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Abstract  
 

Orbitofrontal and Hippocampal Contributions to State Coding and Decision Making 
 

by 
 

Celia Fernandez Ford 
 

Doctor of Philosophy in Neuroscience 
 

University of California, Berkeley 
 

Professor Joni Wallis, Chair  
 
 

To make informed decisions, one needs to understand the world in which those decisions 
are being made: the current task state. Both the orbitofrontal cortex (OFC) and the 
hippocampus (HPC) have been implicated in representing task state, but the nature of 
these representations, and what role each region plays, remains unclear. Recent work 
from our lab showed that HPC-driven neural oscillations in OFC are critical for value-
guided decision making, and that value states in OFC oscillate during the deliberation 
process. We hypothesized that (1) both HPC and OFC robustly and flexibly represent task 
state while primates learn and make decisions, and (2) value state dynamics in OFC are 
shaped by theta oscillations originating from HPC.  
 
We simultaneously recorded large populations of neurons from OFC and HPC while two 
monkeys performed a probabilistic reversal learning task, where reward contingencies 
could be captured by two task states. Using population-level decoding, we found neural 
representations of task state in both OFC and HPC that remained stable within each trial 
but strengthened with learning as monkeys adapted to reversals. Subjects also appeared 
to use their understanding of task structure to anticipate reversals, evidenced by 
anticipatory neural representations of the upcoming task state. We then decoded 
representations of option values from OFC neurons recorded from two other monkeys 
performing a value-based decision-making task. Relating decoded state dynamics to 
theta-filtered LFP signals in OFC, we found that value states switched independent from 
theta cycles, suggesting that a mechanism other than HPC-driven theta oscillations 
shapes the dynamics of deliberation.  
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Chapter 1 
 
Introduction 
 
To make informed decisions, one needs to understand the world in which those decisions 
are being made. For example, when standing in front of your closet in the morning, your 
outfit choice will depend heavily on where you’re planning to be; the shorts you’d wear to 
excel at a dance class likely won’t be as optimal for delivering an exit talk. In a 
reinforcement learning framework, task states are aspects of the environment (e.g., 
whether you’re at a dance studio vs. a conference room) that indicate what actions are 
likely to be most rewarding (e.g., wearing shorts vs. pants) (Langdon et al., 2019; Niv, 
2019; Sutton & Barto, 1998). Over time, one can learn the likelihood of one state leading 
to another, and represent transitions between states as an abstract cognitive map 
(Behrens et al., 2018; Knudsen & Wallis, 2022; Whittington et al., 2022). 
 
Historically, the orbitofrontal cortex (OFC) has been linked to a wide range of cognitive 
functions (Stalnaker et al., 2015) including reward- and value-based decision-making 
(Padoa-Schioppa & Assad, 2006; Rich & Wallis, 2016), response inhibition (Izquierdo & 
Jentsch, 2012; Jones & Mishkin, 1972), and signaling emotion (Bechara et al., 1997), but 
more recent evidence suggests OFC function can be better encapsulated as task state 
representation (Chan et al., 2016; Schuck et al., 2016; Takahashi et al., 2011; Wilson et 
al., 2014). The hippocampus (HPC) is also implicated in task state representation and the 
process of inferring ones current state (Sanders et al., 2020), building on the long-existing 
theory that HPC stores a cognitive map that flexibly encodes causal relationships between 
internal motivations and external observations (O’keefe & Nadel, 1978; Tolman, 1948).  
 
While the precise role of each region in representing task states is unclear, one possibility 
is that behavioral tasks, following rules to select actions that maximize potential reward, 
can be represented as state-transition maps defining how states relate to one another. 
One possibility is that HPC constructs and represents these transition graphs, while OFC 
represents the current goal and pulls information from HPC to calculate the value of states 
given that goal (Knudsen & Wallis, 2022). Recent work from our lab supports this 
prediction, demonstrating that HPC-driven theta oscillations in OFC are critically 
important for learning and adapting to change during value-guided decision-making 
(Knudsen & Wallis, 2020). We have also observed oscillations in OFC value states during 
the deliberation process, where populations of neurons vacillate between representations 
of each available option value leading up to the time of choice (Balewski et al., 2022; Rich 
& Wallis, 2016).  
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Here, we sought to understand how task states are represented in the brain, how these 
representations are updated when the environment changes, and how they shape the 
deliberation process during value-based decision-making. Given parallel bodies of 
research implicating OFC and HPC in task state, and the strength of their anatomical and 
functional connections, we first searched for evidence that both regions robustly and 
flexibly represent task state while primates learn and make decisions (Chapter 3). We 
simultaneously recorded large populations of neurons from OFC and HPC while two 
monkeys performed a probabilistic reversal learning task, where reward contingencies 
could be captured by two task states. Using population-level decoding, we found neural 
representations of task state in both OFC and HPC that remained stable within each trial 
but strengthened with learning as monkeys adapted to reversals. Subjects also appeared 
to use their understanding of task structure to anticipate reversals, evidenced by 
anticipatory neural representations of the upcoming task state.  
 
We then tested a prediction about the interaction between OFC and HPC (Chapter 4): do 
theta oscillations originating from HPC shape value state dynamics in OFC? We ran new 
analyses on previously reported data (Balewski et al., 2022) to decode representations of 
option values from large populations of OFC neurons recorded from monkeys performing 
a value-based decision-making task. Relating decoded state dynamics to theta-filtered 
LFP signals in OFC, we found that value states switched independent from theta cycles, 
suggesting that a mechanism other than HPC-driven theta oscillations shapes the 
dynamics of deliberation.  
 
Outline 
 
Chapter 2, Model-based acute electrophysiology in behaving nonhuman primates, 
presents an overview of our methods for high-throughput recording from deep brain 
regions. Our decoding approach to understanding decision-making requires 
simultaneously recording from a large number (~100) of neurons across two regions each 
session. We design, 3D print, and assemble unique recording platforms for each session 
to densely and precisely arrange multiple multi-channel probes (Plexon: V- and K-
probes) to target our regions of interest. 
 
Chapter 3, Orbitofrontal-hippocampal state coding dynamics during reversal learning, 
explores the role of the orbitofrontal cortex (OFC) and the hippocampus (HPC) in 
contextualizing information and identifying links between stimuli, actions, and outcomes. 
We recorded simultaneously from both regions while primates performed a probabilistic 
reversal learning task and found that both OFC and HPC stably represent task state within 
trials. These representations strengthened with learning and switched in anticipation of 
upcoming reversals, implicating both regions in state inference. 
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Chapter 4, Theta oscillations do not explain dynamic activation of value states in the 
orbitofrontal cortex, presents results from a new analysis of data previously published as 
Balewski, Knudsen, and Wallis (Neuron 2022). We tested the hypothesis that OFC value 
dynamics, like those first reported by Rich and Wallis (Nature Neuroscience 2016), are 
driven by theta oscillations. We found that while value states were more likely to be 
decoded at certain phases of the theta cycle, there was no relationship between OFC value 
dynamics and theta oscillations. 
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Chapter 2 
 
Model-based acute electrophysiology in behaving 
nonhuman primates 
 
Ford, Celia F., Knudsen, Eric B., Balewski, Zuzanna Z., & Wallis, Joni D.  
 
2.1 Introduction 
 
This thesis aims to investigate how neural representations of task states are formed, how 
these representations evolve during learning, and how task states inform value-based 
decision making. To study dynamic cognitive processes like this, where averaging neural 
activity across trials would wash out the effects we are looking for, we set out to record 
from many single neurons simultaneously. That activity can then be used to train 
decoders to classify the information represented by recorded neural populations. Decoder 
accuracy depends largely on the quantity and quality of its training data (Wallis, 2018), 
so we used a system, described in depth in Knudsen et al. (2019), that enabled us to lower 
up to three linear multichannel electrodes in each of two target regions—the orbitofrontal 
cortex (OFC) and the hippocampus (HPC)—per session.  This approach not only allowed 
us to record from a large number (~100) neurons at once, but also to broadly sample 
neurons from each region while minimizing tissue damage, improving both the quality 
and quantity of our data relative to traditional approaches. 

 
Here, we describe our approach for using anatomical models to target deep brain 
structures in awake, behaving monkeys. Methods for preprocessing and analyzing 
behavioral and neuronal data are described in detail in Chapters 2 and 3.  
 
2.2 Anatomical modeling  
 
We created models of each subject’s skull, brain regions of interest, and future recording 
chamber to guide their chamber implant surgery and craniotomy and inform recording 
probe placement. Subjects were anesthetized, fitted with head positioners, and imaged in 
a 3T MRI scanner. We manually traced regions of interest (Fig. 2.1A)—areas 11, 12, and 
14 of the orbitofrontal cortex (OFC), and CA1 and CA2/3 of the hippocampus (HPC)—in 
Slicer3D (Fedorov et al., 2012), referencing coronal slices from a rhesus macaque brain 
atlas in stereotaxic coordinates (Paxinos et al., 2000). We then derived cranial models 
(Fig. 2.1B) from these anatomical images to inform our placement of custom-fit 
polyether-ether-ketone (PEEK) unilateral acute recording chambers (Gray Matter 
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Research, Bozeman, MT). Chambers were milled using traditional approaches and 
surgically implanted over the left hemisphere of one subject (D) and the right hemisphere 
of another subject (V). Both craniotomies were roughly 25 mm long (anterior-posterior) 
and 15 mm wide (medial-lateral), granting access to both the OFC and the HPC via vertical 
trajectories from the chamber surface (Fig. 2.1C). 
 
2.3 Calculating electrode trajectories 
 
In the absence of tools for visually tracking electrodes to deep brain regions as they are 
lowered, we used labeled MRI images and 3D models of the chamber and recording 
platform to determine the starting position and vertical trajectory of each probe. To 
identify points where an electrode could reach OFC or HPC via a vertical path through the 
craniotomy, we superimposed a grid (points evenly spaced 1 mm apart) on a model of the 
skull, chamber, and brain regions of interest (Fig. 2.2A). After verifying that lines passing 
through each point would intersect with our targets (Fig. 2.2B), we translated the 
coordinates of each site on the recording platform to MRI space, pulling brain slices 
aligning with the anterior-posterior position of each electrode. We then plotted a vertical 
trajectory at the medial-lateral probe position corresponding to each slice to visualize 
expected gray-to-white matter transitions between the dura and the target depth (Fig. 
2.2C). This map was used as a reference during recording. To minimize recording from 
damaged tissue, we avoided repeating target coordinates to the best of our ability. 
Balancing this goal with the need to maximize efficiency in the prototyping and platform-
building process, we designed chamber attachments (“collars,” see Fig. 2.3B) that allowed 
us to shift the entire recording system 1 mm in the anterior, posterior, medial, or lateral 
direction. So, each recording system design could be reused up to four times by shifting 
the entire assembly 1 mm in any cardinal direction.  
 
2.4 Building a modular recording system 
 
During each recording session, we simultaneously lowered up to three multisite linear 
probes (V/K-probes, Plexon Inc., Dallas, TX), each configured with 32 recording sites 
spaced 100 µm apart (Fig. 2.3A). Unlike electrode arrays, which are designed for surface-
level recordings, linear probes enabled us to reach deeper brain regions several 
centimeters below the dura. Using multisite probes also increases our neuronal yield 
relative to the number of insertion sites, representing a strong advantage over 
conventional tungsten microelectrodes. However, while tungsten probes are pliable, 
multisite probes are hollow and thus more fragile. The multisite probes also interface 
directly with the headstage (tungsten probes do not). To account for the size and rigidity 
of our electrodes, we aimed to design a recording system that would enable us to fit as 
many electrodes into our regions of interest as possible, while ensuring that each 
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electrode, and its corresponding headstage, could follow a path orthogonal to the chamber 
surface to prevent breakage.  
 
