 
1 6779 150 0.39 

2.08 820 194 0.24 

Market 3 775 
1 7165 188 0.24 

1.03 3840 165 0.21 

Spoke-hub markets 
MSY→ATL 425 1 32384 131 0.31 

RDU→ATL 356 1 47988 118 0.33 

MCI→ORD 403 1 41499 88 0.22 

PIT→ORD 412 1 33414 100 0.24 

OMA→ORD 416 1 17357 105 0.25 

Market 4 

(spoke→hub) 
400 1 57928 155 0.39 

* For each spoke-spoke market, the first line denotes characteristics on the non-stop route; 

The second on the one-stop route, where circuity, fare, and yield are passenger weighted 

averages across all connecting routes.  

** Italic markets are ones chosen from the hypothetical network. 

 

Table 4.8 Airport delay changes. 

Component Before After Change 

Average delay at the hub (min/flight) 27.3 18.4 -8.6 

Average delay at the spoke (min/flight) 11.5 11.3 -0.2 

 

Table 4.9 Proportion of connecting passengers at some major 

US hub airports (averaged value between 2004 and 2008). 

 ATL ORD CLT DEN DFW IAH 

Delay (min/flight) 0.654 0.550 0.724 0.501 0.602 0.601 
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4.4.3 Equilibrium shift in response to capacity expansion 

We consider a scenario that increases hub airport arrival capacity by 50%. Engineering 

practice has shown that the extent of capacity enhancement does not necessarily imply 

proportional change in the size of infrastructure (e.g. number of runways). Significant 

increase in airport capacity, in effect, can be achieved through moderate physical 

infrastructure investment with airspace reconfiguration and new air traffic control 

procedures. 

The equilibrium shift proceeds as follows. We update hub airport delay with the new 

airport capacity, and subsequently fare and passenger route demand. We then iterate on 

Steps 1-6 in the equilibration algorithm until the convergence criterion is satisfied. The 

equilibrium shift is completed in 9 iterations. New airport delay and changes are reported 

in the 2nd and 3rd column of Table 4.8. Figures 4.7-4.9 illustrate the equilibrium shift in 

spoke-spoke markets and segments. Changes of supply and demand characteristics in 

spoke-hub markets and segments are documented in Tables 4.10.  

 
Figure 4.7: Route- (left) and market- (right) specific 

demand change in spoke-spoke markets 

 
Figure 4.8: Fare and yield change in spoke-spoke markets 
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Figure 4.9: Changes in frequency and number of passengers 

per flight in spoke-spoke markets 

Table 4.10 Changes in spoke-hub markets and segments. 

Component Before After Change 

O-D demand (passengers/quarter) 57,928 70,380 12,452 

Segment passenger volume (per quarter) 155,410 226,190 70,780 

Airfare ($) 154.0 150.3 -3.7 

Yield ($/passenger-mile) 0.387 0.376 -0.011 

Segment frequency (flights/day) 1545 2004 459 

Average number of passengers per flight 101 113 12 

 

As expected, the direct consequence of hub capacity increase is hub delay reduction, by 

8.6 min per flight on average, or 32% of the original delay level. Delay at the spoke 

airports stays almost unchanged. Hub delay reduction improves the service quality of 

connecting routes in spoke-spoke markets, diverting some passengers from direct routes. 

This diversion effect is more prominent in longer-haul markets where perceived utilities 

between the two routing choice are closer, as reflected by the more equal demand split 

under the initial equilibrium. Passengers' routing choice on these markets are more 

sensitive to a given utility change. Furthermore, on almost all markets, reduced hub delay 

makes the option of air travel more attractive, suggesting higher demand would be 

generated in the air transportation system. One exception is the shortest spoke-spoke 

markets, where the ratio between perceived utilities from choosing the direct and 

connecting routes is the highest. After the equilibrium shift, frequency drop on the spoke-

spoke segment results in a utility decrease on the direct route, which exceeds the utility 

increase on the one-stop route. As a consequence, the inclusive value from the bottom 

level in the 3NL model is slightly smaller after capacity change, suggesting a lower total 

demand on those markets. While somewhat surprising, this finding is indeed very 

interesting and reasonable. One can imagine that, under alternative network topologies, 

such loss in passenger demand could be large for some markets. The market-level 

demand changes are shown in the 2nd panel of Figure 4.7. In spoke-hub markets, we 
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observe a more perceivable increase in passenger demand, primarily due to the much 

higher spoke-hub frequency after hub capacity expansion. 

Higher routing demand and reduced delay at the hub lead to the hub-spoke yield and fare 

which are 1 cent and $3.7 lower than before. Yield change in spoke-spoke markets is 

much smaller. Note that Figure 4.8 depicts changes in fares rather than their absolute 

values. On non-stop routes, lower passenger density tends to increase yield, which is 

offset by the fare reductions resulting from reduced delay. The net yield change, as 

shown in the left panel of Figure 4.8, can be either positive or negative. Yield change on 

connecting routes depends further upon increased segment passenger density, which, 

because of the economies of density, allows airlines to offer lower fare. Furthermore, 

higher passenger routing demand implies higher yield on one-stop routes. The overall 

effect of routing demand and segment density increase, combined with delay reduction, is 

still a positive yield change, especially at short distances where route demand increases 

the most. Nonetheless, the absolute yield change is less than 0.25 cents even on the most 

sensitive routes. Similar changing patterns are observed in fare. But the magnitude is 

dwarfed on short-haul non-stop routes due to much smaller distances.  

Consistent with the passenger diversion, airlines would cut frequency in spoke-spoke 

segments, more significantly on longer-distance segments (18% reduction). The number 

of passengers on each plane would decrease concurrently, but to a less extent in terms of 

percentage change, as suggested by the frequency model. Diverted passengers would be 

accommodated by higher flight traffic and more passengers on the spoke-hub segments. 

