Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

THE SYNTHESIS AND CRYSTAL STRUCTURE OF UCp3(C3H3N2). A NEW MODE OF PYRAZOLATE BONDING

Permalink
https://escholarship.org/uc/item/1918t9k9

Author

Eigenbrot, Jr., Charles W.

Publication Date

1980-08-01

Is Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

Materials \& Molecular Research Division

Submitted to Inorganic Chemistry

THE SYNTHESIS AND CRYSTAL STRUCTURE OF UCp ${ }_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$.
A NEW MODE OF PYRAZOLATE BONDING

Charles W. Eigenbrot, Jr. and Kenneth N. Raymond

August 1980 Tech. Info. Division, Ext. 6782.

DISCLAMMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Govermment or any agency thereof, or the Regents of the University of Califomia. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

The Synthesis and Crystal Structure of $\mathrm{UCp}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$. A New Mode of Pyrazolate Bonding

By

Charles W. Eigenbrot. Jr. and Kenneth N. Raymond* Contribution from the Department of Chemistry. University of California and Materials and Molecular Research Division Lawrence Berkeley Laboratory, Berkeley, Califormia 94720

Abstract

The citle compound has been prepared by the reaction of cris(cyclopentadienyl) uranium chloride ($\mathrm{UCP}_{3} \mathrm{Cl}$) and sodium pyrazolate ($\mathrm{NaC}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}$) in tetrahydrofuran (THF). The compound has been characterized by its infrared, visible-near $I R$, pmr, and mass spectra; and by single crystal X-ray diffraction. The molecular structure consists of discrete $\mathrm{UCp}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$ molecules in which the uranium(IV) ion is coordinated by three $\eta^{5} \mathrm{Cp}$ rings in a nearly trigonal array similar to that of other lanthanide and actinide $\mathrm{MCp}_{3} \mathrm{X}$ structures. However, unlike these other structures, an eleven-coordinate geometry is achieved by having both the adjacent nitrogen atoms of the pyrazolate ring coordinate to the metal ion, such that the local twofold axis of the pyrazolate ring and the local threefold axis of the UCp_{3} fragment coincide. This is the first example of this type of endo-bidentate η^{2} coordination for the pyrazolate anion. Redmbown crystals from toluene conform to space group $P 2_{1} / a$ (an alternate setting of $P 2_{1} / c$) with $a=14.295(1), b=$ $8.383(1), c=14.282(1) \AA, \beta=112.80(1)^{\circ}$ 。 and there are four molecules per unit cell. For the 3631 independent reflections collected by counter methods with $\mathrm{F}^{2}>3 \sigma\left(\mathrm{~F}^{2}\right)$, the final weighted and unweighted R factors are both 3.14 percent. The $U-N$ distances are $2.40(1)$ and $2.36(1) \AA$. The average U-C distance of $2.76 \AA$ is consistent with that predicted for an eleven-coordinate uraniun(IV) cyclopentadienyl complex. The 90 MHz proton resonances of the Cp rings occur at $-9.51\left(35^{\circ} \mathrm{C}\right),-11.59\left(-10^{\circ} \mathrm{C}\right)$, $-14.22\left(-50^{\circ} \mathrm{C}\right)$, and $-15.84\left(-75^{\circ} \mathrm{C}\right)$ ppm. Susceptibility studies from 5 to 80 K show a temperature-independent paramagnetism from 7.5 to 37.1 K ; above this temperature $\mu_{\text {eff }}=2.67 \mu_{\mathrm{B}}$.

Introduction.

As part of oux effort to cxeate and examine complexes which constitute structural and magnetic probes of the mode of bonding in organoactinde and - lanthanide compounds, ${ }^{1,2}$ we have sought the synthesis and characterization of particular dimeric organouranium compounds. The pyrazolace anion has been used extensively throughout transition metal chemistry, ${ }^{3}$ where its coordination is almost always exo-bidentate, i.e. an η^{2} bridging ligand. Stucky and Fieselman recently reported that the reaction of TiCp 2 Cl with $\mathrm{Na}(p y r a z o l a t e)$ yields a dimeric compound of formula $\left[T 1 \mathrm{Cp}_{2} \text { (pyrazolate) }\right]_{2}{ }^{4}$ And, while the laxge class of MCp ${ }_{3} \mathrm{X}$ compounds ($M=$ lanthanide or actinide) are all formally ten-coordinate, R. D. Fischer and co-woxkers have reported the eleven-coordinate $\operatorname{UCp}_{3}(\mathrm{NCS})\left(\mathrm{CH} \mathrm{CN}_{3}\right) .5$ Thus we anticipated that results similar to those with TiCp $\mathrm{Cl}_{\mathrm{Cl}}$ might be obtained with UCp ${ }_{3}$ Cl. Instead, we report the first example of an endobidentare $\left(\eta^{2}\right.$ non-bridging) pyrazolate anion in the formally elevencoordinate $\mathrm{UCp}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$.