We created CAD models (Onshape, Boston, MA) of our recording structure, including a 
platform fitted to the chamber, stabilizing towers to protect each probe, and shuttles 
enabling probe movement. Each designed component was printed in-house using the 
Form 2 or Form 3 stereolithographic (SLA) printer (Form Labs, Cambridge, MA). Probes 
were lowered into the brain using a shuttle with a long arm supporting the length of the 
hypodermic tubing protecting the probe shank (Fig. 2.3B). The shuttle is maneuvered by 
a 0-80 drive screw that lowers it at a rate of 330 µm per turn. The drive screw is encased 
in a stabilizing tower. With this configuration, we were able to fit up to six probes on the 
recording platform at once.  
 
On the day of recording, we sterilized the electrodes and recording surface, cleaned the 
chamber interior, and administered topical (lidocaine) and/or oral (meloxicam) 
analgesics prior to attaching the recording system to the chamber (Fig. 2.3B depicts the 
chamber, collar, and recording system together). Probes were lowered approximately 1.5 
mm at a time, in turn, to minimize tissue compression. Neuronal activity was monitored 
by displaying waveforms on a monitor in real time (OmniPlex Neural Recording Data 
Acquisition System, Plexon Inc., Dallas, TX) and playing waveforms from selected 
channels as sound. White and gray matter transitions, audible as transitions between 
noise and spiking activity, were used to track progress towards the target region. After all 
probes were lowered to their final positions, we allowed tissue to settle for roughly one 
hour1 before making final adjustments and initiating the behavioral task.  
  

 
1 While probes were being lowered, and during this one-hour waiting period, monkeys watched their 
favorite shows on Netflix. Subject D preferred nature documentaries, especially films following the social 
drama of rhesus macaques in the Himalayas. Subject V was a sci-fi buff who loved action and vivid colors 
and powered through the Star Wars: Clone Wars series during his tenure.  
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Figure 2.1. MRI-guided anatomical modeling and chamber placement. (A) A sample coronal 
brain slice from the macaque brain atlas (left) used to locate and trace two regions of interest (red = OFC 
area 11, gold = OFC area 14) in the corresponding coronal slice from subject V’s MRI scan (right). (B) Cranial 
model with a custom-fit acute recording chamber (left = model in Slicer3D, right = photograph of subject 
V’s PEEK chamber placed on a 3D-printed skull model). (C) Transparent cranial model (subject V) 
including chamber and regions of interest (warm colors = OFC, cool colors = HPC). The craniotomy site is 
outlined in red - both OFC and HPC are accessible via vertical electrode trajectories. 
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Figure 2.2. Planning electrode trajectories. (a) 3D cranial model with superimposed chamber 
implant (beige) and grid layout (black dots, spaced 1 mm apart) over MRI-derived models of CA1 and CA2/3 
(cool colors) and cytoarchitectonic areas 11, 13, and 14 of the OFC (warm colors). The left panel illustrates 
electrode trajectories as black lines orthogonal to the recording platform, each intersecting with a point on 
the simulated grid. (b) Probe trajectories superimposed on labeled orbitofrontal MRI slices, from anterior 
(left) to posterior (right). Expected distance from the dura and transitions between white and gray matter 
were used to verify electrode placement during recording. 
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Figure 2.3. Building a modular recording system. (A) Illustration of a 32-channel V-probe from 
Plexon Inc., Dallas, TX. (B) Labeled CAD design of a recording system used with subject V. The red dashed 
line represents where a single electrode would be placed. A guide tube cut from a hypodermic needle was 
placed in each of the small holes illustrated on the recording platform, to pierce the dura and protect the 
delicate probe tip from damage prior to recording.  
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Chapter 3 
 
Orbitofrontal-hippocampal state coding dynamics 
during reversal learning 
 
Ford, Celia F., Balewski, Zuzanna Z., & Wallis, Joni D.  
 
To build an understanding of our world, we make inferences about the connections 
between our actions, experiences, and the environment. This process, state inference, 
requires an agent to guess the current state of the world given a set of observations. 
During value-based decision-making, a growing body of evidence implicates the 
orbitofrontal cortex (OFC) and the hippocampus (HPC) in the process of contextualizing 
information and identifying links between stimuli, actions, and outcomes. However, the 
neural mechanisms driving these processes in primates remain unknown. To investigate 
how OFC and HPC contribute to state inference, we recorded simultaneously from both 
regions while monkeys performed a probabilistic reversal learning task, where reward 
contingencies could be captured by two task states. Using population-level decoding, we 
found neural representations of task state in both OFC and HPC that remained stable 
within each trial but strengthened with learning as monkeys adapted to reversals. 
Subjects also appeared to use their understanding of task structure to anticipate reversals, 
evidenced by anticipatory neural representations of the upcoming task state.  
 
3.1 Introduction 
 
In a reinforcement learning framework, task state is defined as the set of landmarks and 
rules that characterize an agent’s current environment (Sutton & Barto, 1998); (Niv, 
2019). To make optimal decisions in a dynamic world, animals must make inferences 
about their environment, and identify task states that can explain recent observations and 
inform future decisions (Gershman, Norman, & Niv, 2015). These states can then be 
linked together to form an abstract cognitive map that specifies the likelihood of one state 
leading to another state (Behrens et al., 2018; Knudsen & Wallis, 2022; Whittington et 
al., 2022). By constructing distinct state representations that capture features of the 
environment that dictate whether actions will be rewarding, we can learn to effectively 
behave and adapt to change (Langdon et al., 2019). Recent evidence suggests that the 
cognitive map may be constructed, housed, and updated through interactions between 
the orbitofrontal cortex and the hippocampus (Wikenheiser & Schoenbaum, 2016; Wilson 
et al., 2014; Schuck et al., 2016). However, the nature of these representations, and what 
role each region plays in representing task structure, remains unclear.  
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The OFC has been linked to a wide range of cognitive functions (Stalnaker et al., 2015), 
including reward- and value-based decision-making (Padoa-Schioppa & Assad, 2006; 
Rich & Wallis, 2016), response inhibition (Jones & Mishkin, 1972; Izquierdo & Jentsch, 
2012), and signaling emotion (Bechara et al., 1997). In the past decade, studies in rodents 
(Takahashi et al., 2011), humans (Chan et al., 2016; Schuck et al., 2016), and artificial 
agents (Wilson et al., 2014) point towards task state representation as a broad function 
that encapsulates all of these more parsimonious roles. The hippocampus (HPC) is also 
implicated in task state representation and hidden state inference (Sanders et al., 2020), 
and has long been theorized to store a cognitive map that flexibly encodes causal 
relationships between internal motivations and external observations (Tolman, 1948; 
O’keefe & Nadel, 1978). Many studies, especially in rats, highlight the importance of HPC 
in spatial navigation (Hartley et al., 2014), while lesion and functional neuroimaging 
studies in humans tend to focus on the role HPC plays in episodic memory (Gelbard-Sagiv 
et al., 2008; Chadwick et al., 2010). Framing the HPC as a flexible system for representing 
relationships between the internal and external worlds could unify these seemingly 
contradictory accounts of HPC function (Eichenbaum, 2017), and points toward a role in 
task state representation mirroring that proposed in the OFC. 
 
Despite striking similarities between the proposed functions of the OFC and the HPC, few 
studies have tested their contributions to state inference during value-based decision-
making in parallel. Furthermore, what little we do know has largely been derived from 
the rodent model (Zhou, Gardner, et al., 2019;  Zhou, Montesinos-Cartagena, et al., 2019; 
Wikenheiser & Schoenbaum, 2016). There have been dramatic changes in the structure 
of HPC across the course of mammalian evolution, particularly in the size and complexity 
of anterior HPC in primates (Insausti, 1993), which shows strong anatomical and 
functional connectivity with OFC (Barbas & Blatt, 1995; Young & Shapiro, 2011). This 
makes it difficult to extrapolate findings from the rodent to the primate. To mitigate these 
issues, we recorded simultaneously from OFC and HPC of two non-human primates while 
they performed a reward-based learning task. 
 
Here, we trained two monkeys (Macaca mulatta) to perform a probabilistic reversal-
learning task where they were challenged to adapt their decision-making behavior to 
uncued changes in reward contingencies. We used this task since it is a classic test of OFC 
function. Rodents (Schoenbaum et al., 2003), monkeys (Dias et al., 1996; Iversen & 
Mishkin, 1970), and humans (Fellows & Farah, 2003) with OFC damage, have no problem 
with the initial learning of such contingencies, but show severe impairments when 
contingencies reverse, continuing to perseverate by choosing the previously rewarded 
outcome. Recent theoretical explanations of these findings have invoked the concept of a 
cognitive map, whereby reversal is not simply the unlearning of the original association 
and the learning of the new contingency. Instead, the subject learns that there are two 
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‘states’ of the world, one in which stimulus A is rewarded and B is not, and one in which 
stimulus B is rewarded and A is not (Wilson et al., 2014). We found neurons in both OFC 
and HPC that encoded task state stably within each trial, and then used population-level 
decoding to further explore the dynamics of these task state representations and examine 
how they interact with neural representations of reward. 
 
3.2 Results 
 
Behavioral analysis 
 
We trained two monkeys (subjects D and V) on a probabilistic reversal task (Fig. 3.1).  
Subjects took a median of 44 (D) and 70 (V) trials to perform a single reversal and 
completed a median of 16 (D) and 12 (V) reversals per session (Fig. 3.2a-c). To gain a 
better understanding of the behavioral strategies used by each subject during task 
performance, we studied the effect of reward outcome, given the reward probability 
associated with the chosen option, on the decision made on the subsequent trial. Because 
pictures within each set always had the same value, we reasoned that if subjects 
understood the structure of the task, they would apply what they learn from choosing one 
picture to its pair.  
 
To see whether subjects generalized across pictures within the same set, we split trial pairs 
into those where the same picture was chosen on trial t+1 as trial t, and those where the 
paired picture was chosen on trial t+1. We restricted this analysis to free-choice trial pairs 
where the same picture chosen on trial t was available on trial t+1, or the paired picture 
was available on trial t+1. These conditions were always mutually exclusive – all free-
choice trials presented one picture from each set. If the likelihood of choosing a paired 
picture or the same picture on trial t+1 are similarly influenced by the outcome of trial t, 
it would point towards a model-based reinforcement learning strategy. Subjects could use 
their understanding of task structure to generalize across pictures within each pair and 
update the expected values of paired pictures in sync. On the other hand, if the likelihood 
of choosing a paired picture is unaffected by the result of choosing its pair on the previous 
trial, it would suggest subjects were tracking the values of each picture separately, without 
employing a more general task model. 
 
We calculated the difference in the probability of repeating a previous choice on rewarded 
trials over unrewarded trials, to isolate the effect of reward on future choices across 
different trial conditions (Fig. 3.2d). In general, reward was more likely to drive a repeat 
choice on trials where the high-value option (i.e., the most likely option to be rewarded) 
was chosen. This suggests that after each reversal, subjects quickly learned that rewarded 
low-value choices were unlikely and shouldn’t be repeated. In general, subjects became 
more likely to repeat rewarded high-value options over the course of learning, whether 
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the same picture (one-way ANOVA, monkey V: F(2,21) = 11.96, p < 0.001; monkey D: 
n.s.) or the paired picture (one-way ANOVA, monkey V: F(2,21) = 16.08, p < 0.001; 
monkey D: F(2,15) = 25.76, p < 0.001) was available on trial t+1. In later learning stages, 
there was also no difference in the likelihood of repeating rewarded over unrewarded low-
value choices. Together, these patterns of behavior point towards the use of model-based 
strategies during reversal learning. 
 