On average, five more flights will operate on each spoke-hub segment per day, with 12 

more passengers boarded on each flight. Focusing on each spoke airport, the almost 

unchanged delay suggests that reduction in flight traffic across all spoke-spoke segments 

would be almost offset by the added flights on the single segment connecting the hub. 

4.4.4 Passenger benefits from the expansion 

The equilibrium shift brings benefits to travelers in the air transportation system. We use 

the change in consumer surplus to quantify passenger benefits. Given the Logit demand 

model structure, the natural choice to measure passenger benefits is logsum (Small and 

Rosen, 1981; Train, 2003). Specifically for our Three-level Nesting structure, expected 

consumer surplus for one air travel decision making of an individual
24

 on metropolitan 

area pair market w, E(CSw), is: 

1 1 1

,0 1 21 1 2 3

1 2 logsum price

1
( ) log[1 exp( (market distance) )]

( (market distance) )
w w w w w

w

E CS I I C  
   

    


 
(4.34) 

 

                                                 
24

 Recall we assume that each individual has a maximum number of potential trips for a given market and 

quarter. For each of these trips, air travel decision making has to be made as to choose whether to travel by 

air, and if so, the specific route. 
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where 1

1 and 1

2 denote the coefficients for the inclusive value at the top level, and the 

interaction term between that inclusive value and market distance; 1

0,w the sum of 

perceived utilities other than the two aforementioned terms; 2

logsum and 3

price the logsum 

coefficient at the middle level, and fare coefficient at the bottom level. The division by 
3

price

2

logsum

1

2

1

1 ))distancemarket ((  w  translates utility into dollars based on the fare coefficient 

and the scaling effect associated with the nesting structure. C is an unknown constant that 

represents the fact that the absolute level of utility cannot be measured.  

The difference in E(CSw) before and after the hub capacity investment then quantifies an 

individual's benefit gain from one decision making in market w: 
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 (4.35) 

 

Since all individuals in market w are considered in the air travel demand modeling with 

the choice between air travel and outside goods made at the top level, the computed 

logsum change will capture the full impact of capacity investment on consumer surplus 

for the entire population, regardless of whether air travel is chosen. Each individual, 

when making one air travel choice, will receive on average 3.40 cents benefits on the 

spoke-hub markets. The unit passenger benefits are much smaller in spoke-spoke markets, 

as illustrated in Figure 4.10. We observe that the unit benefit gains are an increasing 

convex function of market distance, in which the highest consumer surplus gains, about 

0.35 cents per air travel choice, occurs when traveling between any two farthest points in 

the network. Consumer surplus gains for short-distance travel are much smaller, because 

the utility discrepancy between non-stop and connecting routes is greater. This 

discrepancy is reflected and further exaggerated in the sensitivity of the inclusive values 

because of the exponential form in the logsum term. As a consequence, inclusive values 

are more sensitive to utility reduction on a non-stop route than to an equal amount of 

utility increase on the corresponding connecting route. We find that the former effect 

even dominates the latter on the shortest-haul markets, i.e. the change in inclusive values 

is negative. This implies that capacity investment leads to not only uneven distribution 

but even loss of benefits to travelers in part of the air transportation network. The benefit 

loss is also reflected in the reduction in total demand on these markets, as we have seen in 

Section 4.4.3. If the reduction in total market demand is large, then the associated loss in 

traveler benefit could be significant.  

The counter-intuitive results of consumer surplus loss are reminiscent of the "Braess 

Paradox" which suggests that infrastructure investment may worsen travelers' surplus 

under user equilibrium. However, two differences between the two phenomena are worth 
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pointing out. First, the Braess Paradox is conventionally elucidated under deterministic 

user equilibrium with fixed total demand; our ATUE problem assumes demand is 

stochastic and variable in total.  Second, the benefit loss in ATUE derives from reduced 

traffic on links where there are economies of scale; whereas in Braess Paradox benefit 

loss comes from increased traffic on links which feature diseconomies of scale. 

 
Figure 4.10: Average consumer surplus change per air travel  

decision making in spoke-spoke markets 

To quantity the overall passenger benefits, the consumer surplus changes computed 

above are aggregated across markets, and summed over all air travel decision makings 

and the entire population in the air transportation system. Table 4.11 reports the total 

traveler welfare gain for one quarter, amounting to 226.6 million dollars.  

The aggregate consumer surplus gains can be alternatively obtained using the "rule-of-

half" as an approximation. Beginning from the initial equilibrium state, we first compute 

the equivalent fare change in order to achieve the same market-level demand under the 

new equilibrium, for each market. This is done by either increasing (or decreasing) the 

original fare level on the one- and non-stop routes by the same amount, or by the same 

percentage on each market. After solving for the equivalent fare change and then 

updating route airfare, the "equivalent" market-level fare after equilibrium shift, which is 

the average of route fares weighted by route passenger volume, are computed. The 

consumer surplus gains in market w is given by: 
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where 1

 market, wP and 0

 market, wP denote the "equivalent" market-level airfare after equilibrium 

shift and the original average market-level airfare, weighted by original route passenger 

demand; 1

 market, wQ and 0

 market, wQ are market-level passenger demand before and after the 
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equilibrium shift. These results are then aggregated across markets to obtain system-wide 

estimates of traveler benefits, which are very close to the passenger welfare gains using 

the logsum measure (Table 4.11). 

Table 4.11 System-wide traveler benefit gains ($million/quarter). 

