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Abstract

In the context of large-scale human system immunology studies, controlling for technical and 

biological variability is crucial to ensure that experimental data support research conclusions. 

Here, we report on a universal workflow to evaluate both technical and biological variation in 

multiparameter flow cytometry, applied to the development of a 10-color panel to identify all 

major cell populations and T cell subsets in cryopreserved PBMC. Replicate runs from a control 

donation and comparison of different gating strategies assessed technical variability associated 

with each cell population and permitted the calculation of a quality control score. Applying our 

panel to a large collection of PBMC samples, we found that most cell populations showed low 

intra-individual variability over time. In contrast, certain subpopulations such as CD56 T cells and 

Temra CD4 T cells were associated with high inter-individual variability. Age but not gender had a 

significant effect on the frequency of several populations, with a drastic decrease in naïve T cells 

observed in older donors. Ethnicity also influenced a significant proportion of immune cell 

population frequencies, emphasizing the need to account for these co-variates in immune profiling 

studies. Finally, we exemplify the usefulness of our workflow by identifying a novel cell-subset 
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signature of latent tuberculosis infection. Thus, our study provides a universal workflow to 

establish and evaluate any flow cytometry panel in systems immunology studies.

Introduction

Flow cytometry allows rapid and simultaneous qualitative and quantitative analysis of 

multiple cell populations within a biological sample at the single-cell level (1). With recent 

technological advances, it is now routinely possible to perform flow cytometric experiments 

with 10 or more parameters (i.e. multiparameter flow cytometry) in most research 

infrastructures (2). Multiparameter flow cytometry has proven successful to identify disease 

signatures and prognostic markers in response to infection, immunization or treatment (3, 4), 

has led to the discovery of new cell types that contribute to protective immunity, such as 

polyfunctional T cells (5). Thus, flow cytometry is a key technique for human cellular 

immunophenotyping studies.

The systems biology approach is increasingly used in human immunology and often 

involves the analysis of samples from various human cohorts acquired by different 

researchers and research centers (6). In this context, experimental data must be quality 

controlled to ensure that differences reflect the biological variables of interest rather than 

being due to technical variation or biological covariates. Multiparameter flow cytometry 

results in particular are known to have low reproducibility when not adequately controlled 

(7, 8). Possible sources of technical variability in flow cytometry are diverse, ranging from 

differences in sample handling and staining procedures, to differences in assay reagents, data 

acquisition settings, cell analyzer performances and data analysis methods (9). The 

resolution of each cell population, defined by the expression profile of the markers used for 

phenotyping and their relative abundance within the sample of interest, can also affect 

technical variability (7, 10). Approaches aimed at evaluating and reducing technical 

variability in flow cytometry are therefore crucial to ensure that biological differences can be 

detected in the systems immunology settings.

Several approaches to assess and reduce technical variability in flow cytometry studies have 

been developed. Strategies to minimize variation in sample handling and staining procedures 

include the development of standardized protocols, reagents and flow cytometry panels (7, 9, 

11, 12). The implementation of automated instrument set up templates from data acquisition 

softwares (i.e. BD Application Settings on BD Diva software), or the use of calibration 

beads (13) are helpful to reduce technical variation in data acquisition. Another major source 

of technical variation in flow cytometry is based on the manual gating of cell populations. 

This can be improved by performing manual gating following a defined standard operating 

procedure (SOP) by a centralized invariant operator, or based on automated gating pipelines. 

Such computational methods are currently being actively developed and benchmarked by the 

‘flow informatics’ community, for instance through the FlowCAP (Flow Cytometry: Critical 

Assessment of Population Identification Methods) project (14).

While these standardizing efforts have tremendous value for studies that can directly re-use 

the standardized protocols and reagents that have been developed, they cannot be all 

encompassing as specific research questions often necessitate the use of custom staining 
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panels for which specific standardization efforts will again be necessary. Furthermore, while 

all the previous standardizing efforts have been interested in the measurement of technical 

variation, none have developed specific metrics to control for it. Thus, the development of a 

universal workflow that control for technical variation and that could be easily applied to 

any flow cytometry panel would be of great interest for the clinical human immunology 

community.

Controlling and correcting for technical variability allows teasing out the true biological 

variation between samples. This in turn enables examining another important source of 

variability when assessing cell populations that is introduced by biological variations in the 

donor population introduced by co-variates such as different geographical locations, gender 

and age of the donors. These factors can contribute to large differences between samples and 

might mask immunological differences that were targeted by the study, or even lead to false 

positive results. Recent studies have found significant association between non-genetic 

factors such as geographic location with the cellular immune composition of human 

peripheral blood (15). This makes it important to establish procedures to assess the impact of 

co-variates in the population studied on the cell population under examination in order to 

separate the effect of these co-variates from the biological factor of interest.

For our studies of immune signatures associated with Dengue Virus and Mycobacterium 
tuberculosis infection and vaccination as part of the second round of the Human 

Immunology Project Consortium (HIPC) program (16), we wanted to design a single flow 

cytometry panel that could quantify naïve and memory T cell subsets, as well as delineate 

most of the major cell types circulating in the peripheral blood. We thus developed a 10-

color flow cytometry panel for the quantification of 17 cell populations from cryopreserved 

peripheral blood mononuclear cells (PBMC). Based on the considerations above, we aimed 

to establish a re-usable approach to quantify technical variability and identify biological 

covariates associated with cell population frequencies. We devised quality control 

approaches that flag faulty batches of samples before they are used in resource intensive 

‘omics assays. We also show that after correction for technical variability, it is possible to 

determine if and which cell population frequencies vary substantially as a function of such 

demographic variables, and that it is possible to either control for them during donor 

recruitment or correct for their presence in the final data analysis. Our experience has 

resulted in detailed specific recommendations for researchers interested in studying cell 

populations covered in our panel. More generally, our study provides a universal workflow 

that can be applied to establish and evaluate similar flow cytometry panels for systems 

immunology studies.

Material and Methods

Human samples

Blood samples were obtained from the University of California, San Diego Anti-viral 

Research Center clinic (UCSD, San Diego), Universidad Peruana Cayetano Heredia (UPCH, 

Peru), National Blood Center, Ministry of Health, Colombo (Sri Lanka) under approval from 

the respective Institutional Review Boards. All participants, except anonymously recruited 

blood bank donors in Sri Lanka, provided written informed consent prior to participation in 
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the study. Latent tuberculosis (TB) infection status was confirmed by a positive IFN-γ 
release assay (IGRA) (QuantiFERON-TB Gold In-Tube, Cellestis or T-SPOT.TB, Oxford 

Immunotec) but no evidence of clinical symptoms of active TB. TB negative donors were 

defined as IGRA negative. Subjects born in areas where Bacillus Calmette–Guérin 

vaccination is prevalent were assumed to have been vaccinated. PBMC were obtained by 

density gradient centrifugation (Ficoll-Hypaque, Amersham Biosciences) from 100 ml 

leukapheresis or whole blood samples, according to the manufacturer’s instructions. Cells 

were resuspended at 50 to 100 million cells per mL in FBS (Gemini Bio-Products) 

containing 10% dimethyl sulfoxide (Sigma) or in Synth-a-Freeze cryopreservation medium 

(Life Technologies) and cryopreserved in liquid nitrogen.

