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Abstract

Small RNAs, including microRNAs (miRNAs), phased secondary small interfering

RNAs (phasiRNA), and heterochromatic small interfering RNAs (hc-siRNA) are an

essential component of gene regulation. To establish a broad potato small RNA atlas,

we constructed an expression atlas of leaves, flowers, roots, and tubers of Desiree

and Eva, which are commercially important potato (Solanum tuberosum) cultivars. All

small RNAs identified were observed to be conserved between both cultivars, sup-

porting the hypothesis that small RNAs have a low evolutionary rate and are mostly

conserved between lineages. However, we also found that a few miRNAs showed

differential accumulation between the two potato cultivars, and that hc-siRNAs have

a tissue specific expression. We further identified dozens of reproductive and non-

reproductive phasiRNAs originating from coding and noncoding regions that

appeared to exhibit tissue-specific expression. Together, this study provides an

extensive small RNA profiling of different potato tissues that might be used as a

resource for future investigations.

K E YWORD S
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1 | INTRODUCTION

Potato (Solanum tuberosum L.) is the third largest food crop in the

world (Tiwari et al., 2022). It belongs to the Solanaceae family and is

native to the Andes region in South America, where it was first

domesticated. Potato grows as an herbaceous multi-stemmed plant

and bears pinnate leaves. Flowers emerge in the summer and may dis-

play white, pink, blue, or purple color with yellow stamens. When pro-

duced, potato fruits display a green color with cherry tomato-like

berries filled with many seeds. Potatoes are cultivated for their tubers,

which are enlarged, underground stems that function as storage

organs for starch and other nutrients. Most cultivated potatoes are

autotetraploid (2n = 4x = 48), although their ploidy can vary from

diploid to pentaploid (Machida-Hirano, 2015). There are also wild

potato species that are hexaploid (Watanabe, 2015). Due to their

complex genetics, potatoes are clonally propagated through tubers

and through tissue culture. The potato plant is morphologically

diverse, with thousands of cultivated varieties (or cultivars) and land-

races. However, a much lower diversity is found in commercially pro-

duced potatoes. In this work, we focused on two cultivars, namely

Desiree and Eva that were developed in the Netherlands and the

United States, respectively (Figure S1). Tubers of Desiree have yellow

flesh and red skin. Desiree is valued for its resistance to drought and

moderate resistance to diseases (Jones & Vincent, 2018). The Eva cul-

tivar was selected from a cross between the Stuben cultivar and bulk

pollen collected from clones that were neotuberosum � tuberosum

hybrids (Plaisted et al., 2001). This cultivar has white flesh and skin

and is appreciated for its well-shaped and uniform tubers. Eva isPatricia Baldrich and Alexander Liu contributed equally to this work.
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extremely resistant to diseases, including especially potato virus Y and

potato virus X.

As a result of the many challenges associated with conventional

breeding for potato improvement, alternative strategies are required

to manage the constraints faced in the cultivation of this crop. The

use of genetic engineering in potato improvement is likely to make

considerable strides thanks to advances in genomics and genomics

technologies. Thus, in the last decade, several potato reference

genomes have been sequenced, including the doubled monoploid

Solanum tuberosum Group phureja DM1–3 (Xu et al., 2011), the wild

diploid S. commersonii (Aversano et al., 2015), and the diploid, inbred

clone of Solanum chacoense - M6 (Leisner et al., 2018). Given that

potato is an autotetraploid, it has been suggested that its polyploid

nature resulted from duplication events (Kyriakidou et al., 2020). Thus,

to capture the diversity exhibited by diverse potato genomes, differ-

ent sequencing technologies are fundamental, and will lead to a better

understanding of the potato genome.