Experimental

All reactions were carried out under an inert atmosphere of argon on a Schlenk or vacuum line. Transfer and some harding were facilitated by a Vacuum Atmospheres HE-93-A glove box with recirculating moisture and oxygen-free argon atmosphere. Elemencal analyses were performed by the Analytical Laboratory, Universicy of Califomia, Berkeley. Infrared spectra were recorded on a Perkin-Elmer Model 597 spectrophotometer, mass spectra were obtained on an AEI-MS 12 mass spectrometer, electronic spectra were recorded on a Cary 14 spectrophotometer, and
pme spectra were obtained with a JEOL llodel FX900 spectrometer. Crystalline samples for X-ray diffraction were mounted in glass capillaries under a He acmosphere in a horizontal-format inert atmosphere glove box equipped with a binocular microscope.

Materials. Toluene and tetrahydrofuran (THF) were distilled from potassium benzophenone ketyl. Pyrazole was obtained from Aldrich (98\%) and recrystallized from toluene at $-15^{\circ} \mathrm{C}$ before use. Sodium pyrazolate was prepared from NaH and pyrazole in THF. ${ }^{6}$
$\underline{\mathrm{UCP}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)}$. To a clear brown solution of $2.00 \mathrm{~g} \mathrm{VCp}_{3} \mathrm{Cl}(4.27$ mol) dissolved in 100 mL THF was added $0.38 \mathrm{~g} \mathrm{Na}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$ (4.22 mol) in 10 mL THF. A fine precipitate was visible after stirring for a few bours at room temperature. The mixture was filtered through diatomaceaous earth and the THF removed from the filtrate under vacuum. A saturated coluene solution was cooled to $-15^{\circ} \mathrm{C}$ whereupon large crystals formed. Anal. Calcd. for $\mathrm{UC}_{18} \mathrm{H}_{18} \mathrm{~N}_{2}$: $\mathrm{C}, 43.20 ; \mathrm{H}, 3.60 ; \mathrm{N}, 5.60 \%$. Found: C, 43.55 ; H, 3.63; N, 5.64\%。

Infrared spectrum (nujol mull) cm^{-1} (relative intensity) 1469(w), $1440(\mathrm{w}), 1409(\mathrm{w}), 1343(\mathrm{w}), 1280(\mathrm{~s}), 1070(\mathrm{~s}), 1022(\mathrm{~m}), 998(\mathrm{~s}), 970(\mathrm{~m})$, $776(\mathrm{~s}), 616(\mathrm{~m})$.

Mass spectrum [70 eV (relative abundance)] 500(21.66), 435(86.52), $370(18.73), 343(13.23), 317(28.76), 68(100)$.

Electronic spectrum (toluene solution) (nm) $1640,1600,1520,1370$, 1325, 1290, 1260, 1230, 1160, 1110, 1080, 980, 892, 790, 760, 738, 690, 662, 587, 548.

Variable.temperature pmr (in toluene d^{8}) (δ ppm vs TMS) at $35^{\circ} \mathrm{C}$, $-9.51(s, C p), 10.68(s$, pyrazolate $), 8.75(s$, pyrazolate). The respective peaks at other temperatures are: $-10^{\circ} \mathrm{C},-11.59,11.31,9.18 ;-50^{\circ} \mathrm{C}$, $-14.22,12.06,9.69 ;-75^{\circ} \mathrm{C},-15.84,12.53,10.03$.