Flow cytometry staining and acquisition

Cryopreserved PBMC were quickly thawed by incubating each cryovial at 37°C for 2 

minutes, and cells transferred into 9 ml of cold medium (RPMI 1640 with L-Glutamin and 

25 mM Hepes (Omega Scientific), supplemented with 5% human AB serum (GemCell), 1% 

Penicillin Streptomycin (Gibco) and 1% Glutamax (Gibco)) in a 15-ml conical tube. Cells 

were centrifuged at 1200rpm for 7 min, and resuspended in medium to determine cell 

concentration and viability using Trypan blue and a hematocytometer. 10 million cells were 

transferred into a 15-ml conical tube, centrifuged, resuspended in 200 μl of PBS containing 

10% FBS and incubated for 10 minutes at 4°C. Cells were stained with 200 μl of PBS 

containing conjugated antibodies at previously determined optimum dilution (3 μl of anti-

human CD3-AF700, anti-human CD4-APCeF780, anti-human CD8a-BV650, anti-human 

CD19-PE Cy7, anti-human CD14-APC, anti-human CD45RA eF450; 6 μl of anti-human 

CD56-PE and anti-human CD25-FITC; 12 μl of anti-human CCR7-PerCp Cy5.5; and 0.3 μl 

of live/dead eF506 stain; see Table SI for staining reagent sources) for 30 minutes at 4°C, 

protected from light. After 2 washes in PBS, cells were resuspended into 500 μl of PBS 

containing 0.5% FBS and 2mM EDTA (pH 8.0) (FACS Buffer), transferred into a 5-ml 

polypropylene FACS tube (BD Biosciences) and stored at 4°C protected from light for up to 

4 hours until FACS acquisition. For samples requiring fixation, following staining and 

washes, cells were fixed in 200 μl of 0.5% or 4% paraformaldehyde (PFA) for 15 minutes at 

room temperature, washed twice in PBS, and resuspended into 500 μl of PBS containing 

0.5% FBS and 2mM EDTA (pH 8.0) (FACS Buffer), transferred into a 5-ml polypropylene 

FACS tube (BD Biosciences) and stored at 4°C protected from light for up to 4 hours until 

FACS acquisition. FACS acquisition was performed on a BD LSR-I/II cell analyzer (BD 

Biosciences) or on a BD FACSAria III/Fusion cell sorter (BD Biosciences). Compensation 

was realized with single-stained beads (UltraComp eBeads, eBiosciences) in PBS using the 

same antibody dilution as for the cell staining. Fcs files for latent TB donors and healthy 

controls were deposited in the public database ImmPort (Study ID SYD820).

Gating

Manual gating was performed with FlowJo version 10.1. The automated gating method used 

in this manuscript is derived from the FLOCK (FLOw Clustering without K) density-based 

data clustering method for unsupervised identification of cell populations from 

polychromatic flow cytometry data (17). The FLOCK method is publicly available at 

ImmPort (Immunology Database and Analysis Portal, https://immport.niaid.nih.gov) and its 
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source code is publicly accessible at sourceforge (https://sourceforge.net/projects/

immportflock). Major extensions have been added to the FLOCK-based automated gating 

approach in this manuscript. User-provided constraints about the initial boundaries of the 

gates have been used to direct the unsupervised clustering of FLOCK as follows. When the 

centroid of a FLOCK-identified data cluster is outside the user-defined boundary, the whole 

data cluster will be excluded from the gate; when the centroids of multiple FLOCK-

identified data clusters are within the user-defined boundary, the cell populations defined by 

these centroids will be merged into one a single cell population for comparison. Thus the 

user will not need to manually interpret the large number of FLOCK-identified cell 

populations, which is a common challenge for unsupervised clustering-based automated 

gating approaches. Further, the original FLOCK approach only outputs statistics for each 

individual data cluster. The automated gating approach used in this manuscript is able to 

output population statistics as in sequential manual gating steps by organizing the FLOCK-

identified data clusters into the predefined cell type hierarchy. Therefore, the directed 

unsupervised clustering extension of FLOCK used here is specifically designed for scientific 

use cases when a sequential gating strategy (like Figure S1) is available.

Provoked fails

Each ‘provoked fail’ was performed as indicated in the flow cytometry acquisition section 

with the following specific changes: a) Staining for 60min at 37°C; b) Use of cryopreserved 

PBMC already thawed once and re-cryopreserved; c) Fixation of stained samples with 0.5% 

PFA; d) Thawed PBMC were stored in medium supplemented with 0.5% human AB serum 

for 12h at 37°C before staining; e) Stained cells were stored at 4°C for 3 days before 

acquisition; f) Staining for 10min at 4°C; g) Staining with 3-fold less antibody volumes; h) 

Stained cells were stored at 4°C for 4 days before acquisition i) Thawed PBMC were stored 

in FACS buffer for 12h at 4°C before staining; j) Stained cells were stored at 4°C for 7 days 

before acquisition; k) Acquisition on a BD LSR-II cell analyzer with 585/42 and 605/20 

bandpasses on the violet laser instead of 525/50 and 660/20 bandpasses for the detection of 

eF506 and BV650 fluorescence emission, respectively; l) Fixation of stained samples with 

4% PFA. Summary for each provoked fail is available on Figure 2B.

Quality control score

Normality of cell populations was determined using the d’Agostino & Pearson omnibus 

normality test. The technical coefficient of variation associated with each cell population 

was calculated using the 24 repeat runs of the control donation. For each cell population that 

followed a normal distribution and a technical coefficient of variation lower than 35% (13 

populations in total), a p value was calculated using a Z-score, corrected for multiple testing 

by the Bonferroni method and expressed as a percent. For each repeat run, the QC score was 

assigned to the lowest p-value from all 13 cell populations (thus reflecting the cell 

population that deviate the most from its expected coefficient of variation).