Neural representations of task state strengthen with learning and in 
anticipation of change 
 
We recorded single neurons from OFC (D: N = 224, V: 346) and HPC (D: 342, V: 580), 
using up to 3 acute multisite probes per region per session (Fig. 3.3a). To examine the 
relationship between learning, choice behavior, and neuronal firing rates across and 
within trials, we performed linear regressions on firing rates aligned to the time of picture 
onset and reward outcome. We fit firing rates in sliding time windows with task state, 
choice direction, chosen value, chosen picture, trial type (forced or free) and reward as 
predictors (Fig. 3.3b, see Methods, Eq. 3.1-3.2). The firing rates of most neurons were 
significantly predicted by at least one model term in one task epoch in both OFC (D: 
177/224 or 79%, V: 193/346 or 56%) and HPC (D: 300/342 or 88%, V: 395/580 or 68%).  
 
Figure 3.4 illustrates examples of single neuron selectivity in OFC and HPC. The firing 
rate of some neurons was driven by a single factor, such as the reward-selective neuron 
in OFC (Fig. 3.4a). However, many neurons in OFC (D: 92/224 or 41%, V: 76/346 or 22%) 
and HPC (D: 166/342 or 49%, V: 146/580 or 25%) encoded more than one factor. For 
example, the OFC neuron in Figure 3.4b encoded both the state and the choice response, 
while the HPC neuron in Figure 3.4d encoded the choice response and the reward 
outcome. Many neurons also encoded the current state and maintained this information 
across all epochs of the task (e.g., Fig. 3.4c and 3.4e). In subject D, these neurons tended 
to be more prevalent in HPC than OFC (Fig. 3.3b), but they were equally prevalent in both 
areas in subject V.    
 
To examine how state information responded to reversals, we used linear discriminant 
analysis (LDA) to decode trial-by-trial estimates of state from population level neuronal 
activity (see Methods).  Mean decoder accuracy was above chance (50%) for all sessions 
and remained relatively constant across trial events. In general, decoders trained on HPC 
activity were more accurate (V: 60.5% ± 2.7%, D: 61% ± 1.6%) than those trained on OFC 
(V: 56.5% ± 2%, D: 55.5% ± 1.1%, two sample t-test, D: p = 0.02, V: n.s.).  However, we 
also typically had larger neuronal sample sizes in HPC. When we downsampled HPC 
ensembles to match those in OFC, there was no consistent difference in decoder 
performance between the two areas across sessions (p > 0.1, permutation test for all 
epochs in both subjects, Fig. 3.8). 
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To determine how state representations in OFC and HPC relate to behavior, we examined 
how state decoding evolved over the course of learning. Blocks varied in decoder accuracy 
and confidence, but generally, decoder accuracy evolved in parallel with behavior (Fig. 
3.5a). Immediately following a state reversal, behavioral performance usually dipped 
below chance as subjects continued erroneously choosing the best option for the pre-
reversal state. Once subjects detected the state change, their performance improved, 
eventually meeting the criterion required to trigger the next reversal. Decoder confidence 
(defined as the normalized mean posterior probability of decoding the current state over 
the previous state, averaged across post-event timestamps) showed similar dynamics, 
gradually increasing over the first half of the block as the subject learned that the state 
had changed (Fig. 3.5b). More surprisingly, decoder confidence decreased during the 
second half of the block despite behavioral performance being near or above criterion by 
that point in learning. This suggests that subjects are beginning to represent the next task 
state in anticipation of the upcoming reversal. In other words, they recognize that a period 
of consistent reward (from making optimal choices) will always soon be followed by a 
state reversal, and this anticipation is reflected in the state represented. 
 
Combined, these findings suggest that the population activity in OFC and HPC encodes 
information about task state, and that these representations strengthen as the animal 
becomes more certain that its observations align with that state. Once performance rises 
to the point where the animal begins to suspect that a reversal may happen soon, OFC 
and HPC begin to represent the upcoming task state in anticipation of the next block. 
 
Neural state representations drive choice behavior 
 
We next asked whether the speed with which the monkeys adapted to the new task state 
after a reversal correlated with neural state decoder dynamics. Because the number of 
trials subjects took to trigger reversals varied appreciably, we were able to sort blocks into 
one of two groups: those where choice accuracy for the first 10 trials post-reversal was 
above the 75th accuracy percentile across all blocks (“fast” blocks), and one where it was 
below the 25th percentile (“slow” blocks). In slow blocks, subjects perseverate on 
previously optimal choices for up to 40 trials before recognizing the reversal. In fast 
blocks, on the other hand, subjects adapt to the new state so quickly that their running 
performance accuracy never dips below chance (Fig. 3.6a). 
 
We visualized the dynamic adaptation of population activity to the new task state by 
making heatmaps of decoder confidence across time at both trial epochs (picture onset, 
outcome), averaged over the first 50 and last 20 trials of each block for fast and slow 
groups. In slow blocks, posteriors took around 30 or so trials to change, whereas in fast 
blocks, posteriors changed in a handful of trials (Fig. 3.6b). To quantify this effect, we 
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correlated behavioral performance with changes in the state reported by the decoder. 
Specifically, we examined whether the posterior probability of decoding the current state 
over the new state evolved in pace with behavioral performance, such that the decoder 
gained confidence in the current task state more slowly during blocks where subjects were 
slow to adapt their choice behavior (and vice versa). We defined performance thresholds 
for behavior and the decoder, and identified the number of trials it took to hit that 
threshold within each block. For behavior, we set the threshold to the learning criterion 
used to trigger probabilistic reversals during recording sessions: choosing the more 
valuable option on 70% or more of 30 trials and maintaining this performance level for 
10 trials. For the decoder, we set the threshold to 70% of the peak decoder confidence 
(defined as the absolute value of the difference between the probability of decoding the 
current state relative to the previous state).  
 
The number of trials it took an OFC decoder to reach threshold was significantly 
correlated with the number of trials it took the subject to reach learning criteria for a given 
block (Fig. 3.6c). This suggests that the speed with which OFC updates the representation 
of task state to match the current block informs how quickly behavior adapts after 
reversals. The results from HPC were inconsistent across subjects, with a significant 
correlation between behavioral performance and the HPC decoder in subject V, but not 
subject D. 
 
Neural representations of expected value and reward 
 
Our final analysis of neuronal tuning focused on events at the time of the reward outcome. 
We examined whether representations of reward in OFC and HPC interacted with 
expectations of value as informed by the current task state. We grouped trials into four 
classes: rewarded high-value choices and unrewarded low-value choices (where the 
outcome should be expected if the current state is known) and rewarded low-value choices 
and unrewarded high-value choices (where the outcome was unexpected if the current 
state was known). We trained a decoder to classify trials into these four categories based 
on neural activity using the same procedure as for the state decoding (see Methods). Over 
the course of the trial decoder accuracy remained at chance (25%) until the time of the 
outcome, when it increased substantially (Fig. 3.7a).  
 
To understand decoding performance in more detail, we created confusion matrices 
illustrating the pattern of errors typically made by our decoders. The most common 
mistake was to correctly identify the outcome but misclassify the value of the choice. 
These errors could arise because neurons only weakly encoded the value of the choice (at 
least relative to the outcome, Fig. 3.2b). However, they might also arise because the 
subject was misrepresenting the current task state, thereby mistaking a low-value choice 
for a high-value choice. If this were the case then we might expect these misclassifications 
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to be most common during the early stages of learning, when the subject is adjusting their 
behavior in response to the reversal. To test this, we identified “confused” trials, where 
over 50% of decoded samples (across time bins and LDA iterations) for that trial correctly 
classified reward while misclassifying expected value. We then split blocks into five 
equally sized bins of trials and calculated the percentage of confused trials (of all decoded 
free-choice trials) in each stage. For decoders trained on both OFC and HPC activity, we 
observed the most confused trials in the earliest learning stage, with the percentage of 
confused trials decreasing over the course of learning (Fig. 3.7c). Interestingly, we do not 
see an increase in confusion in the later learning stages, as we observed in our state 
decoders.  
 
3.3 Discussion 
 
We observed encoding of the current task state in both OFC and HPC that was evident 
throughout the trial and that was independent of stimulus presentation and reward 
outcome. The strength with which task state was represented in both regions predicted 
choice behavior, such that neuronal decoding of state and behavioral performance 
increased together in the trials following a reversal in reward contingencies. Subjects also 
appeared to use their understanding of task structure to anticipate reversals, evidenced 
by anticipatory neural representations of the upcoming task state.  
 
Many neurons in OFC and HPC were also sensitive to the interaction of reward outcome 
and expected value, and the encoding of these neurons strengthened with learning of the 
reward contingencies. However, unlike the representations of task state, there was no 
evidence that value expectations were anticipating future reversals. Thus, although it 
appeared that neurons preemptively encoded the upcoming task state, they continued to 
represent the current expected values until evidence (i.e., failure to reliably receive reward 
for previously rewarding choices) pushed them to update those. 
 
Representing rules, states, and beliefs in the frontal cortex 
 
Our results are consistent with recent ideas arguing that OFC is important for 
representing task states (Schuck et al., 2018; Stalnaker et al., 2015; Wikenheiser & 
Schoenbaum, 2016). For example, Wilson and colleagues tested RL models on an array 
of classic benchmark tests of OFC function, and found that preventing their models from 
representing task state made them perform similarly to animals with OFC lesions (Wilson 
et al., 2014). Indeed, lesioning or temporarily deactivating medial OFC prevents rats from 
succeeding at tasks like outcome devaluation, where animals must rely on partially 
hidden information to make optimal decisions (Bradfield et al., 2015).  
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However, one challenge to these ideas is that there are many semantically related ideas to 
states, including rules (Wallis, Anderson, et al., 2001), categories (Freedman et al., 2001; 
Miller et al., 2002), contexts (Rainer et al., 1998), and beliefs (Zhu et al., 2012). 
Implementation of these functions has typically not been ascribed to OFC, but rather 
lateral prefrontal cortex (Miller et al., 2003). One distinction that has been proposed 
argues that states reflect abstract representations of the observable and unobservable 
properties of the current environment, while rules specify mappings from conditions to 
actions (Wilson et al., 2014). However, it can be difficult to determine how to apply such 
distinctions to behavioral tasks to make predictions. For example, in visual 
discrimination learning, lesions of the lateral prefrontal cortex impair switching the 
attentional set, while lesions of OFC impair switching of reward contingencies (Wallis, 
Dias, et al., 2001). It is unclear why an attentional set would be more clearly related to 
actions than reward. 
 
More recently, we have proposed that OFC may have a more restricted role than 
representing task states (Knudsen & Wallis, 2022). We argue that behavioral tasks can be 
represented as state-transition graphs, which define how one state relates to another.  
HPC may play an important role in constructing and representing such graphs, although 
other prefrontal areas, such as lateral and medial prefrontal cortex, may also play an 
important role in the process. OFC is responsible for representing the current goal and 
using the state-transition graph to calculate the value of states in relation to the goal. This 
allows the subject to choose optimally in any specific state and to flexibly respond when 
goals change. Lesion studies are consistent with this proposed distinction. For example, 
Buckley and colleagues trained monkeys to perform a simplified version of the Wisconsin 
Card Sorting Task, which required subjects to decide whether to retain or change rules, 
given the consequences of their choices (Buckley et al., 2009). They observed that OFC 
lesions selectively impaired reward-based updating of rule values (i.e., the extent to which 
a specific task state was associated with reward reward), while lateral PFC lesions 
(specifically in the principal sulcus) selectively impaired subjects’ ability to hold the 
current rule in working memory.  
 
