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Abstract 

When ohmic resistances dominate over electrode kinetic resistances, 

the distribution of current density on an electrode can be highly nonun-

iform. In the limit of zero kinetic resistance (i.e., a primary current 

distribution) the current density at the edge of an electrode will be 

infinite if the interior angle of intersection between the electrode and 

insulator is obtuse. In practical cases, nonzero kinetic resistances 

exist, and the current density remains finite. 

Previous results demonstrate that, when the ohmic resistance is 

large compared to the kinetic resistance, the current distribution can 

be described by the primary distribution everywhere except the edge 

region. The purpose of this paper is to describe the deviations from 

the primary distribution and to show explicitly the manner in which the 

current density at the edge of the electrode approaches extreme values 

as the ohmic resistance becomes large. 

Key words: current distribution, linear kinetics, Tafel kinetics, 
singular-perturbation analysis, boundary integral methods 
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The analysis is valid for any angle of intersection and can be 

applied in the edge region (for a large ohmic resistance) regardless of 

the geometric details of the rest of the electrochemical cell. Results 

are given for linear and Tafel kinetics. 

Introduction 

It is well known [1] that the primary current density is infinite 

at an edge of an electrode if the angle of intersection between the 

electrode and insulator is obtuse. Also, the primary current density at 

the edge is zero for an acute angle. In all practical cases, the kinet

ics of the interfacial reaction enter, and these extreme values do not 

occur. 

The purpose of this paper is to demonstrate how the potential and 

current approach a primary distribution as the kinetic resistance 

becomes negligible (compared to the ohmic resistance). The analysis is 

valid in the edge region of an electrode and insulator, is a function of 

the angle, f3, shown in figure 1, and is independent of the geometric 

details of the rest of the electrochemical cell. Results from this 

abstract geometry can be use to verify numerical investigations of 

actual geometries. Additionally, an a priori estimate of the behavior 

in an edge region can aid in the development of more efficient and more 

accurate numerical procedures. 

Ni~ancioglu and Newman [2] solved this problem for linear kinetics 

in the edge region of a disk electrode. Smyrl and Newman [3] extended 

the results for the linear kinetics case and gave results for Tafel 

kinetics. Their results are valid for an angle of f3 = ~. 

v 
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Figure 1. Primary current distribution in the edge region of an electrode 
and insulator . 
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In both of these papers, it was recognized that, for high ohmic 

resistances, the current distribution could be described adequately by 

the primary distribution away from the edge region but showed large 

deviations from this distribution near the edge. Stated another way, 

the resistance of the Faradaic reaction is important only in the edge 

region. They realized that this suggests that the problem is treated 

properly by a singular-perturbation analysis. 

Primary Current Distribution 

The primary current distribution in the edge region shown in figure 

1 can be determined by Laplace's equation in cylindrical coordinates, 

which reduces to 

l __q_(r a~] + _l_[a2~] = o. 
r ar ar r2 a82 

The boundary conditions are 

and 

a~ = o 
ae at 8 = f3 

~ = 0 at 8 = 0. 

The solution (for small r) to equations (1) through (3) is 

ctJ1 = - Y!. p rrr/2{3 sin[rr8) 
7r~ 0 2{3 ' 

(1) 

(2) 

(3) 

(4) 

where P relates to the magnitude of the primary current distribution: 
0 

p ~ a~P (rr/2{3-1) 
i (r) -- ~ ~ = P

0 
r (5) 

It is necessary to introduce P because equations (1) through (3) 
0 

do not completely specify the solution, and the magnitude of the current 

v 

,. 
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can be changed by changing the cell potential. The placement of the 

counterelectrode and the geometric details of the working electrode in 

the region away from the corner region are not given. To do so would 

eliminate the possibility of a general analysis. In a region suffi-

ciently close to the corner, the distribution of current density behaves 

in a manner independent of these details. In general, the details of 

the geometry away from the edge region are incorporated into P , which 
0 

is determined through comparisons of equation (4) with the primary 

current distribution valid for the entire geometry. Smyrl and Newman 

[3] show that P = i Jr j8 for the rotating disk electrode. They also 
o avg o 

give P for the flow-channel geometry. 
0 

Linear Kinetics 

For linear kinetics, the boundary condition along the working elec-

trode becomes 

~ a~ 
r 88 

(a +a )Fi 
a c o (V 

RT ~ ) ' 0 

(6) 

where V is the potential of the electrode and ~ is the potential of the 
0 

solution adjacent to the electrode. For large values of the exchange 

current density, the current is given adequately by equation (5) for 

large (but not too large) values of r. Near the corner, though, kinet-

ics is important, and the current deviates from the primary distribu-

tion. To emphasize this corner region, a stretched radial distance 

should be defined by 

r = rSL = r 

and a stretched potential by 

(a +a )Fi 
a c o 

RTIC 
(7) 