The availability of potato whole genome sequences has allowed

parallel sequencing and identification of small RNAs (sRNAs), which

are a critical part of the regulation of many cellular functions and

development (Baldrich et al., 2019; Samad et al., 2017). Plant sRNAs

are between 21 and 24 nt in length and, depending on their biogene-

sis, can be divided into three classes: microRNAs (miRNAs), phased

secondary small interfering RNAs (phasiRNA), and heterochromatic

small interfering RNAs (hc-siRNA). miRNAs are 21 nt or 22 nt in size

and are derived from a single strand Polymerase II (Pol II) transcript,

with a characteristic hairpin folding structure. The miRNA precursor is

typically processed into a mature miRNA duplex by a diverse set of

proteins, including Dicer-like 1(DCL1) (Bologna & Voinnet, 2014; Li &

Yu, 2021; Rogers & Chen, 2013). PhasiRNAs on the other hand

are derived from a double strand Pol II and RNA-dependent RNA

Polymerase VI (RDR6) transcript and are processed into 21-nt or

24-nt mature duplexes by DCL4 or DCL5. This dicing process is

triggered by a 22 nt miRNA and results in consecutive phasing sRNAs

(Fei et al., 2015). The third class of sRNAs, hc-siRNAs, are

derived from repetitive regions of the genome, and are typically 24 nt

in size.

In this article, we characterized sRNA accumulation in leaf, root,

tuber, and flower tissues of potato cultivars Desiree and Eva, which

were selected to capture a maximum diversity of sRNAs from vegeta-

tive and reproductive tissues.

2 | METHODS

2.1 | Plant materials

Desiree and Eva potatoes used in this study were from United States

seed growers. Tuber RNA was extracted directly from seed tubers

received from growers. To obtain root, leaf, and flower RNA, both cul-

tivars were grown in a room at 16 h light and 22 � 3�C temperature.

Leaf and root RNA was extracted from 6-week-old plants, whereas

flower RNA was isolated at flowering.

2.2 | RNA extraction

Total RNA from leaves, flowers, and roots was extracted from three

biological replicates of ground plant tissue TRIreagent (Ambion), fol-

lowing manufacturer’s recommendations. Correspondingly, total RNA

from tuber was isolated using the RNeasy Mini kit (Qiagen, USA) fol-

lowing manufacturer’s recommendations, except that using a modified

tuber extraction buffer (6 M guanidine hydrochloride, 20 mM MES

hydrate, 20 mM EDTA, pH 8, 10% b-mecaptoethanol). Quality and

quantity of the extracted RNA was measured by running an RNA

denaturing agarose gel, and qubit fluorometer assay.

2.3 | Annotation of potato genome

The RH genome assembly (Zhou et al., 2020) was downloaded from

Spud DB (http://solanaceae.plantbiology.msu.edu/rh_potato_

download.shtml). Based on this genome, repetitive regions, rRNAs,

and tRNAs were annotated using computational software. Repetitive

regions were annotated by RepeatMasker (http://www.repeatmasker.

org), using the Viridiplantae database, whereas rRNA genes were pre-

dicted by RNAMMER (Lagesen et al., 2007), using default parameters.

tRNAs genes were predicted by tRNAscan-SE 2.0 (Chan et al., 2021),

using default parameters. All the final annotations produced by these

software are available in the supporting information in gtf format.

