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OPR: Deterministic Group Replay for One-Sided
Communication

ABSTRACT
Replay of parallel execution is required by HPC debuggers and re-
silience mechanisms. Up-to-date, no deterministic replay for one-
sided communication has been described in literature. The essen-
tial problem is that the readers of updated data do not have any in-
formation on which remote threads produced the updates, therefore
ordering of operations is challenging at scale. This paper presents
OPR (One-sided communication Partial Record and Replay), the
first known software tool for record and deterministic replay for
one-sided communication. OPR allows the user to specify a set
of threads of interest and then “records” their execution, it does
not maintain state for any other threads. The selected threads can
be replayed on a local machine without executing the remaining
threads. Determinism is provided by using a combination of data-
and order-replay. Scalability is provided by optimizations: values
are logged on the first read or only when changed; approximate or-
dering is maintained using a tailored vector clock algorithm. Our
evaluation on deterministic and nondeterministic UPC programs
shows that OPR introduced an overhead ranging from 1.3⇥ to
29⇥, when running on 1,024 cores and tracking up to 16 threads.

1. INTRODUCTION
The ability to reproduce a parallel execution is desirable for de-

bugging and program reliability purposes. In debugging [34], the
programmer needs to manually step back in time, while for re-
silience [13, 14, 16, 18, 23, 35] this is automatically performed
by the the application upon failure. To be useful, replay has to
faithfully reproduce the original execution. For parallel programs
the main challenge is inferring and maintaining the order of con-
flicting operations (data races). Deterministic record and replay
(R&R) techniques have been developed for multithreaded shared
memory programs [10, 12, 20, 30], as well as distributed memory
programs [40]. Our main interest is techniques for large scale sci-
entific [4, 7] programming models.

Shared memory R&R techniques use either information about
thread scheduling [10, 12, 20] by tracking synchronization APIs,
or log [30] the memory accessed within each thread. In distributed
memory, R&R techniques for MPI [40] have been developed with
emphasis on scalability. They track two-sided MPI_Send/MPI_Recv
operations and ignore local memory accesses. None of the exist-
ing approaches can provide deterministic R&R for the new class
of modern distributed programming models (MPI-3 RMA [7, 19,
38]) and Global Address Space (UPC [4], Co-Array Fortran [15,
24], Chapel [2], X10 [6, 14, 37], OpenSHMEM [26, 39]) which
advocate one-sided communication abstractions.

In this paper, we present the first general tool, OPR (One-sided
communication Partial Record and Replay) to support determinis-
tic R&R for one-sided communication. The tool allows users to se-
lect a small set of threads of interest from a large scale application.
It tracks their execution and upon demand it can deterministically
replay the selected set of threads. As all other threads are not exe-
cuted during the partial replay, the tool eases debugging experience
and relieves users from monitoring all concurrent events from po-
tentially tens of thousands of threads. OPR also makes it possible
to debug a large-scale execution on a smaller (local) machine. Fur-
thermore, partial replay is intrinsic to the scalability of resilience
techniques [13, 16, 23] using uncoordinated or quasi-synchronous

checkpointing and recovery.
Our OPR prototype is built for the Unified Parallel C [1] pro-

gramming language. This is a typical PGAS (Partitioned Global
Address Space) language whose memory consistency model allows
for reordering of operations and therefore nondeterministic execu-
tion. Memory can be accessed either with load/store instructions
or using one-sided communication (Put/Get). The challenge is to
build a hybrid scalable mechanism able to infer the order of these
disjoint multiple types of operations.

State-of the-art deterministic R&R for shared memory program-
ming [27, 30] handles load/store operations using value logging
(referred to as data-replay [21, 30]). Determinism is attained by
maintaining a shadow memory and comparing its contents against
the program execution. In OPR, we use a similar approach to de-
tect thread state changes due to remote direct loads/stores in record
phase and log values at certain points.

Although the data-replay based approach enables replay in iso-
lation, it does not provide sufficient insight on how communication
happened between threads. To eliminate this drawback, we employ
a hybrid R&R scheme. The data-replay which ensures correctness
is complemented with order-replay [21] to infer inter-thread com-
munication based on value matching. In the record phase, OPR
runs a simplified and scalable vector clock algorithm only among
the monitored threads to get an approximation of event orders of
accesses to global memory. In the replay phase, OPR enforces the
same event order and infers the communication by matching values
of local writes and remote reads (Gets) (in the value log of remote
threads). By combining an approximate order with matching the
values in the logs, we provide scalability as well as allowing for
non-atomic monitoring and recording of load/store and Put/Get op-
erations. To the best of our knowledge, OPR is the first scheme that
uses this hybrid approach.

The evaluation is conducted on Edison, a Cray XC30 super-
computer at NERSC. We evaluate OPR using eight NAS Parallel
Benchmarks [3] (BT, CG, EP, FT, IS, LU, MG, SP), two appli-
cations using work stealing from the UPC Task Library [25] (fib,
nqueens), three applications in the UPC test suite (guppie, laplace,
mcop) and Unbalanced Tree Search (UTS) [28]. In addition we
evaluate a large scale production application performing Parallel
De Bruijn Graph Construction and Traversal for De Novo Genome
Assembly (Meraculous) [17]. We focus on recording overhead and
ensure that the output and the orders are right. Since a small num-
ber of threads are partially replayed, the threads can be replayed
efficiently without any noticeable performance degradation. There-
fore, in our experimental evaluation we only check replay fidelity
and we do not focus on measurement of replay overhead. All appli-
cations are first executed on about 40 nodes (1,024 cores/threads)
of Edison and we monitor and replay threads that can be contained
on single node (two up to 16 cores/threads). We see that OPR in-
curs overhead from 1.3x ⇠ 29x among all applications and different
R_Set sizes (2,4,8,16 threads), when running the original program
on 1,024 cores. Such overhead is moderate and acceptable for a
software-only R&R scheme used for debugging. As discussed in
Section 9, we believe that using static analysis to guide the load/-
store instrumentation can lower the runtime overhead to the point
that our approach is feasible for resilience techniques.

