
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Preserving Semantic Structural Constraints within Neural Networks

Permalink
https://escholarship.org/uc/item/192579jj

Author
Le, Hubert Hoai

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/192579jj
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Preserving Semantic Structural Constraints within Neural Networks

A thesis submitted in partial satisfaction of the
requirements for the degree

Master of Science

in

Computer Science

by

Hubert Hoai Le

Committee in charge:

Professor Zhuowen Tu, Chair
Professor Kamalika Chaudhuri
Professor Hao Su

2018

Copyright

Hubert Hoai Le, 2018

All rights reserved.

The thesis of Hubert Hoai Le is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California San Diego

2018

iii

EPIGRAPH

To deal with a fourteen-dimensional space, visualize a

three dimensional space and say fourteen.

—Geoffrey Hinton

iv

TABLE OF CONTENTS

Signature Page . iii

Epigraph . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Abstract of the Thesis . x

Chapter 1 Introduction . 1

Chapter 2 Background . 3
2.1 Neural Networks . 3

2.1.1 Activation Functions . 4
2.1.2 Optimization . 4
2.1.3 Generative Adversarial Networks 5
2.1.4 Wasserstein Generative Adversarial Networks 6

2.2 Learning Generative Models via Discriminative Approaches 6
2.2.1 Introspective Learning . 8

2.3 Word Embeddings . 10
2.3.1 Bag of Words . 10
2.3.2 Term Frequency - Inverse Document Frequency 11
2.3.3 Word2Vec . 12

Chapter 3 Related Work . 13
3.1 Conditional Generative Adversarial Networks 13

3.1.1 Text to Image Synthesis 14
3.2 Two Branch Networks . 15

3.2.1 Embedding Network . 16
3.2.2 Similarity Network . 17

Chapter 4 Methodology . 19
4.1 Approaches . 19

4.1.1 Introspective Image Synthesis 19
4.1.2 Wasserstein Introspective Image Synthesis 21
4.1.3 Affinity Network . 21

v

Chapter 5 Experiments . 24

Chapter 6 Conclusion . 30

Bibliography . 31

vi

LIST OF FIGURES

Figure 2.1: A typical feedforward neural network. 3
Figure 2.2: Common activation functions . 4
Figure 2.3: Wasserstein training procedure . 7
Figure 2.4: Introspective Generative Modeling Process 9
Figure 2.5: Introspective Generation Algorithm . 10

Figure 3.1: Conditional Generative Adversarial Network 14
Figure 3.2: Text-Image Synthesis Network . 15
Figure 3.3: Embedding Network . 17
Figure 3.4: Similarity Network . 18

Figure 4.1: Discriminator training vs Generator training trainable parameters 20
Figure 4.2: Affinity Network . 22

Figure 5.1: Text-Image Synthesis Network generates a man 24
Figure 5.2: Two Branch Network generates CIFAR10 25
Figure 5.3: Introspective 300 epochs . 25
Figure 5.4: Introspective 500 epochs . 26
Figure 5.5: Introspective 900 epochs . 26
Figure 5.6: Wasserstein Introspective 500 epochs . 27
Figure 5.7: Wasserstein Introspective 900 epochs . 27
Figure 5.8: Affinity Network generates a dog . 28
Figure 5.9: Affinity Network generates a man . 28
Figure 5.10: Conditional Generative Adversarial Network generates a man 28

vii

LIST OF TABLES

Table 5.1: A list of inception scores for various models at 500 and 900 epochs. 27

viii

ACKNOWLEDGEMENTS

Thanks to Professor Zhuowen Tu, whom, without his continued support, I would not have

been able to work in this field. In addition, I would like to thank Justin Lazarow and Kwonjoon

Lee, who gave me advice during my journey.This document would not have been possible without

their vast expertise in Computer Vision and Deep Learning.

I would also like to thank Professor Hao Su and Professor Kamalika Chaudhuri for

agreeing to be on the committee for this thesis.

ix

ABSTRACT OF THE THESIS

Preserving Semantic Structural Constraints within Neural Networks

by

Hubert Hoai Le

Master of Science in Computer Science

University of California San Diego 2018

Professor Zhuowen Tu, Chair

Generative Adversarial Neural Networks are neural networks which participate in a zero-

sum game, competing against each other to maximize an objective. One network, the generator,

hopes to generate data that lies in a similar distribution to given data. The discriminator aims to

separate data generated by the generator and ground truth data. This allows us to generate and

replicate data given a dataset.

