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Abstract

Purpose: To compare the evaluation metrics for deep learning methods that were developed 

using imbalanced imaging data in osteoarthritis (OA) studies.

Materials and Methods: This retrospective study utilized 2996 sagittal intermediate-weighted 

(IW) fat-suppressed (FS) knee MRIs with MRI Osteoarthritis Knee Score (MOAKS) readings 

from 2467 participants in the Osteoarthritis Initiative (OAI) study. We obtained probabilities of 

the presence of bone marrow lesions (BMLs) from MRIs in testing dataset at the sub-region (15 

sub-regions), compartment, and whole-knee levels based on the trained deep learning models. We 

compared different evaluation metrics (e.g., receiver operating characteristic (ROC) and precision-

recall (PR) curves) in the testing dataset with various class ratios (presence of BMLs vs. absence 

of BMLs) at these three data levels to assess the model’s performance.

Results: In a subregion with an extremely high imbalance ratio, the model achieved an ROC-

AUC of 0.84, a PR-AUC of 0.10, a sensitivity of 0, and a specificity of 1.

Conclusion: The commonly used ROC curve is not sufficiently informative, especially in the 

case of imbalanced data. We provide the following practical suggestions based on our data 

analysis: 1) ROC-AUC is recommended for balanced data, 2) PR-AUC should be used for 

moderately imbalanced data (i.e., when the proportion of the minor class is above 5% and less than 

50%), and 3) for severely imbalanced data (i.e., when the proportion of the minor class is below 

5%), it is not practical to apply a deep learning model, even with the application of techniques 

addressing imbalanced data issues.

Keywords

Osteoarthritis; Bone marrow lesion; Imbalanced data; Deep learning; Receiver operating 
characteristic; Precision recall curve
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1. Introduction

Osteoarthritis (OA) is a leading cause of mobility limitations and disability in the aging 

population, affecting more than 50 million people in the United States(1). Prior studies 

have shown that MRI-defined features (e.g., bone marrow lesions (BMLs)) often appear 

before irreversible cartilage degeneration occurs(2). Thus, rapid detection and quantification 

of these features may allow the identification of individuals at high risk of knee OA and 

pain(3). One popular approach for accurate characterization is through a semi-quantitative 

(SQ) scoring system (e.g., MRI Osteoarthritis Knee Score (MOAKS)) on MRI(4). However, 

such SQ scoring systems require experienced and trained musculoskeletal radiologists to 

perform these MRI readings, which is time-consuming, expensive, and resource-intensive.

Recently, deep learning (DL) methods (e.g., convolutional neural network (CNN) models) 

have been implemented to automatically predict MRI-defined abnormalities from MRIs(5). 

Compared with the statistical methods, DL-based methods have higher prediction accuracy 

and need fewer model assumptions. The area under the receiver operating characteristic 

(ROC) curve is often utilized to assess the performance of a DL-based binary classifier for 

classifying positive (presence of MRI-defined features) and negative classes. The area under 

the ROC curve (ROC-AUC) ranges from 0 to 1, with 1 indicating the perfect prediction. 

In general, a binary classifier with a ROC-AUC value of 0.8 to 0.9 is considered excellent 

and has an outstanding performance with a value of more than 0.9. However, ROC-AUC 

alone is not sufficiently informative to evaluate the performance of approaches when the 

underlying data have class imbalance problems, for example, when the positive class occurs 

with a markedly reduced frequency, as ROC-AUC is insensitive to the changes in class 

imbalance ratios between positive and negative classes in the data, resulting in uninformative 

evaluation of model performance(6). Since most of the datasets from large-scale OA studies 

are imbalanced(7, 8), it is imperative to examine the evaluation metrics and benchmark DL 

methods when balanced and/or imbalanced OA images are utilized in DL methods.

The objective of this study was to compare several metrics for evaluating the performance 

of DL-based models using the data with various class imbalance ratios. To perform this 

comparison, we implemented and modified an existing DL framework to predict the 

presence of BMLs using MRIs from the Osteoarthritis Initiative (OAI) study.