The main contributions of this paper are:

• We introduce a novel partial deterministic R&R scheme for



one-sided communication. It allows users to deterministi-
cally replay a subgroup of threads in a full execution without
executing the rest of threads. To the best of our knowledge,
OPR is the first software tool to support deterministic partial
replay for one-sided communication.

• We implement our mechanisms on UPC in a tool called OPR
and demonstrate its use on 15 applications.

The rest of the paper is organized as follows. Section 2 presents
background for UPC and deterministic R&R. Section 3 explains
each step in OPR by a concrete example. Section 4 shows the value
logging and simplified vector clock algorithm in record phase. Sec-
tion 5 describes the offline mechanisms to generate logs for replay
phase. Section 6 describes the communication inference mecha-
nisms and the whole partial replay algorithm. Section 7 discusses
the implementation details, it is followed by the evaluation in Sec-
tion 8 and a discussion in Section 9. Section 10 summarizes the
other related work. The paper concludes in Section 11.

2. BACKGROUND
Deterministic Record and Replay (R&R) consists of monitoring

the execution of a multithreaded application on a parallel machine,
and exactly reproducing this execution later. R&R requires record-
ing in a log all the nondeterministic events that occurred during the
initial execution. They include the inputs to the execution (e.g.,
return values from system calls) and the order of the inter-thread
communications (e.g., the interleaving of the inter-thread data de-
pendences). During the replay phase, the logged inputs are fed back
to the execution at the correct times, and the memory accesses are
forced to interleave according to the log.

Deterministic replay is a powerful technique for debugging HPC
applications at scale. In principle, replay tools for HPC applications
typically fall into two categories [21]. Data-replay tools record all
incoming messages to each process during program execution, and
provide the recorded messages to processes during replay and de-
bugging at the correct execution points. With this approach, de-
velopers can replay just faulty processes rather than having to re-
play the entire parallel application. In contrast, order-replay tools
only record the outcome of nondeterministic events in inter-process
communication during program execution. Since order-replay only
records the ordering of nondeterministic events, it normally gen-
erate smaller logs than data-replay. On the other hand, the vector
clocks required for ordering are known to pose scalability chal-
lenges during record execution.

MPI has been the standard programming API for scientific com-
puting for the last decades. In MPI, the typical communication is
two-sided using MPI_Send/MPI_Recv pairs A pair carries both
data transfer and synchronization semantics and the initiating task
can be determined in the Recv operations. Furthermore, in two-
sided communication, any memory location modified with store
instructions is visible only to one rank. Thus, MPI R&R schemes
need to track only communication operations and order-replay nat-
urally works well.

Previous research has been focusing on MPI R&R debugging [11].
The state-of-the-art is captured by subgroup reproducible replay
(SRR) [40] which tries to find a good balance between data-replay
and order-replay by considering a hybrid approach. SRR divides
all processes into disjoint replay groups, based on the insight that
ranks communicate only with few other ranks in most domain de-
compositions. During the record phase, SRR records the contents
of messages across group boundaries using data-replay but records
just message orderings for communications within a group. Each
group could then be replayed independently. Scalability is deter-

mined by the total volume of communication across group bound-
aries during the execution, as well as the group size which affects
maintaining the order within the group.

One-sided communication has been shown to provide good scal-
ability with less synchronizations, in particular for irregular appli-
cations. It is intrinsic to the PGAS languages (UPC [4], Co-Array
Fortran [24], Chapel [2], X10 [6]) and it has been adopted into
MPI-3 [7]. For two-sided communication in message passing (e.g.
MPI), the sender and receiver of communication are bundled with
the transfer and can be easily matched at runtime. Therefore, each
communication could be naturally intercepted and logged at run-
time. It is the requirement of the R&R schemes for MPI, including
SRR [40]. Unfortunately, this is not the case for one-sided commu-
nication.

For one-sided communication, ordering communication is more
challenging. In this paradigm, a task could write (by a store or
an explicit Put) to any shared memory location without notifying
others. Later, when another task reads the new value produced
by an earlier writer, the reader is not aware of who produced the
value. Compared with two-sided communication, one-sided com-
munication removes the implicit synchronization between sender
and receiver and can potentially offer better performance. This
performance comes at the price of nondeterminism and complex
debugging.

2.1 Unified Parallel C
Unified Parallel C (UPC) [4] is an extension to ISO C 99 that pro-

vides a Partitioned Global Address Space (PGAS) abstraction using
Single Program Multiple Data (SPMD) parallelism. The memory
is partitioned in a task (unit of execution in UPC) local heap and
a global heap. All tasks can access memory residing in the global
heap, while access to the local heap is allowed only for the owner.
The global heap is logically partitioned between tasks and each task
is said to have local affinity with its sub-partition. Global mem-
ory can be accessed either using pointer dereferences (load and
store) or using bulk communication primitives (memget(), mem-
put()). The language provides synchronization primitives, namely
locks, barriers and split phase barriers. Most of the existing UPC
implementations also provide non-blocking communication prim-
itives, e.g. upc_memget_nb(). The language provides a memory
consistency model which imposes constraints on message ordering.

Although implemented for the UPC language, OPR and the un-
derlying principles are directly applicable to other one-sided com-
munication paradigms, most notably MPI-3 RMA.

3. OVERVIEW OF OPR

3.1 An Example of One-sided Communication
The example below illustrates the challenges to provide deter-

ministic R&R for one-sided communication. The Unbalanced Tree
Search (UTS) benchmark [28] presents a synthetic tree-structured
search space that is highly imbalanced. Parallel implementation of
the search requires continuous dynamic load balancing to keep all
processors engaged in the search. We consider an implementation
using asynchronous work-stealing. In the algorithm, a depth-first
search (DFS) stack is partitioned into two regions: local and shared.
Steal operations are necessary to accomplish load balancing, nodes
are transferred through one-sided communication. To amortize the
manipulation overheads, nodes can only be moved in chunks of
size k between the local and shared regions or between the shared
regions of two different threads’ stacks. More detailed description
of the algorithms can be found in [28].
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Figure 1: Overview of OPR.