These networks have been increasingly popular in generating images from text. By

leveraging the Introspective Learning framework, we are able to take image classification networks

and synthesize images. We show that our results are competitive on many-to-many mappings

against Conditional Generative Adversarial Neural Networks.

x

Chapter 1

Introduction

In the realm of machine learning, neural networks have become increasingly popular.

With their extreme flexibility and large amount of tuneable parameters, they are adaptable to a

wide variety of tasks.

Some common tasks include:

• Object Identification

• Re-identification

• Game AI

• Common Classification Tasks

• Image Segmentation

• Image Generation

These are only several common tasks. There are a great variety of uses not mentioned

here. The task we address is image synthesis - given a data set of images, generate images from

some sort of description. In order to do so, we utilize and compare several different approaches

from several different neural network architectures. In particular, we discuss the importance

1

of our architecture and the relevance to the field of conditional generation, where an image is

generated off of a condition, namely, text.

Ordinarily, images with similar image features are placed next to each other in the

network’s latent space. However, we would instead like to use a text input to place semantically

similar images close to each other, i.e. images of a dog should be close to each other in the latent

space, even if one may look visually similar to, say, a cat.

2

Chapter 2

Background

2.1 Neural Networks

Feed-forward neural networks are multiple-layer perceptrons that take some dimension

of input and perform multiple linear transformations, followed by possibly nonlinear activation

units, and outputs some points in dimension specified by the final layer. Figure 2.1 shows an

example neural network.

Figure 2.1: A typical feedforward neural network

For each of the perceptrons, they have an activation function of the form

output =

 0 if w · x+b≤ 0

1 if w · x+b > 0
(2.1)

3

2.1.1 Activation Functions

Generally, to force that the network is not simply a linear tranformation of the input units,

we utilize activation functions that will add nonlinearity to the network. This helps the network

draw more complicated decision boundaries. Some of the more common activation functions are

shown below.

Figure 2.2: Common activation functions

2.1.2 Optimization

Due to the sheer number of trainable parameters, neural networks more than several layers

were deemed intractable in the early 2000’s, until the arrival of the backpropagation [RHW86]

algorithm. It allowed for gradients to be calculated quickly and easily, linear with respect to the

number of the neurons in the network. The only requirements needed to train a network are then

a loss function and an optimization method. Commonly used optimization techniques such as

ADAM [KB14], stochastic gradient descent [RM51] as well as minibatch gradient descent are

used to tune network parameters to maximize or minimize loss.

A clever choice of the loss function along with complex architectures allow for neural

4

networks to adapt to a variety of domains. While we will not go into the explanation here, layers

such as the convolutional layer and deconvolutional layer have allowed us to process images more

naturally to perform complex operations on them. We will see shortly that transformations in the

image space are of great interest and can be actually enforced using semantic constraints.

2.1.3 Generative Adversarial Networks

Recent advances in neural networks have provided us with ways to frame neural networks

as adversarial games. In particular, the Generative Adversarial Network [GPAM+14] is a type of

system introduced in 2014 which is comprised of two neural networks participating in a zero-sum

game. An analogy can be drawn between a counterfeiter and an art expert - the first network is

a discriminator, which, in our analogy, is the art expert. It tries to tell real samples apart from

fake samples generated by the generator, or counterfeiter. The generator learns the given input

distribution and tries to generate images that the discriminator cannot differentiate between. As

time goes on, the counterfeiter will have their samples marked as fake, and will learn to create

better images to fool the art expert. Meanwhile, the art expert will have to learn to improve its

ability to tell fake and real in order to keep up with the counterfeiter. The art that the counterfeiter

will produce will become more like the input distribution, until at equilibrium, the art expert

cannot differentiate real and counterfeit.

The loss function of the network is shown below:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(x)))] (2.2)

Minimizing this loss is equivalent to the Jenson-Shannon distance between the generated

and real distribution of inputs. However, the gradient of this loss function is often not smooth

over most intervals and thus gradient descent has a difficult time.

5

2.1.4 Wasserstein Generative Adversarial Networks

In early 2017, the idea of using the Earth-Mover distance as the objective function

[ACB17] was proposed, under the pretense that it provided smooth, nonzero gradients. The

Wasserstein objective function is shown below:

W(Pr,Pθ) = inf
γ∈Π

Ex,y∼γ‖x− y‖ (2.3)

However, this distance is intractable in practice. Instead, we opt to use the Kantorovich-

Rubinstein duality to solve an alternate equation, which was shown to be not only tractable, but

provide better gradients and faster convergence.