Magnetic susceptibility measurements were made with a PAR Model 155 vibrating sample magnetometer used with a homogeneous field produced by a Varian Associates 12 inch electromagnet capable of a maximum field strength of 12.5 kG 。A 173 mg sample was weighed and transferred to a diamagnetic, calibrated sample holder machined from Kel-F rod. A variable temperature liquid helium dewar produced sample remperatures in the range $5-80 \mathrm{~K}$ which were measured by a calibrated GaAs diode approximately 12 mm above the sample. The magnetometer was calibrated with $\mathrm{HgCo}_{\mathrm{CNS}}^{4_{4}}{ }^{\circ}$ The resulting susceptibilities were corrected for underlying diamagnetism and yield a temperature independent paramagnetism from 7.5 to 37.1 K , above which $\mu_{\text {eff }}$ calculated from the slope of $1 / X$ vs T is equal to $2.67 \mu_{B}$ (Table I).

X-ray Diffraction Data Collection, Structure Solution and Refinement. Suftable crystals for diffraction were obtained by cooling an unsaturated toluene solution of $\mathrm{UCp}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$ to $-75^{\circ} \mathrm{C}$ overnight. Several crystals were mounted in 0.2 mm glass capillaries under He, the capillaries sealed with grease, and later sealed in a flame. A crystal was mounted on a CAD-4 automatic diffractometer with graphite monochromator and molybdenum X-ray tube. The lattice constants were determined from a least-squares refinement on 25 automatically centered reflections with 2θ values between 27 and 38° 。 Data reduction and processing were carried
out as described elsewhere. ${ }^{7}$ The intensities were corrected for Lorentz and polarization effects and converted to values of F^{2}. Crystal faces were identified with the help of the diffractometex, and the dimensions of the nine faces found were measured at 7 X magnification under a binocular microscope. Absorption corrections wexe then made using an analytical algorithm. ${ }^{8}$ Azinuthal scans of six reflections revealed an intensity variation of roughly $\pm 10 \%$. Minor adjustments to the observed dimensions of the crystal were made to minimize the variation after the absorption correction was made $\left(\mu=97.50 \mathrm{~cm}^{-1}\right)$. The best fit of observed and calculated dimensions left a maximum variation of $\pm 4 \%$ after the correction was applied. The actual data were then subjected to an absorption correction Which ranged from 2.76 to 3.84 . No crystal decay was observed in the three reflections monitored throughout data collection. The data were averaged to yield the 3631 independent reflections with $F^{2}>30\left(F^{2}\right)$ used in the final refinement.

The calculated density agrees well with that observed for $Z=4$ (2.11 and 2.25 , respectively). The initial Patterson map confirmed the space group $P 2_{1} / a^{9}$ The structure was then solved using heavy atom methods. ${ }^{10-13}$ In the final refinement the temperature factors of all non-hydrogen atoms were treated anisotropically and hydrogen atoms were fixed in calculated positions with a $C-H$ distance of $0.95 \AA^{14}$ and an isotropic tempexature factor of $8.0 \AA^{2}$. The model converged to give both weighted and unweighted R factors of 3.14%. On the final cycle all parameters shifted by less than 0.10 . The variation of residuals with both sin θ / λ and E_{o} showed no abnormalities. In the final difference Fourier, the only peaks of greater than $1.0 e^{-\AA^{-3}}$ were within $1.4 \AA$ of the uranium, and the most negative electron density at a grid point was $-0.95 \mathrm{e}^{-\AA^{-3}}$. Positional and thermal parameters are listed in Table II.

Description of the structure. The crystal structure consists of discrete mononuclear units at general positions in the unit cell (Figure 1). A perspective drawing of the complex is shown in Figure 2 . The molecular structure consists of a uxanium ion coordinated by three η^{5}-coordinated cyclopentadienyl rings and by the two nitrogens of the pyrazolate ion. If the coordination polyhedron is considered to be formed by the centers of the $C p$ rings and the midpoint of the $N-N$ bond, the coordination about the uranium can be considered roughly $C_{3 v}$ in symmetry: with the Cp rings at the base, and the N midpoint at the apex of a flattened tetrahedron (Figure 3). The angles Fox this polyhedron are $[(\mathrm{Cp}$ centroid $)-\mathrm{U}-(\mathrm{N}-\mathrm{N})] 106.3^{\circ}, 108.4^{\circ}$, and 97.1° for rings 1 to 3, respectively. The angles between cencroids are 114.2°, 115.0°, and $113.8^{\circ}(1-\mathrm{U}-2,1-\mathrm{U}-3,2-\mathrm{U}-3)$.