Hippocampal and orbitofrontal contributions and potential interactions 
 
Previous studies investigating the roles of OFC and HPC in representing task states during 
reversal learning have largely focused on each region individually. When OFC and HPC 
are compared, it was often across animal cohorts and limited to rodent models 
(Wikenheiser & Schoenbaum, 2016; Zhou, Gardner, et al., 2019; Zhou, Montesinos-
Cartagena, et al., 2019). Here, we recorded from OFC and HPC simultaneously during 
reversal learning in primates, enabling us to study how both regions encoded task states 
in parallel, within the same subject and recording session. We found neural 
representations of task state in both regions, which remained stable within trials while 
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strengthening with learning. The trial-by-trial dynamics of state encoding appeared 
similar across OFC and HPC, and we did not see consistent differences between regions 
in terms of representation strength or timing. Precisely how and when OFC and HPC 
interact during learning to use models of task state to guide behavior remains an open 
question.  
 
Studies in humans (Backus et al., 2016) and nonhuman primates (Brincat & Miller, 2015) 
have shown that synchrony between prefrontal cortex and HPC, quantified by the 
coupling strength of oscillations in the theta frequency band, predict learning in value-
based and memory-based decision-making tasks. Previous work in our lab causally 
demonstrated that HPC-driven theta oscillations in OFC are crucial for updating choice 
preferences in the face of changing reward contingencies (Knudsen & Wallis, 2020), 
raising the possibility that OFC-HPC interactions are important for creating, updating, or 
employing representations of task state to guide action selection. One intriguing direction 
for future research could be examining interactions between OFC and HPC during 
structure learning to better understand their individual contributions to constructing task 
state representations.  
 
Interpretational issues 
 
The current study did not aim to compare areas within OFC or HPC, so we did not sample 
units evenly across each region. Nontrivial functional differences across subregions are 
well-reported in both OFC and HPC, although the homology of these functional 
distinctions between rodents and primates is still debated (Wallis, 2012). In humans and 
nonhuman primates, central OFC (areas 11 and 13) from where we recorded in the current 
study is distinct from ventromedial PFC (area 14) are distinct. Lesion studies in rats and 
monkeys (Baxter et al., 2000; Gallagher et al., 1999) and fMRI studies in humans 
(Gottfried et al., 2003; Valentin et al., 2007) implicate central OFC in value updating 
when stimulus-response-outcome mappings change. The vmPFC, on the other hand, is 
more closely tied to encoding expected values and rewards, without playing as much of a 
role in updating those expectations (Noonan et al., 2011). The neuronal properties of this 
area remain less understood than those of the central OFC (Bouret & Richmond, 2010; 
Rich & Wallis, 2014; Smith et al., 2010; Wallis & Rich, 2011), in part because the neurons 
in this region are typically less well driven by typical laboratory decision-making tasks 
(Wallis, 2012). 
 
With respect to HPC, prominent theories of HPC organization have argued for a dorsal-
ventral (in rodents) or posterior-anterior (in primates) gradient of organization, with the 
dorsal/posterior HPC involved in cognitive processes, such as representing spatial 
information for navigation and memory, whereas the ventral/anterior HPC is more 
important for processing affective information (Fanselow & Dong, 2010; Moser & Moser, 
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1998; Strange et al., 2014). For example, there is a gradient within hippocampus with 
respect to the resolution of place cells, with the dorsal/posterior HPC encoding finer-
grained spatial representations than the ventral/anterior HPC (Kjelstrup et al., 2008). In 
contrast, neurons in ventral/anterior HPC are more likely to differentiate locations with 
respect to reward contingencies (Royer et al., 2010). There is also a gradient in HPC with 
respect to its connections to the frontolimbic cortex, including OFC, with an increased 
density of connections towards the ventral/anterior HPC (Barbas & Blatt, 1995). 
However, more recent studies have shown that reward encoding is evident throughout 
HPC (Yun et al., 2023). Future studies specifically comparing subregions of OFC and HPC 
during state inference could more precisely locate task state representations in the brain 
and guide further research on how state representations are created, communicated, and 
updated. 
 
An additional challenge is determining the behavioral strategy that the animals use to 
solve the task. Although reversal learning can be modeled as a two-state inference task 
(Bartolo & Averbeck, 2020; Wilson et al., 2014), there is considerable debate regarding 
how subjects actually learn the task (Izquierdo et al., 2017). Furthermore, even when a 
fully model-based behavioral strategy is theoretically available, animals (including 
humans) tend to employ a blend of model-based, model-free, and other processes (Collins 
& Cockburn, 2020; Daw et al., 2011; Gläscher et al., 2010). In our study, we found 
evidence that subjects used a model of the task to generalize across paired stimuli, where 
the outcome of choosing one picture informed the likelihood of choosing the paired 
picture. However, expected value, or the probability that selecting a given picture will lead 
to reward, is difficult to pull apart from task state in a reversal learning task where ‘state’ 
is defined by the current reward contingencies. Future studies in rodents and nonhuman 
primates could pilot more complex, but still consistently achievable, tasks that more 
clearly separate task state from the factors that define it.  
 
Conclusion 
 
Modeling tasks as a series of transitions through specific states is a computationally 
tractable and concise way to describe goal-directed behavior, but its precise 
implementation in the brain remains unclear. We showed that neural activity in OFC and 
HPC may be important, not only for representing current states, but also potentially 
anticipating future states. Understanding these processes could shed light on OFC 
damage and dysfunction which typically results in deficits in anticipating the 
consequences of one’s actions.  
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3.4 Methods 
 
Experimental model and subject details 
 
All procedures were carried out as specified in the National Research Council guidelines 
and approved by the Animal Care and Use Committee and the University of California, 
Berkeley. Two male rhesus macaques (subject D and V, respectively) aged 8 and 11 years 
old, weighing 9.8 and 10 kg at the time of recording were used in the current study. 
Subjects sat head-fixed in a primate chair (Crist Instrument, Hagerstown, MD) while eye 
movements were tracked with an infrared eye-tracking system (SR Research, Ottawa, 
Ontario, CN). Stimulus presentation and behavioral conditions were controlled using the 
MonkeyLogic toolbox (Hwang et al., 2019). Subjects had unilateral recording chambers 
implanted, centered over the posterior frontal lobe and parietal lobe.  
 
Task Design 
 
Subjects performed a probabilistic reversal learning task where they were required to 
choose between two differently valued pictures (free choice, 85% of trials) or a single 
picture (forced choice, 15% of trials). Forced choice trials were included to prevent side 
bias and ensure that subjects experienced outcomes associated with all picture options. 
All pictures were isoluminant, presented against a dark gray background. To initiate the 
trial subjects had to maintain fixation on a central cue for 500 ms. After a 400 ms delay, 
pictures (2° x 2°) appeared 8° on either side of the fixation cue. Subjects used saccades to 
choose the left or right picture, indicating their choice by maintaining fixation for 500 ms. 
After making a choice, the unchosen picture disappeared, and an apple juice reward was 
delivered probabilistically after a 400 ms delay. Trials were separated by a 1500 ms 
intertrial interval. 
 
There were two sets of two pictures each, where one set was associated with a 40% 
probability of reward, and the other set was associated with a 90% probability of reward. 
Reversals were triggered once the animal reached a learning criterion where they chose 
the more valuable option on 70% or more of 30 trials and they had to maintain this 
performance level for 10 trials. Once this criterion was met, subjects entered a phase 
where an uncued pseudo-probabilistic reversal could occur within 10 trials so long as 
accuracy remained above 65% throughout this phase. These post-criterion trials enabled 
the subject to exploit what they had learned, ensuring they did not become frustrated with 
constant reversals. Subject D completed 8638 trials (102 reversals) over 6 sessions, and 
subject V completed 14484 trials (120 reversals) over 9 sessions. 
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Neurophysiological recordings 
 
Subjects were fitted with head positioners and imaged in a 3T MRI scanner. From the MR 
images, we constructed 3D models of each subjects’ skull and target brain areas (Paxinos 
et al., 2000). Subjects were implanted with custom radiolucent recording chambers 
fabricated from polyether ether ketone (PEEK). During each recording session, up to 3 
multisite linear probes (32-channel V probes with 100µm contact spacing, Plexon, Dallas, 
TX) were lowered into OFC (areas 11, 12, and 13, as determined from gray-white matter 
transitions) and HPC (CA1 and CA2/3) simultaneously (up to 6 electrodes total). Unique 
electrode trajectories were defined for each session in custom software, and the 
appropriate microdrives were 3D printed (Form 2 and 3, Formlabs, Cambridge, MA) 
(Knudsen et al., 2019). Lowering depths were derived from the MR images and verified 
from neurophysiological signals via gray/white matter transitions. Neural signals were 
digitized using a Plexon OmniPlex system, with continuous spike-filtered signals (200 Hz 
- 6 kHz) acquired at 40 kHz and local field-filtered signals acquired at 1 kHz.  
 
We recorded neuronal activity over the course of 6 sessions for subject D and 9 sessions 
for subject V (Table 3.1). We restricted our analysis to neurons with a mean firing rate 
across the session > 1 Hz. To ensure adequate isolation of individual units, we excluded 
neurons where >0.2% of spikes were separated by <1100 ms. We transformed single 
neuron activity into a binary time series at 1 ms resolution, where 1 indicated the presence 
of a spike and 0 the absence.  
 
Single neuron regression analysis 
 
For each neuron, in overlapping 100 ms windows shifted by 25 ms, we performed the 
following linear regression on firing rates (FR) aligned to picture onset:  
 
FR = β0 + β1 * state + β2 * chosen side + β3 * chosen value +     Eq. 3.1 
           β4 * chosen picture + β5 * trial type + β6 * trial number 
 
We added a parameter for reward when performing linear regression on firing rates 
aligned to outcome:  
 
FR = β0 + β1 * reward + β2 * state + β3 * chosen side + β4 * chosen value +              Eq. 3.2 
           β5 * chosen picture + β6 * trial type + β7 * trial number 
 
with binary variables for reward (+1 reward, -1 no reward), state (+1 state 1, -1 state 2), 
chosen side (+1 left, -1 right), chosen value (+1 high, -1 low), and trial type (+1 free, -1 
forced). Chosen picture was dummy coded (+1 for chosen picture, -1 for all three unchosen 
options). We included trial number as a noise parameter to absorb potential variance due 
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to neuronal drift over the recording session. Significance was defined as maintaining p < 
0.001 for 100 ms (four consecutive time bins). We validated this threshold by finding the 
proportion of units labeled as significantly predicted by chosen side during the 750 ms 
before and 200 ms after fixation, before pictures appeared on the screen. Only 20 of 1,492 
units, or 1%, met these criteria during this window, so we proceeded to use this cutoff to 
detect units significantly predicted by all factors in our regression model. 
 