Statistics

The coefficient of variation (CV) of each cell population was defined as the ratio of its 

standard deviation and its arithmetic mean, expressed as a percent. The standard deviation of 

the CV was calculated by a bootstrapping procedure with 10,000 replications using the 
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package boot for R, version 3.2.3. All statistical tests, correlations and linear regressions 

were performed using GraphPad Prism, version 6.0. The CV was compared between cell 

populations using an ordinary one-way ANOVA test. Inter-individual and technical 

variability for each cell population were assessed using multiple t-tests. The gender effect on 

cell population frequencies was determined using either a multiple non-parametric Kruskal-

Wallis test or an equivalence test. The equivalence test was based on 90% confidence 

intervals calculated with a Mann-Whitney non parametric test between male and female and 

defining the zone of statistical indifference as 4-fold of the technical CV. The age effect on 

cell population frequencies was defined using a Pearson correlation. Multivariate linear 

regression analysis between age and latent tuberculosis signature was performed using the 

lm function in R. All p values were adjusted for multiple testing with the Bonferroni 

method.

Results

Development of a 10-colour flow cytometry panel to identify circulating lymphocyte 
populations in humans

Based on previously defined panels from the first round of the HIPC program (9) and our 

own research goals, we selected 6 lineage markers, 3 differentiation markers and 1 viability 

marker to combine into one 10-color flow cytometry panel (Table SI). Using fluorescence 

minus one controls, we ensured that the combination of antibodies and fluorochromes 

selected had no detrimental effect on the individual staining for each antigen (data not 
shown). Using the gating strategy illustrated in Figure S1, we used this panel to identify the 

17 lymphocyte and monocyte populations listed in Table I comprising 6 major cell subsets, 5 

CD4 T cell subsets, 4 CD8 T cell subsets, and 2 CD56 T cell subsets. Gates 1 to 4 were used 

as common baseline filters to identify all 17 populations (Figure S1). Throughout this 

manuscript, we are using the population names listed in Table I as shorthand rather than the 

more exact, but less readable, cell population definitions based on marker patterns. Based on 

the resolution sensitivity and the level of expression of each marker, cell populations were 

segregated into ‘clearly defined’ cell populations (clear distinction between marker pattern 

positive and negative populations) and ‘poorly resolved’ cell populations (dim expression 

and/or poor segregation between positive and negative populations) (Table I).

Poorly resolved cell populations are associated with a higher technical variability 
compared to clearly defined cell populations

In order to estimate the technical variability associated with each cell population, we utilized 

multiple vials of cryopreserved PBMC obtained from a single blood donation and repeatedly 

analyzed them with the 10-color flow cytometry panel. A total of 24 repeat runs were 

performed on samples from this ‘control donation’ on various days throughout a 7-month 

period by 3 different operators, and acquired on 4 different cell analyzers. Technical 

variability differed greatly between cell populations, ranging from CV = 12 to 101% (Figure 

1A). Three populations were identified as highly variable (significant higher coefficient of 

variation compared to the other cell populations, Figure 1A): regulatory T cells (Tregs), 

effector memory cells re-expressing CD45RA (Temra) CD4 T cells and Temra CD8 T cells. 

All three populations were previously defined as poorly resolved cell populations (Table I). 
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When separating cell populations according to their resolution sensitivity, poorly resolved 

cell populations were associated with a significant higher technical variation compared to 

clearly defined cell populations (Figure 1B). To assess the extent to which the cell type 

resolution explained the increased technical variability, we examined gating of memory CD8 

T cells, which can be considered either as three distinct poorly resolved cell populations 

(central memory (Tcm), effector memory (Tem) and Temra), or as one clearly defined cell 

population (Figure 1C). Technical variability in total memory CD8 T cells was lower 

compared to Tcm, Tem and Temra CD8 T cells, and of similar level to the clearly defined 

‘naïve CD8 T cells’. (Figure 1D). Thus, the higher technical variability for memory CD8 T 

cell subpopulations is a direct consequence of them being poorly resolved.

Gating approaches influence technical variability of poorly resolved cell populations, but 
other factors dominate beyond that

It is intuitive that poorly resolved populations may be associated with higher technical 

variability when gated by different operators as was done in Figure 1A due to the 

subjectiveness when visually setting a gate for such populations. We were interested in 

assessing the impact of the gating method on the technical variability associated with our 

flow cytometry panel. To do so, we compared the cell frequencies obtained from the same 

set of repeat runs of the control donation using three different gating methods, ranging from 

the most to the least subjective approach: i) individual manual gating (gating done by 

different operators that performed the flow cytometry acquisition as was done for Figure 

1A), ii) centralized manual gating (gating done by one unique operator) and iii) automated 

gating using directed unsupervised clustering using FLOCK as described in Materials and 

Methods. Technical variability of clearly defined cell populations was similar between the 

different gating methods (Figure 1E). However, technical variability of poorly resolved cell 

populations was significantly reduced with centralized manual gating (Tregs, Temra CD4 T 

cells, and Temra CD8 T cells) or automated gating (Tregs and Temra CD8 T cells) compared 

to individual manual gating (Figure 1F). Thus, the gating approach significantly impacts 

technical variability associated with poorly resolved cell populations, and centralized 

manual or automated gating can significantly reduce this technical variability.

Next, we wanted to determine to which extent gating approaches explained the remaining 

variability of cell population frequencies derived from aliquots of the same biological 

sample, versus other technical factors, such as aliquot sample quality, procedures, reagents 

or acquisition parameters (9). We took advantage of having population frequencies generated 

by two independently performed gating approaches on these samples - centralized manual 

gating and automated gating. When correlating the frequencies derived by the two gating 

approaches from the same FCS files, we found high correlations for both clearly defined 

(Figure 1G) and poorly resolved (Figure 1H) populations. This was broadly true for all 

clearly defined cell populations (r2 = 0.4 – 0.9, Figure 1I) and most poorly resolved 

populations (r2 = 0.2 – 0.6, Figure 1J) except for Temra CD4 T cells. Taken together, these 

results suggest that a significant proportion of the technical variability in flow cytometry is 

independent of the gating method used – especially for clearly resolved populations. Rather, 

this variability might be due to differences in samples (i.e. batch to batch variation in 
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cryovials of the control donation), in reagents (i.e. batch to batch variation in antibody lots), 

or in cell analyzer daily performances.

While it is impossible to account and correct for each factor driving technical variability, 

overall we found that less subjective centralized manual gating can significantly reduce 

technical variability. Thus, in the following sections, the technical coefficient of variation 

based on centralized manual gating was chosen as a technical baseline for each cell 

population against which the effect of biological variables can be assessed.