(cl> - V) 
S'lr/2/3 

~t L 
p 

0 

The problem, in terms of these variables, is given by 

~ ( ~[;: ~] 
r ar ar 

with the boundary conditions, 

and 

M = o a8 

1M 
a8 

r 

0 ' 

at 8 = /3 

Finally, for large r (but small r) ¢ must satisfy the condition that 

-;;: . ll. -,r /2/3 . [7r 8) 
~ ~ - r s~n --7r 2/3 

as r ~ oo • 

(r ~ oo because SL becomes large.) 

6 

(8) 

(9) 

(10) 

(11) 

(12) 

It should be noted that V has effectively been set equal to zero in 

the matching condition given by equation (12). This is justified for 

obtuse angles because the primary current density (see equation (5)) 

decreases for large r. Acute angles require the treatment outlined in 

the appendix. 

Details of the numerical solution for ¢ are given bel,ow. It should 

be recognized that the equations are free of parameters and that ¢ is 

therefore independent of the stretching parameter SL. 

An important result of this section is that, for high exchange 

current densities, the current density in the corner region is given by 

v 
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. [(a +a )Fi l(l-~/2~) li£l = _ a c o ~ 
P RTK. o . 

0 

(13) 

That the current density at the edge of the electrode approaches infin-

ity as a power of a parameter involving the exchange current density 

should not be too surprising since previous experience (4] suggests that 

such a parameter dictates the distribution of current for linear kinet-

ics. 

Tafel Kinetics 

For anodic Tafel kinetics, the boundary condition along the elec-

trade is 

~ 84? 
r 88 

(14) 

The exchange current density is no longer a key variable in determining 

the distribution of current. Previous experience suggests that a dimen-

sionless average current density is the important parameter. Since a 

characteristic length is missing from this problem, no such parameter 

can be defined. P , though, is analogous in that it specifies the mag
o 

nitude of the current, and it may be expected to be important for the 

case of Tafel kinetics. 

If P is large-so that the ohmic resistance is large and the 
0 

analysis is valid-the current distribution far from the'edge is given 

adequately by the primary distribution. To investigate the region where 

the primary distribution does not apply, the potential should be 

stretched as 



a F 
a 

RT 

and the radial distance by 

[
a Fi ] 

+ ln ~/Co , 

r- rST- r [•;;:o)2P/• 

8 

(15) 

(16) 

In terms of these variables, equations (9) and (10) apply, and the boun-

dary condition along the electrode becomes 

r 
exp(-¢ ) at 8 = 0. 

0 
(17) 

For large r, ¢ must approach the asymptotic solution suggested by Smyrl 

and Newman (3] :t 

- 2R -7r/2/3 [1r8] [ 7r ) -¢ ~ - ~ r sin -- + -- - 1 ln(r) 
7r 2/3 2/3 

as r ~ aJ 
(18) 

The numerical procedure used to solve for ¢> is discussed in the 

next section. For large values of P , the current in the edge region is 
0 

given by 

. [a FP )( 2/3/7r-l) 
!i!l = ~ exp(-¢ ) 

p RTIC 0 
0 

(19) 

Just as for equation (13), it should be comforting that the parameter 

which is important for specifying the current density in the edge region 

is consistent with previous experience. 

t A .complication which could arise in the analysis is that Tafel 
kinetics may no longer apply at distances at which the primary 
distribution is approached. The possibility of entering a linear 
kinetics regime before the primary distribution is approached was not 
investigated. 

v 
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Numerical Analysis 

Since, in two dimensions, currents can not flow to infinity without 

an infinite potential drop, it is necessary to calculate deviations from 

the primary potential distribution. A new potential, ~. is defined as 

(20) 

where ~pis given by equation (12). To facilitate the solution for~. 

the geometry of figure 1 can be mapped conformally so that the insulator 

and electrode are coplanar. The coordinates of this new geometry are 

related to the original coordinates through 

and 8 = 81f 
f3 . 

