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Abstract

Multi-target pharmacology of small molecule cancer drugs significantly contributes to their 

mechanism of action, side effects, emergence of drug resistance, and opens ways to repurpose, 

combine or customize drug therapy. In most cases the set of targets affected at therapeutic 

concentrations is not fully characterized and/or the interaction efficacy values are not accurately 

quantified. We collected information about multiple targets for each cancer drug along with their 

experimental effective concentrations or binding activities from multiple sources. All multi-target 

activity values for each drug then were used to build two proximity network pharmacology maps 

of anti-cancer drugs and targets of those drugs, respectively. Together with the network map, we 

showed that the majority of the cancer drugs had substantial multi-target pharmacology based on 

our current knowledge. In addition, most of the cancer drugs simultaneously affect 

macromolecular targets from different classes and types. The target subset can further be 

accentuated and personalized by patient sample specific expression data. The network maps of 

cancer drugs and targets, as well as all quantified activity data were integrated into a freely 

available database, CancerDrugMap (http://ruben.ucsd.edu/dnet/maps/drugnet.html). The 

identified multi-target pharmacology of cancer drugs is essential for improving the efficacy of 

individually prescribed drugs and drug combinations and minimization of adverse effects.
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Introduction

Cancer remains an unsolved healthcare challenge which involves multiple hallmarks, 

pathways, and individual targets1. Despite the significant progress in drug discovery in 

recent years, the problem remains unsolved due to the diversity of cancer types/subtypes, 

limited efficacy, excessive toxicity, and acquired treatment resistance2. Further 

complications come from the apparent failure of the “one gene, one drug, one disease” 

paradigm when applied to cancer3. For example, cancer cells may have salvage or 

compensatory pathways counteracting the intended drug mechanism3, 4. In addition, even 

though a small molecule drug may be designed to be specific to the “primary” target, in 

reality the drug and its metabolites will typically manifest multiple “off-target” activities 

which can be beneficial, adverse, or neutral5, 6. Therefore, multi-target pharmacology of 

drugs needs to be taken into consideration and characterized and quantified. On one hand, 

exploring multi-target pharmacology of existing drugs can help to identify the potential side 

effects of drugs and repurpose existing drugs for new cancer types. On the other hand, 

relevant and efficacious drug combinations can be proposed if multi-target pharmacology is 

taken into consideration.

Currently, there are several databases, such DrugBank7, Therapeutic Target Database 

(TTD)8, ChEMBL9, PubChem10, BindingDB11, and SuperTarget12, that contain the drug-

target information. The data on multiple target activities of each drug is a big step forward. 

However, none of those databases alone is both complete and quantitative. These data, 

whether complete or not, can be transformed into networks of drugs and their targets. 

Building network maps of drugs and targets based on the complex interaction of multiple 

drugs and multiple targets is quite challenging. Several attempts have been made to show the 

complex interaction by: 1) connecting drugs with shared targets to form drug maps; 2) 

connecting targets with shared drugs to form target maps; 3) connecting drugs and targets to 

form drug-target bipartite maps13–17. However, these maps are both too complex and highly 

variable because the data sources may be inconsistent, the list of drug-target interactions 

keeps growing, and the considerations for quantitative contribution or threshold for each 

edge may be missing or oversimplified.
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Here we analyzed the multi-target properties of cancer drugs and generated comprehensive 

network pharmacology maps of cancer drugs and targets. We extended and updated target 

lists for all cancer drugs from various sources and quantified them according to the drug-

target binding activity values. The resulting network pharmacology maps of cancer drugs 

and targets, CancerDrugMap (http://ruben.ucsd.edu/dnet/maps/drugnet.html), revealed a 

higher than expected level of multi-target pharmacology of small molecule drugs, most of 

which even have targets from different classes. The compiled dataset and maps may be 

helpful to understand the complexity and difference of pharmacological effects of related 

drugs, repurpose the drugs for specific patient profiles or develop better drug combinations.