Development of a quality control (QC) score to control for technical variation beyond 
gating

In our HIPC studies, flow cytometry based cell sorting is typically the first step in resource 

intensive experiments such as RNA-Seq or ChIP-Seq. Cell sorts are performed in batches on 

multiple days to process sufficient numbers of donors. To ensure that flow cytometry was 

performed equivalently for different batches, we set out to establish a quality score that 

assesses technical variability between runs using the control donation samples, and provides 

a pass or fail output. We focused the QC score based on the identification of cell populations 

that a) show a normal distribution (p > 0.05 with the D’Agostino and Pearson omnibus 

normality test) and b) have low technical variability (coefficient of variation < 35%) between 

runs. Thirteen out of the 17 cell populations met these thresholds when using centralized 

manual gating (data not shown). Based on the cell frequencies of these 13 cell populations, 

we calculated a quality control score for each of the repeat runs of the control donation 

(Figure 2A). We then provoked fail runs, by modifying either the sample preparation or data 

acquisition parameters. Comparing the quality control scores between the regular repeat 

runs, and the provoked fails, we found that a threshold pass/fail at 10% identified 9 out of 

the 12 provoked fail runs as problematic, while all regular runs had scores above this 

threshold (Figure 2A, 2B). The three provoked fail runs that were associated with a ‘pass’ 

QC score were the refrozen vial, the prolonged staining period at 37°C, and the fixation with 

0.5% PFA (Figure 2A, 2B). Fixation affected cell population frequencies in a PFA dose-

dependent manner: the QC score of the control donation dropped to 17% and 0%, when 

samples were fixed with 0.5% or 4% PFA, respectively (Figure 2A, 2B). Indeed, whereas 

most cell population frequencies remained unchanged (e.g. Monocytes, Figure 2C), the 

staining of some cell populations was significantly affected by the fixation process (e.g. CD8 

T cells, Figure 2D). However, repeat runs of fixed or unfixed samples of the control donation 

generated similar technical variation for each cell population (data not shown).

Interestingly, when using the automated gating method, the provoked fail runs obtained a 

higher quality control score, often greater than the threshold pass/fail (Figure 2B). It appears 

therefore that whereas a human eye can successfully detect and flag missing or fluorescence 

shifted cell populations, the DAFi algorithm for the automated gating which aims to be 

robust to data shifts across samples, is still able to rescue those populations.

In all experiments reported in the following sections, one sample from the control donation 

was included to ensure technical reproducibility between batches of samples. Runs in which 

the samples had a QC score higher than 10%, were considered acceptable and those with 

scores below were considered failing our quality control, and were thus excluded.
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Biological inter-individual variability of cell populations

Following our investigation of technical variation, we assessed inter-individual variability of 

cell populations by analyzing cryopreserved PBMC samples collected from various human 

cohorts with our 10-color flow cytometry panel (total of 176 subjects from San Diego (124), 

Peru (8) and Sri Lanka (44)). For each lymphocyte population, we defined a normal range 

based on the average and 2.5th-97.5th percentiles of cell frequencies obtained with the 

manual centralized gating method (Figure 3 and Table SII). Average frequencies varied 

greatly amongst all major cell populations as well as within T cell subsets (Figure 3 and 

Table SII). The coefficient of variation associated with each cell population also varied 

greatly, ranging from 28.7% to 157% (inter-individual variability, Figure 4A). Temra CD4 T 

cells, CD3hi CD56 T cells and CD3+ CD56 T cells had the highest inter-individual 

variability, significantly higher compared to the other populations. Importantly, for all cell 

populations except Tregs, the biological inter-individual variability was significantly higher 

compared to the technical variability previously calculated (Figure 4A).

Biological intra-individual variability of cell populations

In order to address whether cell population frequencies derived from our flow cytometry 

panel were stable over time in a given individual, we applied the 10-color flow cytometry 

panel on 13 subjects from San Diego for which a second blood sample was collected 3 to 7 

months later (samples named visit 1 and visit 2, respectively). For 6 out of the 17 cell 

populations, the inter-individual variability within the longitudinal cohort at visit 1 was too 

low to be discriminated from the technical variability (fold change difference between inter-

individual and technical variability < 2); these populations were therefore excluded from the 

subsequent analysis. For the remaining 11 populations, there was a very high correlation 

between the frequencies obtained at visit 1 and visit 2 for most cell populations, including 

both clearly defined and poorly resolved cell populations (Figure 4B and 4C). CD8 T cells 

and monocytes were the two populations for which no significant correlation was observed 

between the two visits (Figure 4B and 4D). Both CD8 T cells and monocytes are clearly 

defined cell populations by flow cytometry with two of the three lowest levels of technical 

variability in the control samples (Figure 1A). Thus, their lack of stability over time likely 

reflects immunological perturbations in some of the longitudinal samples between donors. In 

contrast, the other 9 of 11 cell populations that showed differential frequencies across donors 

largely maintained those differences, indicating that they are relatively stable markers of 

blood immune cell composition within each donor.

Age but not gender is an important correlate of inter-individual variability of cell 
populations in our panel

Having observed that for most cell types, inter-individual variability in their abundance in 

the peripheral blood was much greater than either technical variability or longitudinal 

variability across our human cohorts (Figure 4A), we were interested to see whether some of 

this biological variation could be accounted for by demographic variables such as gender 

and age. Amongst the 132 samples from which we had demographics data available (San 

Diego (124) and Peru (8)), there were no significant differences in cell population 

frequencies between male and female using the multiple comparison non-parametric 
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Kruskal-Wallis test (data not shown). More stringently, the frequencies in male vs. females 

of all the assessed cell populations also passed a test for equivalence, meaning that there is 

statistical support to affirm that differences observed are contained within a range expected 

based on technical variability (p<0.05, see methods).

In contrast, there was a striking significant inverse correlation between age and the 

frequency of T cells and CD8 T cells (Figure 5A). Within T cell subsets, age was inversely 

correlated with the frequency of naïve CD4 T cells and naïve CD8 T cells, and positively 

correlated with the frequency of Tcm CD4 T cells, Tcm CD8 T cells and Temra CD8 T cells 

(Figure 5B and 5C). No association between age and CD56 T cell subsets frequencies was 

observed (Figure 5D). Scatter plots for the two strongest age-frequency correlations are 

shown in Figure 5E for naïve CD4 T cells and in Figure 5F for naïve CD8 T cells.

Even after correcting for age and gender, a significant proportion of the inter-individual 

variability still remained above technical variability, indicating that other confounding 

factors are influencing immune cell population frequencies. Across our cohort of samples 

from San Diego, ethnicity was highly diverse (Figure S2A), thus we were interested to see 

whether this factor could explain a proportion of the inter-individual variability. While our 

study was not powered enough to fully dissect the effect of ethnic background on each cell 

population abundance, we found significant differences between ethnicity groups for the 

frequency of major cell types such as T cells and B cells (Figure S2B) as well as CD4 and 

CD8 T cell subsets (Figure S2C, S2D) but not CD56 T cell subsets (Figure S2E). Taken 

together, these results suggest that ethnicity is an important co-variate of blood immune cell 

composition and should therefore be taken into consideration whenever possible in human 

immunophenotyping studies, by ensuring that clinical groups being compared have a 

balanced ethnic composition.