W(Pr,Pθ) = sup
‖ f‖L≤1

Ex∼Pr f (x)−Ex∼Pθ
f (x). (2.4)

Due to the fact that the output of the network is now no longer a well-defined probability,

but rather a distance, the training process is a bit different. Rather than have the generator fool a

discriminator, there are instead critics. In the analogy, imagine that there existed critics that rated

counterfeit and real works; rather than differentiating between real and fake, it allows us to tell if

we’re getting better and better. Taking the gradient of this function, we get a slightly modified

training procedure. Figure 2.3 denotes this.

2.2 Learning Generative Models via Discriminative Approaches

Given a generative model, the discriminative approach to calculating p(y =+1|x) is as

follows:

6

Figure 2.3: Wasserstein training procedure

p(y =+1|x) = p(x|y =+1)p(y =+1)
∑y=−1,+1 p(x|y)p(y)

(2.5)

Rearranging the terms, and assuming p(y =+1) == p(y =−1) gives the following:

p(x|y =+1) =
p(y =+1|x)
p(y =−1|x)

p(x|y =−1) (2.6)

Therefore, by learning a discriminative model, we can provide a generative approach to

learning a given distribution [Tu07]. In order to learn p(x|y =−1), denoted now as p−t (x), we

use the following learning process:

p−t (x)→t=∞ p(x|y =+1) (2.7)

7

We are essentially sampling such that an x ∼ p−t becomes indistinguishable from our

reference distribution. Denoted as pseudo-negatives, we continually sample from the distribution

samples that our model believes are positive, then we label negative.

We have shown that discriminative approaches can be used to learn a generative model.

Next, we show an application of this to deep learning.

2.2.1 Introspective Learning

While Generative Adversarial Networks are able to generate images from a distribution,

they do not have classification ability. Introspective Generative Modeling [LJT17] is a paradigm

where a classifier learns to generate images based on a classifier network, then creates images via

backpropagation instead of a forward pass. The general idea is that the input is an image, and the

output is a scalar denoting real or not real. To generate images, the weights of the network are

frozen, then backpropagation will push the gradients onto the original image itself. To generate

an image, a trained classifier network simply has to input a noise image, then backpropagate on it

until it is classified as real.

We draw a parallel in that generated images represent p(x|y =+1), then relabeling them

as negative to promote an adversarial-like task. In this case, however, the adversary is the classifier-

it is simply learning what positive samples should look like and continually improving upon itself.

This task is called Introspective Learning, and we will later utilize this framework in some of our

approaches.

One might ask if this approach will converge. It can be shown that at each step n, the

difference between the Kullback-Leibler divergence between our current estimate D[p+(x)||pr
n(x)]

and our next estimate D[p+(x)||pr
n+1(x)] is positive, and thus, the distance decreases at each

step. Zn is simply a normalizing factor. We will also denote q(x) to denote a learned model

approximation.

D[p+(x)||pr
n(x)]−D[p+(x)||pr

n+1(x)]

8

Figure 2.4: Introspective Generative Modeling

=

∫
p+(x)log(1

Zn

q(y=+1|x)
q(y=−1|x) pr

n(x))dx−
∫

p+(x)log[pr
n(x)]dx

=

∫
p+(x)log(1

Zn
)dx+

∫
p+(x)log[q(y=+1|x)

q(y=−1|x)]dx

= log 1
Zn
+

∫
p+(x)log(q(y=+1|x)

q(y=−1|x))dx≥ 0

Since it must be the case that the divergence is decreasing at each step, we show conver-

gence.

This method is extremely simple because it only requires a classifier to sample from. In

essence, it enables us to turn any classification model into a generative model, which is extremely

powerful. In addition, our introspective framework has the advantage of only requiring a single

model instead of the two models required in the adversarial framework.

Our training algorithm is very simple, we just perform the exact calculations via sampling

and update our model in a similar fashion as described.

9

Figure 2.5: Introspective Generation Algorithm

2.3 Word Embeddings

Unfortunately, neural networks don’t have the ability to perform computations on text

the same way that they do on numbers. We need to translate text into something that is machine

intelligible. We opt to convert them to word vector form. There are several popular methods for

this. We discuss them briefly.