Methods and Materials

Data collection

Drugs in CancerDrugMap were taken from the following sources: 1) drugs with WHO 

Anatomical Therapeutic Chemical (ATC) code starting with L01, namely antineoplastic 

agents; 2) drugs included in the NCI cancer drug list (accessed August 24th, 2018) which 

have direct antineoplastic effects. Drugs taken from the NCI website may have ATC codes 

other than L01. For each anti-cancer drug, its target-interaction data were extracted and 

combined mainly from ChEMBL and PubChem, where the data annotated as “inactive” 

were excluded. For 101 out of 237 cancer drugs, the drug-target pairs were further extended 

from the following sources: 1) research publications (67 drugs); 2) FDA drug related 

documents (30 drugs); 3) European Medicines Agency (EMA) drug reviews (3 drugs); 4) 

product monograph from the manufacturers (e.g. Dabrafenib); 5) books (e.g. Catumaxomab 

and Daunorubicin); and 6) US Patents from Google Patent Database (e.g. Alemtuzumab). 

The drug-target interaction values were transformed into a unified value like pChEMBL 

(referred to as pAct) which is the logarithmic value of binding/inhibition affinities (Kd/Ki) 

or half maximal effective/inhibition concentration (EC50/IC50), shown by the following 

equation18; the maximal pAct was taken if multiple pAct values were found.

pAct = − log10(min(Kd, Ki, EC50, IC50))

Some drug-target interaction data in ChEMBL and PubChem were annotated as 

“inconclusive”, meaning that more experiments might be needed to validate those 

interactions. These annotations were kept and used if no “active” interactions were reported. 

For the DNA/RNA targeting drugs, their targets were named based on the mode of action. 

For example, NA_ALK denotes the target of alkylating agents. NA_TEM denotes the target 

of nucleoside analog cancer drugs which act as terminators of DNA replication or RNA 

transcription. NA_ICL denotes the target of drugs that can intercalate into DNA/RNA and 

inhibit the replication or transcription. NA_NCB denotes the target of drugs that bind to 

DNA/RNA through non-covalent interaction. For each cancer drug, apart from target 

binding activities, we also estimated its number of occurrences from the FDA adverse event 

reporting system (FAERS)19 and collected the first FDA approval dates. The FAERS 

database was pre-processed to standardize the data structure, to homogenize the field names 

and contents, and to translate diverse set of alternative drug names into their generic names 
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as described previously20. In addition, we incorporated the endogenous transporter, carrier, 

and enzyme information for each cancer drug from DrugBank. We also extracted the 

RNAseq gene expression data of each target from 1019 cancer cell lines from Cancer Cell 

Line Encyclopedia (CCLE)21. The target identifiers were translated into gene names, and 

their expression values from individual cell lines were additionally averaged per tissue type.

Distance calculation between cancer drugs

Based on the target binding activities of all cancer drugs, we built a distance function to 

calculate the dissimilarities between drugs. First, a 237 (drugs) by 783 (targets) matrix was 

built. A row in the matrix represents a drug, while a column represents a target. The matrix 

element Mik corresponds to the binding activity of drug i and target k, shown as the pAct 

form (e.g. 8 in the matrix means the binding activity is 10 nM). We subtracted the baseline 

of 5 from all non-zero matrix elements, and set negative elements to zero. Therefore, a zero 

element Mik in Matrix 1 means that drug i is not known to bind to target k or the interaction 

between drug i and target k is too weak.

Second, based on the matrix M values, distances between drugs (i and j) were calculated 

according to equations (1), (2), and (3). The overall distance between two drugs is 

comprised of two parts: distance calculated from target’s binding similarity (Dbinding) and 

distance calculated from ATC codes of drugs (DATC) as the length of minimal dendrogram 

path between two drugs divided by the maximal dendrogram path length (e.g. distance 

between “L-01-A-A-01” and “L-01-A-B-02” is 0.4). The distances between drugs range 

from 0 to 1, where 0 means identical and 1 means totally different.