(21) 

In terms of these new variables, the problem can be stated as 

1 .l_ (x 9.3£) + ..l. [iJ_] = 0 
X ax ax X2 ae2 ' 

with the boundary conditions: 

and 

For linear 

!li!. = 0 
a8 at 8 = 1r 

1 !li!.- ~[£(~ ) x(f3/7r-l) + x-112) at 8 = 0 . 
x a8 1r o 

kinetics, and for Tafel 

f(~)-- exp(- ~ ). 
0 0 

(22) 

(23) 

(24) 

kinetics, 

Boundary integral methods are often used for solving Laplace's 

equation [ 5] . For this problem, the equation describing the potential 

of the solution adjacent to the electrode is 
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J ln(x-x ) 2 (f(~ ) x(~/~-l) + x-l/2 )dx. 
0 q 0 

(25) 

For linear kinetics and ~ :S ~12, the integrand does not approach zero 

quickly enough for the integral to converge. The appendix demonstrates 

the modification to the solution procedure necessary to obtain conver-

gence. 

A finite-difference approximation to this equation was solved with 

an iterative procedure. An upper limit of integration, x , was chosen 
max 

to set a finite domain of integration. The contribution of the integral 

for x > x was assumed to be negligible, which is consistent with 
max 

requiring that the primary current distribution be approached at x 
max 

The accuracy of this procedure was verified by increasing x 
max 

until the value of the current at the corner changed by some small 

amount. A procedure of node-point doubling was also used. The results 

for the case of ~ = ~ were compared with the results from references (2) 

and (3). Finally, an integral constraint can be used to check the accu-

racy of the answer. This arises from the asymptotic behavior expressed 

in equations (12) and (18) and takes the form, for linear kinetics 

(obtuse angles), 

(26) 

and, for Tafel kinetics, 

(27) 

The reported values are estimated to be accurate within 0.5 percent. 

.. 
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Results and Discussion 

Results for linear kinetics are shown in figures 2 and 3. It is 

important to recall that these figures with equation (13) should give a 

good estimate of the current density in the corner region only for large 

values of (a +a )Fi /RTte. 
a c o 

Figure 4 shows results for Tafel kinetics. 

It can be used with equation (19) to predict current distributions near 

corner regions for high values of a FP /RTte. 
a o 

Our experience has shown (and this analysis suggests) that numeri-

cal difficulties can arise when ohmic resistances begin to dominate. In 

other words, the results of this paper begin to become applicable when 

other numerical analyses begin to become suspect. A practical use, 

then, of these results could be as a tool for the verification of other 

results. One test which could be made for linear kinetics is to deter-

mine whether 

i 
~ 

p 
0 

[

(a +a )Fi l(l-rr/2~) 
= A (~) a c o 

L RTte 
(28) 

as the right side of the equation goes to infinity. The test for Tafel 

kinetics is whether 

[a~:orP/•-1) (29) 

as che right side of the equation goes to infinity. Smyrl and Newman 

[ 3] have demonstrated such tests for the case of ~ = rr. The coeffi-

cients, AL(~) and AT(~). are shown in figure 5. As is indicated in the 

appendix, the value of AL is 6.0 for an angle of~= rr/8. 
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Figure 2. Current distribution for linear kinetics (obtuse angles). 
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Figure 3. Current distribution for linear kinetics (acute angles). 
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2 Tafel 
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angle (radians)/7t 

Figure 5. Dimensionless coefficient which specifies the value of the stretched 
current density at the edge. See equations (28) and (29). 
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By solving the primary current distribution for an actual cell, it 

is possible to relate P to measureable electrochemical and geometric 
0 

variables. It might, though, not be desired to take the time to deter-

mine the exact relation between P and these other variables. 
0 

quick check, one might recall that P is proportional to i 
o avg 

As a 

and 

determine whether the proper relationship, suggested by equations (28) 

and (29), is followed. 