Successful detection of a latent tuberculosis signature in PBMC

Finally, we applied our workflow to a cohort of donors with latent tuberculosis infection 

(LTBI) to check if we could detect a disease signature, even after correction for technical 

and biological variability. LTBI status is typically defined by positivity to IFN-γ release 

assays (IGRA) combined with absence of clinical symptoms of active TB (18). While 

IGRAs are associated with a relative good sensitivity (>75%), they require an in vitro 
stimulation step that increases the result variability and complicates logistics (19). An ex 
vivo immune signature specific of LTBI would facilitate diagnosis, but there is no evidence 

that LTBI and non-TB infected donors can be differentiated solely based on their ex vivo 
PBMC immune profile. We focused our analysis on the comparison of cell frequencies in 

PBMC obtained from 29 healthy controls (San Diego) and 31 individuals with LTBI 

(IGRA+) from two different geographic locations (San Diego (n=23) and Peru (n=8)). First, 

we confirmed that biological differences could be detected in our study by ensuring that the 

biological variability within our combined cohorts was above technical variability. Tregs was 

the only population for which inter-individual variability was not significantly higher than 

technical variability (p > 0.05 with a multiple comparison t-test), and was thus excluded 

from the subsequent analysis. Next, looking at demographics, we found that the LTBI cohort 

was significantly older than healthy controls (median age (range) of 31(19–60) and 43(20–
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65) for healthy controls and LTBI donors, respectively; p < 0.05 with the non-parametric 

Man-Whitney test), indicating the need to take in consideration this co-factor in our 

statistical analysis. After age correction, we found that individuals with latent tuberculosis 

infection were associated with a lower frequency of CD8 T cells, and a higher frequency of 

B cells compared to healthy controls (Figure 6A). No significant differences in CD56 T cell 

subsets and CD8 T cells frequencies were observed between the two cohorts (Figure 6B and 

6D). However, within CD4 T cell subsets, individuals with latent tuberculosis infection had a 

lower frequency of naïve CD4 T cells compared to healthy controls (Figure 6C).

Discussion

Standardization of flow cytometry data acquisition and analysis is critical to ensure quality 

and reproducibility of large-scale human immunology studies. Previous studies have aimed 

at reducing technical variability by optimizing and standardizing reagents, protocols and 

data analysis for pre-designed panels (7, 9–13, 20) but none established a universal 

workflow that could be applied to any flow cytometry experiment. Furthermore, previous 

studies did not simultaneously assess the effect of technical variability on cell populations 

along with biological variability due to demographic co-factors. Here, we report on the 

development of a re-usable workflow to control for both technical and biological variation in 

flow cytometry. We applied this workflow to evaluate a customized panel measuring the 

frequency of 17 immune cell populations within cryopreserved human PBMC of major 

interest to our studies. We quantified the technical variation associated with each cell 

population by repeatedly applying this panel to PBMC samples obtained from the same 

control donation and comparing different analysis strategies and developing a quality control 

metric. In addition, we also studied the biological variability associated with our cell 

populations in different individuals and in a given individual over time, as well as the 

influence of demographics. Finally, we illustrated the usefulness of our approach by 

identifying a disease signature in volunteers infected with latent tuberculosis.

Technical variation differed greatly between cell populations identified in our panel. As 

expected, poorly resolved cell populations were associated with higher technical variability 

compared to clearly resolved cell populations. This is explained by the expression profile of 

our markers used for phenotyping that is either continuous (e.g. Tcm and Tem T cells) or 

dimly expressed (e.g. Tregs) in poorly resolved cell populations. Technical variability 

associated with those cell populations can be improved by using less subjective gating 

strategies (see paragraph below) or by choosing alternative markers to define the cell 

population (e.g. the inclusion of markers such as FoxP3 to more clearly separate the Treg 

population).

Our standard flow cytometry protocol for HIPC does not include cell fixation, as we are 

usually sorting cell populations for downstream transcriptomic analyses. However, some 

clinical immunophenotyping studies might require sample fixation, for instance if no 

acquisition is possible right away, or if the samples are considered infectious. Here we show 

that fixation significantly affect the staining of some cell populations and thus their 

frequencies, and that this effect is dependent on the concentration of PFA used. This 

observation reflects variable degree of sensitivity of fluorochromes and antibody clones to 
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paraformaldehyde. Thus, the choice of antibodies and dilutions need to be carefully 

optimized for each given panel and staining protocol. For instance, the normal range 

reported here should only be used as a guideline when samples have been stained under 

similar conditions. Nevertheless, fixed repeat runs of the control donation generated similar 

technical variation compared to unfixed repeat runs, validating that our methodological 

framework can also be applied to flow cytometric experiments requiring sample fixation.

Our study compared three gating approaches: individual manual gating, centralized manual 

gating and automated gating. We found that for cell populations that are clearly resolved, all 

three approaches had a high degree of concordance and all can equally be applied. In 

contrast, individual manual gating proved to be problematic when applied to cell populations 

that are poorly resolved. Centralized manual gating and automated gating methods both 

significantly reduced technical variability of poorly resolved cell populations, which is in 

concordance with previous reports (7, 10). Comparing the technical variability achieved with 

centralized manual and automated gating, the two performed comparably except when 

applied to the poorly resolved and comparatively low frequency Temra CD4 T cell 

population. The automated gating pipeline, which requires the detected cell populations to 

either follow a predefined distribution model or form a data cluster with relatively abundant 

number of events, could not reliably detect this cell population. This highlights the need to 

verify robustness of automated gating pipelines to detect cell populations of interest before 

blindly accepting their output.

Relative abundance and inter-individual variability of each cell population differed widely 

between cell subsets. Our data allowed us to define an expected ‘normal range’ in human 

peripheral blood for the 17 immune cell populations derived from our panel. This normal 

range can be of use for any researcher interested in those same cell populations, in order to 

flag any technical issues associated with a given flow cytometry panel or acquisition 

workflow (e.g. use of wrong antibody clone or poor instrument laser efficiency) as well as to 

identify biological outliers within a large set of samples.

