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Abstract 

The trivalent uranium metallocenes, (MeC5H4) 3UL where L is 

tetrahydrofuran, pyridine, quinuclidine, or trimethylphosphine, have been 

prepared and characterized, the latter by X-ray crystallography. The compound 

crystallizes in a monoclinic space group, Cn (No. 9) ·with a = 13.949(5), b = 

9.280(4), c =· 16.194(6) A, S = 104.09(4) 0
, V = 2033.2(A) 3 , Z = 4, u(Mo-Ka) = 

76.4 cm-1• The structure was solved with Patterson and Fourier techniques and 

refined with 1532 data [F2 ) 3a (F2)] toR of 0.024. Equilibrium constant 

measurements show that the relative basicity towards (MeC5H4) 3u lies in the 

order PMe 3 ) py ) quinuclidine - thf. The ligand displacement equilibria 

depends upon the substituent on the cyclopentadienyl ring, since for 

displacement of py by PMe3 , K is 190 when (MeC5H4)3u is the reference acid and 

BO·when (CsH5) 3U is the reference acid • 
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Phosphine complexes of the actinide metals of the type MX4(dmpe) 2, where 

X is Cl, Br, OPh, or Me, M is Th or U, and dmpe is Me 2PcH2cH2PMe2 have been 

prepared recentlyla as has the trivalent complex U(C5Me5) 2H(dmpe).lb The 

characterization of these complexesla,c demonstrates that phosphine ligands 

can form isolable complexes with actinide metals, in contrast to previously 

held views, though it does not establish how good phosphines are as ligands. 

Solution equilibrium quotient measurements are needed to show the relative 

coordinative affinity of oxygen, nitrogen, and phosphorus ligands towards £­

metals. In this paper, we describe such a quantitative study. 

The coordinated phosphine in UC14(dmpe) 2 is not displaced by 

Me2NcH2ca2NMe2(tmed) in refluxing toluene, though dmpe quantitatively 

displaces tmed from UC14(dmpe) 2 at -50°C.la These qualitative studies clearly 

show that dmpe is a better ligand towards UC14 than tmed, but quantitative 

studies are difficult to do, since the equilibrium quotients are either very 

large or very small, and to interpret, since equilibria involving chelate 

ligands are complicated by entropy, ring-strain effects, etc. 2 In order to 

get around these difficulties we have prepared actinide complexes with a 

single, monodentate phosphine ligand in the inner coordination sphere of the 

actinide complex. 

One strategy is to make complexes with the sterically bulky cycle-

pentadienyl ligand. The tetravalent compounds, Cp3UCL or Cp3UF, do not yield 

complexes with dmpe nor PMe 3 , probably due to steric effects. 3a The trivalent 

compound, Cp3U, should be a better candidate since a number of complexes of 

the type Cp 3UL, where L is a monodentate oxygen or nitrogen ligand, are 

known. 3b-d The c5a5 complexes are sparingly soluble in hydrocarbon solvents 

and this property will complicate equilibrium quotient measurements in non-

interacting solvents, though the MeC5H4 complexes, (Mec5a4 ) 3UL where Lis thf, 

• 
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pyridine, quinuclidine or PMe3
4 are soluble in aromatic hydrocarbons. 

The crystal structure of the (MeC5H4) 3UPMe 3 complex was determined6 and 

an ORTEP view is shown in Figure I. The averaged U-C distance is 2.79 ± 0.05 

A, the averaged U-Cp(centroid) distance is 2.52 A, and the U-P distance is 

2.969(9) A. The averaged Cp(centroid)-U-Cp(centroid) and Cp(centroid)-U-P 

angles are 112° and 106°, respectively. 

The equilibrium quotients, defined by equation 1, where Cp, is either 

(1) 

measured in toluene-d8 at low temperature by 1H NMR spectroscopy, are shown in 

Table I. 7 The order of ligand bascisity relative to (MeC5H4) 3u is PMe3 > 

pyridine > quinuclidine - thf, rather different from the gas phase proton~ 

affinity of these ligands which lie in the order quinuclidine (229) > P~1e 3 
(224) ) pyridine (218) ) thf (196). 8 These data strongly suggest that 

intramolecular steric effects are the principal factor that affects the 

equilibria since, qualitatively, quinuclidine is larger than pyridine. 

However it is difficult to know how the cone angle of PMe3 relates to that of 

pyridine and quinuclidine. This point is being studied by X-ray 

crystallogr~phic studies. In addition, the nature of the substituent on the 

cyclopentadienyl ring plays a role since for a given set of reactions in which 

L and L' are constant the value of K changes by a factor of over two when 

MeC5H4 is replaced by c5H5 (Table I). Clearly the factors that effect the 

equilibrium quotients are complicated and a detailed study is in progress. 