1 i n t s s _ s t e a l ( S t e a l S t a c k ⇤s , i n t v i c t i m , i n t k ) {
2 long s t e a l I n d e x ;
3 long s t e a l A m t ;
4
5 s t e a l I n d e x = WAITING_FOR_WORK;
6 whi le ( s t e a l I n d e x == WAITING_FOR_WORK) {
7 s t e a l I n d e x = s�>s t o l e n _ w o r k _ a d d r ;
8 }
9

10 i f ( s t e a l I n d e x >=0) {
11 u p c _ f e n c e ;
12 s t e a l A m t =s�>s t o l e n _ w o r k _ a m t ;
13 SMEMCPY(&( ( s�>s t a c k ) [ s�>t o p ] ) ,
14 &( s t e a l S t a c k [ v i c t i m]�>s t a c k _ g ) [ s t e a l I n d e x ] ,
15 s t e a l A m t ⇤ s i z e o f ( Node ) ) ;
16 s�>n S t e a l += s t e a l A m t ;
17 }
18 . . . .
19 }
20
21 void c h e c k S t e a l ( S t e a l S t a c k ⇤s s ) {
22 long d , p o s i t i o n ;
23 i n t s t e a l A m t ;
24 i n t r e q u e s t o r ;
25
26 i f ( d o S t e a l ) {
27 i n t d = s s _ l o c a l D e p t h ( s s ) ;
28 i f ( d > 2 ⇤ chunkS ize ) {
29 / / enough work t o s h a r e
30 r e q u e s t o r = ss�>r e q _ t h r e a d ;
31 i f ( r e q u e s t o r >= 0){
32 s t e a l A m t = ( d / 2 / chunkS ize )⇤ chunkS ize ;
33 / / make chunk ( s ) a v a i l a b l e
34 p o s i t i o n = ss�>l o c a l ;
35 ss�>l o c a l += s t e a l A m t ;
36 ss�>n R e l e a s e ++;
37 / / a d v e r t i s e c o r r e c t amount o f work l e f t l o c a l l y
38 ss�>workAvai l = d � s t e a l A m t ;
39 }
40 ss�>r e q _ t h r e a d = REQ_AVAILABLE ;
41 s t e a l S t a c k [ r e q u e s t o r ]�>s t o l e n _ w o r k _ a m t = s t e a l A m t ;
42 u p c _ f e n c e ;
43 s t e a l S t a c k [ r e q u e s t o r ]�>s t o l e n _ w o r k _ a d d r = p o s i t i o n ;
44 re turn ;
45 }
46 }
47 . . . .
48 }

Listing 1: Communication in UTS Algorithm

Listing 1 shows two important functions related to work steal-
ing. checkSteal is called by a thread which will potentially
share certain amount of its own work to another thread. The thread
first checks (load) whether it has enough work to share (line 28).
If so, it updates (store) local stack information (line 32 ⇠ 38).
Finally, it publicizes the work using one-sided communication and
writes directly (Put) to the work stack of the remote thread which
requested the work (line 40 ⇠ 43). The first write (line 41) indicates
the stolen work amount. The second write (line 43) indicates the
stolen work address. These two variables are later read (Get) by
the remote thread to complete the work stealing. The upc_fence
between the two writes ensures that the remote thread read the up-
dates in correct order.
ss_steal is called by a thread that has already posted the steal-

ing request and is waiting for stolen work that will be granted from
a remote thread. The stealIndex is initially WAITING_FOR_WORK,
indicating that it is waiting, then the thread busy waits on a while-
loop, until the local variable stealIndex is updated by a re-
mote thread using one-sided communication. After this, the local
thread will observe the update by a local read (line 7) and then
leaves the loop. If some work is successfully stolen, the local
thread will then read the second write performed by remote thread,
stolen_work_amt, to find out the amount of stolen work. Fi-

nally, it completes the work stealing by copying data from the stack
of remote thread to its local stack.

This example indicates a typical use case for one-sided commu-
nication. The essences are: (1) a thread could update data on re-
mote threads directly without any of their involvement, this can
happen either through stores or Put communication calls; and
(2) only the initiator is aware of a communication, so there is no ex-
plicit match between sender and receiver. Specifically, a thread that
receives the stolen data could only implicitly find the thread which
provided stolen work by the owner of address (s->stolen_work_addr),
but there is no explicit send and receive operation posted for this
communication. Deterministic R&R requires tracking both load/store
instructions and Put/Get communication operations.

This example also illustrate nondeterministic behavior. In differ-
ent executions, a thread may receive the stolen work from different
remote threads at different execution points. Obviously, it is chal-
lenging to debug the large scale executions with nondeterminism
since the developers will be overwhelmed by different thread inter-
actions over different executions.

3.2 OPR: Deterministic Partial R&R
OPR involves the following steps (see Figure 1).
Record at full concurrency. The user first specifies the replay

set, R_Set, a subset of threads that need to be replayed. A mod-
ified compiler is used to build a binary with recording instrumen-
tation, tracking both load/store instructions, as well as com-
munication operations (e.g. Put/Get). The instrumented binary
is then executed at full scale on a modified UPC runtime system
that records the execution. For any tasks within R_Set, we track
loads/stores instructions into a value log, which contains the
inputs for loads at different points. For any task within R_Set, we
track Put/Get operations to tasks within R_Set into an distributed
event order log. The event order log indicates an approximation of
orders of conflicting operations accessing the global memory.

The behavior of any tasks outside R_Set, or the communication
between R_Set and the outside world is not tracked.

In Figure 1, the shaded region indicates the replay group. In
each thread, the white dots indicate read accesses that do not have
value log entries; the black dots indicate read accesses that generate
value log entries; the grey dots indicate write accesses. The arrows
indicate detected event orders. We can see that some orders exist
between write and read accesses, but the reads may not consume the
values produced by writes, such relationship needs to be checked in
replay phase. Also, some read accesses could get values produced
by threads outside R_Set, such as the second black dot in the last
thread in R_Set.