Logsum Rule-of-half  

(same absolute price change) 

Rule-of-half  

(same percentage price change) 

226.6 247.1 246.1 

 

We also compare hub delay saving and passenger benefit estimates from the ATUE with 

those under the conventional approach. As discussed in Chapter 2,  that approach 

assumes that, except for airport capacity and delay, everything else would remain 

unchanged before and after investing in capacity. The calculation of passenger benefit 

gains under the conventional method is based purely upon the estimate of average flight 

delay savings, which are converted into dollars by multiplying by passenger value of 

travel time and the number of passengers on each flight.  

The steady state assumption suggests that the results from solving the ATUE represent 

the long-run equilibrium. Instead of looking at how equilibrium would shift on a year-by-

year basis, it may be more appropriate to consider a set of isolated, representative time 

points. Given the same scenario that hub capacity is increased by 50%, we consider 

equilibrium states in the base year, and in 5 and 10 years, and compare estimates of delay 

savings and passenger welfare gains from equilibrium and conventional approaches. We 

use the US-based forecast (World Bank, 2012; FAA, 2012a) to derive the projected 

income, population, and flight traffic growth (Table 4.12).
25

 The income and population 

projections will be used to compute ATUE; whereas the flight traffic projection will 

serve as the input to derive future delay and delay saving estimates.  

Table 4.13 shows the hub delay estimates for the three years, with and without capacity 

investment, using the conventional and equilibrium approaches. All are measured as 

average delay minutes per flight. Under the conventional approach, base year flight 

traffic is obtained from the equilibrium results. In 5 and 10 years, hub delay is then 

computed using the projected flight traffic growth (i.e. 5 and 11%) and the delay model 

presented in Section 4.2.1.2, with given airport capacity. Absent any bounding forces as 

in the equilibrium process, the conventional method produces increasingly higher levels 

of future delay than the equilibrium approach if no capacity investment is made (1st vs. 

4th lines). With capacity investment, hub delay will be reduced more drastically (3rd vs. 

6th lines). This is because the conventional method only considers the physical 

relationship among delay, flight traffic, and airport capacity, and does not account for 

passenger diversion between different routes and induced demand, both of which 

counteract the hub delay reduction.  

                                                 
25

 We use historic data from World Bank (2012) as the assumed population growth rate. Real GDP and 

flight operation projections are provided by FAA (2012a). Using the population and GDP information we 

derive the growth rate of GDP per capita, which we assume is proportional to income per capita increase. 
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Table 4.12 Income, population and flight traffic 

growth compared to the base year. 

 Income per capita Population Flight Traffic 

Year 5 8% 5% 5% 

Year 10 16% 10% 11% 

 

Table 4.13 Hub delay and delay saving estimates under the  

conventional and equilibrium approaches. 

  Base year In 5 years In 10 years 

Conventional  

Without investment 27.3 33.5 43.1 

With investment 12.4 14.3 16.9 

Savings 14.9 19.2 26.2 

Equilibrium  

Without investment 27.3 30.2 33.2 

With investment 18.4 20.3 22.4 

Savings 8.9 9.9 10.8 

 

Figure 4.11 shows the system-level passenger benefit estimates. We again employ 

logsum to measure the benefit under the equilibrium approach. If the conventional 

method is considered, passenger benefits would only cover those from the overestimated 

hub delay savings. We use the US Department of Transportation recommended value of 

passenger travel time, updated to 2004 values, to convert the delay savings into dollars. 

Despite the much greater delay saving estimate (even increasingly so in future years), the 

conventional method only produces about one third to half of total benefits from the 

equilibrium approach. This implies that the bulk of passenger benefits are reaped through 

other dimensions in the equilibrium shift than hub delay reduction. Schedule delay 

reduction on the spoke-hub segments, fare decrease in spoke-hub and certain non-stop 

spoke-spoke routes, and more passengers now using the air transportation system all 

contribute to the total benefits to passengers. Such results are consistent with those 

obtained in Chapter 2, although the air transport system equilibrium is modeled from 

quite distinct perspectives and with different network setups. The findings again highlight 

the importance of accounting for the systematic response in conducting investment 

benefit analysis. Failure to do so, as is likely the case in current engineering practice, will 

seriously bias the results and risk leading to wrong investment decisions.  
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Figure 4.11: Passenger benefit estimates (in $million/quarter)  

under the two approaches 

4.4.5 Sensitivity analysis of capacity investment 

So far the discussion of capacity investment has been focused on one scenario, increasing 

capacity by 50% at the hub airport. In the real world, decision makers are often faced 
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question of where to invest may also be relevant, the answer is often the capacity 

constrained airport(s), which can be easily identified by looking at airport delay levels. In 

the following analysis, attentions are focused on how passenger benefits will be affected 

by the baseline capacity (and therefore the delay level) and the amount of investment.  

Figure 4.12 shows the benefit gains (using logsum) under four baseline hub capacity 
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operations per day. Each point on the graph represents the incremental, rather than 

cumulative benefits. For instance, the point 600 on the 1300 curve means the difference 
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per day (from 1300 to 1900). These curves reveal the inverse relationship between 

baseline capacity and investment benefits: greater capacity constraints at the airport, i.e. 

smaller baseline capacity, imply higher returns from the same amount of capacity 

investment. Focusing on each individual curves, the downward slopes suggest 

diminishing returns to capacity investment. 

Note that the incremental benefits, albeit diminishing, are still significant in magnitude. 