Task state decoding with single trial resolution 
 
For each session, we used an LDA decoding algorithm to derive trial-by-trial estimates of 
task state from population-level activity. We trained the decoder on trials where 
behavioral performance was high, since these would be more likely to correspond with 
neural representations of the current task state. Thus, we restricted training trials to those 
where running behavioral accuracy exceeded 60% across 30 trials. To account for 
nonstationary firing rates caused by neuronal drift, we split trials into overlapping bins 
for training, where each bin contained approximately 25% of all available trials. Bins were 
then stepped by 50 trials and the decoder training repeated. Within each bin, training 
trials were balanced to include an equal number corresponding to each state. This 
involved downsampling trials to match the state with the fewer number of trials. For each 
bin, decoders were trained on sliding windows of 200 ms of neural activity, stepped by 50 
ms. In summary, training data for each bin consisted of an [n training trials x n 
timestamps x n units] matrix of firing rates. To reduce the dimensionality of the input 
features in each window, we then performed principal components analysis across trials 
and restricted LDA inputs to the top principal components that explained 95% of 
variance.  
 
To assess the performance of our decoder, we used a leave-one-out (LOO) cross-
validation procedure for each bin. Iterating over trials within each time bin, we held out 
one trial, trained the decoder on the remaining trials, then tested on the held-out trial. 
Because trials were randomly removed in the downsampling procedure, to ensure that as 
many trials from each session contributed to the analysis as possible, we repeated the 
entire procedure 25 times and averaged posteriors across all instances where a trial was 
tested. We defined decoder confidence as the difference between the posterior 
probabilities of decoding the current state relative to the previous state, averaged across 
decoder iterations (N):  
 
confidence = Σ (p (decode Scurrent) - p (decode Sprevious)) / N                Eq. 3.3 
 
Very occasionally (D: 1 of 133 windows, V: 6 of 196 windows), there was an extended 
sequence of trials where only one state label was present—since these periods tended to 
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indicate stretches of low task motivation and poor performance (thereby preventing a 
reversal from occurring), we excluded these trials from our training sets. 
 
Reward-value class decoding with single trial resolution 
 
The pipeline for decoding the interaction between value and reward outcome was the 
same as described for state decoders above. Trials were assigned to one of four classes 
(labeled 1-4): (1) high-value choice + reward, (2) high-value choice + no reward, (3) low-
value choice + reward, (4) low-value choice + no reward. During training, trials were 
balanced to include an equal number from each class.  
 
Statistics 
 
All statistical tests are described in the main text or the corresponding figure legends. 
Error bars and shading indicate standard error of the mean (s.e.m.) unless otherwise 
specified. All terms in regression models were normalized and had maximum variance 
inflation factors of 1.4. The coefficient of partial determination (CPD) was used to quantify 
the percentage of overall variance uniquely explained by each term. All comparisons were 
two-tailed.  
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Figure 3.1: Task design. (a) Subjects fixated on a central cue to initiate each trial. After acquiring 
fixation, the central cue disappeared. After a 400 ms delay, they were presented with one or two pictures 
(forced and free choice trials, respectively). To select a picture and receive a probabilistic juice reward, 
monkeys made a saccade and fixated the picture for 500 ms. The outcome of the choice (juice or no juice) 
was revealed after 400 ms. (b) Subjects learned the values of two sets of pictures, where pictures within 
each set had the same value. After each reversal, the values corresponding to each set switched. Value was 
defined here as reward probability (40% vs. 90%).  
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Figure 3.2: Behavior. (a) Probability of choosing the highest-value option across an example session 
(subject V). Vertical gray lines mark reversal points. The dashed black line is chance (50%), and the dashed 
green line is the learning criteria accuracy threshold (maintaining at least 70% running accuracy for 10 
consecutive trials). (b) Median number of trials to reach learning criteria for each reversal block (red lines), 
where dots represent individual blocks. (c) Median number of reversals for each session (blue lines), where 
dots represent individual sessions. (d) Difference in the number of trials where a choice was repeated 
following reward, relative to trials where no reward was delivered. Trials where the same picture was 
available on trial t+1 are represented by solid lines, and trials where the paired picture was available on trial 
t+1 are dashed lines. Trials were further split by whether the choice on trial t was high value (pink) or low 
value (blue). Blocks (trials between reversals) were split into three learning stages: early, middle, and late 
(x axis). Monkey D is on the left, and monkey V is on the right.  
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Subject Session OFC neurons HPC neurons 

D 210201 88 71 

 210212 14 54 

 210215 25 34 

 210218 28 55 

 210222 29 83 

 210225 40 45 

V 211018 65 35 

 211111 31 125 

 211113 61 58 

 211115 83 84 

 211122 20 89 

 211129 46 39 

 211204 22 46 
 
Table 3.1: Neural data. Number of neurons recorded per session in OFC and HPC for subjects D and V. 
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Figure 3.3: Task parameters encoded in OFC and HPC. (a) Reconstruction of OFC and HPC 
recording sites on coronal slices. The size of each circle represents the approximate number of neurons 
recorded at that location. AP (anterior-posterior) locations are in millimeters, relative to the interaural line. 
(b) Percentage of neurons encoding different task parameters during different task epochs. Selectivity was 
defined as a significant beta weight (p < 0.01) for at least four consecutive 100 ms time bins. Lighter bars 
represent OFC neurons and darker bars represent HPC neurons. Asterisks indicate that there was a 
significant difference in the prevalence of selective neurons between the areas (chi-squared test, * = p < 
0.05, ** = p < 0.01, *** = p < 0.001).  
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Figure 3.4: Single neuron examples. Spike density histograms recorded from single neurons in OFC 
(a-c) and HPC (d-f), including significant encoding of (from top to bottom) reward outcome, task state, 
chosen value, and chosen side, across trial epochs (fixation, picture onset, and reward outcome). Lines 
depict firing rates (mean ± SEM) averaged over conditions within each factor. Red bars at the top of each 
panel indicate periods of significance determined by the regression.  
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Figure 3.5: Decoding of state across learning. (a) Top: Normalized (z-scored) mean posterior 
probability of decoding the current state over the previous state, averaged across timestamps. Bottom: 
Posterior probability of decoding state 1 over state 2, where 100% state 1 is gold and 100% state 2 is blue. 
Solid bars above the heatmap show the true state label for each block. Here, we show all trials from one 
example session (subject V) where decoders were trained on HPC population activity synced to picture 
onset. (b) To equate learning across blocks with different numbers of trials, we split each block into bins 
containing 10% of the trials (trial decile). We then plotted state decoding as a function of trial decile and fit 
generalized linear regression models to the first five deciles and second five deciles. Data points show the 
mean (± s.e.m.) confidence for each decile, averaged across blocks (pooled across sessions). Black lines 
illustrate best-fit lines. Solid lines and filled points represent the picture onset epoch, and dashed lines and 
open circles represent the outcome epoch. Fits were significant in both subjects for both brain areas and 
task epochs (linear regression, p < 0.01). 
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Figure 3.6: State decoding correlates with learning dynamics. (a) Mean probability of choosing 
the high-value option in the first 50 trials following reversal. Fast blocks (75th percentile choice accuracy in 
the first 10 trials of the block) are depicted by green lines, and slow blocks (25th percentile) are gray. The 
horizontal dotted black line shows chance performance (50%). (b) Mean decoder confidence for slow blocks 
(left) and fast blocks (right) across trials (rows) and time within each trial (columns), with picture onset 
and outcome marked by black vertical lines. Dark blue indicates greater confidence in the old, now-incorrect 
state than the current state, while yellow indicates confidence in the new, correct state. These heat maps 
illustrate results from decoders trained on HPC activity in monkey V. Similar patterns were observed in 
HPC in monkey D but were less prominent in OFC for both subjects. (c-d) Correlation between learning 
and (c) OFC and (d) HPC decoder performance. Behavioral performance was measured as the number of 
trials to reach the learning criterion (maintaining 70% accuracy over 30 trials for 10 consecutive trials). 
Decoder performance was measured as the number of trials required to exceed 70% of the peak posterior 
probability of decoding for the correct task state in the current block. Datapoints show individual blocks 
combined across sessions for each subject. 
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Figure 3.7: Decoding expectancies and outcomes. (a) Population decoding of chosen value and 
reward in OFC and HPC aligned to reward outcome (vertical black lines) for each subject (left =.  Each line 
represents mean LOO accuracy across sessions (± SEM), where chance was 25% (four classes: rewarded 
high value, rewarded low value, unrewarded high value, unrewarded low value). (b) Confusion matrices for 
decoders trained on OFC (top) and HPC (bottom) population activity (left column). Results are averaged 
across subjects and sessions 100-500 ms after reward outcome. (c) The percentage of confused trials, where 
reward outcome was correctly labeled but expected value was misclassified, significantly decreased over the 
course of learning within the block (one-way ANOVA, p < 0.001 for both regions and subjects). Each bar 
reflects the mean (± s.e.m.) across all blocks, combined across recording sessions. 
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Figure 3.8: Unit-matched state decoder accuracy. For each session (subplots) where the number of 
recorded OFC neurons was smaller than the number of recorded HPC neurons, we randomly dropped HPC 
neurons to match the OFC count, then trained our state LDA decoder as described in the methods. We 
repeated this 1000 times, then ran a paired-samples t-test for each session. In general, decoders were more 
accurate when trained on data from one region over the other (all sessions for both subjects, p < 0.001), but 
the more-accurate region was inconsistent across sessions (paired-samples t-test for means across 
iterations, p > 0.1).  
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Chapter 4 
 
Theta oscillations do not explain dynamic 
activation of value states in the orbitofrontal 
cortex 
 
Ford, Celia F., Balewski, Zuzanna Z., & Wallis, Joni D.  
 
Subjective decision-making involves the dynamic activation of alternating 
representations of option values in the OFC, but the mechanism determining the timing 
of these representational switches remains unknown. To address this, we recorded from 
the OFC while monkeys performed a value-based decision-making task. Using 
population-level decoding, we replicated previous work and found sequential 
representations of the values of each available option during deliberation, with 
idiosyncratic dynamics that varied from trial to trial. We related the timing of these 
decoded states to theta oscillations in the OFC and found that value state representations 
switched independent from theta cycles, suggesting that a mechanism other than theta 
oscillations shapes value-guided decision-making dynamics.  
 
4.1 Introduction 
 
When deciding between two options (chocolate ice cream, or vanilla? Red wine, or 
white?), neural (Padoa-Schioppa, 2011) and behavioral (Krajbich et al., 2010) evidence 
suggests that we compute the value of each available option, given context and experience, 
then deliberate between them. The orbitofrontal cortex (OFC) has been implicated in 
value-based decision-making for decades (Padoa-Schioppa & Conen, 2017), and is likely 
important for this deliberation process. When deciding between two options, OFC flickers 
between representations of each option’s value, or value states (Balewski et al., 2022; 
Rich & Wallis, 2016). The dynamics of this value state flickering are highly idiosyncratic, 
with the timing and number of representation switches varying greatly from trial to trial. 
Stronger encoding of the ultimately chosen option value appears to predict faster, more 
decisive choice behavior, but the underlying mechanism driving and shaping the 
flickering dynamics remains unknown. 
 
This pattern of neural encoding during decision-making is not unique to the OFC. There 
is evidence that neurons in the hippocampus (HPC) flicker between representations of 
past and present places during a foraging task where spatial cues defining the reward 



 34 
location are switched back and forth between two configurations (Jezek et al., 2011). In a 
self-paced task where rats had to choose between two arms of a T-maze, HPC neurons 
alternated between representing two different hypothetical future scenarios (Kay et al., 
2020). In both studies, HPC representations switched roughly every 125 ms, aligning with 
theta oscillations (4-8 Hz) in the local field potential (LFP).  
 
