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Abstract

A neural network model for object recognition based on Biederman's (1987) theory of
Recognition by Components (RBC) is described. RBC assumes that objects are recognized
as configurations of simple volumetric primitives called geons. The model takes a
representation of the edges in an object as input and, as output, activates an invariant,
entry-level representation of the object that specifies the object's component geons and
their interrelations. Local configurations of image edges first activate cells
representing local viewpoint-invariant properties (VIPs), such as vertices and 2-D
axes of parallelism and symmetry. Once activated, VIPs are bound into sets through
temporal synchrony in the firing patterns of cells representing the VIPs and image edges
belonging to a common geon. The synchrony is established by a mechanism which
operates only between pairs of a) collinear, b) parallel, and c) coterminating edge and
VIP cells. This design for perceptual organization through temporal synchrony is a
major contribution of the model. A geon's bound VIPs activate independent
representations of the geon's major axis and cross section, location in the visual field,
aspect ratio, size, and orientation in 3-space. The relations among the geons in an image
are then computed from the representations of the geons' locations, scales and
orientations. The independent specification of geon properties and interrelations uses
representational resources efficiently and yields a representation that is completely
invariant with translation and scale and largely invariant with viewpoint. In the final
layers of the model, this representation is used to activate cells that, through self-
organization, learn to respond to individual objects

Introduction

Within the limits of visual resolution, and excluding so-called “accidental" viewpoints
(i.e., singularities of viewing angle that project misleading images on the retina, such as
viewing a cylinder from an angle that makes it appear to be a rectangle), an object's
image may be projected on the retina in any location, in any size, and from any viewing
angle, and the object will still be readily recognized. Biederman's (1987) theory of
Recognition by Components (RBC) explains these fundamental phenomena of object
recognition by positing that objects are represented as structured configurations of
viewpoint-invariant volumetric primitives called geons. This paper introduces a
neurally plausible model of object recognition based upon RBC. Although the model
described herein is a complete model of recognition, this paper describes only those
parts explicitly concerned with the deriviation of an object's structural description in
terms of geons and their relations.

To derive a viewpoint-invariant representation of the geons and relations in an image of
an object, a neural network (NN) must solve three related problems: (1) For any image
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containing more than one geon, it must determine which image features belong with
which geons; (2) it must recognize the geons and represent them in a manner that, while
invariant with location and viewpoint, expresses the location and orientation of each
geon; and (3), it must derive the relations among the different geons in the image and
bind those relations to the geons to which they apply. These tasks are all manifestations
of the Binding Problem, a problem that has not been adequately handled by artificial
neural networks. We describe a solution to binding which allows the present model to
solve each of these problems.

The Binding Problem The term binding refers to the represention of feature
conjunctions. For example, how can a NN represent an image edge that is at a particular
location in the image and at a particular orientation and with a particular curvature,
etc.? The predominant approach is to allocate a cell (or specific pattern of activity over
a set of cells) to respond to edges with the desired combination of properties. Likewise,
other cells or patterns would be allocated to respond to all other combinations. We will
use the term enumerated 1o refer to representations of this type because feature
conjunctions are represented by enumerating all possible combinations and allocating
separate cells for each.

Despite its popularity in NNs, enumeration suffers critical shortcomings as a general
solution to binding. Its most serious difficullty is that the cells representing a given
feature conjunction must be dedicated prior to the occurrence of that conjunction in the
system's input. In addition to inefficiency of representation (most cells are unused most
of the time), this requirement precludes dynamic binding. Dynamic binding refers 1o
conjoining stimulus properties that are represented in different cells or even different
parts of the brain. The problem of dynamic binding is typically illustrated in the
context of conjoining an object's color and shape, and its solution is usually described in
terms of an attentional mechanism that operates by somehow "gluing" together different
properties that are linked to a common point in some sort of "location map" (e.g.,
Kahneman & Treisman, 1984; Treisman & Gelade, 1980).

But the problem of dynamic binding has implications far beyond conjoining color and
shape by reference to common location. First, any image projected on the retina will
exist over a range of locations, so even assembling the various features defining a shape
(Problem 1 above) entails binding features occurring at different locations. In this
context, binding is referred to as image parsing or perceptual grouping (although
whether the binding is performed dynamically or by pre-dedicated cells is rarely
addressed explicitly). Representing geons in a manner invariant with location and
viewpoint while still expressing these properties (Problem 2) also requires a
mechanism for dynamic binding since, to be invariant with location, the representation
of a geon must be independent of the represention of its location. Therefore, conjoining
these separate representations to express the location of a particular geon requires
dynamic binding. The same logic applies to binding geons and relations (Problem 3).
Unless a different cell is to be posited for each possible geon in each possible relation
with every other geon, binding geons and relations entails dynamically binding features
represented in separate cells. Thus, the dynamic binding problem underlies each of the
above difficulties posed by a NN approach to viewpoint-invariant recognition.