One may be interested in the ultimate benefits from expanding the hub capacity to 

infinity. The consequent consumer surplus gain is $1141 million, about five times the 

benefits from increasing capacity by 50%. This somewhat surprising result, indeed, is 

associated with drastic network flow change. As shown in Figure 4.13, under the infinite-

capacity equilibrium, higher total demand will appear, especially on long-haul markets, 

where the vast majority of travelers will choose connecting routes. Due to passenger 
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spoke-hub segments by more than two-fold, with 37 daily flights—each now having 140 

passengers onboard—operating on each segment. The drastic frequency increase 

represents an important contributor in the overall benefits. Airfare on the spoke-hub route 

would be reduced most substantially, $17 less per traveler, mainly due to the economies 

of density; in spoke-spoke markets, price change is much less significant. Some 4-min 

average delay will persist at the hub, which should be interpreted as the components of 

flight delay that would persist even with infinite airport capacity. The counterfactual 

analysis implies that, in the current air transportation network, continuous capacity 

investment could eventually lead to substantial change in air transport service supply and 

traffic patterns.  

 
Figure 4.12: Sensitivity of passenger benefit estimates to baseline capacity 
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Figure 4.13: Passenger demand in spoke-spoke routes with infinite hub capacity 
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4.5 Summary 

This chapter approaches the air transportation system equilibrium from a traveler-centric 

perspective while taking into consideration constraints and feedback from system supply. 

Each individual makes air travel decisions to maximize her/his utility, taking into 

consideration the level of supply, characterized by airfare, frequency, and airport delay, 

in the system. The passenger demand generation and route assignment process is 

modeled using a three-level Nested Logit decision structure. Taking together demand and 

supply-side constraints, the ATUE is formulated as both a fixed point and a variational 

inequality problem, with existence of the equilibrium solution guaranteed but not the 

uniqueness in general. Nevertheless, the equilibrium seems unique and insensitive to the 

starting values under the network examined in this chapter. The equilibrium values, while 

generated in a hypothetical network setting, are comparable to supply-demand 

characteristics observed in the real air transportation system.  

We have investigated in detail the response of equilibrium to airport capacity investment. 

Reduced delay improves the hub connection quality, therefore diverting passengers from 

non-stop to one-stop routes, and attracting more travelers using the air transportation 

system. Airlines concurrently increase frequency and aircraft size in spoke-hub segments, 

while cutting back schedules and experiencing a drop in the number of passengers per 

flight in spoke-spoke segments. The magnitude of adjustment in flight frequency and 

aircraft size is consistent with the findings in the previous chapter that airlines prefer to 

adjust frequency in response passenger demand change. Passenger diversion and 

consolidation create further density on the spoke-hub segments, allowing local 

passengers to enjoy much higher service frequency. Compared to frequency increase, fare 

change in the non-stop markets is much smaller, and even more so in spoke-spoke 

markets.  

The results suggest that while hub delay reduction triggers an equilibrium shift, the major 

underlying driver is frequency, or the Mohring effect. In the air transportation network, 

the Mohring effect is further exploited with each hub-spoke segment serving both local 

and connecting passengers on many routes. Passengers enjoy higher frequency not only 

from demand increase on the route they choose, but many other routes sharing the same 

segment. As only one routing option exists on each spoke-hub market where passenger 

schedule delay will be reduced most substantially, unit consumer surplus gain from hub 

capacity investment is much higher than for spoke-spoke O-D travel. Although one-stop, 

spoke-spoke routes also enjoy the same high frequencies, the market level unit consumer 

surplus gain is compromised by frequency decrease and utility reduction for non-stop 

routes. We find that when the non-stop route is extremely favorable in the baseline, 

adding hub capacity will slightly reduce the overall welfare for passengers on that market.  

Nonetheless, the system-wide benefits to travelers from hub investment is considerable, 

and much greater than would be obtained under the conventional approach that assumed 

benefits come entirely from delay reduction. The conventional approach tends to 

overestimate delay savings, but some of delay reduction will be offset and transformed 

into higher flight traffic and more passengers using the airport. On the other hand, the 
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conventional approach would seriously underestimate the total passenger benefits, as the 

bulk of them comes from impacts other than delay reduction through the equilibrium shift. 

Such insights echoes the findings in Chapter 2 where the equilibrium is approached from 

the airline competition standpoint. Finally, our sensitivity analysis shows the decreasing 

returns to baseline capacity, and diminishing returns to capacity investment. The potential 

benefit from providing infinite capacity at the hub is much greater than those from any 

conceivable amount of capacity investment. These benefits are accompanied by 

significant network flow change, in particular, drastically higher frequency on spoke-hub 

segments. 

The ATUE framework presented in this chapter provides an alternative avenue to the 

more classic airline competition modeling approach in understanding the air transport 

system equilibrium. Instead of looking at airline specific behavior, we model interactions 

between travelers and airlines at more aggregate—route, segment, and airport—levels. 

This approach therefore reduces computational burden and would be especially suitable 

for aviation analysts and decision makers whose interests focus on system performance as 

a whole rather than individual carriers. To improve this ATUE approach, future attempts 

may be directed in several areas. First, the equilibrium only implies the number of 

passengers onboard on each flight. It will be interesting to explicitly characterize load 

factor and aircraft size, which may need to take account of practical supply-side 

constraints, such as indivisibility of flights and limited aircraft types. For example, 

airlines may not be able to deploy aircraft with the most appropriate size on a segment 

given the passenger density but use the closest type available in the fleet. The break-even 

load factor requirement may also apply in choosing the aircraft type. Second, an 

important assumption made in the analysis is that the extent of competition is exogenous 

to the equilibrium process. Empirical investigation is clearly warranted in this area to 

explore any potential impact of capacity expansion on competition. Furthermore, it may 

be interesting to examine equilibrium under alternative network forms, such as adding 

asymmetry and allowing multiple hubs, and test the robustness of the equilibration 

algorithm and uniqueness of the solution. One particularly interesting modification could 

be to consider a network with partial connection, such that the possibility of introducing 

new service in the system can be further allowed. 
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5. Conclusions and Future Research 
 

5.1 Conclusions 

This research proposes equilibrium-based approaches to investigate benefit gains from 

aviation infrastructure capacity investment. It contributes to the existing literature by 

explicitly considering the flight delay effects on passenger demand, airline cost, airfare, 

and flight frequency, as well as the interplays among these system components in air 

transport system equilibrium and equilibrium shift in response to infrastructure capacity 

investment. In particular, we explicitly recognize that the change in service quantity 

comprises an integral part in total traveler benefits. At the flight segment level, service 

quantity is measured by flight frequency. As in the urban transit system, flight frequency 

is associated with a positive feedback effect (i.e. Mohring effect) on system demand. 