Remarkably, despite being associated with significant biological inter-individual variability, 

we found that within each individual, most lymphocyte populations have surprisingly stable 

frequencies over time. This confirms previous findings (4, 15), and suggests that the relative 

abundance of most lymphocyte subsets in an individual over a period of at least several 

months is an intrinsic feature of the individual, presumably regulated by invariant factors 

such as genetic background and infrequent immunological events with major impact that 

shape the individuals immune history. The observation that most lymphocyte populations 

display such low intra-individual variability, including poorly resolved and low frequency 

cell populations such as CD3+ CD56 T cells, reinforces the conclusion that important 

biological differences between individuals can reliably be detected using our flow cytometry 

panel.

The highest intra-individual variability of cell subsets over time was observed for monocytes 

and CD8 T cells. Monocytes might be more susceptible to minor immunological 

perturbations as they are known to be the first line of defense upon antigen exposure, and 

have a strong ability to migrate from the blood to a site of infection (21). Thus, it is likely 
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that their relative abundance in the peripheral blood fluctuates over time depending on the 

recent antigenic load being experienced by the individual in a given point of time. For CD8 

T cells, the low correlation observed between the two visits was driven by two subjects for 

which CD8 T cell frequencies dramatically increased at visit 2. It is possible that these two 

subjects contracted a minor infectious disease or inflammatory process between the two 

visits that perturbed the CD8 frequency in these individuals specifically. Larger panels of 

donors with longitudinal samples would be necessary to follow up these findings.

For each immune cell population identified with our panel, the comparison of the technical 

variability with its biological variability provides an estimate on how many samples will be 

required to detect significant differences between groups of samples with an effect size 

similar to the normal biological variation. We found marked differences amongst cell 

populations, with some having a high ratio of biological over technical variability (e.g. 

CD56 T cell subsets) vs. others for which a much greater number of samples will be 

necessary to be sufficiently powered to overcome technical variability (e.g. Tregs, for which 

our data would alternatively recommend utilizing a different staining panel). Additionally, 

depending on the study design, different sources of variability have to be taken into account. 

Because the intra-individual variability is relatively low for most cell populations, in a study 

comparing paired samples from the same donor cohort pre- and post perturbation, the 

technical variability of cell population detection becomes the dominant source of noise. In 

contrast, when samples from different groups of donors are compared, the much larger 

biological variability between donors has to be considered – which can easily lead to 

erroneous results if the donor cohort sizes are not sufficiently large.

Genetic heritability account for less than 50% of the immune system variation amongst 

humans, suggesting that other non-genetic factors (such as age and exposures) might be 

critical in explaining the remaining variability (22, 23). Interestingly, we found that while 

gender had no impact on our immune cell population frequencies, age was strongly 

associated with changes in the cellular immune composition of human peripheral blood. In 

particular, older individuals were characterized by a striking loss of naïve CD4 and CD8 T 

cells, which is in concordance with previous reports looking at circulating T cell subsets in 

young and elderly populations (24, 25). These results also corroborate a recent large-scale 

study that highlighted the importance of non-genetic factors such as age but not gender on 

the cellular composition of the circulating human immune system (15).

Additionally, we were able to examine the influence of ethnic background on lymphocyte 

subsets frequencies. Our results strongly suggest that ethnicity can be an important factor 

driving variation in the cellular immune composition of human peripheral blood. This 

proposal is also supported by previous studies reporting both qualitative and quantitative 

differences in the immune response to infection or vaccination in human cohorts of different 

ethnicities (26–28). Although the exact cause underlying those observations remain 

uncertain, the diversity in genetic background, microbiome communities, environmental 

exposures, and social differences are likely to be driving human immune variation between 

ethnicities. Another factor often related to ethnicity and important to take in consideration is 

the geographical location of the human subjects. Indeed, distinct geographic locations might 

indicate exposure to different microorganisms, resulting in different shaping of the immune 
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system. Hence two individuals with the same ethnicity but living in different locations might 

have completely separate immune profiles.

Taken together, our results and those from previous reports highlight the critical importance 

in clinical immunophenotyping studies to take into consideration non-genetic features that 

are known or suspected to drive immune variability, by recruiting matching disease and 

healthy cohorts, or correcting for those differences between groups when performing data 

analysis.

Finally, our flow cytometry panel allowed us to identify a specific signature of latent 

tuberculosis infection. Previous T cell immunophenotyping studies have successfully 

discriminated active TB from latent TB or from non-TB infected individuals (29–31). 

However, the distinction between latent TB and non-TB infected subjects based solely on 

their PBMC profile has not been reported yet. Here we show that after controlling for 

technical variation and age, individuals with latent tuberculosis had a lower frequency of 

CD8 T cells, naïve CD4 T cells and a higher frequency of B cells, compared to TB negative 

subjects. We thus provide primary evidence that ex vivo immune signatures in PBMC can 

discriminate between LTBI and non-TB infected donors, which could potentially be applied 

as an additional tool to IGRAs for improving the specificity of LTBI diagnosis. Recent 

studies have also shown differences in whole blood cell counts of infants and adults with 

various TB status (32, 33). Specifically, a high monocyte/lymphocyte ratio was associated 

with an increased risk of developing active TB (32, 33). Thus, we predict that combining 

whole blood counts to our newly defined ex vivo PBMC signature of LTBI will improve its 

discriminatory power.

Overall, our study indicates that controlling for both technical and biological variability is 

crucial to appropriately design and power human immunology studies. Our findings can be 

directly applied to any flow cytometry study examining cell populations identified with our 

panel. In addition, we provide with a universal workflow for how to develop and evaluate 

pre-existing or new flow cytometry panels for large-scale immunology studies.
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Acknowledgments

Research reported in this manuscript was supported by NIAID of the National Institutes of Health under award 
numbers U19AI118626 and R24AI108564. The content is solely the responsibility of the authors and does not 
necessarily represent the official views of the National Institutes of Health.

We thank the National Blood Center, Ministry of Health, Colombo, Sri Lanka for providing buffy coat samples used 
in this study.