HPC and OFC are anatomically (Barbas & Blatt, 1995; Carmichael & Price, 1995) and 
functionally (Young & Shapiro, 2011) connected, and neurons in both regions phase-lock 
to local theta LFPs (Buzsáki, 2002; van Wingerden et al., 2010). LFP coherence between 
HPC and the prefrontal cortex, especially in the theta frequency band, is positively 
correlated with free exploration (Siapas et al., 2005), decision-making (Tang et al., 2021), 
error detection during associative learning (Brincat & Miller, 2015), and context-driven 
memory retrieval (Benchenane et al., 2010; Morici et al., 2022; Place et al., 2016). Recent 
work in our lab demonstrated that value-encoding neurons in OFC phase-lock with theta 
oscillations, and that HPC-driven theta oscillations in OFC are critical for learning during 
value-based decision-making (Knudsen & Wallis, 2020). Similar results have been 
observed in rats performing a spatial reversal learning task, where OFC spikes phase 
locked to HPC theta oscillations (Riceberg et al., 2022). In both cases, OFC activity was 
predicted by HPC activity, suggesting that HPC may play a role in shaping OFC encoding 
dynamics. 
 
One intriguing possibility is that value state representations in OFC may switch back and 
forth between available options in time with HPC-driven theta oscillations. While there is 
evidence suggesting separately that HPC-driven theta oscillations in OFC are important 
for learning (Knudsen & Wallis, 2020; van Wingerden et al., 2010), and that HPC 
representations may be synced to theta cycles, no studies to our knowledge have directly 
explored whether theta cycles also shape encoding dynamics in OFC. Here, we analyzed 
OFC activity previously recorded in our lab while monkeys performed a simple value-
based decision-making task (Balewski et al., 2022). We trained decoders to identify OFC 
value states during deliberation periods, then asked whether the frequency, onset, or 
duration of those states could be explained by their position relative to OFC theta cycles. 
We found no consistent relationship between value state dynamics in OFC and theta 
oscillations, suggesting that HPC oscillations do not explain the idiosyncratic flickering 
we see in OFC representations during decision-making. 
 
4.2 Results 
 
Two macaques (monkeys C and G) learned to use a bidirectional lever to select between 
one (forced choice trials) or two (free choice trials) available pictures on each trial (Fig. 
4.1a), as described previously (Balewski et al., 2022). They learned the values of 16 
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pictures, each associated with a unique juice reward defined by juice quantity and 
probability of delivery (Fig. 4.1b). Pictures were grouped into four value bins (where 1 is 
the lowest value and 4 is the highest) based on the subjective value for each subject, 
defined as expected value. Pictures were assigned to the same value bin for both subjects. 
As expected, subjects preferred larger juice amounts and more certain rewards, and 
responded faster as the maximum available value increased (for detailed methods and 
results, see Balewski et al., 2022).  
 
We recorded single neuron firing activity and LFP from OFC during task performance, 
using up to four acute multisite electrodes per session (for detailed methods, see Balewski 
et al., 2022). After filtering noise, LFPs were bandpassed in the θ frequency band (4-8 
Hz). We obtained analytic amplitudes from the Hilbert transform, then extracted phase 
information from the resulting signals using the angle of the Hilbert transform. We 
observed a consistent theta phase reset within 100 ms of picture onset across trials (Fig. 
4.2). Increases in cross-trial OFC theta phase alignment in response to external task 
events, like pictures appearing on screen or the delivery of a juice reward, have been 
reported previously (Knudsen & Wallis, 2020). However, it is unknown whether theta 
oscillations in OFC drive behavior by facilitating internal representations of task 
variables.  
 
Value states in OFC oscillate between the chosen and unchosen pictures values during 
deliberation, with idiosyncratic dynamics that vary with behavioral choice from trial to 
trial (Balewski et al., 2022; Rich & Wallis, 2016). While the timing and duration of these 
state representations do not appear to be predicted by any specific external stimulus (Rich 
& Wallis, 2016), it is possible that the OFC state “flip-flops” observed during deliberation 
are not random, but instead driven by neural oscillations. Such representation switches 
have been seen, synchronized to theta oscillations, in the hippocampus in rodents (Jezek 
et al., 2011; Kay et al., 2020). Given that HPC-driven theta oscillations in OFC are critical 
for reward-based learning (Knudsen & Wallis, 2020), we hypothesized that value state 
representations may be linked to theta cycles.  
 
First, we asked whether value states were disproportionately encoded during a given 
phase of the theta cycle, or if their timing was more uniformly distributed. For each free-
choice trial, we isolated theta cycles falling between picture onset and choice, then split 
each theta cycle into 20-degree phase bins and counted the number of chosen value and 
unchosen value states that were encoded while the theta phase angle fell in each bin.  
There was a significant effect of phase angle on state decodability in one subject, whether 
the decoded state was chosen or unchosen (one-way ANOVA, subject G, chosen: F(17,144) 
= 25.24, p < 0.001; unchosen: F(17,144) = 21.97, p < 0.001), where most states appear to 
be decoded during peaks and troughs of the theta cycle (Fig. 4.3). We saw the same 
qualitative trend in the remaining subject, but the overall number of decoded states was 
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too low in the remaining sessions to see a large effect. We also observed a statistically 
significant difference in the distributions of chosen and unchosen value states across the 
theta cycle (two-sample Kolmogorov-Smirnov test, subject C: T = 0.035, p < 0.001; 
subject G: T = 0.027, p < 0.001), such that chosen states appear to be slightly more likely 
to appear during the falling phase of the theta cycle than unchosen states. 
 
While LFP activity originates from a complex combination of sources (Herreras, 2016), 
increased firing rates and increased spike synchrony both contribute to increased spectral 
power (Buzsáki et al., 2012). So, it is possible that the relationship we observed between 
theta phase and state decodability may be confounded by spike activity. To assess whether 
fluctuations in value state decodability are predicted by firing rate, we performed logistic 
regression on states (represented as a binary vector, where 1 or 0 indicated that a value 
state (chosen or unchosen) was or was not decoded in each time bin, respectively). We fit 
binary states with firing rates and theta phase angle, separated into sine and cosine 
components, as predictors (Fig. 4.4a, see Methods, Eq. 4.1). We observed that beta 
coefficients for firing rates were markedly larger than those for theta phase angle, and 
significantly predicted state decodability across the entire picture epoch, up to two 
seconds after picture onset (Fig. 4.4a, red lines). Theta phase, on the other hand, only 
significantly predicted decodability in the roughly 500 ms following picture onset (Fig. 
4.4a, blue and purple lines).  
 
To more clearly evaluate the relationship between firing rate and state decodability, we 
split firing rates, boxcar smoothed with a 20 ms window stepped at 5 ms, into 0.5 Hz bins 
and counted the number of value states (chosen or unchosen) that fell in each bin (Fig. 
4.4b). We observed a statistically significant difference in the distributions of decoded 
and undecoded states across firing rate bins in one subject (two-sample Kolmogorov-
Smirnov test, subject C: n.s.; subject G: p = 0.02, T = 0.35). Given the large sample size 
of each population of decoded states, we also found a significant difference in the mean 
firing rate associated with decoded and undecoded states in both subjects (two-sample t-
test, subject C: p < 0.001, T = 56.09; subject G: p < 0.001, T = -3.4336), where decoded 
states appear to be associated with slightly higher firing rates in one subject (C), and 
slightly lower firing rates in the other (G). Taken together, these results suggest that firing 
rate predicts the presence or absence of decoded states during deliberation more than 
theta phase, but the specific relationship between firing rate and decodability is less clear.  
 
While firing rates seem to impact the strength of value state encoding, it is still possible 
that the dynamics of value representations are guided by theta oscillations. We 
hypothesized that, if theta oscillations drive OFC to switch between chosen and unchosen 
value representational states, then the classification accuracy of a decoder trained on OFC 
activity would improve if we synced training data to the theta reset following picture 
onset, rather than to picture onset itself. For each trial, we identified the theta phase reset 
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time, defined here as the first timestamp to exceed 2 radians, at least 125 ms from the 
next local peak in phase angle. We then shifted all LFP and firing rate samples so that zero 
was set to the theta phase reset, relative to the picture presentation time. For almost all 
sessions across both subjects, decoders trained on theta-aligned data had lower 
classification accuracy than those trained on picture-aligned data (paired samples t-test, 
subject C: d.f. = 9, T = 2.71, p = 0.02; subject G: d.f. = 8, T = 8.59, p < 0.001) (Fig. 4.5a). 
Peak accuracy across the trial (500 ms before to 2000 ms after picture onset) for all but 
one session was highest with picture-aligned data (Fig. 4.5b). These results suggest that, 
at least for forced-choice trials, value encoding dynamics in OFC were more closely linked 
to task events than HPC-driven theta oscillations. 
 
Another possibility is that, regardless of whether states are encoded at a consistent phase 
angle across theta cycles, that the state being represented changes across theta cycles (Fig. 
4.6a). To test this, we identified theta cycles occurring in the deliberation period between 
picture onset and choice for each free-choice trial. For each trial, we counted each value 
state (if any) encoded in the time spanned by each cycle. If most states falling within that 
cycle represented the chosen value, we labeled that cycle as “chosen.” Likewise, states 
consisting of mostly unchosen value states were labeled “unchosen.” To determine the 
likelihood of decoding the same or different states across theta cycles by chance, we 
counted the number of states falling in sliding 125 ms (8 Hz) time bins, stepped at 20 ms, 
across the deliberation period, effectively jittering the start of the first theta cycle on each 
trial (Fig. 4.6b). At least one value state, chosen or unchosen, was decoded during 
deliberation in 3963 (subject C) and 2067 (subject G) free-choice trials, significantly more 
than expected by chance (chi-squared test, p < 0.001 for both subjects) (Fig. 4.6c). Of 
those trials, the same state was decoded across theta cycles 87.2% (subject C) and 91% 
(subject G) of the time, rather than switching from state to state, significantly more often 
than expected by chance (chi-squared test, p < 0.001 for both subjects) (Fig. 4.6d). 
Together, these results suggest that the timing of OFC value state flip-flopping is not 
guided by theta oscillations, and that these trial-specific dynamics are instead driven by 
another internal process. 
 
4.3 Discussion 
 
Here, we examined the relationship between the theta-filtered LFP, and value states 
decoded from the deliberation period of free-choice trials and found evidence against the 
prediction that the dynamics of OFC value representation are driven by theta oscillations. 
We observed that, while value states were more likely to be decoded at certain phases of 
the theta cycle, alternations between states were not synchronized to, or explained by, 
theta oscillations. When training our decoders, we found that realigning neural data to 
the theta reset following picture onset, rather than to stimulus presentation itself, 
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decreased decoder accuracy. Together, our results suggest that, while OFC neurons 
encode value in phase with theta, the idiosyncratic dynamics of OFC value state 
fluctuations cannot be explained by the oscillatory dynamics.  
 
These findings may initially appear surprising, given that selectively disrupting theta 
oscillations in OFC, while leaving single-neuron firing rates intact, severely impairs 
reward-guided learning (Knudsen & Wallis, 2020). How can we reconcile our results 
suggesting that OFC state fluctuations—a potential mechanism driving value-based 
deliberation—are unaffected by theta oscillations, with evidence that OFC theta 
oscillations are critically important for learning and decision making? One possibility is 
that the role of theta oscillations is not to guide the dynamics of sequential state 
representation in OFC, but to increase the likelihood that hippocampal neurons can share 
information with OFC neurons.  
 