Log processing. The value log and order log are processed to
enforce the replay order. Based on the distributed event order log,
this pass generates a replay order log for each thread in R_Set. The
event orders are translated into wait and wake vector clocks for the
relevant operations so that threads in R_Set could collaboratively
enforce the order present in the original execution. In addition, a
write check log is generated for each thread so that it could try



Algorithm 1: Value Logging by thread T
i

in R_Set.
Data: V (a, len): values of (a, len) in Ti
Vsm(a, len): values of (a, len) in shadow memory of Ti
Vi [i] is the sequence number (SN) of Ti .
Output : V alLogi : read value log of Ti .
Value log entry format: (Vi[i], len, val).

1 switch type of an access ei do
2 case ei is a read of range (a,len)
3 if V (a, len) 6= Vsm(a, len) then
4 new V alLogi entry: (Vi[i], a, len, V (a, len))
5 Vsm(a, len)  V (a, len)

end
6 case ei is a write of range (a,len)
7 Vsm(a, len)  V (a, len)
8 Vi[i]  Vi[i] + 1

endsw

to match its own written values with remote read values in certain
ranges at correct points in replay phase. We use this value based
approach to infer communications between threads in R_Set be-
cause there is no explicit matching between senders and receivers
in one-sided communication.

Replay only R_Set OPR only executes the threads in R_Set in
the partial replay phase. The side effects of any other tasks can be
reconstructed from the logs. Each thread reproduces the same exe-
cution by injecting the values in its value log at correct points. The
operations from different threads are scheduled to execute in an or-
der according to the replay order log. In addition, after a thread per-
forms certain writes, it needs to check whether all the local writes
so far could contribute to some read value log entries of remote
threads. On a value match, a communication is assumed to happen
between the two threads. This process is driven by the write check
log. For each read log entry of a thread in R_Set, OPR could infer
one of two possibilities: (a) the value is produced by a thread inside
R_Set, if so, the specific thread is given; (b) the value is not pro-
duced by any thread inside R_Set. In Figure 1, the question marks
indicate the value matching operation.

Now let us consider how does OPR work for the UTS example
in (Listing 1). Assume R_Set is {T0, T2} and in a period of ex-
ecution, T0 steals from T2 and T3. In the record phase, in both
steals, OPR will log the values of s->stolen_work_addr and
s->stolen_work_amt at the correct time. In the replay phase,
these values will be fed into T0 at the same execution points. This
ensures that T0 is replayed correctly in isolation. In addition, based
on the logs generated by the offline processing step the write op-
erations in T2 are executed before the read operations in T0 that
caused the exit of the while-loop. Furthermore, after writes in
T2 are performed, T2 will check whether its writes performed so
far could match a read value log in T0. In our case, since T0 in-
deed steals work from T2, there will be matches for both values of
s->stolen_work_addr and s->stolen_work_amt. Based
on the matched values, OPR infers that the communication hap-
pened from T2 to T0.

In OPR, we use the principle of data-replay to ensure the correct
replay of each thread in R_Set based on value log. We use order-
replay and value matching to infer the communications between
threads in R_Set. This design principle is critical since purely rely-
ing on order-replay requires replaying all threads (not satisfying re-
quirement of partial replay). More importantly, due to non-atomic
instrumentation, it is very challenging to generate precise event or-
ders. The current approach could tolerate such imprecision because
replay correctness does not depend on the event order. The impre-
cise event order only leads to false positives or negatives in com-
munication inference but does not affect replay correctness.

4. RECORDING THE EXECUTION

4.1 Value Logging
For value logging, OPR maintains a shadow memory in each

Algorithm 2: Vector Clock for Shared Memory
Procedure OnMemAcc (ei in Ti ,AccRange)

Data: Vi : vector clock of thread Ti
V w
x : write vector clock of address x

V a
x : access vector clock of address x

All vector clocks have r entries, r is the size of R_Set.
Output : Oi : Event orders need to obey in replay

1 Vi[i]  Vi[i] + 1
2 switch type of ei do
3 case ei is a read
4 foreach x 2 AccRange do
5 Oi  Oi [ GO(Vi ,V w

x ,i)
6 Vi  max{Vi, V

w
x }

7 V a
x  max{V a

x , Vi}
end

8 case ei is a write
9 foreach x 2 AccRange do

10 Oi  Oi [ GO(Vi ,V a
x ,i)

11 V w
x  V a

x  Vi  max{V a
x , Vi}

end
endsw

Procedure GO
Input : Vmy ,Vm ,my_pid
Output : On : New event orders

12 foreach 1  i  r, i 6=my_pid do
13 if Vm[i] > Vmy [i] then
14 On  On [ (Ti : Vm[i] ! Tmy : Vmy [my])

end
end

15 return On

thread in R_Set. The shadow memory indicates the current local
view of shared memory of a thread. Each address in the shadow
memory has associated a sequence number (SN). The contents of
a memory address are logged either at its first read or when the
value read by the execution differs from value stored in the shadow
memory. Similar schemes [27, 30] are described for R&R of shared
memory programs.

Algorithm 1 shows the detail of the value logging mechanism
in OPR. Each thread maintains its local shadow memory, V

sm

. It
is initially empty. On each read, V (a, len) is the value obtained
from the current shared memory. If this value is the same as the
current value in V

sm

, no log is generated. If not, a new value log
entry is generated and V

sm

is updated, so that next time T
i

will not
log the same value again. On each write, V (a, len) is the written
value and it also updates the shadow memory. This could avoid
logging the values generated by the local thread and also avoid log-
ging addresses of dynamically allocated objects (see Section 7 for
more details). The SN (V

i

[i]) is updated on both read and write
accesses, this value is a part of vector clock that is used in tracking
event orders.

Each value log entry includes three fields. V
i

[i] indicates that
this value should be consumed by T

i

in replay phase when its SN
is increased to the same number. We do not include the addresses
in the log since they are available during replay. Another reason of
not including addresses in the log is that some read addresses could
be different in record and replay phase, as a thread may access dy-
namically allocated memory objects. It will not affect the replay
correctness and will be discussed in Section 7.