Binding Through Synchrony In the present model, independent features are
dynamically bound by establishing synchronous firing in the cells representing those
features. Although synchrony as a basis for binding was first described by von der
Malsburg (1981,1987) and later by others (e.g., Crick, 1984), this article presents
an original proposal for establishing synchrony among the basic features of complex
shapes. Specifically, we posit the existence of Fast Enabling Links (FELs) that induce
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synchronous firing in active units sharing them. In the model's first two layers, visual
features represented by cells sharing FELs are grouped into coherent shapes. The form
of the grouping, fundamental to the model's capacity for representing shape, is
determined by the specific set of FELs. The resulting synchrony is then used in higher
layers both to bind the independent properties of geons, and to bind relations to the geons
they describe.

The Model

Overview The complete model is a 7 layer connectlionist network that takes as input a
representation of a line drawing of an object and, as output, activates a cell representing
the entry-level category of the object. An overview of its architecture is shown in Figure
1. The model's first layer (L1) is composed of a mosaic of cell clusters distributed over
the model's visual field. The cells within an L1 cluster respond to image edges in terms of
their orientation, curvature, and whether they terminate within the cluster's receptive
field. The model's second layer (L2) is also composed of a mosiac of cell clusters. These
cells respond to configurations of edges that define vertices, 2-D axes of parallelism and
symmetry, and oriented, elongated blobs at particular locations in the visual field. Cells
in L1 and L2 group themselves into sets (or assemblies) describing geons by establishing
temporal synchrony among their spikes of output. Cells tend to fire in synchrony if they
represent features of the same geon and out of synchrony if they represent features of
different geons.

Cells in L3 respond to properties of complete geons. These cells take their input directly
from L2, but because of the binding achieved in L1 and L2, each of the geon properties is
represented independently of every other property. For example, the shape of a geon's
major axis (straight or curved) is represented in one vector of cells and the geon's
location is represented in another vector. Consequently, the representation of the geon's
axis does not change when the geon is moved in the visual field. The fourth and fifth layers
compute the relations among the geons represented in L3. These computations are
performed on the basis of the geons' coarsely coded metric properties (i.e., location in the
visual field, scale and orientation in 3-space). The relations among the geons are bound to
the geons they describe by the same synchrony of firing that binds image features together
for geon recognition. The output of layers 3 and 5 together describe an object in terms of
its geons and their relations. This representation is invariant with scale and translation,
and largely invariant with viewpoint (orientation in the visual plane and in depth).

The representations and processes employed in layers 1 to 5 constitute the major
contribution of this effort, but the model has two additional layers that use the output of
layers 3 and 5 as a basis for invariant recognition. These layers integrate the outputs of
L3 and L5 over time and self-organize to recognize complete objects. This paper will
emphasize the processes employed in L1 and L2 for image parsing and the processes
employed in L4 for computing relations.

Image Parsing

Image parsing is among the first problems to confront a geon-based model of visual
recognition because the VIPs in an image must be grouped before the geons they define
can be identified. For example, correctly parsing the image in Figure 2a entails
grouping vertices V1,V2 with segments S1,S2 as features of one geon, and V3 with S3 as
features of the other. This model performs parsing by establishing temporal synchrony
among the cells in L1 and L2 representing features of a common geon. The synchrony is
established through local interactions among edge- and VIP-sensitive cells.
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Cells in L1 share two types of connections with other cells in the network: typical
activation connections (or simply connections), which spread excitation and inhibition
from one cell to another, and fast enabling links (FELs), which are assumed to operate
approximately an order of magnitude faster than the duration of a “time slice” (the
temporal period within which cells sum their inputs), and which propagate only binary
enabling signals between cells. FELs induce synchronous firing in pairs of active cells
as follows: Each cellj in L1 has an output refractory Rj which prevents it from
generaling a continual train of output spikes. If cellj is aclive, it will generate a spike of
output only when Rj goes below the refractory threshold (0). Rj is assumed to decay
linearly. When Rj < 0, it is reset to its maximum, and cellj fires (it generates a spike of
output and sends a signal out along all its FELs). Because of the speed with which FELs
propagate, an enabling signal will tend to arrive at its destination within the same time
slice it was generated. When it arrives at an active cellj, its effect is to set R;
immediately to zero, causing celljto go through the same sequence of events as cell;
(i.e., reset its refractory, and generate an output and an enabling signal). If the
enabling signal arrives at an inactive cell, nothing happens.