Dij
drug = 0.5 × Dij

binding + 0.5 × Dij
ATC (1)

Dij
binding = 1 − Mi ⋅ Mj

Mi ‖Mj‖
(2)

Distance calculation between drug targets

Similar to the drug distance definition, distances between drug targets were calculated from 

two parts, distance calculated based on drug binding similarity (Dbinding), and distance 

calculated based on Gene Ontology (GO)22similarity (DGO), see equation 3. To calculate the 

Dbinding, the previous 237 by 783 drug target matrix was transposed, so that a row Mi 

represents a target i. The matrix element Mik corresponds to the binding activity of target i 
and drug k. Similarly, the baseline of five was subtracted from all non-zero matrix elements.

Following the established un-weighted vector-based distance function23–26, the GO distance 

was calculated for 783 targets on the basis of a GO terms matrix (783 by 5938). The GO 

terms of each drug target were extracted from the UniProt database27. A binary GO term 

matrix was built, in which a row in the matrix denotes a target, while a column denotes a GO 

term. Matrix element Mik shows whether the target i contain the GO term j or not by 1 and 

0, respectively.
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With those two matrices and the following equations (3) to (5), distances between pairs of 

targets were calculated. The distance ranges from 0 to 1, where small distance means that 

two targets are similar in terms of drug binding and GO annotation.

Dij
target = 0.5 × Dij

binding + 0.5 × Dij
GO, (3)

where

Dij
binding = 1 − Mi ⋅ Mj

Mi ‖Mj‖
(4)

Dij
GO = 1 − Mi ⋅ Mj

Mi ‖Mj‖
(5)

Network map generation

The drug network, target network, and target expression network were generated with the 

Graphviz package, including the Neato tool28 based on the calculated distances between 

drugs and targets. The maps are comprised of nodes and edges. Nodes in drug and target 

maps represent cancer drugs and drug targets respectively. The node sizes and node outline 

thicknesses in drug and target maps were calculated from drug-target interaction data with 

equations shown in Table 1. Edges were generated to connect drugs or targets within the 

distance thresholds (0.28 for cancer drug map, 0.35 for drug target map), which were 

selected to make the maps compact, visible, and clear. To compare the different distance 

functions, we also generated the drug and target maps solely based on drug-target interaction 

data to stress the pharmacological similarities between drugs and targets. We also generated 

network target maps with their expression levels in each cancer cell lines and tissues. In the 

target expression network maps, the sizes and opacity values of nodes corresponded to their 

expression level in the cell line or tissue, which were calculated according to the equations 

in Table 1.

Drug and target classification and statistics

All cancer drugs were classified into nine classes based on their ATC codes, as L01A, L01B, 

L01C, L01D, L01X, L02, L03, L04, and other codes (A, B…). For the drug target statistics, 

the L01X class was further divided into L01XC, L01XE, and other L01X (L01XA, 

L01XX…). All targets were classified into nine classes. The first six classes include kinases, 

other enzymes, nuclear receptors, G-protein coupled receptors (GPCR), transporters, and 

nucleic acids. If a target doesn’t belong to any of those classes, it was classified based on its 

principal location: membrane, nucleus, or other. The distributions of targets per drug and 

drugs per target in each class were generated as box-whisker plots with GraphPad Prism 

7.01.
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Cross-class targeting statistics

For each class of targets, cancer drugs binding to a member of the target class with activities 

pAct higher than 5 were considered as drugs binding to the target class. For two target 

classes, the overlaps of their drug sets were calculated as the fraction of the size of the 

intersection of two drug sets over the size of the smaller set.

Results

Multi-target pharmacology has been found for most of the cancer drugs

A list of 237 cancer drugs was obtained from the drugs with Anatomical Therapeutic 

Chemical (ATC) code L01 and in the NCI cancer drug list29. The drug-target interaction data 

were collected from eight different sources, quantified, and converted to the uniform pAct (-

Log(molar concentration)) values (See Methods). To reduce the noise of low activity drug-

target interaction, targets with binding activity (pAct) lower than 5 were not included. 