2. Materials and Method

2.1. Datasets

This retrospective study used the MRIs with available MOAKS BML size grades at baseline 

collected through the OAI, a longitudinal study, which has the largest amount of MRIs on 

the natural history of those with or at risk of developing knee OA(9). A total of 4,796 

participants were enrolled from 2004 to 2006. Among 4,796 participants, MRIs of 2,473 

individuals over eight years were assessed by radiologists using the SQ scoring system 

(i.e., MOAKS). It should be noted that the readings we used were obtained from both 

case-control studies (e.g., FNIH) and case-cohort studies. However, since the same data were 

used for all metrics, the impact of the different study designs on performance evaluation is 

likely to be minimal. After removing 6 participants without MOAKS BML size grades at 
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baseline, the sagittal intermediate-weighted (IW) and fat-suppressed (FS) MRI data of 2,467 

participants (mean age, 61 years [range, 45 to 79 years]; 1468 women) were utilized in the 

data analysis. subchondral bone marrow signal alterations are characterized by ill-defined 

subchondral areas of high signal intensity on these MRIs(2). We used the BML size grades, 

which represent the percentage of volume relative to the size of the sub-region, including 

associated cysts(4). The dataset was split into a training dataset (1838 exams, 1500 subjects), 

a validation dataset (582 exams, 480 subjects), and a testing dataset (576 exams, 487 

subjects) by random sampling.

2.2. Methods

DL framework.—We applied a DL framework based on MRNet(8) to the preprocessed 

MRIs. The details of data preprocessing and DL configurations can be found in 

Supplemental Methods. We dichotomized the MOAKS BML size grades into presence or 

absence categories. The split was done by categorizing grades > 0 as presence (i.e., positive 

class) and grades = 0 as absence (i.e., negative class). The images with the dichotomized 

MOAKS BML size grades were used in the model training process.

Sub-region level, compartment-level, and whole-knee level prediction.—We 

obtained predicted BML statuses (presence vs. absence) for each of the 15 sub-regions from 

the trained DL models. With the above prediction of 15 sub-regions as independent variables 

and overall MOAKS BML size grades as the dependent variable, which was dichotomized 

as 0 (all 15 sub-regions have MOAKS BML size grades of 0) and 1 (at least one of 15 sub-

regions has MOAKS BML size grades of 1), a logistic regression model was implemented 

to predict the BML status at the whole-knee level. The compartment-level prediction is 

similar to the whole-knee level prediction procedure. This prediction was performed by the 

scikit-learning (version 0.24.1) package in Python (version 3.6.5). Details of sub-region and 

compartment definition are shown in Supplementary Material.

Performance evaluation.—We used several evaluation metrics, including ROC-AUC, 

Precision-Recall (PR)-AUC, Precision-Recall Gain (PRG)-AUC, F1 score, and Matthews 

correlation coefficient (MCC), precision, sensitivity, and specificity(10–13). We evaluated 

the performance of DL models based on these metrics in the testing dataset. The definitions 

of these metrics are shown in Supplemental Methods. We also used the Pearson correlation 

coefficient to measure the correlation estimates between evaluation metrics at the sub-region 

level.

3. Results

The baseline demographic statistics of selected participants are shown in Table 1. A majority 

of subjects (i.e., 56.67%−61.67% in different datasets) were female. The mean age and BMI 

were approximately 61 years and 28 kg/m2, respectively. In Table 2, we report the results 

of different performance metrics at the whole-knee, compartment, and sub-region levels. At 

the whole-knee level, the ROC-AUC value was 0.86, indicating excellent performance. The 

model also had a PR-AUC value of 0.96, an F1 score of 0.88, a sensitivity value of 0.88, 

and a precision value of 0.86. However, a different conclusion about the model performance 
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at the whole-knee level could be drawn according to the values of PRG-AUC (0.42) and 

MCC (0.36). As shown in Figure 1A, the imbalance class ratio (positives/negatives) for the 

whole-knee level data was 0.79/0.21. If BMLs were present in one of the 15 sub-regions, 

the class label for this knee was positive. Thus, the negative class was the minority class in 

the whole-knee level imbalanced data. The specificity value was 0.43, indicating a limited 

ability to predict negatives for the whole-knee model, which was also confirmed by the 

MCC value. Since the PRG curve is adjusted by the proportion of positives, its AUC value 

might be affected when the data are imbalanced (i.e., the proportion of positives is close to 

zero or one). As shown in Figure 2A, the PRG curve had the smallest AUC value.