Another positive feedback is due to economies of density, i.e. higher density in a given 

network results in lower unit operating cost and therefore even higher density. Both 

feedback effects are strengthened through passenger consolidation in hub-and-spoke 

networks, but will be disrupted by the occurrence of flight delay at airports, i.e. 

diseconomies of node density in the network. Capacity-constrained system equilibrium 

derives from the competing forces of aforementioned two positive feedback loops and the 

diseconomies of node density—although a different equilibrium still exists absent the 

latter force. 

Given the dual relationship between travelers and airlines in the air transportation system, 

we model the system equilibrium from two alternative perspectives. First, system 

equilibrium can be viewed as the result of airline competition. Each airline maximizes its 

profit by choosing the best pricing and scheduling strategies in a competitive 

environment, taking into consideration travelers' utility structure. Delay enters both 

traveler utility and airline cost functions. We find that the occurrence of delay leads to 

lower demand and higher passenger generalized cost, in spite of reduced airfare due to 

service degradation. To avoid excessive delays, airlines tend to use larger aircraft. The 

resultant cost savings from economies of aircraft size partially offset the delay-induced 

operating cost increase. As expected, the returns to economic welfare are diminishing to 

baseline capacity. Compared to the conventional benefit assessment method, the airline 

competition equilibrium model generates a lower estimate of airport delay savings 

because of induced demand. The delay saving and system benefit estimates are both 

biased under the conventional approach, because of its failure to recognize delay as a 

constraint on demand, and to capture welfare gains from schedule delay reduction and 

induced demand.  

The second view of the air transport system equilibrium is user (i.e. traveler)-centric. 

Each traveler in the system maximizes her/his utility when making air travel decisions, 

with full knowledge about market supply and performance characteristics, such as airfare, 
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flight frequency, and flight delay. In this study, determination of these characteristics is 

based on the empirical models. In Chapter 3, we estimate econometric models for airfare 

and frequency, at route and segment levels respectively. Results show that high airport 

delay—either at origin, destination, or hub—leads to higher airfare. The fare increase 

should be interpreted as the net effect of airlines' tendency to pass delay cost to 

passengers while also compensating for service quality degradation. Higher airport delay 

discourages airlines from scheduling more flights on relevant segments. However, after 

controlling for passenger demand and market, route, airport, and segment structures, 

flight delay effects on airfare and flight traffic are fairly small. Two other component 

models are presented in the first part of Chapter 4. The first one is the airport delay model, 

in which we find that airport delay is strongly dependent on the ratio of flight traffic 

volume and airport capacity. A previously estimated three-level Nested Logit model is 

used to characterize air travel demand generation and passenger assignment process. In 

particular, high delay at a given hub is found to reduce the probability of one-stop routes 

through that hub being chosen, and the total market demand altogether. These component 

models form a comprehensive empirical basis for delay and congestion analysis in the air 

transport system. 

With these component models, air transport user equilibrium is formulated as a fixed 

point problem in the second part of Chapter 4. The equilibrium has at least one solution 

based on the Brouwer's fixed point theorem; whereas the sufficient condition for the 

uniqueness is in general not guaranteed. With mild assumptions, we further show an 

equivalent variational inequality formulation, under which similar conclusions about 

solution existence and uniqueness are obtained. We then apply the air transport user 

equilibrium to a hypothetical network and solve for the equilibrium with a simple 

heuristic algorithm. The equilibrium convergence is robust to initial demand values, 

suggesting that there is a unique equilibrium for this particular model instance. Hub 

capacity investment attracts passengers from non-stop routes, and generates new travel 

demand on routes involving the hub airport. Total demand will increase in most spoke-

spoke markets, except for the ones with the highest one-stop route circuity, where 

passengers on non-stop routes dominate in total market demand. This counter-intuitive 

result carries the important implication that capacity investment does not necessarily 

generate benefits across all markets. With changes in flight delay, schedule delay, airfare, 

and total demand, the user equilibrium model predicts much higher passenger benefits 

from capacity investment than the conventional method, despite a smaller estimate of hub 

delay saving. These findings are largely consistent with those under the airline 

competitive equilibrium. 

5.2 Comparison of the two equilibrium approaches 

One may raise the question of which of the two above avenues (airline competitive and 

user equilibrium) should be chosen in practice to analyze capacity-induced benefits in 

real air transportation networks. While in principle the two approaches should yield 

similar results, each has its advantages and disadvantages.  
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Compared to the user equilibrium model which primarily focuses on travelers' welfare 

gains, the airline competitive equilibrium provides explicit benefit estimates for both 

passengers and airlines. To apply the airline competitive equilibrium to real air 

transportation networks, the airline gaming behavior should be modeled on the scale of 

the entire network rather than individual routes. In real air transportation networks, a city 

pair may be served by multiple routes (direct and connecting via different hubs), each of 

which by multiple airlines. Therefore, modeling individuals' air travel choice will be 

more complicated than described in Chapter 2, necessitating the use of random utility 

framework—as in the user equilibrium model—but with a much larger set of route-airline 

choices. On the other hand, the airline competitive equilibrium model will yield detailed 

equilibrium information about passenger demand pattern, market supply characteristics, 

and flight delay, making possible airline- and route-specific analysis for capacity 

investment. The capability of analyzing the interactions among airlines will be especially 

useful when the consequence on competition of capacity investment is a concern. 