2.4 | sRNA library preparation, sequencing, and
analysis

Small RNA libraries were generated using Somagenics RealSeq®-AC

miRNA Library Kit according to the manufacturer’s protocol using bar-

codes. Libraries were pooled and sequenced using Illumina NextSeq

550 single end sequencing at the University of Delaware DNA

Sequencing & Genotyping Center (Newark, DE, USA). Sequencing

adapters were removed using cutadapt (Martin, 2011), retaining all

reads between 18 and 34 nt in length without undetermined bases

(cutadapt - a TGGAATTCTCGGGTGCCAAGG - m 18 - M 34 - j 0 --

max-n 0 -o sample.fastq). The quality of reads was assessed using

FASTQC (https://www.bioinformatics.babraham.ac.uk/projects/

fastqc/). Resulting reads were aligned to the RH potato genome (Zhou

et al., 2020) and different features identified using bowtie2

(Langmead & Salzberg, 2013). miRNAs and phasiRNAs were identified

from each cultivar separately using ShortStack version 3.8.5

(Axtell, 2013) with default parameters. We used Bedtools (Quinlan &

Hall, 2010) intersect to identify predicted PHAS loci clusters located in

coding regions, and BLAST (Altschul et al., 1990) alignment to discard

PHAS loci clusters that contained sequences that aligned repetitive

sequences and rRNA genes. miRNAs and phasiRNAs were manually

curated based on their accumulation and structure. Previously anno-

tated miRNAs for 10 species of plants were downloaded from miR-

base v22 (Kozomara & Griffiths-Jones, 2014). To identify known

miRNAs, we conducted a BLAST (Altschul et al., 1990) search using
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the ShortStack predicted miRNA from ShortStack categories Y and

N15 as a query, and the merged list of annotated miRNAs as the sub-

ject. Differential accumulation of miRNAs was done using DeSeq2

(Love et al., 2014) and raw counts resulting from Bowtie2 mapping.

We set the false discovery rate (FDR) to 5%. miRNA target prediction

was done using psRNATarget (Dai et al., 2018). General mapping sta-

tistics are included in Table S1.

3 | RESULTS

3.1 | Potato genome annotation

To understand the genomic origin of small RNAs in potato, we

annotated common features, including ribosomal RNAs (rRNAs),

transfer RNAs (tRNAs) and repetitive elements (Figure S2A) in the

potato RH-89 genome. For rRNAs, we obtained 9292 genes corre-

sponding to 8003 5.8S, 663 18S, and 626 28S. We also annotated

2555 tRNAs, representing all 22 amino acids, which corresponded

to 55 out of the 64 codons (Figure S2A,B). We further found that

41.73% of the genome consisted of repetitive elements, where

37.13% were retroelements and 4.29% were DNA transposons

(Figure S2A,C). A vast majority of retroelements belonged to the

long-terminal repeat (LTR) Gypsy family, followed in abundance by

the LTR Copia family. This is consistent with previous studies done

in Solanaceae (Baldrich et al., 2021; Galindo-González et al., 2017).

While acknowledging that this analysis is likely not exhaustive, we

note that due to the repetitiveness of these features, the study is

sufficient to identify the sRNAs that originate from transposable

elements.

3.2 | Potato tubers have a unique small RNA
profile

In this study, we prepared sRNA libraries from leaves, roots, tubers,

and flowers (pooled from different stages of plant development), and

independently collected three biological replicates from three differ-

ent plants for each cultivar and each tissue, for a total of 24 samples.

Results of sequence analysis showed that in both potato cultivars, the

size distribution of sRNAs of flower, leaf, and root tissues between

18 nt and 34 nt peaked at 24 nt, with a secondary peak at 21 nt, con-

sistent with most other plant species (Figure 1). In contrast, tubers

exhibited a unique sRNA profile, displaying a more uniform size

F I GU R E 1 Size distribution of sRNAs mapping to the RH89 potato genome. For each of the samples, the abundance of each size class was
calculated in reads per million (RPM). The x axis indicates the sRNA size, ranging from 18 to 34 nucleotides (nt), and the y axis indicates its
abundance (RPM).
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distribution with a partial peak at 21 nt (Figure 1). We observed that

the 18 and 19 nt sRNAs from tubers originate from rRNAs and repeti-

tive regions, with a small proportion originating from tRNAs

(Figure S3). To determine the heterogenicity and size of each

sequence, we analyzed the size distribution of distinct sRNA

sequences, where each sequence is counted only once. Similar to total

sRNA size distribution, we observed that flower, leaf, and root tissues

displayed a predominant peak at 24 nt, usually corresponding to

sRNAs from repetitive regions (Figure S4). Consistent with total

sRNAs distribution recorded above, the distinct sRNAs peak at 24 nt

was less predominant compared with secondary peaks at 21 and

22 nt, respectively. We also observed that the total count of distinct

sRNA sequences was 10 times lower in tubers (19.4%) than in other

tissues (46.4%) (Table S1).