The pyrazolate ring exhibits local $C_{2 y}$ symmetry as before. ${ }^{4}$ The pyrazolate ring and the Cp rings are planar with average deviations from their least-squares planes of $0.0075,0.0055,0.0044$, and $0.0134 \AA$ (Cp $1,2,3$, pyrazolate). 15 The angle between the U-N-N plane and the pyrazolate plane is 10.4°. The $\mathbb{N}-\mathbb{U}-\mathbb{N}$ angle is $32.19^{\circ} . \mathrm{Cp} 3$ and the pyrazolate are neaxly parallel, the angle between their least-squares planes being 5.7°. The $C p \mathrm{C}-\mathrm{C}$ distances average $1.38(2) \AA$, and the internal angles average $108.0^{\circ}(1.0)$. The Cp's are symmetrically bound to the uxanium with average U-C distance of $2.76(1)$ A. The In in distances are $2.40(1)$ and $2.36(1) \AA$. The closest incramolecular non-bonded contact is $2.91 \AA$ between $N(2)$ and $C(10)$, and the closest intexmolecular contact is $3.53 \AA$ between $C(16)$ and $C(5)$. Pertinent bond distances are listed in Table III.

Discussion

The endo-bidentate coordination of the pyrazolate ion in this structure was unexpected; the failure to adopt a bridging geometry is best attributed to the highly ionic chaxacter of the $U-\mathbb{N}$ bond. In numerous pyrazolate complexes of the d-block transition metals, the pyrazolate bridges two metal ions. This is the appropxiate geometry for directional covalent bonding involving the mitrogen lone pair electrons and substantial orbital overlap seems to be implied by the observation of magnetic interaction mediated by such bridging pyrazolates. 16,17 In the present compound, the ionic character of the U-N bond dominates, with the coordination being a non-directional association of the $N-N$ bond (the more negative side of the pyrazolate ring) with the uranium cation,

The geometry of the large class of compounds of the type $\mathrm{MCp}_{3} \mathrm{X}_{\mathrm{B}}$ where X is a monodentate Lewis base, anion, or η^{1} bridging $C p$ ring, is best described as a flattened tetrahedron ${ }^{18}$ in which the Cp rings are shifted toward che sterically less bulky X Ilgand, decreasing the $X-M-C p$ (centroid) angles, and increasing the $C p-M-C p$ angles. This is also observed here, in that the $C p-y-C p$ angles are nearly identical and greater than 109°, while the $\mathrm{C}-\mathrm{U}-(\mathrm{N}-\mathrm{N})$ angles are all less than 109°.

The placement of the pyrazolate ring divides che Cp rings into two classes. Cp 1 and Cp 2 are non-parallel with the pyrazolate (the angles are 62.0° and 73.2°), while Cp 3 is nearly paxallel to the pyrazolate. In addition, the angle from the $C p 3$ centroid to the midpoint of the $N-N$ bond is much less than for the other two Cp rings (vide supra).

The average U-C distance of $2.76 \AA$ is somewhat longer than those typically found in the ten-coordinate, $U C p{ }_{3} X$-type structures, and is a
reflection of the greater effective ionic radius of the uranium in a formally eleven-coordinate complex. The compound $\mathrm{UCp}_{3}(\mathrm{NCS})\left(\mathrm{CH}_{3} \mathrm{CN}\right)^{5}$ is also formally eleven-coordinate and conforms to a crigonal-bipyramidal geometry with the Cp rings occupying the equatorial sites. Table IV contains angles and distances for a comparison of these and other representative uranium Cp complexes. The compounds U(benzylCp) ${ }_{3} \mathrm{Cl}^{1}, 19$ $\mathrm{UCp}_{3}(2-\mathrm{Me}-\mathrm{ally})_{,}^{20}$ and $\mathrm{UCp}_{3}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)^{21}$ all exhibit the flattened tetrahedral geometry described above. However, in $U C p_{3}(N C S)\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ the $\mathrm{Cp}-\mathrm{U}-\mathrm{Cp}$ angles are close to 120° and che $\mathrm{Cp}-\mathrm{U}-\mathrm{N}$ angles are close to 90°. This clearly represents a geometry different from the flatcened tetrahedron characterizing the $\operatorname{MCp}_{3} X$ compounds, including the present one.