However, this capability has a price. Algorithmically, modeling the network-wide 

gaming behavior may require solving an array of large-scale profit maximization sub-

problems, which substantially increases computation time for equilibration. In addition, 

existence and uniqueness of the equilibrium solution is often not guaranteed. Practical 

remedies to circumvent this potential issue includes introducing quasi-equilibrium, and 

starting the equilibration process from different strategy profiles (Hansen, 1990; Adler, 

2001, 2005; Li et al., 2010). 

Interactions among air carriers, while useful, are not of the primary concern of federal 

agencies, such as the FAA, who are the likely performer of system-wide aviation 

infrastructure investment analysis. In this regard, the user equilibrium approach may 

serve the benefit assessment purpose more efficiently, because it does not necessitate the 

direct modeling of airline gaming dynamics. Competition effects are reflected in the 

determination of airfare and flight frequency. Compared to the airline competition 

equilibrium, the existence of user equilibrium has been theoretically proven in the present 

study. The equilibration process only involves simple heuristics, therefore exhibiting 

considerable computational advantages. The improvement in computational efficiency 

will be especially attractive in simulating system response in large-scale networks. The 

user equilibrium approach also bears a higher compatibility with the existing NAS-wide 

simulation tools, and therefore integration will be more convenient. Nonetheless, the user 

equilibrium model also faces some potential issues. It assumes unchanged competition 

structure before and after capacity investment, to validate which requires further 

empirical evidence. Furthermore, airline profit change due to capacity investment has not 

been explicitly modeled in the current version of user equilibrium model. This might be 

resolved by introducing some aircraft specific cost components at the flight segment level. 

However, from a macroscopic vantage point, the airline industry is largely break even 

over the long run (Jiang and Hansman, 2006). We have conducted some preliminary 

time-series analysis using US quarterly aggregate data from 1991 to 2009, and found no 

significant effects of flight delay on industry profit. We speculate that, since delay has no 

effect on profit, neither does any attempt to reduce delay. While in the short term 

capacity investment reduces delay cost and increases airline profit, congestion will 

resume even faster as demand is spurred, causing airline new delay cost and profit loss, 
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the latter of which neutralizes the airline benefit gains right after the capacity investment. 

As a consequence, overall capacity may have no effect on producer surplus. Certainly, 

further investigation is deserved to confirm such speculation. Finally, results from both 

airline competitive and user equilibrium models need to be compared with reality, in 

order to assess the predictive capabilities of the two approaches. Such attempts, however, 

has to be left for future research.  

5.3 Further research recommendations 

The research presented in this thesis can be extended to several other areas. First, in the 

present research we assume a fixed network. In particular, the network is assumed fully 

connected in the user equilibrium model. One direction for future research is to consider 

endogenous network adaptation. In real air transportation networks, non-stop service may 

not serve some city pairs in the network due to low demand density; travel on these pairs 

has to pass through the hub airport. High hub delay may result in airlines deliberately 

avoiding the hub and introducing direct links between the cities. In a reverse manner, hub 

capacity investment reduces generalized cost of traveling on the one-stop routes. 

Passenger diversion may render the existing non-stop routes financially unviable and 

result in discontinuities in the network. In a multi-hub system, establishing new service 

could also mean opening up a flight link between a spoke city and a hub, which creates 

non-stop spoke-hub services as well as many one-stop spoke-spoke routing options 

related to the spoke city. The endogenous consideration of network structure requires 

introducing a more inclusive set of existing and potential routing choices, and threshold 

constraints on feasible services. Since the network is no longer predetermined, the 

existence of new system equilibrium also warrants re-examination. 

Second, while the air transport equilibrium models in the our study are assumed in steady 

state in order to capture the long-run equilibrium behavior, with the lagged structure of 

the delay variables the equilibrium framework can be extended for investment decision 

making on both spatial and temporal dimensions. The spatial dimension relates to the 

questions of where and how much capacity to be invested; the temporal dimension 

determines the optimal timing for investment. Decision making tends to maximize total 

net benefit over a certain planning horizon, taking into consideration airline and 

passenger responses to capacity increase. A multi-stage approach may be appropriate for 

this modeling purpose. Since capacity investment often requires cost recovery, decision 

making can be further extended to determining the landing fees, and exploring how 

different landing fees would affect the system equilibrium.  

Third, the timing issue further leads us to consider the general approaches to mitigate 

congestion. As mentioned in the outset of Chapter 1, besides capacity investment, 

demand management schemes, such as congestion pricing and slot control, represent 

another alternative. Our research suggests that capacity investment brings double 

dividend, i.e. reduced flight delay against schedule and schedule delay; whereas demand 

management often forces airlines to move flights from peak to off-peak hours, or cut 

flights from the original schedule. Therefore, delay reduction benefits from demand 
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management are realized at the expense of increased schedule inconvenience, i.e. higher 

schedule delay (Swaroop et al., 2012). On the other hand, due to its lumpy and expensive 

nature, major infrastructure capacity investment is performed on a decade time scale. 