3.3 | microRNAs and their accumulation are
conserved between Desiree and Eva potato cultivars

To date, 343 mature potato miRNAs have been reported in miRbase

(Kozomara et al., 2019). We used the sRNA data generated from

Desiree and Eva potato cultivars to identify known and potentially

novel potato miRNAs, using the ShortStack pipeline (Axtell, 2013;

Johnson et al., 2016) with default parameters and obtained 112 MIR

genes in Desiree and 109 MIR genes in Eva. We merged these two

outputs and obtained a total of 160 MIR genes, 62 of which were

identified in both cultivars. Of these 160 miRNA precursors, 128 were

already annotated in miRBase v21 (Kozomara & Griffiths-Jones, 2014),

and 32 are potential new miRNA candidates in potato. All observed

miRNAs were expressed in at least one variety or tissue. Of these,

F I GU R E 2 microRNAs and their accumulation are conserved between cultivars. For each sample, miRNA accumulation is represented as a
heatmap, where white and light blue represent low accumulation and dark-blue and purple represent high accumulation. We only represent
annotated miRNAs that accumulate in all tissues with at least 10 reads per million (RPM). miRNAs with a similar accumulation pattern are
clustered together in six distinct clusters, labeled I to VI.
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13 mature miRNAs accumulated only in Desiree and nine only in Eva

(Tables S2 and S3).

To study miRNA tissue specificity, and avoid false negatives, we

focused on those annotated miRNAs that accumulate in all tissues

with at least 10 reads per million (RPM) (Figure 2). Three of these miR-

NAs were expressed in all tissues at a high level, two of which are

members of the miR396 family and the other a member of the

miR159 family (Cluster I). We also observed that 11 miRNAs from

families miR166, miR168 and miR396 (Cluster II) accumulated in all

tissues at a high level, except in tubers. Accordingly, 11 miRNAs

belonging to families miR1919, miR8044 and miR403 in cluster IV

accumulated at higher levels in leaves and flowers but not in roots

and tubers. Finally, the three miRNAs belonging to miR319 family in

cluster V accumulated at high levels in flowers, but not in the other

tissues.

To determine whether some of these miRNAs exhibit a difference

in either of the two cultivars (Figure 3), we analyzed the differential

accumulation of each miRNA in each tissue for both cultivars. A total

of 44 miRNAs differentially accumulated in at least one of the tissues,

27 of which were previously annotated in miRBase and 17 potential

novel miRNAs. In general, most of the differentially accumulated miR-

NAs showed a lower accumulation in Desiree tissues compared with

Eva (blue shades in Figure 3). Notably, miRNAs in families miR6149

and miR1919 showed a lower accumulation in several Desiree tissues

compared with Eva. In contrast, miRNAs from families miR403,

miR530, and miR170 showed a higher accumulation in Desiree tissues

than in Eva tissues (orange shades in Figure 3).

3.4 | PhasiRNA have a similar expression in both
potato cultivars

Using the same output generated by ShortStack, we identified pha-

siRNAs in both cultivars separately and obtained 161 21-nt PHAS

and 45 24-nt PHAS loci in Eva, as well as 142 21-nt PHAS and

75 24-nt PHAS loci in Desiree. Of these, we focused on the PHAS

loci that were common to both cultivars, corresponding to 61 21-nt

PHAS from coding regions, 39 21-nt PHAS from noncoding regions;

nine 24-nt PHAS from coding regions, and 11 24-nt PHAS from non-

coding regions of the genome. To analyze the expression of each of

these PHAS loci, heatmaps for all four PHAS categories were gener-

ated. Results showed that among the 21-nt PHAS loci that over-

lapped with coding genes (Figure 4a), 25 were disease resistance

genes, five were kinases, and one was DCL2, consistent with previ-

ous reports for other plant species (Baldrich et al., 2021; Fei

et al., 2015; Reyes-Chin-Wo et al., 2017). We also observed a

F I GU R E 3 The microRNAs that have
a differential accumulation between
cultivars are mostly tissue specific. For
each tissue, flower, root, tuber and leaf,