LFP phase coupling helps to coordinate neuronal populations across brain regions, which 
may be one means by which the OFC exchanges information with the hippocampus 
during decision making (Canolty et al., 2010). Orbitofrontal populations have 
heterogeneous response properties (Padoa-Schioppa, 2013; Sadacca et al., 2018; Strait et 
al., 2016; Zhou, Gardner, et al., 2019), and neuronal response properties do not appear to 
inform anatomical organization (Rich & Wallis, 2014). By preferentially firing at the same 
phase of the theta oscillation, hippocampal neurons are better able to coordinate with 
anatomically dispersed, but functionally similar, OFC neurons (Buzsáki et al., 2013). 
Recent work from our lab supports this hypothesis, demonstrating that OFC neurons 
encoding reward predictions preferentially spike at specific phases of the theta oscillation 
(Knudsen & Wallis, 2020). Similarly, we found that OFC value states were preferentially 
decoded at specific phases. This provides further evidence that hippocampal theta 
oscillations are involved in OFC value coding but does not necessarily mean that the 
timing of OFC state switches are aligned with the timing of theta oscillations.  
 
Periodic theta-paced ‘flickering’ of competing states has been observed in the 
hippocampus (Jezek et al., 2011; Kay et al., 2020; Mark et al., 2017). However, despite 
growing bodies of research highlighting the role of theta oscillations in communication 
(Karakaş, 2020) and the functional connection between OFC and the hippocampus 
(Wikenheiser & Schoenbaum, 2016), it is possible that OFC value dynamics differ enough 
from hippocampal place dynamics to be driven by a different mechanism altogether. First, 
the temporal characteristics of OFC state representations and theta cycles don’t quite 
align. The average duration of a value state in OFC is roughly 80 milliseconds, while theta 
in primates is defined as the frequency band spanning 4-8 Hz, or 125-250 milliseconds. 
Additionally, the periodicity of neural oscillations contrasts with OFC value dynamics—
the duration of individual value state representations, and timing with which states 
switch, varies idiosyncratically from trial to trial (Balewski et al., 2022; Rich & Wallis, 
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2016). This raises the question: if not theta oscillations, what causes OFC state 
alternations?  
 
One possibility is that OFC fluctuations are driven by shifts in attention during 
deliberation. Several accounts argue that the decision-making process involves 
sequentially allocating overt attention, via eye movements, to different choice options and 
accumulating evidence for the ultimately chosen option (Hare et al., 2011; Krajbich et al., 
2010). While saccades and fixations do not appear to affect value state representations in 
the OFC, (Rich & Wallis, 2016), covert attention may still play a role in shaping decision-
making dynamics. Several studies have found evidence consistent with the idea that 
value-encoding brain regions encode the value of an option while it is being attended to, 
regardless of whether that option is being fixated on (Blanchard et al., 2015; Lim et al., 
2011; McGinty et al., 2016; Rich & Wallis, 2016; Rudebeck et al., 2013; Strait et al., 2014; 
Xie et al., 2018). Our findings suggest that a single population of neurons, rather than 
multiple competing populations, alternately represent both option values during 
deliberation (Balewski et al., 2022; Rich & Wallis, 2016). It is possible that attention, 
covert or overt, enables a single set of neurons to flexibly encode multiple option values 
leading up to the time of choice (Hayden & Moreno-Bote, 2018). This framework is 
aligned with recent research demonstrating that attention and reinforcement learning are 
deeply intertwined, such that attention modulates neural representations of value and 
vice versa (Hunt et al., 2018; Leong et al., 2017). Our experiment design did not explicitly 
probe attention, limiting our ability to study the role of attention in shaping value 
representations beyond course measurements of overt attention like gaze. Future studies 
can take this step by adding attention-pulling stimuli or visual modifications to value-
guided decision-making tasks, independent of reward contingencies, while recording 
from OFC populations.  
 
Another open question concerns the relationship between OFC and the hippocampus: 
why do theta oscillations appear to inform representational dynamics in the 
hippocampus, but not in OFC? Neurons in the rodent hippocampus have been shown to 
flicker between representations of past and present environments (Jezek et al., 2011; 
Mark et al., 2017) and between different hypothetical future scenarios (Kay et al., 2020) 
in pace with theta oscillations. These studies investigated hippocampal task state 
encoding in the spatial domain, while rats completed reward-driven spatial navigation 
tasks. However, recent evidence suggests that, in addition to encoding relationships 
between environmental features, place cells in the primate hippocampus also encode 
relationships between options in an abstract value space (Knudsen & Wallis, 2021). To 
our knowledge, theta-paced place cell flickering has not yet been observed in primates, 
perhaps due to the constraints implicit in designing spatial navigation tasks for larger 
animals undergoing neurophysiological recording. One intriguing direction for future 
research could be to record from hippocampal place cells in primates during value-based 
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decision-making and explore whether value representations flicker at the same theta 
frequency as has been observed in the spatial domain. Broadly, understanding whether 
the role of theta oscillations in decision-making varies by task domain, by anatomical 
region, or by another factor (or combination of factors) will help shed light on the 
functional role of neural oscillations.  
 
OFC dysfunction is implicated in a wide range of neuropsychiatric disorders, including 
obsessive-compulsive disorder and addiction (Fernando & Robbins, 2011). By studying 
the underpinnings of decision making, including sequential representations of option 
values in OFC, treatments based on closed loop microstimulation (i.e., decoding brain 
states in real time and selectively disrupting maladaptive patterns of activity) will become 
increasingly tenable. Here, we presented evidence against theta oscillations as a putative 
driver of OFC value dynamics, narrowing the search for viable explanations. As Thomas 
Edison said about his search for incandescent electric light, “I have not failed 700 times. 
I have succeeded in proving that those 700 ways do not work.”  
 
4.4 Methods 
 
Experimental model and subject details 
 
All procedures were carried out as specified in the National Research Council guidelines 
and approved by the Animal Care and Use Committee and the University of California, 
Berkeley. Two male rhesus macaques (subject C and G, respectively) aged 6 and 4 years 
old, weighing 10 and 7 kg at the time of recording were used in the current study. Subjects 
sat head-fixed in a primate chair (Crist Instrument, Hagerstown, MD) while eye 
movements were tracked with an infrared eye-tracking system (SR Research, Ottawa, 
Ontario, CN). Stimulus presentation and behavioral conditions were controlled using the 
MonkeyLogic toolbox (Hwang et al., 2019), and subjects were trained to make choices by 
manipulating a bidirectional lever located on the front of the chair. Subjects had unilateral 
(subject C), or bilateral (subject G) recording chambers implanted, centered over the 
frontal lobe. 
 
Task Design 
 
Subjects were trained to perform a value-based decision-making task where, on each trial, 
they chose between pairs of pictures or a single picture ((Balewski et al., 2022)). To 
initiate picture presentation, subjects fixated continuously on a 0.5° fixation cue at the 
center of the screen. On free choice trials (67% of trials), two 2.5° x 2.5° pictures appeared 
on either side of the fixation cue. On forced choice trials (33%), one picture appeared on 
either side. Subjects moved a bidirectional lever left or right to indicate their choice. They 
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learned to associate 16 pictures with four juice reward levels (subject C: 0.15, 0.3, 0.45, 
0.6 mL; subject G: 0.1, 0.2, 0.3, 0.4 mL) and four reward probability levels (C: 0.15, 0.4, 
0.65, 0.9; G: 0.1, 0.37, 0.63, 0.9) (Fig. 4.1). Amounts and probabilities were uniquely 
titrated for each subject so both dimensions were considered roughly equally during 
decision-making. The chosen picture stayed on screen during reward delivery. Trials were 
separated by a 1000 ms intertrial interval. Gaze position was sampled at 500 Hz. Subject 
C completed 10,358 free choice trials (5,397 forced) over 11 sessions, and subject G 
completed 10,793 free choice trials (5,873 forced) over 12 sessions). 
 
Neurophysiological recordings 
 
Subjects were fitted with head positioners and imaged in a 3T MRI scanner. From the MR 
images, we constructed 3D models of each subjects’ skull and target brain areas (Paxinos 
et al., 2000). Subjects were implanted with custom radiolucent recording chambers 
fabricated from polyether ether ketone (PEEK).  
 
During each recording session, we lowered up to 4 multisite linear probes (16- or 32-
channel V probes with 75, 100, or 200 µm contact spacing, Plexon, Dallas, TX) into OFC 
(areas 11 and 13, AP +29 to +39 mm) in each chamber. We used custom software to define 
electrode trajectories, then designed and 3D printed appropriate microdrives (Form 2 and 
3, Formlabs, Cambridge, MA) (Knudsen et al., 2019). We derived lowering depths from 
MR images and verified them from neurophysiological signals via gray/white matter 
transitions. Neural signals were digitized by a Plexon OmniPlex system, with continuous 
spike-filtered signals (200 Hz - 6 kHz) acquired at 40 kHz and local field-filtered signals 
acquired at 1 kHz.  
 
Here, we analyzed neuronal activity from 12 sessions recorded in subject C and 9 sessions 
recorded in subject G (Table 4.1). We manually isolated units using 1400 ms waveforms, 
thresholded at 4 standard deviations above noise (Offline Sorter, Plexon). We restricted 
our analysis to neurons with a mean firing rate greater than 1 Hz across the session, and 
where over 0.2% of spikes were separated by at least 1100 ms. We excluded LFP channels 
without at least one unit. In total, we recorded 616 and 1874 neurons and 453 and 1401 
LFP channels from OFC in subjects C and G, respectively.  
 
We notch filtered raw LFP signals at 60, 120, and 180 Hz, bandpassed using finite impulse 
response filters in the θ (4-8 Hz) frequency band, then calculated the Hilbert transform 
to obtain analytic amplitudes.  
 
Value decoding with single trial resolution 
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We decoded picture value from single neuron and theta filtered LFP activity in OFC, 
synced to picture onset. For each session, we trained a linear discriminant analysis (LDA) 
decoder to predict the value (1-4, where 1 was the lowest value bin and 4 was the highest) 
from neural activity on forced-choice trials, where a single picture appeared on screen. To 
reduce the dimensionality of the input features in each window, we performed PCA across 
trials separately for normalized neuron firing rates and normalized magnitudes from the 
θ LFP band, then restricted inputs to the top PCs that explained 95% of variance.  
 
To evaluate classification accuracy, we trained a decoder on neural activity between 100-
500 ms after picture onset, for forced-choice trials balanced for picture identity and 
location. We randomly split trials into training sets and held-out sets, where the training 
sets were balanced to include an equal number of each picture identity and location. We 
used a k-fold validation procedure where we trained the decoder on all but one set and 
tested on the held-out set. We repeated this procedure with 50 random trial samples, 
averaged classification accuracy across all instances, then applied these decoder weights 
to each free-choice trial in sliding windows of 20 ms stepped by 5 ms. We computed the 
posterior probability of decoding each value bin for every free-choice trial, for each of 50 
random forced-choice trial samples and averaged posterior probabilities across instances. 
 
We defined a unique baseline posterior probability for each value level by averaging 
posterior probabilities corresponding to that level across trials where pictures of that 
value did not appear on screen. We defined decoding strength as percent change in 
posterior probability from baseline, for each value level. For each trial, we relabeled 
decoder classes as chosen value, unchosen value, and unavailable. We defined states as 
periods where decoding strength for a given class exceeded 200% (i.e., doubled baseline) 
for at least four consecutive time bins. 
 
Value state regression analysis 
 
For each overlapping 100 ms time bin, shifted by 25 ms, we performed the following 
logistic regression on value states decoded from neural activity during free-choice trials:  
 
state = β0 + β1 * firing rate + β2 * sin(θ) β3 * cos(θ)       Eq. 4.1 
 
where state was binary (0 = no value state decoded, 1 = decoded either chosen or 
unchosen value). Significance was defined as p < 0.01 for any given time bin.  
 