4.2 Event Order Logging
For tasks within R_Set, we use a vector clock to obtain event

orders of conflicting accesses during execution. This information
is used to schedule the conflicting accesses in the replay phase and
infer communications. Vector clock [31] is a powerful tool to track
causal relationship of events in concurrent systems. The conven-
tional vector clock algorithms assume explicit sender and receiver
and they are matched when a communication happens. We present
a vector clock algorithm based on the one described in [33] and pro-
pose mechanisms to generate event orders of conflicting accesses in
one-sided communication. The algorithm is shown in Algorithm 2
as a function OnMemAcc.

Let V
i

be an n-dimensional vector of natural numbers for thread
T

i

, 1  i  n. Let V a

x

and V

w

x

be two additional n-dimensional



Time T1

w(x)

T2

r(y)

T3
w(y)

[1,0,0]
[0,0,1]

Vxa Vxw Vya Vyw

[0,1,1]

w(x)
[1,2,1]

r(x)
[2,2,1]

[0,0,0] [0,0,0] [0,0,0] [0,0,0]
[0,0,1] [0,0,1]--- ---

[1,0,0] [1,0,0] --- ---
[0,1,1] ------ ---

[1,2,1] [1,2,1] --- ---
[2,2,1] --- --- ---

Figure 2: Running Example of Algorithm 2.

vectors for each shared address, we call V a

x

and V

w

x

access vector
clock and write vector clock, respectively. All the vector clocks
are initialized to 0 at the beginning of computation. For two n-
dimensional vectors we say that V  V

0 if and only if V [j] 
V

0[j] for all 1  j  n; max{V, V 0} is defined as the vector
with max{V, V 0}[j] = max{V [j], V 0[j]} for each 1  j  n.
V

i

[i] also represents the SN of the event in T

i

which caused V

i

[i]
increased to the current value. In OPR, we only run the vector clock
algorithm within R_Set, therefore n = r, r is the size of R_Set.

It is proved in [32] that OnMemAcc ensures e

i

! e

j

(! indi-
cates causal relationship), if and only if V (e

i

) < V (e
j

). Using this
property, by keeping and comparing the vector clock of all memory
accesses, an external observer can obtain the complete causal rela-
tionship of events. However, this algorithm needs to be adapted to
generate orders of conflicting accesses in our scenario.

When a thread performs a memory access to a shared address,
it can only obtain the current vector clocks associated with this lo-
cation but cannot observe the vector clocks of remote memory ac-
cesses. After each access e

i

in T
i

, two vector clocks are available
to T

i

, one is the updated V
i

after the access (denoted as V
i

(e
i

))
according to Algorithm 2, the other is Va

x

(if e
i

is a write) or Vw

x

(if
e

i

is a read) from shared memory, assuming e

i

accesses x. Based
on this information, T

i

can only infer whether there is a causal
relationship between e

i

and the most recent access to x (and the
accesses causally ordered before it). However, by the vector clock
of the most recent access, Va

x

or Vw

x

, T
i

cannot tell the specific
remote access and cannot generate orders between two specific ac-
cesses. Unlike in [33], there is no "external observer" that keeps
the vector clock of previous memory accesses in all tasks.

Figure 2 shows a running example of Algorithm 2. We con-
sider three threads and two shared memory addresses (x and y). V

i

(i=1,2,3) after each memory access is indicated below the memory
accesses. On the right, we show the trace of Va

{x,y} and Vw

{x,y}
updates. Consider the second access in T1 (i.e. r(x)), V1(r(x)) is
[2,2,1], Vw

x

is [1,2,1]. T1 can infer that the current operation r(x)
is ordered after the most recent write to address x. However, from
[1,2,1], it does not know which remote access previously wrote to
x. The issue is similar to the case in one-sided communication in
that, a read does not know the most recent writer of a memory lo-
cation. Obviously, it is impractical to let threads keep the vector
clocks of previous memory accesses and pass around such infor-
mation. Therefore, the event order has to be inferred by limited
information.

We propose a simplified mechanism to generate causal relation-
ship of events conservatively. Consider V

i

(e
i0), it captures the set

of all accesses from all threads that causally happened before e

i0.
We could consider it as a global layer, denoted as GL[e

i0]. It cap-
tures the boundary of most recent previous accesses in all threads
that are causally executed before e

i0. When T
i

performs the next
memory access e

i1, similarly, V
i

(e
i1) represents a different global

layer GL[e
i1]. To reproduce the event orders in an execution, it

is sufficient to execute e

i1 after the accesses in each remote thread
on GL[e

i1]. These accesses are denoted as V
i

(e
i1)[j], j 6= i. It

is possible that V
i

(e
i1)[j] = V

i

(e
i0)[j] for some j, it means that

T
j

did not perform any access after e
i0 that is causally happened

before e

i1. In this case, no new causal relationship needs to be

T1 T2 T3 T4

r(x)

r(x)

w(x)
w(z)

GL0

GL1

Figure 3: Event Order Detection.
generated. Therefore, condition for generating causal relationship
is, V

i

(e
i1)[j] ! e

i1 if j 6= i and V
i

(e
i1)[j] 6= V

i

(e
i0)[j]. The

advantage of this approach is that we can generate causal relation-
ship between individual accesses, so that these event orders could
be reproduced in replay phase.

Figure 3 shows the concept. From the vector clocks, T2 can
identify the difference between GL0 and GL1. According to our
rule, the second r(x) in T2 is causally ordered after w(x) in T0. In
T3, there is no memory access performed between the two global
layers, so there is no order generated. T4 performs a memory access
w(z), but it is not conflicting with r(x) in T2, so there is no causal
relationship between the two and also no order generated. Now let
us consider this mechanism in the example in Figure 2. Before r(x)
in T1 is performed, the current vector clock in the thread is [1,0,0],
after the operation, the vector clock becomes [2,2,1]. According
to the rule, r(x) needs to be ordered after w(x) in T2 and w(y) in
T3. Note that w(y) in T3 does not conflict with r(x) in T1, but it
is causally ordered before r(x) in T1. Specifically, it is because
the vector clock obtained in T1 at r(x) (most recently updated by
w(x) in T2) include w(y) in T3 due to T2’s r(y), — they are indeed
conflicting accesses.