differential miRNA accumulation is
represented as a heatmap, where blue
represents low accumulation in Desiree
compared with Eva, and dark orange
represents high accumulation in Desiree
compared with Eva. The asterisks
represent significant differential
expression, with a p-value of .05 or lower.
(a) miRNAs candidates; (b) annotated
miRNAs
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cluster of 20 loci that are highly expressed in all tissues, as well as

two that appear to be flower specific (RHC10H1G1729.2 - Basic

chitinase and RHC08H2G1411.2 - Pectinacetylesterase), one tuber

specific (RHC06H2G2216.2 - methyl-CPG-binding domain 10), and

one that appears to have a higher expression in all Eva tissues

(RHC04H1G0134.2 - unidentified function). As for the 21-nt PHAS

loci from noncoding regions, four loci appear to show flower spe-

cific expression, three with leaf specific, and one with a higher

expression in all Eva tissues compared with Desiree. All 24-nt PHAS

loci were observed to display a flower specific expression (Figure 4b

and Figure S5) and showed no significant difference between Eva

and Desiree.

To identify the triggers of these PHAS loci, we carried out a

reverse analysis of target prediction using the miRNAs and PHAS loci

identified in this study. To avoid false positives, only 22-nt miRNAs

were selected as potential triggers. This analysis identified putative

triggers for 15 out of the 20 24-nt PHAS loci, and 43 out of the

100 21-nt PHAS loci. These triggers include miR477, miR482, miR828,

miR3627, miR8036 (a member of the miR482 family), miR8050,

miR4414, miR6024, miR7122, as well as two potential new miRNAs

not found in miRBAse. Most of these miRNAs were previously identi-

fied in other studies as PHAS triggers in different species (Feng

et al., 2019; Guan et al., 2014; Seo et al., 2018; Wu et al., 2017; Xia

et al., 2013; Zhu et al., 2013) (Table S4).

3.5 | hc-siRNAs have a tissue-specific
accumulation pattern

Here, we defined heterochromatic siRNAs (hc-siRNAs) as all small

RNAs reads that originate from repetitive regions of the genome,

as defined by RepeatMasker. More specifically, we focus on the

F I GU R E 4 PhasiRNAs have a similar expression in both cultivars. For each sample, PHAS locus accumulation is represented as a heatmap,
where white and light yellow represent low accumulation and red represents high accumulation. Only PHAS loci that are present in both cultivars
in logarithmic scale of reads per million (RPM) are represented. miRNAs with a similar accumulation pattern are clustered together.
(a) 21-phasiRNA producing loci from coding (left panel) and noncoding (right panel) origin. (b) 24-phasiRNA producing loci from coding (left panel)
and noncoding (right panel) origin.

6 of 10 BALDRICH ET AL.



hc-siRNAs that derive from transposable elements (TEs). To determine

tissue accumulation of hc-siRNAs, we first identified TEs, and then

queried our data to quantify the number of sRNAs mapping each

superfamily of TE (Figure 5). We observed that in both cultivars, each

tissue presents a specific hc-siRNA origin and abundance. For

example, in flowers and leaves, most of the hc-siRNAs originate from

DNA and Gypsy elements, followed by Copia and endogenized

caulimoviruses. However, in tubers and roots, the most abundant

hc-siRNAs originate from Gypsy and endogenized caulimoviruses.

Gypsy elements were the most abundant TE annotated in the genome

(�30%; Figure S3); thus, there was a correlation between the

number of TE and the number of sRNAs. However, caulimovirus

sequencies represented only 1.5% of the genome even though

accounting for the second most abundant sRNAs. We note that

sRNAs derived from endogenized viruses have been reported in

potato (Geering et al., 2014); have been suggested to be involved in

virus defense (Niraula & Fondong, 2021) and may be a source of novel

genetic material.

A size distribution analysis of hc-siRNAs derived from different

TEs showed that reads originating from caulimovirus and StubV

(a new type of endogenous florendovirus, (Geering et al., 2014) were

mostly 22 nt long. In contrast, reads originating from Helitron ele-

ments were 21 nt long, whereas reads originating from all the other

elements were mostly 24 nt long (Figure S6A).