At the compartment level, there was a mild class imbalance issue (i.e., about 60% negative) 

in the lateral compartment (see Figure 1B). Although the imbalance class ratio was around 

1:2 for the lateral compartment, there were still a sufficient number of positives to train 

and tune the DL model. The class ratios were approximately 1:1 for the medial and patella 

compartments. Therefore, all metrics presented consistent information about the model 

performance for each compartment. For instance, the DL model obtained better performance 

in the lateral and patella compartments than in the medial compartment.

At the sub-region level, data were severely imbalanced, with less than 10% positives in 

some sub-regions (see Figure 1C). The PR-AUC and MCC had the highest correlation value 

(0.92), whereas the correlation value between ROC-AUC and MCC was 0.74. The metrics 

F1 and MCC had consistent conclusions in terms of model performance, with a correlation 

value of 0.98. The ROC-AUC values of the FemAntMed, FemPostMed, TibPostLat, and 

PatellaMed sub-regions were below 0.8. The results of these metrics (i.e., MCC, F1, PR-

AUC) were consistent with those of ROC-AUC. However, PRG-AUC for the TibPostLat 

sub-region (i.e., 0.9) was too high due to its dependence on the proportion of positives. 

Based on the value of MCC, the prediction performance for this sub-region might not be 

considered outstanding. The ROC-AUC values of the remaining sub-regions were above 

0.8. For example, for the PatellaMed sub-region, the classification results were not as good 

as those in other sub-regions. The ROC, PR, and PRG curves provided complementary 

information, see Figure 2B. The ROC-AUC value was 0.84 in the TibAntLat sub-region, 

showing excellent prediction performance. However, the value of PR-AUC was only 0.10 

in the TibAntLat sub-region (see Figure 2C). For this sub-region, PR-AUC was more 

informative since the precision and sensitivity were zeros, indicating that all data were 

assigned to the negative class. The MCC and F1 metrics were also good indicators for 

the performance evaluation for classifying the positive class, with the values of zeros. 

This might be due to the high imbalance ratio (46 positives:1223 negatives) in the data 

for the TibAntLat sub-region. Four methods addressing the imbalance issues have been 

implemented. The results in Supplementary Results show that the improvement was trivial 

after these methods were applied. We also compared the evaluation results for females and 

males at the whole-knee level in Supplementary Material(14). The gender differences were 

also not significant in this study.
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4. Discussion

Recently, numerous DL methods have been applied to automatically detect different MRI-

defined abnormalities in OA. The development and validation of accurate DL frameworks to 

detect MRI-defined abnormalities are critical for the identification of early pre-radiographic 

OA and optimal participant screening for clinical trials of disease-modifying OA drugs 

(DMOAD). The ultimate application of these DL models is dependent on informative 

reporting of the performance metrics used to benchmark different DL models, particularly 

when the underlying MRI data used to derive these models are imbalanced. To compare 

the performance metrics of DL methods for imbalanced and/or balanced MRI data in OA 

studies, we have modified an existing DL framework (MRNet) to automatically detect 

BMLs from the MRIs.

We have demonstrated that there were class imbalance issues in the OAI. In the prior OA 

studies, the class ratios in the data vary from 1:3 to 1:30(7, 8). In the OAI study, the severity 

of class imbalance was associated with the data levels (i.e., whole-knee, compartment, 

and sub-region levels), see details in Supplementary Results. Our findings suggest that 

class imbalance ratios can affect the evaluation results of some metrics since the DL 

learners may over-classify the majority group (i.e., assign all minorities to majorities) to 

obtain high overall accuracy. When data were balanced at the compartment level, all the 

evaluation metrics had consistent results. With the imbalanced data at the whole-knee and 

sub-region levels, the commonly used metric ROC-AUC alone might provide a distorted 

view of the performance of DL methods, demonstrating excellent performance (> 0.8) 

even for the classifiers that assign all positives to negatives. The ROC curve is necessary 

but not sufficient to evaluate the performance of DL methods, particularly when data are 

imbalanced(15). In our case study, the PR curve can be used to address the issues due to 

the class imbalance. The PRG curve is overly optimistic when data are severely imbalanced, 

however.