The analysis can also be used to establish the proper mesh-spacing 

for an accurate and efficient finite-difference procedure. For linear 

kinetics, the region where the primary distribution does not apply is of 

the order [

(a +a )Fi l-l a c o 
RIK. 

For Tafel kinetics, the region where the 

[aRiaF~ o]-2{3/7r 
kinetic resistance is important is of the order ~ 

Conclusions 

A singular-perturbation analysis has shown explicitly the manner in 

which the current density near an electrode edge approaches extreme 

values as the primary current distribution is approached. The results 

are consistent with previous analyses of a coplanar electrode and insu-

lator and also with the special case of (3 1rj2. 

Appendix 

For linear kinetics, the solution to equations (9) through (12) 

might be approximated by 

(30) 

.. 
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where n. and A. are determined through the boundary conditions and the 
l. l. 

matching condition. This series diverges except for certain angles, ~' 

where it terminates. Three angles which terminate are ~ = ~12, fi = ~/4, 

and ~ = ~/8. For these angles, the potential of the solution adjacent 

to the electrode edge is given by 

and 

A. = -6 
'~'o 

-1 (~ = ~/2)' 

-1 - r (fi ~/4), 

14.4852r 7.2464r 2 
r 

(31) 

(32) 

3 
(fi = ~/8). (33) 

As r ~ ~, the difference between the actual stretched current and 

the stretched primary current (in terms of x) is of the order given by 

-1/2 -(1/2+~/~) +x cxx . (34) 

For angles, ~' less than ~;2, the integral equation (25) is unbounded 

-1 
since the first neglected term is of order greater than x 

Stated another way, for linear kinetics and acute angles, the first 

neglected term in the matching condition is sufficiently large along the 

electrode surface that the integral does not converge. For 

~/4 < ~ :S ~12, equations (30) and (34) suggest that an equation which 

calculates the deviations of the current density from the first two 

terms of the series will converge. A potential defined in this manner 

is 

~· = ~ + ~ ~~/2ficos(2~c~- 8)] - A1~c~;2~-l)cos(c 2~- l)(fi- 8))~ 35 ) 
A

1 
is determined by applying the matching and boundary conditions: 
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-1 
Al =sin (/3)" 

(36) 

The integral equation which gives ~· is 

(37) 

where 

A' = (2~ - 1) -1 (38) 
tan (/3) 

The matching condition used numerically for ~ ' is given by the next 
0 

term of the series: 

(39) 

For example, for f3 = 3~/8, the potential at the electrode surface 

is 

- 1/3 - -2/3 
~ - -r - 0.13807r + ... '~'o 

(40) 

For f3 ~ ~/4, additional terms need to be subtracted from ~·. The number 

of additional terms is given by equation (30), the solution for ¢> as 

r --+ ""· 

To obtain results for f3 ~ 1rj2, this appendix is necessary. It can 

also be used with obtuse angles because it shows how asymptotic correc-

tions can be used to relax the assumption that the integrand in equation 

(25) is zero for x > x 
max 

obtain accurate results. 

' This reduces the value of x needed to 
max 

Appendix B of Smyrl and Newman [3] can be used to show that, for 

Tafel kinetics, the difference between the current density and the pri-

mary current density is sutficiently small that the integral equation 

(25) converges for acute, as well as obtuse, angles. 
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List of Symbols 

dimensionless coefficients given in figure 5 

Faraday's constant, 96487 C/equiv 

current density, A/cm2 

average current density, Ajcm2 

current density at the electrode/insulator edge, 
2 

A/em 

exchange current density, A/cm2 

parameter defined in equation (5), A/cm(l+~/2~) 

universal gas constant, 8.3143 Jjmol-K 

radial distance variable, em 

stretched, dimensionless radial distance 
variable, defined by equation (7) or (16) 

stretching variable for linear kinetics, cm-l 

stretching variable for Tafel kinetics, cm-l 

absolute temperature, K 

dimensionless position in transformed coordinate 
system 

electrode potential, V 

transfer coefficients 

angle defined in figure 1, radians 
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8 

1/J' 

angular coordinate in cylindrical coordinates 

angular coordinate of transformed geometry 

3.141592654 

-1 -1 
specific conductivity, ohm ern 

potential, V 

primary potential, V 

stretched, dimensionless potential 

dimensionless potential defined by equation (20) 

dimensionless potential defined by equation (35) 
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