4 | DISCUSSION

In this study, we analyze sRNA datasets from leaf, flower, root, and

tuber tissues of commercial potato cultivars Eva and Desiree. This

analysis found that only 6% of the miRNAs identified in our samples,

corresponding to 21 out of 320, are apparently cultivar specific.

F I GU R E 5 hc-siRNAs show a tissue specific
accumulation pattern. For each tissue, hc-siRNA
accumulation is represented as a bar plot, where
each shade of blue represents a different
biological replicate. The x axis indicates
transposable element of origin, and the y axis
indicates its abundance (RPM). The three shades
of blue represent the three biological replicates
for each sample type.
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Additionally, these apparently cultivar-specific miRNAs that were pre-

viously annotated in miRBase have members from the same family

present that should have the same targets. This, added to the fact that

the accumulation of almost all miRNAs is conserved between both

cultivars, suggests that the apparent cultivar-specific miRNAs are

more an artifact than the result of a speciation. This leads us to con-

clude that all miRNAs that were identified in this study are conserved

in both cultivars.

We also found that some miRNAs have a significantly different

accumulation in both cultivars, these include miR397-3p, miR530,

miR7122, miR170, and miR403. These miRNAs, which were more

abundant in Desiree compared with Eva, have been found to be

involved in plant responses to stress (Dong & Pei, 2014; Kohli

et al., 2014; Li et al., 2021; Manacorda et al., 2021; Xia et al., 2013).

Future research efforts would determine whether these miRNAs are

responsible for some of the stress responsive differences between

Desiree and Eva.

In these same datasets, we identified phasiRNAs originating from

coding and noncoding RNAs and producing both 21-nt and 24-nt siR-

NAs. As reported previously in other Solanaceae species (Baldrich

et al., 2021; Xia et al., 2019), all the identified 24-nt phasiRNAs from

coding and noncoding genes, were found only in flowers. Further-

more, most 21-nt phasiRNAs from coding genes were observed to be

from disease resistance genes and kinases. We hypothesize that this

additional layer of regulation allows for fine-tuned expression, in

which genes can be continuously transcriptionally active and regu-

lated post-transcriptionally at the same time, allowing for a fast

response when needed.

The main role of hc-siRNAs is to maintain genome integrity by

regulating epigenetic modifications of repetitive elements. We previ-

ously reported that potato lacks hc-siRNAs, likely due to its mostly

asexual reproduction nature (Baldrich et al., 2021). However, here, we

observed that all potato tissues, except for tubers, produce a typical

level of hc-siRNAs (Figure S6B). We postulate that this difference

might be driven by the sampling bias of previous studies, mostly cen-

tered in tubers. To fully understand the connection between mode of

reproduction and silencing pathways, future studies might be neces-

sary to analyze hc-siRNAs in sexually and asexually reproducing

potatoes.

Here, we also identified three types of hc-siRNAs, including 21 nt

and originating from Helitrons, 22 nt and originating from integrated

viral sequences, and 24 nt and originating from all other TEs. The

presence of 21- and 22-nt hc-siRNAs from Helitron, caulimoviruses,

and StubV, suggests that these endogenized genes might be

transcriptionally active and their silencing is mediated by RDR6 and

DCL2 (Fultz et al., 2015; Nuthikattu et al., 2013). In the future, it

would be interesting to generate RNA-seq data from these tissues to

determine whether these TEs are transcribed. It would also be

interesting to analyze the accumulation of hc-siRNA in potato RDR

and/or DCL mutants, to clarify the silencing pathway of each TE

superfamily.

Together, data presented here show a complete sRNA atlas of

miRNAs, phasiRNAs, and hc-siRNAs in four different tissues of two

commercial potato cultivars. Our results support the hypothesis that

the vast majority of sRNAs are not cultivar specific. However, their

accumulation is different and might have some physiological implica-

tions that would need to be studied in future research efforts.
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