Almost half of the cancer drugs fall into the category L01X, which contains antibodies 

(L01XC), kinase inhibitors (L01XE), etc. In addition, about 17% of cancer drugs are not 

classified into the L01 (antineoplastic) category, meaning that those drugs are mainly used 

for some other diseases, but they also show anticancer effects (Fig. 1a). Target-wise, only 

27% of the drugs, typically biologics/antibodies, have only one characterized target. The 

majority of cancer drugs are known to have multiple targets. Nearly half of the known 

cancer drug targets are kinases, due to the fact that most kinase inhibitors (ATC code: 

L01XE) have been tested against the other kinases.

The number of targets per drug in each class is shown in Fig 2. To focus on significant drug-

target interaction, we only counted the drug-target pairs with binding activities better than 

10μM (pAct higher than 5). The majority of the cancer drugs have two or more known 

targets, in particular after the antibodies (L01XC) and biologics are excluded. Drugs in the 

L01XE class (protein kinase inhibitors) have many more known targets than other classes. 

Most of the drugs in the L01XC class (monoclonal antibodies) have only one target, unless 

the antibodies are conjugated with a small molecule drug, such as inotuzumab ozogamicin.

The number of drugs per target, with pAct greater than 5, in each target class is shown in Fig 

3, which could indicate the common target classes of cancer drugs. There are only four 

targets in the nucleic acid class, leading to the largest number of drugs per target. These 

nucleic acid targets are special because the drug actions are not as specific as protein 

targeting drugs. The second most popular target type is protein kinase, despite the large 

number of kinases, because protein kinase inhibitors (L01XE drug class) are known to act 

on many kinases concurrently and with significant target overlap.

New cancer drug development focuses on antibodies and kinase inhibitor

To study the trends of preferred anticancer drug types and target classes, we collected the 

first FDA approval date of each cancer drug. Most of the newly approved (after 2010) cancer 

drugs belong to the monoclonal antibody (L01XC) and protein kinase inhibitor (L01XE) 

classes (Fig 4a). Since the drugs in L01XE class mainly target various protein kinases, 

targets in the kinase class have the most newly approved drugs (Fig. 4b). Similarly, Fig. 4b 
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shows that many transmembrane proteins are targeted by newly approved antibodies 

(L01XC). In addition, the L01XX class has many newly approved drugs targeting newly 

discovered mechanisms and targets, such as Smoothened receptor (vismodegib, sonidegib), 

histone deacetylase (vorinostat, belinostat…), proteasome (botezomib, ixazomib…), etc. 

Discovering and targeting new pathways and proteins continues to lead to new cancer drug 

developments.

Single cancer drug against multiple target classes

To further explore the multi-target pharmacology of cancer drugs, we studied whether the 

multiple targets of a drug belong to the same target class or not. We calculated the number of 

drugs that have known targets belonging to each pair of two target classes (see Methods and 

Materials), shown in Fig. 5a. Most of the target class pairs have overlaps in their drug list, 

which corresponds to the fact that over half of the drugs have targets belonging to two or 

more classes, which we named as “cross-class targeting” (Fig. 5b). Therefore, the cross-class 

targeting is a relatively common phenomenon for cancer drugs, and we expect an even 

higher fraction of cross-class targeting drugs after further research is carried out. One target 

class that has a significantly low overlap with other classes is the “transmembrane protein”. 

Because many of the targets in this class are receptors of antibodies which usually have 

single-target pharmacology.

Drug approval date and number of known targets

It is likely that there is a correlation between the number of known drug-target activities and 

the time of the drug on the market. We compared the number of known targets for drugs 

with different approval date ranges. The first approval date was used if the drug has been 

approved for multiple indications and/or formulations. Drugs were classified into four date 

ranges, drugs approved before 2000, between 2000 and 2010, after 2010, and not approved 

(see Fig. 6). As expected, drugs approved before 2000 had a larger median number of known 

targets, while the other three ranges had smaller but comparable values. However, some 

newly approved drugs, especially protein kinase inhibitors (L01XE), had many more known 

targets than other drugs (see Fig. 6).