The ROC and PR curves are rank metrics under different threshold settings, while F1 and 

MCC are threshold metrics for a fixed threshold setting. The ordering of prediction instead 

of the actual predicted values is used in rank metrics, while the threshold metric depends on 

a threshold level (e.g. data are predicted as positives above the threshold level). Since the 

rank metrics provide a summary of model performance for all possible threshold settings, 

the ROC-AUC and PR-AUC can be used as the major evaluation metrics. The F1 and 

MCC can be used as auxiliary metrics to evaluate model performance. In addition, the class 

imbalance ratio should also be reported. In summary, we provide the following practical 

suggestions based on our data analysis: 1) ROC-AUC is recommended for balanced data, 

2) PR-AUC should be used for moderately imbalanced data (i.e. when the proportion of the 

minor class is above 5%, and less than 50%), and 3) for severely imbalanced data (i.e. when 

the proportion of the minor class is below 5%), it is not feasible to apply a DL model, even 

with the application of techniques that attempt to address the imbalanced data issues.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Class ratios (negative (red) : positive (cyan)) at A) whole-knee level; B) compartment level; 

C) sub-region level
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Figure 2. 
Performance evaluation of deep learning by ROC (left panels), PR (middle panels), and PRG 

(right panels) curves at A) whole-knee level; B) PatellaMed; C) TibAntLat. The AUC values 

of the curves are shown on top of each figure.
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Table 1.

Summary statistics of training, validation, and testing datasets

Training Validation Testing

Exams, n 1838 582 576

Participants, n 1500 480 487

Female, n (%) 896 (59.73) 296 (61.67) 276 (56.67)

Age, mean (SD) 61.12 (8.80) 61.02 (8.88) 61.41 (8.91)

BMI, mean (SD) 28.87 (4.72) * 28.95 (4.77) 28.94 (4.81)

*
One observation is missing
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Table 2.

Performance evaluation at the whole-knee, compartment, and sub-region levels in the testing dataset

ROC-
AUC

PR-AUC PRG-
AUC

F1 MCC Precision Sensitivity 
(Recall)

Specificity

Whole-knee 0.86 
(0.83, 
0.89)

0.96 
(0.95, 
0.97)

0.42 
(0.31, 
0.55)

0.88 
(0.86, 
0.90)

0.36 (0.25, 
0.45)

0.86 (0.83, 
0.88) 409/478

0.90 (0.87, 
0.93) 409/455

0.43 (0.34, 
0.51) 52/121

Medial 0.79 
(0.75, 
0.82)

0.82 
(0.78, 
0.85)

0.62 
(0.51, 
0.71)

0.69 
(0.64, 
0.73)

0.48 (0.40, 
0.54)

0.79 (0.73, 
0.84) 167/212

0.61 (0.55, 
0.66) 167/274

0.85 (0.81, 
0.89) 257/302

Lateral 0.87 
(0.84, 

0.90

0.77 
(0.70, 
0.83)

0.86 
(0.81, 
0.91)

0.71 
(0.66, 
0.76)

0.59 (0.52, 
0.67)

0.71 (0.64, 
0.77) 121/171

0.72 (0.65, 
0.78) 121/168

0.88 (0.85, 
0.91) 358/408

Patella 0.78 
(0.74, 
0.81)

0.80 
(0.75, 
0.84)

0.59 
(0.49, 
0.69)

0.69 
(0.64, 
0.74)

0.46 (0.39, 
0.53)

0.78 (0.73, 
0.83) 173/223

0.62 (0.56, 
0.68) 174/282

0.83 (0.79, 
0.88) 245/294

FemAntLat 0.95 
(0.92, 
0.97)

0.85 
(0.79, 
0.90)

0.98 
(0.96, 
0.99)

0.61 
(0.57, 
0.65)

0.55 (0.50, 
0.60)

0.45 (0.42, 
0.49) 100/222

0.95 (0.90, 
0.99) 100/105

0.74 (0.70, 
0.78) 349/471

FemAntMed 0.66 
(0.60, 
0.71)

0.32 
(0.27, 
0.39)

0.46 
(0.29, 
0.59)

0.12 
(0.06, 
0.20)

0.11 (0.01, 
0.21)

0.45 (0.24, 
0.67) 9/20

0.07 (0.03, 
0.12) 9/125

0.98 (0.96, 
0.99) 440/451

FemCentLat 0.92 
(0.86, 
0.98)

0.63 
(0.45, 
0.78)

0.99 
(0.98, 1)

0.26 
(0.07, 
0.46)

0.38 (0.19, 
0.54)

1 (1, 1) 4/4 0.15 (0.04, 0.3) 
4/27

1 (1, 1) 549/549

FemCentMed 0.91 
(0.87, 
0.94)

0.82 
(0.77, 
0.87)