References

1. Baumgarth N, Roederer M. A practical approach to multicolor flow cytometry for 
immunophenotyping. J Immunol Methods. 2000; 243:77–97. [PubMed: 10986408] 

2. Chattopadhyay PK, Hogerkorp CM, Roederer M. A chromatic explosion: the development and 
future of multiparameter flow cytometry. Immunology. 2008; 125:441–449. [PubMed: 19137647] 

Burel et al. Page 14

J Immunol. Author manuscript; available in PMC 2018 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, Lederman MM, Benito 
JM, Goepfert PA, Connors M, et al. HIV nonprogressors preferentially maintain highly functional 
HIV-specific CD8+ T cells. Blood. 2006; 107:4781–4789. [PubMed: 16467198] 

4. Tsang JS, Schwartzberg PL, Kotliarov Y, Biancotto A, Xie Z, Germain RN, Wang E, Olnes MJ, 
Narayanan M, Golding H, et al. Global analyses of human immune variation reveal baseline 
predictors of postvaccination responses. Cell. 2014; 157:499–513. [PubMed: 24725414] 

5. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, Hoff ST, Andersen P, Reed 
SG, Morris SL, et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection 
against Leishmania major. Nat Med. 2007; 13:843–850. [PubMed: 17558415] 

6. Burel JG, Apte SH, Doolan DL. Systems Approaches towards Molecular Profiling of Human 
Immunity. Trends Immunol. 2016; 37:53–67. [PubMed: 26669258] 

7. Maecker HT, Rinfret A, D’Souza P, Darden J, Roig E, Landry C, Hayes P, Birungi J, Anzala O, 
Garcia M, et al. Standardization of cytokine flow cytometry assays. BMC Immunol. 2005; 6:13. 
[PubMed: 15978127] 

8. Saeys Y, Gassen SV, Lambrecht BN. Computational flow cytometry: helping to make sense of high-
dimensional immunology data. Nat Rev Immunol. 2016; 16:449–462. [PubMed: 27320317] 

9. Maecker HT, McCoy JP, Nussenblatt R. Standardizing immunophenotyping for the Human 
Immunology Project. Nat Rev Immunol. 2012; 12:191–200. [PubMed: 22343568] 

10. Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y, Raddassi K, Devine L, 
Obermoser G, Pekalski ML, et al. Standardizing Flow Cytometry Immunophenotyping Analysis 
from the Human ImmunoPhenotyping Consortium. Sci Rep. 2016; 6:20686. [PubMed: 26861911] 

11. Kalina T, Flores-Montero J, van der Velden VH, Martin-Ayuso M, Bottcher S, Ritgen M, Almeida 
J, Lhermitte L, Asnafi V, Mendonca A, et al. EuroFlow standardization of flow cytometer 
instrument settings and immunophenotyping protocols. Leukemia. 2012; 26:1986–2010. [PubMed: 
22948490] 

12. Streitz M, Miloud T, Kapinsky M, Reed MR, Magari R, Geissler EK, Hutchinson JA, Vogt K, 
Schlickeiser S, Kverneland AH, et al. Standardization of whole blood immune phenotype 
monitoring for clinical trials: panels and methods from the ONE study. Transplant Res. 2013; 2:17. 
[PubMed: 24160259] 

13. Perfetto SP, Ambrozak D, Nguyen R, Chattopadhyay PK, Roederer M. Quality assurance for 
polychromatic flow cytometry using a suite of calibration beads. Nat Protoc. 2012; 7:2067–2079. 
[PubMed: 23138348] 

14. Aghaeepour N, Finak G, Flow CAPC, Hoos H, Mosmann TR, Brinkman R, Gottardo R, 
Scheuermann RH. Consortium D. Critical assessment of automated flow cytometry data analysis 
techniques. Nat Methods. 2013; 10:228–238. [PubMed: 23396282] 

15. Carr EJ, Dooley J, Garcia-Perez JE, Lagou V, Lee JC, Wouters C, Meyts I, Goris A, Boeckxstaens 
G, Linterman MA, et al. The cellular composition of the human immune system is shaped by age 
and cohabitation. Nat Immunol. 2016; 17:461–468. [PubMed: 26878114] 

16. Poland GA, Quill H, Togias A. Understanding the human immune system in the 21st century: the 
Human Immunology Project Consortium. Vaccine. 2013; 31:2911–2912. [PubMed: 23648045] 

17. Qian Y, Wei C, Eun-Hyung Lee F, Campbell J, Halliley J, Lee JA, Cai J, Kong YM, Sadat E, 
Thomson E, et al. Elucidation of seventeen human peripheral blood B-cell subsets and 
quantification of the tetanus response using a density-based method for the automated 
identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin 
Cytom. 2010; 78(Suppl 1):S69–82. [PubMed: 20839340] 

18. Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, Ginsberg A, Swaminathan S, 
Spigelman M, Getahun H, et al. Tuberculosis. Nat Rev Dis Primers. 2016; 2:16076. [PubMed: 
27784885] 

19. Petruccioli E, Scriba TJ, Petrone L, Hatherill M, Cirillo DM, Joosten SA, Ottenhoff TH, Denkinger 
CM, Goletti D. Correlates of tuberculosis risk: predictive biomarkers for progression to active 
tuberculosis. Eur Respir J. 2016

20. Kalina T, Flores-Montero J, Lecrevisse Q, Pedreira CE, van der Velden VH, Novakova M, 
Mejstrikova E, Hrusak O, Bottcher S, Karsch D, et al. Quality assessment program for EuroFlow 

Burel et al. Page 15

J Immunol. Author manuscript; available in PMC 2018 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protocols: summary results of four-year (2010–2013) quality assurance rounds. Cytometry A. 
2015; 87:145–156. [PubMed: 25345353] 

21. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 
2011; 11:762–774. [PubMed: 21984070] 

22. Brodin P, Jojic V, Gao T, Bhattacharya S, Angel CJ, Furman D, Shen-Orr S, Dekker CL, Swan GE, 
Butte AJ, et al. Variation in the human immune system is largely driven by non-heritable 
influences. Cell. 2015; 160:37–47. [PubMed: 25594173] 

23. Orru V, Steri M, Sole G, Sidore C, Virdis F, Dei M, Lai S, Zoledziewska M, Busonero F, Mulas A, 
et al. Genetic variants regulating immune cell levels in health and disease. Cell. 2013; 155:242–
256. [PubMed: 24074872] 

24. Fagnoni FF, Vescovini R, Passeri G, Bologna G, Pedrazzoni M, Lavagetto G, Casti A, Franceschi 
C, Passeri M, Sansoni P. Shortage of circulating naive CD8(+) T cells provides new insights on 
immunodeficiency in aging. Blood. 2000; 95:2860–2868. [PubMed: 10779432] 

25. Lazuardi L, Jenewein B, Wolf AM, Pfister G, Tzankov A, Grubeck-Loebenstein B. Age-related 
loss of naive T cells and dysregulation of T-cell/B-cell interactions in human lymph nodes. 
Immunology. 2005; 114:37–43. [PubMed: 15606793] 

26. Coussens AK, Wilkinson RJ, Nikolayevskyy V, Elkington PT, Hanifa Y, Islam K, Timms PM, 
Bothamley GH, Claxton AP, Packe GE, et al. Ethnic variation in inflammatory profile in 
tuberculosis. PLoS Pathog. 2013; 9:e1003468. [PubMed: 23853590] 

27. Haralambieva IH, Ovsyannikova IG, Kennedy RB, Larrabee BR, Shane Pankratz V, Poland GA. 
Race and sex-based differences in cytokine immune responses to smallpox vaccine in healthy 
individuals. Hum Immunol. 2013; 74:1263–1266. [PubMed: 23806267] 