While the angles and geometries of the thiocyanato and pyrazolate complexes are distinctly different, there are marked similarities in their bond lengths, which are in tum consistent with the ionic radius calculated for an eleven-coordinate uranium(IV) complex. The average U-C distances (2.76 A) for both compounds and $[\mathcal{N} N$ distances (2.40 and 2.36 for the pyrazolate versus 2.40 for the thiocyanate) agree well. The reason for the $0.04 \AA$ difference in the $U-N$ discances of the pyrazolate is unclear; the closest intramolecular contact [between $\mathbb{N}(2)$ and $C(10)]$ must be expected to make $U \infty \mathbb{N}(2)$ the longer bond, but the opposite is true.

The structure of $\mathrm{Cu}(\phi-\mathrm{N}=\mathrm{N}-\phi)\left(\mathrm{CNCMe}_{3}\right)_{2}^{22}$ reveals a roughly analogous, endo-bidentate, η^{2} coordination of an N_{2} moiety. Structural evidence for a covalent σ bond formation which affects the π-bond structure of the ligand includes a lengthening of the $N-N$ bond vs uncoordinated azobenzene
(from an average of $1.20 \AA$ to $1.38 \AA$). However, the $N-N$ bond in the pyrazolate anion should be less susceptible to such an effect because of its incorporation in an aromatic π-system. In any case, in $\left[\mathrm{TiCp}_{2} \text { (pyrazolate) }\right]_{2}$ the $N-N$ distance $[1.312(6) \AA$ is quite similar to that observed here $[1.318(10) \AA]$.

In summary, we report the synthesis and first structure analysis of a compound with an endo-bidentate pyrazolate anion. The coordination geometry and the distances in this compound are consistent with a highly ionic description of the bonding.

Acknowledgment

We wish to thank Dr. F. J. Hollander for assistance in the structure solution, Dr. S. Simpson for his assistance in obtaining the pror spectra, and S. Ogden for the mass spectrum.

This research was supported by the Division of Nuclear Sciences, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. W-7405-Eng-48.

Supplementary Material Available

A listing of observed and calculated structure factors and Table V, least-squares planes parameters. Ordering information is available on any current masthead page.

References

1．Raymond，K．Mi：Eigenbrot，C．W．Acc．Chem．Res．in press．
2．Baker，E．C．：Raymond，K ．N．Inorg．Chem．1977，16，2710．
3．Trofimenko，S．Chem．Rev． $1972,72,497$.
4．Fieselman．B．Fo；Stucky，G．D．Inorg．Chem．1978，17，2074．
5．Fischer，R．D．；Klahne，Eo：Kopf，Jo Zeit．fur Natur 1978 ， 33b，1393．

6．Breake11，R．R．；Patmore，D．J．；Storx，A．J．Chem．Soc．Dalt．Trans． $1975,749$.
ヘル，

7．Sofen，S．R．；Abu－Dari，K．；Freyberg，D．P．：Raymond，K．N． J．Am．Chem．Soc． $1978,100,7882$.
8．Templeton，L．K．；Templeton，D．K．American Crystallographic Association Proceedings，1973，Series 2，Vol．1．p， 143.

9．The symmetry operations for this non－standard setting of $P 2 / C$ are：$x, y, z ;-x,-y,-z ; 1 / 2+x, 1 / 2-y, z, 1 / 2-x, 1 / 2+y,-z$.

10．Full matrix least－squares refinement on F was used in which the function minimized was $\sum_{W}\left(|F o|-\mid F_{c}\right)^{2}$ ，where F_{o} and F_{c} are the obsexved and calculated structure factors and the weighting factor， W．is $4 F_{0}^{2} / \sigma^{2}\left(F_{0}^{2}\right)$ ．The atomic scatcering factors for neutral U ， C，and were taken Erom the tables of Cromer and Mann， 11 and chose for neutral H from Stewart，Davidson，and Simpson． 12 Corxections for anomalous dispexsion using both Δf^{\prime} and $\Delta f^{\prime \prime}$ were included for $a 11$ acoms except $H .^{13}$