The example discloses an interesting fact about causal relation-
ship and the order between conflicting accesses: causal relation-
ship is a conservative approximation of conflicting accesses. Al-
gorithm 2 can produce causal relationship between events in dif-
ferent threads precisely. However, not all pairs of accesses that are
causally ordered are conflicting accesses. It is because program or-
der also contributes to causal relationship and it is exactly why in
Figure 2 r(x) in T1 is causally ordered after w(y) T3: w(y) in T3

conflicts with r(y) in T2, r(y) and w(x) in T2 are ordered by pro-
gram order, w(x) in T2 conflicts with r(x) in T1, so transitively, r(x)
in T1 is also causally ordered after w(y) in T3. Our order generation
rule will produce a superset of orders between conflicting accesses.

Concretely, the order generation rule is implemented by GO in
Algorithm 2. It takes two vector clocks (V

my

and V
m

) and thread
Id of the calling thread as inputs. V

my

is the vector clock for T
i

before executing the current memory access. V
m

is the vector clock
obtained from shared memory, it is either Va

x

(for writes) or Vw

x

(for
reads). This function is called before the vector clock updates in
local threads and shared memory (line 6-7 and 11). GO checks the
exact condition that we showed (line 14). An event order in OPR
is in the format of (T

i

: SN
i

! T

j

: SN
j

). In replay phase, this
enforces that an access in T

j

with SN

j

executed after an access in
T

i

with SN

i

.

4.3 Scalability Enhancements
Algorithm 2 is able to capture all causal relationship between

accesses to shared memory. However, the overhead is high for the
following reasons.
Storage Overhead. Two vectors (V a

x

and V

w

x

) are associated with
each shared memory location. This makes the algorithm impracti-
cal to implement.
Atomic vector clock updates. It implicitly requires that the up-
dates to vector clocks happen atomically with the actual memory
accesses. On hardware without transactional memory support, to
satisfy this requirement with software instrumentation, each mem-



Algorithm 3: Value check log generation
Procedure ValCheckGen (ValLogi , i 2 1, ..., r)

Output : V CLi : A map from local SN to remote SN. i 2 1, ..., r
1 foreach i 2 1, ..., r do
2 foreach val 2 V alLogi do
3 foreach j 2 1, ..., r do
4 if j 6= i then
5 V CLj [Vval[j]]  Vval[i]

end
end

end
end

ory access will be associated with a lock operation when modifying
the vector clock. This poses scalability challenges.
Update order requirement. The updates of vector clocks associ-
ated with memory addresses (V w

x

and V

a

x

) (line 7 and 11) should
be consistent with program order. It seems to be obvious, but in re-
ality the updates to vector clocks are ordinary memory accesses to
shared memory, UPC runtime may reorder them. Strictly enforcing
the order requires using fences, which also leads to extra overhead.

To make Algorithm 2 practical, we relax some of these require-
ments. To reduce storage overhead, we associate a range of ad-
dresses with a single vector clock. For UPC we have chose to
maintain a single vector clock for all the memory that has (phys-
ical) affinity with a task. We naturally partition the shared address
space according to the affinity (owner) of shared address in UPC.
Essentially, this makes the accesses to addresses with same owner
"conflicting", forcing a more restrictive ordering during replay. We
also do not maintain atomicity of memory accesses and instrumen-
tation, nor do we use fences to ensure vector clock updates order.
To eliminate some false ordering, for a read, an order is only gen-
erated when there a new value is logged on value change.

The consequence of those relaxations is that the event orders
generated could be incorrect (e.g. a read happens after a write,
but according to the order generated, the write happens after the
read). Note that such imprecisions do not affect the replay correct-
ness because the right values from value logs are always injected
to the threads in R_Set at right points. On the other hand, our sim-
plified algorithm does occasionally incur mis-reported communi-
cation due to incorrect or missed event order recorded. However,
this is acceptable for a best-effort debugging tool.

5. LOG PROCESSING

5.1 Replay Order Log Generation
The order log is used to reproduce the orders generated in the

record phase. For each memory access e
i

in T
i

with SN
i

, we intro-
duce two maps: wake_up map (wake) and wait_for map (wait).
Each of them maps an SN to a vector that has size equal to R_Set.
wake[SN

i

][j] (the j-th element in the vector mapped from SN
i

) re-
quires that after a memory access with SN

i

in T
i

is executed, T
i

should send its sequence number SN
i

to T
j

, which is supposed to
wait for SN

i

. wait[SN
j

][i] indicates a sequence number SN
i

from
T
i

, that before a memory access with SN
j

in T
j

can be executed,
it needs to wait for SN

i

, which is supposed to be sent by T

i

. With
this notion, each order (T

i

: SN

i

! T

j

: SN

j

) generated in
the record phase naturally incurs the following updates to the two
maps. wake[SN

i

][j]=1, wait[SN
j

][i]=SN
i

. After processing all
distributed event order logs, a map is generated for each thread in
R_Set, it is then written to an order log used during replay.

5.2 Write Check Log Generation
In OPR, communication is inferred by matching values writ-

ten by a potential producer with the new values logged in remote
threads’ value log. Consider the scenario in Figure 4. First image it
is in record phase. There are three read accesses from T2 that incur

new values logged (e21,e22,e23). The number indicates the return
value of each read. When each one is performed, its vector clock
represents a global layer that indicates the set of remote accesses
that ordered before it. Such global layers are denoted by dashed
lines. The arrows indicate the remote accesses that produced the
new values logged. The goal of value matching is to infer the solid
arrows in replay phase.

During replay, by following the orders in order log, we can or-
der the three read accesses after the accesses before the global lay-
ers specified by their vector clocks. The value matching could be
done naturally at producer side as follows. Consider e21, both T1

and T3 could compare their last write value to x with the value in
T2’s value log. The communication is inferred when the two val-
ues match. In the example, T3 will conclude that its write value is
consumed by T2. Therefore, the purpose of the value check log is
to give the potential producer threads information about, at which
point, the thread should match its written values with which remote
new read values in remote threads’ value log.