Network pharmacology map and web database layout

To directly show the pharmacology network of cancer drugs, we built sets of two proximity 

maps, drug-drug map and target-target map. In the drug-drug proximity map (Fig. 7), drugs 

are organized based on fraction of shared targets and ATC code similarities. Drugs are 

shown as nodes with different colors, and edges connect drugs with the highest target 

similarities and ATC code similarities. All anti-cancer drugs in the map were classified into 

nine classes based on their ATC codes, which correspond to different colors of nodes. Inside 

the node for each drug we incorporated several features of the drug. The Yin-Yang symbol 

marked covalent drugs which act through covalently binding to their targets, including 

covalent enzyme inhibitors, alkylating agents, and some nucleoside analogs. The black box 

symbol marked drugs which have black box warnings in their FDA labels, which are usually 

more toxic and need special precautions. We also estimated the approximate number of 

occurrences of each drug from the FAERS database, shown as the black crosses under the 

drug name. Maps of each of the nine classes of drugs were also generated and can be 
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accessed through the menu. A set of alternative drug maps was also generated in which the 

distances between drugs were calculated only from drug-target interaction values to 

emphasize the pharmacological similarity of cancer drugs.

In the target-target proximity map (Fig. 8), targets are organized based on the number of 

concurrently hitting drugs and gene ontology (GO) similarities. Targets are shown as nodes 

with different colors, and edges connect the closest targets. Targets were classified into nine 

classes and colored differently to improve the readability of the map. In each target node, the 

gene name of protein was used except for nucleic acid and Tubulin which is comprised of 

various subunits. The number under the gene name illustrates the highest binding activity 

from all anti-cancer drugs for this target. Maps of each target class were also generated and 

can be accessed in the menu. A set of alternative target maps was also generated where the 

distances between targets were derived only from drug-target interaction values to 

emphasize the pharmacological similarity of targets.

A set of expression-value-informed target maps was generated for a various cancer cell lines 

and tissues by incorporating the expression data of each target into the maps. We extracted 

the expression level data of each target from the cancer cell line encyclopedia (CCLE)21, and 

incorporated the expression data to the map. As shown in Fig. 9, the sizes of nodes 

correspond to the median expression levels of targets in 51 different breast cancer cell lines. 

The poorly expressed targets were also made pale, so that we can easily identify the highly 

expressed targets for the cell line of interest.

Besides the network maps, we also generated an information page for each cancer drug and 

target. These pages can be accessed through clicking the nodes in the drug or target map or 

searching their names. A drug information page contains some basic information of the 

drug, such as CAS number, ATC code, and current approval status. The target binding 

activities of the drug is shown as a table and a bar graph. Using this feature a user can easily 

figure out the current knowledge about the targets of this drug. In addition, while the drug-

drug map only shows connections between drugs within a cutoff distance (0.28), the 

information page of drug X contains the top-ranking multi-target pharmacology neighbors of 

drug X. Therefore, we can find the drugs with similar multi-target pharmacology. To study 

the pharmacokinetics and drug-drug interactions, we included the transporters, carriers and 

enzymes of each drug in the information page, together with their activity type (substrate, 

inhibitor, inducer, etc.). To analyze the effects of concurrent usage of cancer drugs, we 

analyzed the FAERS database and counted the number of records where two cancer drugs 

were used together. This is displayed as a bar graph in the information page of drug X, and 

mostly contains drugs which were combined with drug X in FAERS records. However, we 

should point out that the number of records in FAERS not only means that the drug 

combination has been used, it also means that one of the drugs or the drug combination is 

responsible for the reported adverse effects. The information page of target X contains a bar 

graph with drugs binding to target X, and the likely concurrent targets of target X. For 

protein targets, we generated a box and whisker graph of the expression levels of each target 

in different tissues. Additionally, the expression data is displayed in a table.
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The complexity of the full drug or target network map can be reduced by focusing on a 

particular target or drug. The median tissue target expression values may be visualized on 

the same target map using the opacity property. The focused maps from two drugs or targets 

can be combined into a single table format to emphasize the differences and overlaps 

between the two. The filtering feature connects the drug map and target map, and makes it 

easier for users to explore the multi-target pharmacology of cancer drugs.