. ;} 
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Table I. Equilibrium Constants for Equation 1. 

v L L' Cp 

py PMe3 MeC5H4 190 (-51) 

quinuclidine PY MeC5H4 130 (-51) 

quinuclidine thf MeC5H4 2.4 (-50) 

PY PMe3 CsH5 80 (-51) 

'v' 
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FAr.S-1 automated diffractometer, R = 0.024. The R for all data (1816) 
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List of Atomic Input Positions. 

~ 

ATOM X y z 
\J 

u .250000 .088294 .250000 
p .282521 -.073905 .412515 
C(l) .390568 .400090 .373114 
C(2) .390716 .303588 .300369 
C(3) .445261 .174593 .303087 
C(4) .443728 .125885 .223644 
C(5) .383907 .216960 .161444 
C(6) .357907 .323786 .210616 
C(7) .118828 .347837 .072499 
C(8) .109698 .269863 .154505 
C(9) .120232 .325923 .237280 
C(10) .097345 .216899 .294768 
C(ll) .056999 .099679 .239782 
C(12) .058653 .142542 .156275 
C(13) .• 162216 .032053 .014838 
C( 14) .201792 -.063331 .089358 
C(15) .146537 -.124797 .143985 
C(16) .212556 -.200586 .207390 
C(17) .307484 -.180687 .195591 
C(18) .301684 -.086547 .128422 
C(l9) .340711 .010731 .524278 
C(20) .375088 -.221798 .429701 
C(21) .172007 -.155224 .435940 
H(l) .477262 .125029 .355858 
H(2) .479859 .040986 .211004 
H(3) .364547 .205418 .099657 
H(4) .320085 .409402 .185470 
H(5) .139818 .425013 .253908 
H(6) .106309 .223168 .356628 
H(7) .033381 .007740 .256626 
H(8) .025370 .088996 .105153 
H(9) .075065 -.115595 .137692 
H(lO) .195215 -.257406 .252731 

~.) H( 11) .367904 -.225826 .229262 
H(12) .357903 -.044121 .110839 
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Thermal Parameters for (MeC5H4)3UPMe3 

Thermal Parameters in Units of Angstroms Squared. 

A 2.504600 2.802900 3.563900 .204900 .683900 .538800 
p 4.737100 5.335400 5.145400 -.369000 .557100 -.724600 
C(l) 6.065300 5.428200 7.937300 -.678400 1.580600 -2.546600 
C(2) 4.459200 5.094100 16.181400 -1.758600 6s591800 -.350200 
C(3) 5.569600 o. o. o. o. o. fJ C(4) 4.202100 3.567700 6.129300 .200600 2.536100 2.575700 
C(5) 4.337500 5.592600 6.428800 -.205900 1.944600 1.723800 
C(6) 4.130400 5.422200 6.392900 -1.906400 .118100 .899800 
C(7) 10.203000 7.190000 7.227500 1.234800 2.110000 4.230400 
C(8) 4.643000 4.910200 10.858300 2.015200 -.704100 1.675700 
C(9) 5.727300 2.508600 13.851600 2.216200 5.583000 2.144800 
C(lO) 3.791200 11.7 47700 7.173600 -.157100 1.772600 -5.923100 
C(l1) 2.979700 4.611800 8.437700 -.931400 2.894100 -3.479800 
C(l2) 2.761900 4.860700 6.286800 .026700 -.685700 1.927100 

C(13) 8.485500 8.768300 4.515600 -3.175700 -1.080600 1.190700 
C(l4) 9.140000 7.840400 4.233200 -6.136400 1.131200 -4.200700 
C(l5) 5.426200 4.225100 6.198100 -1.258200 1.377800 -.225600 
C(l6) 7.549100 4.048400 9.257400 -.341500 3.656500 -1.202700 
C(l7) 8.114600 4.404400 7.190500 1.999200 -.097200 -2.011200 
C( 18) 5.827200 6.836700 4.484300 .263600 .997100 -2.685700 
C(l9) 10.008700 11.186800 5.713200 .622700 2.063000 -2.382100 
C(20) 12.927300 6.870800 9.890400 6.765200 3.557100 5.061800 
C(21) 6.379000 9.404400 11.689700 -.931300 2.239700 5.308100 
H(l) 10.000000 o. o. o. o. o. 
H(2) 10.000000 o. o. o. o. o. 
H(3) 10.000000 o. o. o. o. o. 
H(4) 10.000000 o. o. o. o. o. 
H(5)· 10.000000 o. o. o. o. o. 
H(6) 10.000000 o. o. o. o. o. 
H(7) 10.000000 o. o. o. o. o. 
H(8) 10.000000 o. o. o. o. o. 
H(9) 10.000000 o. o. o. o. o. 
H(lO) 10.000000 o. o. o. o. o. 
H(l1) 10.000000 o. o. o. o. o. 
H(l2) 10.000000 o. o. o. o. o. 

v 
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