28. Haralambieva IH, Salk HM, Lambert ND, Ovsyannikova IG, Kennedy RB, Warner ND, Pankratz 
VS, Poland GA. Associations between race, sex and immune response variations to rubella 
vaccination in two independent cohorts. Vaccine. 2014; 32:1946–1953. [PubMed: 24530932] 

29. Harari A, Rozot V, Bellutti Enders F, Perreau M, Stalder JM, Nicod LP, Cavassini M, Calandra T, 
Blanchet CL, Jaton K, et al. Dominant TNF-alpha+ Mycobacterium tuberculosis-specific CD4+ T 
cell responses discriminate between latent infection and active disease. Nat Med. 2011; 17:372–
376. [PubMed: 21336285] 

30. Arlehamn CL, Seumois G, Gerasimova A, Huang C, Fu Z, Yue X, Sette A, Vijayanand P, Peters B. 
Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional 
features. J Immunol. 2014; 193:2931–2940. [PubMed: 25092889] 

31. Yang Q, Xu Q, Chen Q, Li J, Zhang M, Cai Y, Liu H, Zhou Y, Deng G, Deng Q, et al. 
Discriminating Active Tuberculosis from Latent Tuberculosis Infection by flow cytometric 
measurement of CD161-expressing T cells. Sci Rep. 2015; 5:17918. [PubMed: 26643453] 

32. Naranbhai V, Kim S, Fletcher H, Cotton MF, Violari A, Mitchell C, Nachman S, McSherry G, 
McShane H, Hill AV, et al. The association between the ratio of monocytes:lymphocytes at age 3 
months and risk of tuberculosis (TB) in the first two years of life. BMC Med. 2014; 12:120. 
[PubMed: 25034889] 

33. Rakotosamimanana N, Richard V, Raharimanga V, Gicquel B, Doherty TM, Zumla A, Rasolofo 
Razanamparany V. Biomarkers for risk of developing active tuberculosis in contacts of TB 
patients: a prospective cohort study. Eur Respir J. 2015; 46:1095–1103. [PubMed: 26250497] 

Burel et al. Page 16

J Immunol. Author manuscript; available in PMC 2018 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Assessment of technical variability within lymphocyte populations using a control 
donation
Cell frequencies were determined with the 10-color flow cytometry panel on 24 repeat runs 

of cryopreserved PBMC derived from a single blood donation of a control donor. (A) 

Technical variability of each lymphocyte population obtained with the individual manual 

gating method. (B) Technical variability of clearly defined (black) and poorly resolved 

(blue) cell populations obtained with the individual manual gating method. (C) 

Representative staining and (D) technical variability of CD8 T cell subset frequencies 

obtained with the individual manual gating method. Comparison between technical 

variability of (E) clearly defined or (F) poorly resolved cell populations frequency obtained 

with individual manual gating, centralized manual gating or automated gating. Linear 

regression of cell frequencies obtained with centralized manual gating or automated gating 

for (G) CD4 T cells, (H) Tem CD8 T cells, (I) clearly defined or (J) poorly resolved 

lymphocyte populations. Technical variability between individual cell populations was 

compared with ordinary one-way ANOVA test; technical variability between clearly 

resolved and poorly defined cell populations and between each gating method was compared 

with the non-parametric Mann-Whitney test. * p < 0.05, ** p < 0.01.
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Figure 2. Development of a quality control score to evaluate and correct for technical variation 
between experiment runs
Cell frequencies were determined with the 10-color flow cytometry panel and the centralized 

manual gating method on 24 repeat runs or 10 provoked fail runs of cryopreserved PBMC 

derived from a single blood donation of a control donor. Quality control (QC) score was 

calculated based on the deviation from average for each of the normally distributed 

lymphocyte populations and 10% defined as the pass/fail threshold. (A) Quality control 

score obtained with normal repeat runs (black) or provoked fail runs (blue). (B) Detailed 

protocol and associated QC score for each provoked fail run. Effect of fixation with 

paraformaldehyde (PFA) on the frequency of (C) monocytes and (D) CD8 T cells, from 

three independent repeat runs of the control donation.
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Figure 3. Normal range of lymphocyte populations frequencies within humans
Cell frequencies were determined with the 10-color flow cytometry panel and centralized 

manual gating on cryopreserved PBMC samples obtained from 176 human subjects. Box 

plots represent average and normal range (2.5th–97.5th percentiles) of (A) Major cell subsets, 

(B) CD4 T cell subsets, (C) CD8 T cell subsets, and (D) CD56 T cell subsets.
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Figure 4. Inter-individual and intra-individual variability of lymphocyte populations frequencies 
within humans
Cell frequencies were determined with the 10-color flow cytometry panel and centralized 

manual gating on cryopreserved PBMC samples obtained from 176 human subjects. (A) 

Comparison between technical variability calculated in Figure 2 (blue) and inter-individual 

variability (black). Linear regression of (B) lymphocyte subset frequencies, (C) naïve CD4 T 

cell frequencies, (D) CD8 T cell frequencies and monocyte frequencies obtained between 

two longitudinal samples for 13 healthy human subjects. Visit 2 ranged from 114 to 194 

days following visit 1. Inter-individual variability between cell populations was compared 

with ordinary one-way ANOVA test. Inter-individual and technical variability for each cell 

population were compared with multiple comparison t test. * p < 0.05, # p >0.05.
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Figure 5. Demographic correlates of biological variability of lymphocyte populations frequencies
Cell frequencies were determined with the 10-color flow cytometry panel and centralized 

manual gating on cryopreserved PBMC samples obtained from 132 human subjects. Pearson 

correlation coefficient between age and the frequency of (A) major cell subsets, (B) CD4 T 

cell subsets, (C) CD8 T cell subsets and (D) CD56 T cell subsets, (E) naïve CD4 T cells and 

(F) naïve CD8 T cells. P values were corrected for multiple testing. * p < 0.05.

Burel et al. Page 21

J Immunol. Author manuscript; available in PMC 2018 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Identification of a latent tuberculosis signature within PBMCs
Cell frequencies were determined with the 10-color flow cytometry panel and centralized 

manual gating on cryopreserved PBMC samples obtained from 31 subjects with latent 

tuberculosis and 29 tuberculosis negative subjects. Differences in the frequency of (A) major 

lymphocyte subsets, (B) CD56 T cell subsets, (C) CD4 T cell subsets and (D) CD8 T cell 

subsets between latent TB donors and healthy subjects, determined by multilinear regression 

analysis with age as a co-variate and multiple testing correction. * p<0.05, ** p < 0.01.
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