0.95 
(0.93, 
0.97)

0.74 
(0.67, 
0.80)

0.68(0.60, 
0.75)

0.82 (0.76, 
0.89) 84/102

0.67 (0.58, 
0.75) 84/126

0.96 (0.94, 
0.98) 432/450

FemPostLat 0.96 
(0.90, 1)

0.79 
(0.59, 
0.93)

1 (0.99, 
1)

0.67 
(0.44, 
0.84)

0.68 (0.50, 
0.84)

0.91 (0.71, 1) 
10/11

0.53 (0.32, 
0.74) 10/19

1 (0.99, 1) 
556/557

FemPostMed 0.79 
(0.74, 
0.85)

0.36 
(0.27, 
0.47)

0.8 (0.69, 
0.88)

0.34 
(0.22, 
0.44)

0.28 (0.15, 
0.40)

0.44 (0.30, 
0.59) 19/43

0.27 (0.17, 
0.37) 19/70

0.95 (0.93, 
0.97) 482/506

TibSubSpCent 0.87 
(0.84, 
0.90)

0.76 
(0.70, 
0.82)

0.87 
(0.81, 
0.91)

0.67 
(0.60, 
0.72)

0.55 (0.47, 
0.62)

0.72 (0.66, 
0.79) 105/145

0.62 (0.54, 
0.69) 105/170

0.90 (0.87, 
0.93) 366/406

TibAntLat 0.84 
(0.71, 
0.96)

0.10 
(0.06, 
0.20)

0.76 (0, 
0.91)

0 (0, 0) 0 (0, 0) 0 (0, 0) 0/0 0 (0, 0) 0/12 1 (1, 1) 564/564

TibAntMed 0.89 
(0.84, 
0.93)

0.63 
(0.52, 
0.74)

0.96 
(0.92, 
0.98)

0.62 
(0.52, 
0.71)

0.57 (0.47, 
0.68)

0.65 (0.54, 
0.76) 39/60

0.59 (0.47, 
0.71) 39/66

0.96 (0.94, 
0.98) 489/510

TibCentLat 0.86 
(0.80, 
0.92)

0.56 
(0.43, 
0.71)

0.96 
(0.92, 
0.98)

0.54 
(0.44, 
0.64)

0.49 (0.38, 
0.61)

0.5 (0.41, 
0.61) 32/64

0.59 (0.46, 
0.72) 32/54

0.94 (0.92, 
0.96) 490/522

TibCentMed 0.94 
(0.91, 
0.97)

0.85 
(0.78, 
0.91)

0.97 
(0.95, 
0.99)

0.78 
(0.72, 
0.83)

0.73 (0.66, 
0.80)

0.74 (0.67, 
0.81) 82/111

0.83 (0.75, 
0.89) 82/99

0.94 (0.92, 
0.96) 448/477

TibPostLat 0.76 
(0.68, 
0.84)

0.28 
(0.17, 
0.45)

0.9 (0.75, 
0.96)

0.37 
(0.23, 
0.51)

0.33 (0.18, 
0.49)

0.42 (0.27, 
0.60) 13/31

0.33 (0.18, 
0.49) 13/39

0.97 (0.95, 
0.98) 519/537

TibPostMed 0.84 
(0.77, 
0.92)

0.33 
(0.21, 
0.47)

0.88 
(0.74, 
0.97)

0.14 (0, 
0.28)

0.15 (0.02, 
0.33)

0.38 (0, 0.75) 
3/8

0.08 (0, 0.19) 
3/36

0.99 (0.98, 1) 
535/540

PatellaLat 0.88 
(0.85, 
0.91)

0.78 
(0.72, 
0.83)

0.9 (0.85, 
0.94)

0.70 
(0.65, 
0.75)

0.59 (0.52, 
0.66)

0.66 (0.61, 
0.72) 115/174

0.75 (0.69, 
0.82) 115/153

0.86 (0.83, 
0.89) 364/423
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ROC-
AUC

PR-AUC PRG-
AUC

F1 MCC Precision Sensitivity 
(Recall)

Specificity

PatellaMed 0.54 
(0.49, 
0.59)

0.38 
(0.33, 
0.43)

0.1 (0, 
0.23)

0.03 (0, 
0.07)

0.07 (0.03, 
0.15)

0.75 (0, 1) 3/4 0.02 (0, 0.04) 
3/192

1 (0.99, 1) 
383/384
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