Discussion

With the relatively low success rate of the typical single-target drug discovery paradigm in 

recent years, multi-target drug and network pharmacology provides a more realistic 

conceptual framework in both small-molecule cancer therapeutics and other drug 

development2, 3, 14, 15, 30–33. Our study of cancer drugs revealed that multi-target 

pharmacology is an expected and inherent property for small-molecule therapeutics. The 

majority of cancer drugs are already known to hit multiple targets and target classes at 

therapeutic concentrations. Naturally, these considerations don’t extend to monoclonal 

antibodies that are highly specific to a single target. The cross-class targeting by a single 

therapeutic is also expected, because receptors and enzymes for the same substrate may 

differ by backbone topology, yet contain similar binding sites34. In addition, some protein 

targets contain multiple small-molecule binding sites, which may allow chemically diverse 

drugs to bind35–37. For example, it has been shown that protein kinase inhibitors such as, 

imatinib and nilotinib, are also able to target smoothened receptor of the Hedgehog pathway; 

celecoxib targets prostaglandin G/H synthase 2, carbonic anhydrases, and several nuclear 

receptors38, 39.

Even though our study showed that most of the cancer drugs had multiple known targets (the 

median number of already known concurrent targets of cancer drugs is 5), we believe that 

the multi-target pharmacology characterizations of cancer drugs is still under-explored. For 

example, we showed that protein kinase inhibitors (ATC code: L01XE) have a significantly 

larger number of targets than drugs in other classes. We believe this difference is from the 

large number of kinases and the experimental availability of the kinase activity panel. 

However, drugs outside of the L01XE class may not be tested against the whole kinase 

panel, even if some specific kinase binding activities might be tested. Consequently, we 

believe the difference of target set sizes of different drug classes results from insufficient 

experiments. Therefore, our current maps and derivative distributions are built from all 

experimentally tested and quantified drug-target interactions known today. Naturally, the 

maps may change as new interactions are discovered and characterized. The current map 

only represents the presently known sub-group of the full drug-target interaction set. The 

extent of multi-target pharmacology of small-molecule cancer drugs may expand in the 

future due to continuous research and improved target identification techniques. As a second 

tier, computer-based predictions can be performed to identify likely new targets of cancer 

drugs and prioritize them for experimental validation40.

This analysis illustrates that the majority of small-molecule cancer drugs have multiple 

known targets, whereas the biologics (e.g. antibodies) are usually highly specific to one 

target. The multi-target activities of small-molecule drugs may be both uniquely beneficial 
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and adverse, while the single-target activity of biologics may be insufficient or suboptimal. 

A recent multi-target drug community challenge, also known as the DREAM challenge, 

highlighted the emerging appreciation of optimal multi-target profiles: the expected drug 

candidates were supposed to aim at four different targets simultaneously and avoid three or 

five other targets41.

Network maps are an efficient way to visualize and explore the multi-target pharmacology 

matrix of drugs42. In the cancer drug map, we can identify clusters of cancer drugs with 

similar target activity profiles. Using a quantitative description of multi-target activities of 

drugs provides a more realistic basis for therapeutic recommendations and new drug 

development objectives. In addition to the target activity values, we can also project the 

protein expression data of a specific cancer or patient to this target map, helping to figure out 

more effective drugs or combination therapies. Furthermore, the network maps can also be 

used to build predictive models for drug efficacy and drug combination synergy. The 

distance function for drugs may vary to fit the purpose of the analysis. For example, in a 

recently published work, the distance between drugs was calculated from target network 

connectivity counts based on the protein-protein interactome43. We adopted the activity-

value-weighted distance function together with the ATC-graph-based shortest path distance 

for drug pairs.