2.3.1 Bag of Words

’I watched a movie’. Consider this body of text, which consists of 4 words. Often, we

realize that there are words in the body of text that we can discard; namely, words such as a and

the don’t contribute much to the meaning of the sentence. We denote such words as stopwords,

and remove them from the list. In addition to that, notice the meaning of the sentence is not

warped much by removing the order of the words. In summary, what this means is that given a

vocabulary, we can represent a sentence or corpus with just the relevant words in a set.

10

This representation is called ’bag of words’. The relative ordering of words is not used

from the original corpus- instead, we opt to derive meaning of a sentence from the content of the

sentence. In practice, this approach often works pretty well.

One way we vectorize this approach is to create a encoding of the given words in a corpus

by a certain vocabulary. We can create a vector of the counts of the words of a given vocabulary

occurring in a corpus to represent it. In this way, we retain only the word count and words present,

which hopefully capture most of the meaning.

2.3.2 Term Frequency - Inverse Document Frequency

However, it may not be the case that the vocabulary words that appear often are the most

indicative of the meaning of a sentence. For example, let’s assume an article about a review for

Star Wars. Star Wars itself may only appear once or twice in the entire article, and yet, is central

to the meaning of the the article. In comparison, space ship might appear often, yet does not

describe the article as well as Star Wars. Why is this the case?

Well, relative to other articles that we read, Star Wars appears more times in this article

than in others. In other words, if we factor in that other articles don’t contain these words, then

the meaning of this article comes into light. Given a term and document, we can formulate this as

such:

t f id f (t,d) =
f (t,d)

∑i f (t,di)
log

N
nt

(2.8)

Where N represents the number of documents, nt represents the number of documents

which contain the term t. The first term is simply a term frequency count, multiplied by the

relative importance of the word over all documents. Doing this calculation for every word and

vectorizing it gives very good empirical results.

11

2.3.3 Word2Vec

There are drawbacks to using the beforementioned word vector methods. They lack the

ability to do zero-shot learning. That is, if a word has not been seen before, then we have no

information on it and thus, we cannot glean any information off of it. One of the most common

solutions is to learn an extremely large vocabulary, and apply that to smaller use cases. In practice,

if such a vocabulary is learned, even if we have not seen certain phrases before, we can use our

previously learned knowledge to generalize.

We will not go into the approach of creating them in detail for now. Word2Vec [MCCD13]

will define an n-dimensional vector for a phrase or sentence. For a given word2vec model, all

generated vectors should be the same length. Similar words will appear in similar places in

word2vec space, for example, calculating the norm of the distance between man and woman may

be very small, in comparison to something like man and car. This approach provides us with

ways to compare text using common loss functions such as L2 loss.

12

Chapter 3

Related Work

Below, we discuss some popular approaches to combining text and image into the same

space. They will serve as several different approaches to our current task.

3.1 Conditional Generative Adversarial Networks

Conditional Generative Adversarial Networks [MO14] are very similar to their predeces-

sor, the Generative Adversarial Network, except that input is a concatenated reference distribution

sample, along with a conditional y. This conditional acts as a signal - it provides information to

the network on what to generate by using it as a prior. This conditional is often a class label or

background information used to provide a more concise distribution for the output.

The formulation of these types of networks is very simple- only a slight change is necessary

to the original loss function.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)]+Ez∼pz(z)[log(1−D(G(x|y)))] (3.1)

Conditioned on some variable y, we can learn to associate certain parts of a reference

13

distribution with certain input variables.

Figure 3.1: Conditional Generative Adversarial Network

This technique has achieved impressive empirical results. Due to the great flexibility

of what the conditional is, there have been many applications regarding creative uses of the

conditional to apply this model to various domains. In particular, the text-image domain has

found great success in these approaches. We will discuss some of them here, as they are considered

the state of the art models with regards to image synthesis in the joint image-text domain.

3.1.1 Text to Image Synthesis

In 2016, Reed created one of the most popular models today for synthesizing images from

the text domain. The approach is a conventional discriminator generator architecture, but with a

text conditional in the discriminator network [RAY+16]. The generator network takes in a text

ϕ(t) and noise sampled from a gaussian distribution z to encourage variety in images generated,

and outputs a generated image x̂.

The discriminator network takes an image input, concatenated with text, and outputs

a probability value representing the probability the image matches with the text. Training the

14

network is similar to training a conditional image network, but with modifications to ensure

robustness.