Identifying theta cycle boundaries 
 
To identify the boundaries of theta cycles, we used the MATLAB function ‘findpeaks’ to 
identify theta filtered LFP phase angle samples with a minimum peak of 2 radians and a 
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minimum distance from other putative peaks of 125 ms. Since we were interested in the 
dynamics of value state representation during the deliberation period between picture 
onset and choice, we only included theta cycles falling between those two trial events in 
our analyses. To determine whether the consistency of state decoding across theta cycles 
was significantly different from what we would expect by chance, we counted the number 
of states falling in sliding 125 ms time bins (8 Hz, simulating theta frequency), stepped at 
20 ms.  
 
Statistics 
 
All statistical tests are described in the main text or in the corresponding figure legends. 
Error bars and shading indicate standard error of the mean (s.e.m.) unless otherwise 
specified. All comparisons were two-tailed.  
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Figure 4.1: Task design. (a) Subjects fixated on a central point to start each trial. On 67% of trials, they 
were presented with two pictures to choose between (free choice), and on the remaining 33% of trials, they 
only saw one picture (forced choice). In either condition, subjects indicated their choice with a lever (left or 
right) and received a juice reward with a probability corresponding to the picture. (b) Subjects learned 16 
pictures associated with different juice amounts and reward probabilities. (c) We split the pictures into four 
equal-sized value bins, with 1 indicating the lowest expected value and 4 indicating the highest expected 
value. Groupings were the same for both subjects. 
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Subject Session OFC neurons LFP channels 

C rec07 72 53 

 rec09 101 38 

 rec17 14 14 

 rec20 71 41 

 rec33 33 27 

 rec47 48 40 

` rec54 38 29 

 rec60 42 36 

 rec61 138 91 

 rec62 79 55 

 rec65 81 67 

 rec66 116 83 

G rec15 292 181 

 rec18 215 163 

 rec19 210 166 

 rec20 191 145 

 rec21 177 132 

 rec28 206 165 

 rec29 208 155 

 rec31 207 157 

 rec32 168 137 
 
Table 4.1: Neural data. Number of neurons recorded per session in OFC for subjects C and G. Note that 
subject G had a bilateral chamber implant, and subject C had a unilateral chamber implant.  
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Figure 4.2: Example theta LFP signal. All panels show Hilbert-transformed LFP signals from the theta 
frequency band (4-8 Hz) recorded from a single electrode channel during one recording session (monkey 
C). Analytic amplitude is on the left, phase is in the middle, and realigned phase (where values from each 
trial were shifted so that 0 = time of the first theta peak following picture onset) is on the right. Dark blue 
patches on the far right of the plot illustrate missing data, after shifting trials. Black vertical lines indicate 
the time of picture onset (left and middle) or the first theta peak after picture onset (right). All panels show 
free-choice trials (rows) sorted by response times, with response time marked by a black dot for each trial.  
 
  



 47 

 
 
Figure 4.3: Distribution of decoded states across the theta cycle. Each point illustrates the 
percentage of total OFC value states decoded across the first two theta cycles for a single session. Cycles are 
broken into 20-degree phase angle bins. Lines represent the mean (土SEM) percentage across all sessions. 
Red represents chosen value states, and blue represents unchosen value states (left = subject C, right = 
subject G).  
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Figure 4.4: Firing rate predicts state decodability. (a) Beta weights (y axis) over time (x axis) for 
predictors in a logistic regression model of state decodability (red = firing rate, blue/purple = theta phase 
angle, separated into sine and cosine). Time stamps with significant betas (p < 0.01) are represented by 
bold dots. In both (a) and (b), subject C is on the left and subject G is on the right. (b) Percentage of time 
bins (y axis, combined across sessions for each subject) falling in each 0.2 Hz firing rate bin, where firing 
rates were averaged within each bin. Bins where no states were decoded are represented by gray lines, and 
bins where either the chosen or the unchosen state was decoded are represented by green lines.  
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Figure 4.5: OFC value state decoder performance. (a) Mean leave-one-out (LOO) LDA accuracy for 
decoders trained on OFC data synced to picture onset (orange) and the first theta peak following picture 
onset (teal). Thin lines represent individual sessions and thick lines represent across-session means. 
Desaturated lines represent LOO LDA accuracy for decoders trained on shuffled data (shuffle accuracy is 
roughly chance, 25%). For all panels, monkey C is on the left and monkey G is on the right. (b) Peak LOO 
accuracy for decoders synced to picture onset (x axis) plotted against peak LOO accuracy for decoders 
synced to the first theta peak (y axis). Points represent individual sessions. (c) The number of milliseconds 
after the synced event (picture onset or theta peak) when peak LOO accuracy occurred. Conventions are the 
same as (b).  
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Figure 4.6: State decoding dynamics across theta cycles. (a) Cartoon illustrating theta cycle 
boundaries within a given trial (top row, with edges depicted as gray vertical lines). One hypothesis (middle 
row) is that decoded states (red and blue horizontal lines, representing chosen value and unchosen value, 
respectively) are bound by theta cycles, alternating across cycles. Alternatively (bottom row), decoded states 
could switch independently of theta cycle boundaries. (b) Illustration of method for labeling each theta 
cycle. Within each cycle (top row), each time bin was labeled as containing a decoded state, chosen (red) or 
unchosen (blue), or not (light gray). A cycle was labeled “chosen,” “unchosen,” or “not decoded” according 
to the label assigned to the most time bins within that cycle. For comparison, we followed the same 
procedure to label jittered cycles (bottom row). (c) The percentage of trials, pooled across sessions, where 
at least one theta cycle was labeled as containing a decoded state between picture onset and choice, given 
empirical (dark green) and jittered (light green) cycle boundaries. For (c) and (d), subject C is on the left 
and subject G is on the right. (d) Of those trials where at least one cycle contained a decoded state, we 
compared the number of trials where the decoded state was the same across theta cycles versus where the 
decoded state switched across cycles. Counts given empirical cycle boundaries are represented by dark blue 
bars, and jittered cycle boundaries are represented by light blue bars. 
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Chapter 5 
 
Conclusion 
 
In this thesis, we aimed to understand how the orbitofrontal cortex (OFC) and the 
hippocampus (HPC) jointly contribute to value-guided decision making. State inference, 
or the process of guessing the current state of the world given a set of observations, is 
critical to successful decision making, especially in a dynamic environment. We 
hypothesized that neural representations of task state in both OFC and HPC would predict 
changes in behavior during reversal learning, as animals adapted choice preferences to 
switches in reward contingencies (Chapter 3). Given recent findings from our lab 
demonstrating that OFC represents value states sequentially during deliberation 
(Balewski et al., 2022; Rich & Wallis, 2016), and that HPC-driven theta oscillations in 
OFC are important for value-guided learning (Knudsen & Wallis, 2020), we also predicted 
that theta oscillations shape OFC value dynamics (Chapter 4). We used acute 
electrophysiology to simultaneously record from OFC and HPC during reversal learning 
(Chapter 2), and observed that both regions represent task state, but theta oscillations do 
not determine the timing of representational switches in OFC. This chapter will 
summarize the findings from our experiments, address lingering questions, and propose 
future directions for research. 
 
Task state is represented by the orbitofrontal cortex and the hippocampus 
 
In both OFC and HPC, we found that the current task state was encoded stably within 
each trial, independent of stimulus presentation and reward outcome. As representations 
of task state strengthened in the trials following each reversal, behavioral performance 
improved. We also observed anticipatory neural representations of upcoming task states 
in trials immediately preceding upcoming reversals, while neurons sensitive to value 
expectations continued to reflect current conditions. Together, these results suggest that 
subjects used their understanding of task structure to anticipate and adapt to changes in 
reward contingencies, and that OFC and HPC are both involved in this process.  
 
This is consistent with recent ideas arguing that the role of OFC is not in economic choice 
or valuation narrowly, but in representing task states (Schuck et al., 2018; Stalnaker et 
al., 2015; Wikenheiser & Schoenbaum, 2016). Our findings are also consistent with the 
argument that HPC also represents task states and the relationships between task states, 
or the “cognitive map” (Behrens et al., 2018; Knudsen & Wallis, 2022; Sanders et al., 
2020; Whittington et al., 2020). This raises the question of what the distinctions are 
between each region in task state representation, since it seems unlikely that OFC and 
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HPC serve redundant roles. One hypothesis, which can be tested in future studies, is that 
OFC represents the current goal, and uses a map of state transitions stored in the HPC to 
compute state values, given the current goal (Knudsen & Wallis, 2022).  
 
Orbitofrontal value dynamics  
 
Given the functional connection between OFC and HPC (Barbas & Blatt, 1995; Carmichael 
& Price, 1995; Young & Shapiro, 2011), and the recent finding that orbitofrontal theta 
oscillations are critically important for value-guided learning (Knudsen & Wallis, 2020), 
we tested the hypothesis that theta oscillations shape OFC value dynamics (Balewski et 
al., 2022; Rich & Wallis, 2016). We related the timing of decoded value states to theta 
filtered LFP signals and observed that while decodability varied as a function of theta 
phase angle, states switched independent of theta cycles. Additional analyses revealed 
that synchronizing training data to a theta phase reset, rather than to an external trial 
event, decreases decoder accuracy, further emphasizing that factors other than neural 
oscillations are responsible for guiding value state alternations in OFC.  
 
These findings present a potential difference between OFC and HPC: hippocampal 
neurons have been shown to flicker between representational states in pace with theta 
oscillations (Jezek et al., 2011; Kay et al., 2020), while OFC states appear to flicker to the 
beat of their own drum. It is possible that cross-species differences, both in task design 
and in anatomy, contribute to this discrepancy. Both OFC and HPC represent value and 
task state in non-spatial domains (Knudsen & Wallis, 2021, 2022), so future studies may 
be able to address this by comparing the relationship between theta oscillations and value 
state switches across the two regions, within a single task and animal model.  
 
Orbitofrontal-hippocampal contributions and interactions 
 
While some recent studies have explored the parallel contributions of OFC And HPC to 
state inference during value-based decision-making (Wikenheiser & Schoenbaum, 2016; 
Zhou, Gardner, et al., 2019; Zhou, Montesinos-Cartagena, et al., 2019), to our knowledge, 
our results are the first to extend this framework to nonhuman primates. Given the 
dramatic differences in size and complexity of the anterior HPC (Insausti, 1993) between 
rodents and primates, and differences in anatomical and functional organization of the 
OFC (Wallis, 2012), neurophysiology in nonhuman primates is an important bridge 
between basic science and potential therapeutic applications in humans. Moving forward, 
applying techniques like closed-loop microstimulation (Knudsen & Wallis, 2020) or 
pharmacogenetic tools like DREADDs (Grayson et al., 2016) to temporarily deactivate 
OFC or HPC during state inference will help disentangle the relative contributions of each 
region.  
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While our results did not support a role for neural oscillations in OFC value dynamics, it 
is still likely that LFP phase-locking between the prefrontal cortex and the HPC facilitates 
their communication during learning and decision making (Brincat & Miller, 2015; 
Knudsen & Wallis, 2020; Morici et al., 2022; Riceberg et al., 2022; Siapas et al., 2005; 
Tang et al., 2021; van Wingerden et al., 2010). Examining LFP coherence between OFC 
and HPC will expand our understanding of how the brain builds a cognitive map of task 
structure, implements it during value-guided learning, and updates it in response to 
change.  
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