In conclusion, the substantial and inevitable multi-target pharmacology of small-molecule 

cancer drugs needs to be incorporated into the mechanism of drug actions, therapeutic 

strategies and drug discovery objectives30–32, 44–46. Here we analyzed the already known 

multi-target pharmacology properties of cancer drugs. By compiling the drug-target 

interaction data from various sources, we greatly expanded the number of targets of cancer 

drugs. We showed that the majority of cancer drugs affect multiple targets at therapeutic 

concentrations, and over a half of the cancer drugs are known to hit different target classes 

concurrently. The multi-target pharmacology network of cancer drugs is still not fully 

explored, and it will grow with the advance of high-throughput experimental binding and 

activity assays. In addition, based on the expanded drug-target binding activities data, we 

built cancer drug network maps and target network maps and made them available as a web 

database, CancerDrugMap. The database contains a comprehensive cancer drug-target 

interaction data with an emphasis on realistic multi-target pharmacology at therapeutic drug 

concentrations and target expression levels in different cell lines. This information may be 

valuable for repurposing drugs to different cancer types, for identifying complementary and 

synergistic drug combinations, and for customizing prescriptions for patient-specific target 

profiles.
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Figure 1. 
Diagrams of (a) ATC code distributions of 237 cancer drugs and (b) drug target classes.
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Figure 2. 
Distribution of numbers of targets per drug in each class of cancer drugs, boxes were sorted 

by the median values.
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Figure 3. 
Distribution of numbers of drugs per target in each class of drug targets, boxes were sorted 

by the median values.
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Figure 4. 
Statistics of drugs based on the first approval date. (a) Number of drugs in each drug class, 

(b) number of drugs binding to each class of targets.
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Figure 5. 
Cross-class targeting of cancer drugs. (a) Heatmap showing the overlap of drug sets of two 

classes of targets, the dark green cells show the drug sets of two classes are highly 

overlapped. (b) Pie graph of percentage of drugs hitting a given number of target classes.
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Figure 6. 
Distribution of number of target per drug in each category based on the approval date.
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Figure 7. 
Network map of all cancer drugs. Drugs are classified into nine classes based on their ATC 

codes and colored differently. Drugs within the highest target similarities and ATC code 

similarities are connected with edges. Size of each node represents the activities weighted 

sum of number of targets of each drug.
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Figure 8. 
Network map of cancer drug targets. Targets are classified into nine classes and colored 

differently. The closest targets are connected with edges. The size of a node represents the 

activities weighted sum of number of drugs binding to the target.
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Figure 9. 
Network map of targets of cancer drugs. The median expression level of each target in the 

breast cancer cell line is incorporated. Size of each node corresponds expression value 

(Reads per kilo base per million mapped reads, RPKM) of each target which is also shown 

as the number inside. Nodes with low expression values are pale to highlight the highly 

expressed proteins.
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Table 1.

Equations to calculate the node size, opacity, and outline thickness for drug maps, target maps, and target 

expression maps. RPKM, reads per kilo base per million mapped reads, is the target expression value in cell 

lines and tissues.

Drug maps Target maps Target expression maps

Node 
size max 7 × ∑t∈tar 1 − e4 − pActt 0.36, 8 max 8 × ∑d∈drug 1 − e4 − pActd 0.5, 8 max(8 × ln(RPKMt + 1), 8)

Node 
opacity 1 1 or (eq 6) *

ln RPKMt + 1
maxt∈tar ln RPKMt + 1  (eq 6)

Node 
thickness

max max
t∈tar

pActt − 5 , 0.5 max max
d∈drug

pActd − 5 , 0.5 max max
d∈drug

pActd − 5 , 0.5

*
Node opacity in the drug focused target maps was calculated according to the (eq 1).
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