Figure 3.2: Text-Image Synthesis Network

The loss consists of three parts - sr, which is a (real image, right text) pair, sw, which is a

(real image, wrong text) pair, and s f , which is a (fake image, right text) pair. It is necessary to

include all three parts, as not only must the network learn what a real image looks like, it must

also learn what text to associate with that image.

While this network does extremely well on phrases with ’complete’ information, it cannot

generalize very well when the text is lacking. Consider A blue bird sits on a branch. The network

has no issues generating an image such as this, because it has information on what color the bird

should be, and the posture of the bird. However, when presented with text that does not have

such descriptions, such as A bird, this network has a much harder time generating a realistic

looking image if the variance of the input dataset is high, such as the case with the Microsoft

Common Objects in Context [LMB+14] dataset, or if there exists a many to many mapping

between phrases and images, as with the Flickr 30k entities dataset [PWC+15]. More on this will

be discussed in the experiments section.

3.2 Two Branch Networks

In 2015, Wang [WLL17] created Two-Branch Neural networks for image-text preser-

vation. The premise is simple- join a given image x and a text y, f (x) and f (y) can represent

15

transformations into a joined latent space. This embedding space is where both the text and image

are pushed into similar dimensions and operations can be performed.

The notion of a class label has been relatively predominant with conditional generative

adversarial networks so far, but text is a tricky domain because it isn’t necessarily class based.

With more complicated text phrases, the notion of a class breaks down. Therefore, we have to

rely on the inherent semantic relationships between different phrases.

There are two networks of interest to us utilizing this two branch structure, and we will

discuss them in further detail.

3.2.1 Embedding Network

Suppose we have an image patch x and a matching text y, along with a non-matching text

y′. We want to enforce some sort of semantic constraint on how these two will map in the latent

space- that is, the cosine similarity of these two should be high if they match.

In other words, the distance between the vector representation of x,y denoted by d(x,y)

should be smaller than the distance between d(x,y′). In this way, if we enforce that matching

image-text pairs are closer to each other in the latent space, we are able to map a relationship

between image and text.

Since this latent space is explicitly defined as the final layers of the two branches, imposing

constraints works very well on the vector outputs of the network. There are three constraints

that cater towards shaping the latent space to match commonsense expectations. Firstly, the

distance between two similar images should be smaller than two nonmatching images; that

is, d(xi,x j)+m < d(xi,xk), where xi,x j match and xi,xk do not match. m represents a margin

or neighborhood for which the matching pairs must be within. The other two constraints are

also common sense: d(yi,y j)+m < d(yi,yk), the text equivalent of the previous constraint, and

d(xi,yi) +m < d(xi,yk), the constraint that matching image-text pairs should be closer than

nonmatching ones.

16

Figure 3.3: Embedding Network

3.2.2 Similarity Network

A much simpler task that does not involve us enforcing any sort of constraints is the

similarity network. We merge the vectors into an element-wise product, and simply treat this

as a classification task. We output a sigmoid probability that tends towards 1 if the image and

text match. As it turns out, this simple approach, which is noticeably less complicated, achieves

similar results in phrase localization tasks as the embedding network.

However, it is not guaranteed that semantic constraints are held in the latent space anymore.

That is, we are not guaranteed the same neighboring constraints as in the embedding network.

We will show later that this is the reason for which certain tasks don’t perform as well on the

similarity network.

17

Figure 3.4: Similarity Network

18

Chapter 4

Methodology

Most of the previously shown approaches use various methods to combine text and image

into a representation useable with classfication tasks. For example, the two-branch networks

allow us to reframe the text-image space into several different classification problems.

We also saw, through the introspective learning framework, that we can frame generative

approaches through learning a classification task. Therefore, given the previously discussed

classification approaches, by using a learned prior, we can reframe these classification tasks as

generative problems.

In this way, we can transform each of the networks described to perform image synthe-

sis. That is, P(x|y = +1) can be approximated with P(y = +1|x) via the equations previously

specified.

4.1 Approaches

4.1.1 Introspective Image Synthesis

Using the two-branch network architectures described before, we reframe the classification

task- given a classification network which outputs the similarity metric between a given phrase

19

and image, generate a given input distribution.

However, this is not so simple, as the triplet sampling embedding network approach is

difficult to model. Given we want an image that is some fixed distance m from a given text, how

would that image look? It is not quite well-defined what m we should pick, nor is it easy to

estimate this via empirical tests. This distance is more or less arbitrary, as the space that we create

can have different margin widths.