Demand management, in contrast, incurs almost no implementation cost and is 

implemented on a daily basis. The best delay mitigation strategy may be a combination of 

both capacity- and demand-side solutions. Appropriate demand management strategies 

hinges upon the level of infrastructure capacity. On the other hand, continuous demand 

growth should prompt pricing signals (e.g. congestion fee, slot values) for capacity 

investment. The development of an integrated approach encompassing both capacity 

investment and demand management choices will be another very interesting area for 

future research. 

Fourth, the investment decision making could be approached in a multimodal context. 

Intermodalism has been recognized as a promising means to effectively reduce airport 

congestion by shifting passengers away from airplanes (Resource Systems Group et al., 

2010). To promote the development of an efficient intercity multi-modal transportation 

system, the provision of adequate infrastructure capacity for each modes is critical. The 

equilibrium framework in the thesis could be expanded to encompass other non-air 

modes, such as auto, intercity bus, and regular rail, and study the multimodal system 

equilibrium. Toward this end, the passenger demand model will need to be further 

specified to incorporate the characteristics of competing modes. Also indispensible are 

supply-side models for the non-air modes, which capture the different components in 

generalized travel cost in choosing each mode. The intermodal investment decision 

making will be especially relevant to the current debate and discussion on choosing 

between new high-speed rail lines and greater capacity at existing airport, and help 

inform future decision making.  

Finally, decisions on capacity investment, or the design of integrated congestion 

mitigation strategies, should further include the negative environmental externalities, 

especially climate change impact, from aviation operations. Although capacity expansion 

reduces flight delay and associated CO2 and other emissions, it also invites more traffic, 

creating much greater additional emissions. In contrast, demand management does not 

involve induced traffic. Therefore, total emissions will be reduced. Adding environmental 

externalities in the benefit analysis will make capacity expansion less favorable than 

demand management and defer the action of investment. Facing emission penalties, 

airlines may choose to use slower, more fuel efficient turboprops than jets, which directly 

affects scheduled travel time and airline operating cost. Exploring the extent to the 

environmental impact on system equilibrium will be useful in shaping future policies for 

both aviation infrastructure investment and environment protection. 
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Appendix A: A Proof of (2.15) based on 
Empirical Data 
 

Using the demand function (2.6) and considering the symmetry of the two airlines, the 

aggregate demand function in the market is  
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where ffffPPPP mm 2, 2121  . Empirical studies have shown that the market 

level frequency elasticity 0
f  is less than 1 (Jorge-Calderón, 1997; Hsiao, 2008). In our 

model, the corresponding elasticities are expressed as 
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If (2.15) holds, then the LHS in (2.13) is monotonically decreasing. Rearranging the LHS 

term to the RHS and multiplying both sides by 3/2, (2.14) becomes 
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which we want to show to be plausible in the real world. Note 
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The first inequality stems from the fact that price is set to be higher than the marginal 

cost per seat. The fact that frequency elasticity is often less than one suggest that the last 

term be positive, i.e. (2.15) holds true. 
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Appendix B: Correspondence between 
MAS and Metropolitan Areas 
 

Area Airport Airport Code 

Chicago, IL O'Hare International ORD 

 Chicago Midway International MDW 

New York City, NY Newark International EWR 

 LaGuardia LGA 

 John F. Kennedy International JFK 

 Long Island MacArthur ISP 

Los Angeles, CA Los Angeles International LAX 

 Ontario International ONT 

 Orange County/John Wayne SNA 

 Burbank Bob Hope BUR 

 Long Beach LGB 

 Palm Springs International PSP 

Dallas/Ft. Worth, TX Dallas/Ft. Worth International DFW 

 Love Field DAL 

San Francisco, CA San Francisco International SFO 

 Oakland International OAK 

 San Jose International SJC 

Washington D.C. Washington Reagan National  DCA 

 Dulles International IAD 

 Baltimore International BWI 

Miami, FL Miami International MIA 

 Ft. Lauderdale-Hollywood International FLL 

Houston, TX Houston International IAH 

 William P. Hobby HOU 

 

  



101 

 

Appendix C: Investigation of the 
Jacobian Matrix F(X) 
 

To investigate the properties of F(X), first recall the estimation results of the fare and 

frequency models. The coefficients for airport delay are—albeit significant—very small. 

The same occurs to the coefficient for route passenger volume in the fare model. To 

maintain the analytical tractability, we ignore these effects in the following analysis. We 

further assume fixed O-D demand which is assigned to routes following a multinomial 

Logit model form, and do not differentiate marginal utility of flight frequency, i.e. the 

coefficients for fnon-stop, fmin, one-stop, fmax, one-stop are identical. These simplifications enable 

analytical insights into the properties of the Jacobian matrix while maintaining the 

fundamental structure of the more complete equilibrium under study. 

Given an O-D pair w, the observed utility of a representative traveler consists of three 

parts: 
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where fa is flight frequency on segment a; δar the link-route indicator defined in Section 

4.2.2.1; ηkr equals 1 if route r uses airport k as the connecting hub, and 0 otherwise; dk the 

delay at airport k. β0, β1, β2 are coefficients. The second term captures the frequency 

effect on traveler utility; the third term the effect of hub airport delay; all other effects, 

assumed constant, are embedded in the constant β0. Passenger demand on route r can be 

expressed as 
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We express airport delay as only a function of the VC ratio—everything else is treated as 

constant. In effect, this corresponds to a simpler version of the delay model in Chapter 4. 