Because active cells sharing FELs tend to fire in synchrony, they organize themselves
into groups defined by their temporal firing patterns. As shown in figure 2b, FELs are
posited between five types of cell pairs in L1 and L2, reflecting four general constraints
on the formation of edge-based images:
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by FELs a and b in Figure 2b.
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FELs a, b and c cause all the cells representing a continuous edge to fire synchronously.
Termination-to-vertex FELs (d) group vertices with the edges to which they are
attached. Since FELs are bidirectional, all the edges coterminating at a given vertex will
also be grouped together (an enabling signal will enter a vertex from one termination
and be passed, via that vertex, to the other terminations at that location). The distant
termination-to-termination FELs (e) operate through vertex cells in L2 which respond
specifically to lone terminations (edges that do not terminate with other edges, such as
the stem of a T vertex). FELs between collinear lone terminations allow the visible
pieces of occluded edges to group with one another. Because the L2 lone termination cells
are inhibited by inconsistent terminations in L1, this type of "gap jumping” cannot
occur when more than one edge terminates at a point. This restriction prevents edges
belonging to different geons from being grouped just because they happen to be collinear.
Note also that this set of FELs implicitly excludes grouping edges that form T vertices. T
vertices are formed at the junction of separate geons, the "top" belonging to one geon, and
the "stem" to another, and therefore constitute image features whose constituent parts
should not be grouped.

Applied iteratively, locally grouping edges and vertices causes all features belonging to a
common geon to be grouped, and since blobs and axes receive their inputs from edge cells,
the blobs and axes belonging to a given geon will fire on the same time slices as the geon's
edges and vertices. In this manner, the local computations performed by the FELs parse an
image into its constituent geons. Unlike a top-down or knowledge-driven mechanism,
these computations require no information about what volumes are in the image and where
they are located. This is an important advantage, because a parsing mechanism that
required such information would effectively require that the image already be parsed.

Representing Geons The cells of the model's third layer represent the properties of
geons (shown in Figure 1) which have the following characteristics: (1) Geon
properties are divided into two classes: contrastive properties (such as straight axis vs.
curved axis) and metric properties (such as location in the image). The former are used
directly for recognition while the latter are used to compute the relations among the
various geons in an image. (2) Geon properties are activated by the VIPs activated in
layer 2. For example, all L2 cells representing Tangent Y vertices activate the cell
which responds to curved cross section geons. (3) Each L3 cell responds independently
to a particular value on a particular dimension over which geons can vary. For example,
the L3 cell that responds to the value curved on the dimension shape-of-major axis will
fire in response to any geon with a curved axis, such as a large curved brick in the
upper left of the visual field or a small curved cone in the lower right. Thus, each geon
property is represented in a manner that is invariant with every other geon property.
This invariance, made possible by the binding achieved in L1 and L2, is a crucial aspect
of the model's design.

Deriving Relations Among Geons Of the properties derived in L3, only the
contrastive properties are used directly for geon classification. The metric properties
(size, location, and orientation) are used to determine the relations among the geons in
the image, such as relative size, relative location, and relative orientation (Figure 1).

Determination of inter-geon relations is performed in two steps. In L4, relations are
computed separately for each value of each dimension. The relation below will be used to
ilustrate how the L4 cells operate, but the logic generalizes to all relations. Consider
Figure 3. Associated with every position in Y (Yp), there is an L3 cell which becomes
active when that position is occupied by a geon (L3y=p), and there are two L4 cells: one
that becomes active when Yp is below another occupied position (L4below at y=p). and
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one that becomes active when Yp is above another occupied position (L4above at y=p)- In

LS, there is only one cell for each relation, each of which receives excitation from every

corresponding L4 cell. For example, LShglow receives excitation from Ldpelow at y=1.

L4below at y=2, etc. Each L4 cell receives two types of input: an excitatory input and an
enabling signal (through an FEL).
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fire in synchrony with geon1's other Figure 3. Compuling Relations
properties.

Recognizing Objects The model's sixth layer receives inputs from L3 cells describing
geons, and from L5 cells describing inter-geon relations. L6 and L7 perform two
functions: they use the temporal synchrony of inputs within an assembly to ensure that
the geons in a object are in the appropriate configuration to define that object, and they
combine information from different time slices into an interpretation of a single object.

Preliminary Results and Discussion

Simulations with the model described here have shown that the model is capable of
parsing line drawings of simple (even unfamiliar) objects and deriving descriptions of
their geons and relations that are completely invariant with scale and translation, and
largely invariant with viewpoint. As a consequence, it demonstrates complete
translation and scale invariance in recognizing each of the objects with which it is
familiar (the objects on which it was allowed to self-organize), and demonstrates
rotation invariance resembling that of the human in experimental situations with
nonsense objects. That is, it tolerates rotations in depth better than rotations in the
visual plane, and its performance on rotations in the plane degrades as a function of the
degree of rotation.
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