With the similarity network, we know that we would want a image which has a similarity

of 1 to a given text. In other words, it is clear that P(y =+1|x) must be 1. By setting the posterior

probability to 1, we can generate an approximation for P(x|y = +1), and refine it through the

introspective learning framework.

Application is simple- we just freeze the weights during generator training in the network,

and make the input image a trainable parameter. In that way, we have set the posterior to be 1,

and backpropagation will change the input to match the supplied posterior with an estimate based

on our current model.

Figure 4.1: Discriminator vs Generator trainable parameters

To encourage variety in images, the Conditional Generative Adversarial Network frame-

work concatenates noise with text to generate images- in our case, since we start our images from

sampled gaussian noise and generate with backpropagation, this is not necessary.

The formulation for the loss of the network is a logistic regression loss.

20

L(x,y,z) = ∑
i, j

log(1+ exp(−zi j f (xi j,yi j)) (4.1)

Where zi j is 1 if image xi j and text yi j match, and -1 otherwise.

4.1.2 Wasserstein Introspective Image Synthesis

We found that, in the case of these networks, that leveraging the Wasserstein metric

was possible in our introspective learning framework. Let us denote xi,x j to be real and fake

images. Then, we change the interpretation of the output of the network- instead of a scalar that

represents the probability that a given text matches an image, it becomes a distance scalar. We

wish to maximize instead d(xi,y)−d(x jy), aiming to learn, instead of matching and non-matching

images, the real image distribution and fake image distribution given a specific label.

The formulation for the loss function is the same as the previously shown Wasserstein

Network loss. We are interested in separating the distribution of real images given a conditional

text, but no other components of the loss need be changed.

In both this and the previously mentioned approach, we use the similarity network

architecture. However, as mentioned previously, there are no explicit semantic constraints in

the joined latent space- therefore, there are no guarantees that in our network’s latent space that

images which are semantically similar are placed next to each other in this space. Rather, it is

more likely that visually similar images will be placed close to each other.

4.1.3 Affinity Network

The previous approaches use the two-branch network architectures to create the latent

space. However, there were no structural constraints on the latent space in order to group similar

images and similar texts together. The embedding network requires that in order to use our

21

introspective framework, the backpropagation technique need be used with a specific margin and

vector distance in mind, but this is difficult to obtain, because we do not know the true distance

between a given matching image and text in the latent space.

Rather than doing that, we opt to instead frame the synthesis problem as a regression

task: given an image, perform regression to obtain the text description for that image. In order to

generate an image with this network using our introspective framework, we simply set the text

embedding to a target embedding that we want, and perform backpropagation, making the input

image the trainable parameter.

Figure 4.2: Affinity Network

In this way, we are able to embed semantic constraints in the latent space simply by

training the network- the final layer’s image features should mirror the word2vec space. To ensure

22

that the image that is produced is not only faithful to the semantic constraints, but also realistic

looking, we reshape the image features to a scalar and represent the scalar as the Wasserstein

distance. Now, the network must not only satisfy the semantic constraints, but also separate the

real image distribution from the fake image distribution.

23

Chapter 5

Experiments

We first show image synthesis results on the Flickr 30k Entities dataset. This dataset has

the benefit of being continuous, free-form phrases. While other text-image synthesis approaches

have used datasets where the sentence structure is similar and very specific. As mentioned before,

these networks have a difficult time generalizing when certain image aspects are not described, as

the network learns to generate images given text. Images will be shown from the experiments

first, and Inception scores will be given later. The images are shown in batches with randomized

text used as descriptions. We use minibatch gradient descent with a batch size of 100 to speed up

the training process.

This, in essence, means that zero-shot learning doesn’t work very well for unique sentence

structures. On the text-image synthesis network, which works very well for the caltech birds

and flowers dataset with context-rich phrases, we attempt to generate images using simpler

phrases. After training on the Flickr 30k Entities dataset, we generate images using a man as the

conditional, but the images don’t look very good.

Figure 5.1: Affinity Network

We add text labels to cifar10 and attempt to do text-image synthesis with our two-branch

24

similarity network. The results look very decent, considering the amount of variance intraclass in

cifar.

Figure 5.2: Two Branch Network generates CIFAR10

The text does not play a large role in this generation, since there are no phrases nor

complicated grammar. We have shown this network generalizes to the class label case, but we run

experiments to see if it also generalizes to more complicated phrases such as a man running on

the Flickr 30k Entities. The following images are after 300, 500, and 900 epochs.