Algorithm 3 shows the value check log generation algorithm.
The input is the value logs of all threads in R_Set. The output is
a value check log (VCL

i

) for each thread. VCL
i

is a map from
local SN to remote SN. For T

i

, if we have VCL
j

[SN
i

]=SN
j

, it in-
dicates that after T

i

finished the access with SN
i

, it needs to match
all its locally written values up to SN

i

(inclusive) with the logged
values in T

j

from the next value after the previous match (by T
i

)
to the value with SN

j

. This algorithm processes all entries in the
value log of all threads in R_Set, and continuously updates VCL
of remote threads. To simplify notation, we assume that for each
value in value log, its full vector is available. But as Algorithm 4.1
showed, each value only has the local SN associated with it. In
the implementation, we maintain some extra information in record
phase that could recover the full vector needed for value check log
generation.

Let us consider Algorithm 3 in the scenario in Figure 4. We con-
sider the value check log (VCL) for T2. We see that V(e21)[3] and
V(e22)[3] are the same, according to the algorithm, we will even-
tually have VCL3[V(e22)]=V(e22)[2]. It ensures that after T3 fin-
ishes x = 1 operation, it will try to match its previous write values
with the value of both e21 and e22. Since V(e23)[3] is larger than
V(e22)[3], a new map is generated, which ensures all writes in T3

up to the boundary specified by V(e23) are matched with the new
value logs in T2 from the one after e22 to e23. Each thread keeps
the most recent locally written value to shared addresses and the
value matching is always against most recent values. For example
T1 performs two writes to z, but only the second one is matched
with e23. It is important to ensure that value matching needs to
consider all previous writes performed by a thread, not only the ac-
cesses on a global layer or between two global layers. For example,
T4 performed a write y = 2 before V(e21), but it is only matched
with e22 after V(e22). When a value cannot be matched by writes
in R_Set, it is deemed to be produced by threads outside R_Set. It
is the case for e33.

In summary, the value matching procedure could provide the
producer of a new value in value log if it is produced by some
thread in R_Set. Otherwise, OPR will conclude that the values are
performed outside R_Set.

6. PARTIAL REPLAY
Using the value log, order log and the value check log, OPR can

replay the threads in R_Set without executing any other threads.
The partial replay algorithm is shown in Algorithm 4. In the replay
phase, OPR executes the memory accesses according to the order
log. The correctness is always ensured by the value log.
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Figure 4: Inferring Communication in Replay.

Algorithm 4: Partial Replay
Procedure OnMemAcc (ei in Ti ,AccRange, V alLogi )

Data: Vi : vector clock of thread Ti
ShMem: actual shared memory in execution
Wsm : shadow memory for local written values
Rsm : shadow memory for values read from log
SNnext_val : SN of the next new value from V alLogi
Rval : return value of a read
Wval : written value of a write
V C: a vector indicating the most recent SN of remote new value checked
notify: data structure in shared memory to enforce order.

1 Vi[i]  Vi[i] + 1
2 block  false
3 repeat
4 foreach j 2 1, ..., r do
5 block  block|(wait[Vi[i]][j]  notify[i][j])

end
until block == false

6 switch type of ei do
7 case ei is a read
8 if Vi[i] == SNnext_val then
9 Fill value from V alLogi[Vi[i]]

10 ShMem[AccRange]  V alLogi[Vi[i]]
11 Rsm[AccRange]  V alLogi[Vi[i]]

else
12 if ShMem[AccRange] == Rsm[AccRange] then
13 Rval  ShMem[AccRange]

else
14 Rval  Rsm[AccRange]

end
end

15 case ei is a write
16 Wsm[AccRange]  (Wval, Vi[i])

foreach j 2 1, ..., r do
17 if V CLj [Vi[i]] 6= 0 then
18 CheckComm (Wsm[AccRange], V C[j], V CLj [Vi[i]])
19 V C[j]  Vi[i]

end
end

endsw
foreach j 2 1, ..., r do

20 if wake[Vi[i]][j] 6= 0 then
21 notify[j][i]  Vi[i]

end
end

The order of memory accesses in different threads is enforced
by a logically shared data structure notify. It has r ⇥ r entries,
each entry is an SN that will be set by remote threads by one-sided
update. The i-th row of notify is used by T

i

to check whether its
next access needs to wait due to event order. Physically, the i-th
row is associated with the local shared memory of T

i

.
If T

i

needs to wait at V
i

[i], then for some j, wait[V
i

[i]][j] is
non-zero and it indicates the SN of remote access from T

j

it needs
to wait. Before an access can be executed, T

i

needs to make sure
that all wait[V

i

[i]][j] entries are less than or equal to notify[i][j]
(less is because wait[V

i

[i]][j] is zero if T
i

’s current access does not
need to wait for T

j

) (line 4 ⇠ 5). If the condition is not true, then
block is true and the thread blocks at this point. Similarly, after an
access from T

i

is executed, if wake[V
i

[i][j]] is set, T
i

will update
i-th entry in T

j

’s row in notify using one-sided communication
(line 20 ⇠ 21).

For a read access, if there is a value log entry for it, then the
value from value log is used (line 8 ⇠ 9). The value is written to
shared memory (line 10). Such value may or may not be the same
as the current values in shared memory. If the value is produced
by a thread not in R_Set, then shared memory does not contain it
because that thread does not execute in replay. In this case, value
log is used to construct the partial states in shared memory.

Each thread still maintains a shadow memory for values read
from value log (line 11). The purpose is to tolerate the incorrect
event orders generated in record phase. When there is no value log

entry for a read access, the thread accesses corresponding values
in both shared memory and read shadow memory (R

sm

) (line 12).
If they disagree, then the value in read shadow memory is used
(line 13 ⇠ 14). The reason is that in record phase, there could be
a conflicting remote write happened after the read, and changes the
value in shared memory. However, this order could be incorrectly
detected as the remote write happens before the read. Following
this order in replay phase, when the read executes, the value in
shared memory is already updated by the remote write to a new
value. However, to replay correctly, the read should still get the
old value. Our mechanism ensures that the read always gets correct
value from read shadow memory.