Delay at airport k equals 
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where
ka equal to 1 if the end of (directional) segment a is airport k, and 0 otherwise; sa 

denotes passenger volume on segment a.   )()( 
j

jajaaaa DGsGf  stems from the 

log-log frequency equation. Constants Bk and Ga capture all other factors for airport k and 

segment a that remain constant in the equilibration process. Under such simplification, 
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the analytical expression of airport delay as a function of route passenger demand allows 

reduced dimensions of the fixed point problem for which only D will appear in the 

formulation. More specifically, we attempt to solve the following fixed point problem 
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The element on the rth row and jth column of the Jacobian matrix, Jrm, equals 
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Substituting  )(
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Similarly, replacing dk by (C.3) and substituting 
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Combining (C.6) with (C.7) and (C.8) leads to 
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Focusing on the first term in (C.9) 
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In order for the second term in (C.9) to be non-zero, 1
maak

kr  must hold, which 

means: 1) route r is a one-stop route; 2) route m contains the segment a
 
whose ending 

point is the hub airport used by route r.  Graphically, this can only occur in one of the 

three situations below: 

 

Figure C.1: Three possibilities for the second terms in (C.9) to be non-zero 

It should be noted that partial and full overlapping of routes can occur in the last situation.  

In order to see || J || depends upon D values, we consider a simple network as in Figure 

C.2. The network has a symmetric shape with three spoke cities equal-distantly 

distributed surrounding a hub city. We assume each city has one airport. This network 

consists of 6 spoke→spoke non-stop routes, 6 spoke→hub→spoke connecting routes, 3 

spoke→hub non-stop routes, and 3 hub→spoke non-stop routes. Consider non-stop route 

r: E1→E2 and choose l1-norm,  
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Since only one connecting route exists for O-D pair E1E2, r~ denotes the connecting route 

E1HE2.  
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Figure C.2: A simple network 

To better illustrate the intuition, in the following we further assume a “congestion free” 

world, i.e. the second term in (C.9) is ignored. Recall that the essential of the first term in 

(C.9) is the marginal impact of demand on route m on route r. In total six different routes 

will lead to non-zero values for |)1(|
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2) route m is E1HE2, identical to r~ :  
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where
HEs

1
and

2HEs denote, respectively, segment passenger traffic on segments E1H and 

HE2. 

3) route m is E1H, which shares segment E1H with r~ : 
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4) route m is E1HE3, which shares segment E1H with r~ : 
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5) route m is HE2, which shares segment HE2 with r~ : 

E1 E2 

E3 

H 



105 

 

2

1
|)1(| 1~

~
~

~
~

HE

rr

m

r
rr

m

r
rr

m

r
rr

s
PD

D

V
PD

D

V
PD

D

V
PD 














  

6) route m is E3HE2, which shares segment HE2 with r~ : 
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Summing up the above six terms yields 
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(C.12) 

If || J || is less than 1, then mapping D becomes contractive. The Norm-Equivalence 

Theorem suggests that all norms on R
n
 are equivalent. Under the l1-norm, the above 

sufficient condition requires 

 










m m

r
r

m

r
rr m

D

V
D

D

V
PD         1|)1(|

~
 (C.13) 

 

Note that β1 is the coefficient for the frequency variable. Under the multinomial logit 

form, the demand elasticity for route r with respect to frequency is 
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(C.14) 

 

Replacing β1 by )1/( rf P in (C.12) gives 
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(C.15) 

Hsiao (2008) shows that, in the US, route demand elasticity with respect to non-stop route 

frequency is about 1.2 under a multinomial logit specification (and ~0.8 if a Nested Logit is used). 

α comes from the frequency model. According to our estimate, α = 0.65. In this particular case, 

the feasible set Ω is defined as {Dr: 0 ≤ Dr ≤ Dtot,w,  rRw, wW}. Assuming identical spoke 
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cities and the same Dtot,w across all O-D pairs, clearly the following set of demand D0 = {Dr = 

0.5Dtot,w,  rRw,  }Ww  Ω. Under this set of demand, wtotHEHE Dss ,2
21


. (C.12) then equals 
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 1 . Therefore, || J || < 1 does not always hold, i.e. 

mapping F is not necessarily contractive. 
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Appendix D: Estimation Results of the 
Reduced Form Frequency Model 
 

Using the same dataset, Table D.1 reports OLS estimation results of a reduced form of 

frequency model (3.3). Standard errors are similarly clustered by metropolitan area pair. 

OriginIncome and DestIncome denote the total income in the original and destination 

metropolitan areas; OriginConnRatio and DestConnRatio the ratio of connecting to local 

O-D passengers (based on outbound traffic) at the origin and destination airports. The 

remaining variables follow the same definition as in Table 3.6. All continuous variables 

except for OriginConnRatio and DestConnRatio take logarithmic values.  

Table D.1 Estimation results for the reduced form frequency model. 

Variable Est. Std. Err. 

OriginIncome 0.2375*** 0.0179 

DestIncome 0.2364*** 0.0178 

OriginConnRatio 0.2394*** 0.0188 

DestConnRatio 0.2370*** 0.0187 

Dist -0.4180*** 0.0201 

SegmentHHI -0.7705*** 0.0205 

OriginHHI 0.0414* 0.0224 

DestHHI 0.0424* 0.0223 

OriginL4Delay -0.0714** 0.0293 

DestL4Delay -0.0800*** 0.0296 

Vacation 0.1032*** 0.0268 

SlotControl -0.1431*** 0.0336 

OriginMAS 0.0262 0.0395 

DestMAS 0.0273 0.0389 

LCC 0.4794*** 0.0280 

PortionLCC -0.3234*** 0.0585 

MASPair -0.0407 0.0340 

Constant 0.2987 0.4299 

Number of Observations 65,033 

R
2
 0.5555 

  *** p<0.01, ** p<0.05, * p<0.10 

 

The above estimated model is then used to generate the initial segment flight frequencies, 

as in Step 0.2, with zero values assumed for OriginConnRatio, DestConnRatio, 

OriginL4Delay, and DestL4Delay on all segments. 