Figure 5.3: Introspective 300 epochs

While the network seems to be learning to generate smoother images, it cannot quite

create realistic looking images. Due to the many modes within the many text classes, we assumed

mode collapse might have been the problem. The solution, as suggested, was to try Wasserstein

distance instead of a logistic probability as the final layer. This gave us better empirical results,

and we show the 500 and 900 epoch results below.

25

Figure 5.4: Introspective 500 epochs

Figure 5.5: Introspective 900 epochs

While the batches’ images look a bit more well-defined, it is difficult to discern what type

of object the batch was trying to generate. In these experiments, we narrow down the objects

to men and dogs, to reduce the number of modes. However, it’s not clear that the network has

learned what a man and a dog look like.

Using the affinity network, we attempt to generate a batch consisting of a man and a batch

consisting of a dog.

With dogs, the network learns to associate green backgrounds with dog. However, the

large amount of variance in backgrounds and shapes in man makes it quite difficult for the network

to make a realistic image of a man.

We show some Inception scores on the original cropped Flickr 30K entities dataset, as well

as the generated images below. While word2vec embeddings were used for these experiments,

26

Figure 5.6: Wasserstein 500 epochs

Figure 5.7: Wasserstein 900 epochs

we also experimented with term frequency-inverse document frequency embeddings, but found

that their performance was roughly the same as word2vec, so those results were omitted. They

are also a less interesting case due to the lack of zero-shot learning capability.

For the Wasserstein networks, we found that 10 critics worked the best. For the affinity

network, a penalty of 0.5 was applied to the word2vec loss.

Table 5.1: A list of inception scores for various models at 500 and 900 epochs.

Models 500 epochs 900 epochs
Dataset 10.041 10.041
Introspective 2.099 2.202
Wasserstein In-
trospective

3.830 4.021

Affinity 4.060 4.050

27

Figure 5.8: Affinity Network generates a dog

Figure 5.9: Affinity Network generates a man

One thing to notice is that the affinity network doesn’t see improvement after 500 epochs-

this indicates that the full effect of the word2vec component of the loss has already taken effect.

We also ran the conditional generative adversarial network approach on the flickr30k

entities dataset. Keeping in mind that an image can map to multiple phrases, and an phrase maps

many images, this many to many mapping, along with the limited context in the text, makes it

very difficult for the conditional network to generate images.

Figure 5.10: Conditional Generative Adversarial Network generates a man

The network does not have enough context to generate a man. This is to be expected, as

this network is not meant to deal with our task, where a network must learn ’concepts’ rather than

28

learn a small correspondence with each phrase.

29

Chapter 6

Conclusion

We have shown that the introspective modeling approach can reframe classification

problems as generative problems, and that we can improve conditional image generation results

by placing semantically similar images close to each other in the latent space. We encourage

others to try applying our introspective approach to more complicated tasks and classification

models.

30

Bibliography

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative
adversarial networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 214–223, International Convention Centre,
Sydney, Australia, 06–11 Aug 2017. PMLR.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 2672–2680.
Curran Associates, Inc., 2014.

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

[LJT17] Justin Lazarow, Long Jin, and Zhuowen Tu. Introspective neural networks for
generative modeling. In The IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B.
Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312,
2014.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781, 2013.

[MO14] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. CoRR,
abs/1411.1784, 2014.

[PWC+15] Bryan A. Plummer, Liwei Wang, Chris M. Cervantes, Juan C. Caicedo, Julia Hock-
enmaier, and Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase
correspondences for richer image-to-sentence models. CoRR, abs/1505.04870,
2015.

31

[RAY+16] Scott E. Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt
Schiele, and Honglak Lee. Generative adversarial text to image synthesis. CoRR,
abs/1605.05396, 2016.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed processing:
Explorations in the microstructure of cognition, vol. 1. chapter Learning Internal
Representations by Error Propagation, pages 318–362. MIT Press, Cambridge, MA,
USA, 1986.

[RM51] Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann.
Math. Statist., 22(3):400–407, 09 1951.

[Tu07] Zhuowen Tu. Learning generative models via discriminative approaches. 2007
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, 2007.

[WLL17] Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning two-branch neural networks
for image-text matching tasks. CoRR, abs/1704.03470, 2017.

32