11．Cromex，D．T．；Mann，B．Acta Crystallogr．，Sect．A $1968,24,321$.
12．Stewart，R．Fo：Davison，E_{0} R．：Simpson，W。T．J．Chem．Phys． 1965 ， 42．3175．
13. Cromer, D. T. Acta Crystallogr. $1965,18,17$.
14. Churchil1, M. R. Inorg. Chem. 1973, 12. 1213.
15. Supplementary material includes complete data on the least-squares planes.
16. Fieselman, B. J.; Hendrickson, D. N.; Stucky, G. D. Inorg. Chem. 1978, 17, 2078.
17. Barraclough, C. G.; Brookes, R. W.; Martin. R. L. Aust. J. Chem. 1974, 27, 1843.
18. Raymond, K. N_{o} "Organometallics of the f-Element", Marks, T. J.; Fischer, R. D. Eds.; D. Reidel: Dordrecht, kolland, 1979; p. 249.
19. Leong, J.; Hodgson, K. O.; Raymond, K. N. Inorg. Chem. 1973,12 , 1329.
20. Halstead, G. Wo: Baker, E. Co: Raymond, K. N. J. Am. Chem. Soc. 1975, 97, 3049.
21. Perego, Go; Cesari, Mo: Farina, Fo; Lugli, Ge Acta Crystallogr.

22. Dickson, R. S.; Ibers, J. A.; Otsuka, S.; Tatsuno, Y. J. Am。 Chem. Soc. 1971 , 93. 4636.

Table I. Molax Susceptibilities

$T(K)$	$X_{\mathrm{m}}^{\operatorname{corr}}\left(\mathrm{cm}^{3} / \mathrm{mol}\right)$
7.5	12.92
10.7	12.80
18.3	12.62
27.2	12.23
37.1	13.14
50.0	11.55
56.7	10.94
77.3	8.57

Table III. Selected Bond Distances (A)

$U-C(1)$	$2.777(10)$	$U-C(6)$	$2.743(10)$	$U-C(11)$	$2.755(9)$
$U-C(2)$	$2.746(8)$	$U-C(7)$	$2.764(10)$	$U-C(12)$	$2.742(10)$
$U-C(3)$	$2.764(9)$	$U-C(8)$	$2.780(10)$	$U-C(13)$	$2.758(11)$
$U-C(4)$	$2.756(10)$	$U-C(9)$	$2.766(10)$	$U-C(14)$	$2.765(10)$
$U-C(5)$	$2.778(11)$	$U-C(10)$	$2.772(10)$	$U-C(15)$	$2.772(10)$
$U-\mathbb{U}(1)$	$2.402(7)$	$C(16)-C(17)$	$1.340(16)$	$N(1)-N(2)$	$1.318(10)$
$U-N(2)$	$2.364(7)$	$C(17)-C(18)$	$1.347(16)$		

Table IV. Bond Angles (degrees) and Distances (\AA) for Representative Uranium Cp Complexes

Formula	$\mathrm{Cp}-\mathrm{U}-\mathrm{Cp}$	$\mathrm{Cp}-\mathrm{U}-\mathrm{X}$	$\mathrm{Av} \mathrm{U}-\mathrm{C}(\mathrm{CP})$	Ref.
$\mathrm{U}(\mathrm{benzylCp})_{3} \mathrm{Cl}$	$117,118,116$	$100,101,99$	2.73	19
$\mathrm{UCP}_{3}\left[2-\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}\right]$	$119,115,118$	$102,100,98$	2.74	20
$\mathrm{UCP}_{3}(\mathrm{n}-\mathrm{buty} 1)$	$118,116,116$	$98,102,101$	2.74	21
$\mathrm{UCp}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$	$114,115,114$	$106,108,97$	2.76	this work
$\mathrm{UCp}_{3}(\mathrm{NCS})\left(\mathrm{CH}_{3} \mathrm{CN}\right)$	$121,119,119$	$92,95,90$	2.76	5
		$86,89,88$		

Figure Captions

Figure 1. Stexeoscopic packing diagram for $\operatorname{UCp}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$. Wiew is dow the b axis. Thermal ellipsoids are drawn to 50% probability level.

Figure 2. Perspective drawing of $\mathrm{UCp}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$. Thermal ellipsoids are drawn at the 50% probability level. The view is perpendicular to the pseudo-threefold axis.

Figure 3. Pexspective drawing of $\mathrm{UCP}_{3}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)$ down the pseudothreefold axis. Thermal ellipsoids are drawn at the 50% leve1.

Fig. 1

Fig. 2

Fig. 3
XBL 804-9338