Finally, for write accesses, each thread updates a write shadow
memory (W

sm

) (line 16). It keeps the most recent local write val-
ues produced by the local thread and is used in communication in-
ference. After a write access, value check is performed when its
next VCL indicates that there is a need to check the current local
writes so far with a set of remote read value log entries (line 17 ⇠
19). CheckComm function is straightforward: the relevant values
in W

sm

are checked against some value entries in remote threads’
value log.

7. IMPLEMENTATION
The instrumentation of memory accesses is implemented in both

UPC runtime and UPC compiler. For each local memory accesses
that are casted from shared pointers, we add "before" and "after"
instrumentation by compiler. For Put/Get operations, we modify
the UPC runtime to intercept them. Both instrumentations increase
the SN of the thread.

Shadow memory is implemented as a hash map. Shared ad-
dresses are used to generate the hash keys. Each entry maps a
key to a block of consecutive bytes. The key is the start address
of the byte block. The size of the block is configurable, we choose
64-byte block. On an access to the shadow memory, the key is
generated based on the start address of the byte block that the ac-
cess belongs to. Depending on the size of accessed address range,
multiple blocks may be accessed for value comparison. The same
data structure and implementation are used in both read and write
shadow memory in record and replay phase.

OPR detects the value changes at instrumentation points ("be-
fore" and "after" each shared memory access). However, the instru-
mentation functions are not executed atomically when the memory
accesses. In most cases it is not an issue, but in the case where
data races are used in synchronization, it may affect execution path.
Consider Listing 1, the thread waiting for stolen data busy waits
in a while-loop (see ss_steal in Listing 1). The change of
stealIndex will be detected at either before or after instrumen-
tation after a remote thread writes the address. Here the problem
is, the value change that is detected at the "after" instrumentation
point could in fact happen before the memory access but after the
"before" instrumentation point. In replay phase, if we inject the
new value accordingly at the "after" instrumentation point, the ef-
fect will be only reflected at the next iteration. But in record phase,
since the value change actually happens before memory access, the
code will leave the while-loop in the current iteration. This extra
iteration will cause the execution path diverge in the following ex-
ecution, where SNs cannot be matched correctly when the value
log entries. To handle this case, we also encode the source code
line information in the value log and detect the diverged execution
when it happens. In those cases, the diverged execution will not
consume any log entries, until the execution converges again. We
cannot provide a formal proof that the execution could always con-
verge, but in practice, we found our solution worked well: only



Set Apps Description

BT class=D, NP=1024
CG class=D, NP=256
EP class=D, NP=1024
FT class=D,NP=512,-shared-heap=512

NAS IS class=C, NP=256
LU class=D, NP=1024
MG class=D, NP=1024
SP class=D, NP=1024
guppie NP=1024

Tests laplace NP=1024
mcop NP=1024, problem size: 4000
fib NP=1024, fib(60)

Task nqueens NP=1024, 8 ⇥ 8
uts-upc NP=1024, $T3XXL
meraculous NP=480, human genomes

Table 1: Applications Parameters. NP denotes the number of cores
used for the record execution.

one application has this issue and it could be well-handled by our
techniques.

Some applications also have the dynamically allocated objects
in shared memory. Their addresses could be different in record and
replay phase. We cannot log any shared address of those objects
as values, otherwise bad pointers will be generated in replay phase
and cause segmentation faults. This could be explained by the an
example. The following code:
shared int *p=upc_alloc(..);

*p=5;

will be translated to:
tmp1=upc_alloc(); (1)
p_addr=tmp1 (2)

*p_addr=5 (3)

At (2), the value at address tmp1 (denoted as @tmp1) is logged for
"p_addr" (because @tmp1 in shadow memory is uninitialized). In
replay phase, the value in the log (which is an object address) will
be assigned to p_addr. Then, 5 will be written to an bad address
that has never been allocated in replay phase.

We solve this problem by updating shadow memory for thread
local stores. When later a thread reads some addresses written by
itself, no value log is generated because the values from shared
memory and shadow memory is considered as unchanged. In our
example, after (1), in shadow memory, @tmp1 holds the value re-
turned by upc_alloc(). At (2), we find the value @tmp1 is
*unchanged*, as if the thread previous already observed it. No
value for p_addr is logged. So replay phase will correctly use the
address of actually allocated object. Essentially we write the dy-
namically allocated addresses into shadow memory, so it will not
be logged later. This technique also has the effect of reducing value
log size, as it can avoid logging values produced by the local thread.

Finally, we also instrument the shared memory allocation func-
tion and always set the content of newly allocated object to zero.
Otherwise, the object may contain some values that are the same
as previous objects at same addresses. Those old values may be
already in shadow memory. This could lead to the the side effects
when we need to log the values of the new object: we may miss
some values that would have been logged due to the equivalence of
old values in shadow memory.

8. EVALUATION
In the evaluation, we use fifteen UPC benchmarks. Eight NAS

Parallel Benchmarks [3] (BT, CG, EP, FT, IS, LU, MG, SP) and
three applications in the UPC test suite (guppie, laplace, mcop) are
deterministic. The rest are nondeterministic by design: two appli-
cations in the UPC Task Library [5, 25] (fib, nqueens), Unbalance
Tree Search (UTS) [28] and Parallel De Bruijn Graph Construction
and Traversal for De Novo Genome Assembly (Meraculous) [17].
Table 1 shows the parameters and data sets used in experiments.

App Native
Exec.

R_Set=2 R_Set=4 R_Set=8 R_Set=16 Shadow
Memory

Log Size

BT 363s 8.38x 8.48x 8.35x 8.41x 9.73 MB 1.6 GB
CG 508s 5.79x 5.84x 5.93x 6.16x 7.51 MB 16.9 GB
EP 4s 5.79x 3.98x 3.97x 4.03x 0.13 MB 0.12 MB
FT 35s 27.5x 28.1x 28.5x 29.4x 703.12 MB 15 GB
IS 26s 1.39x 1.44x 1.51x 1.57x 13.08 MB 13 MB
LU 56s 13.03x 13.89x 14.32x 15.04x 1.75 MB 770 MB
MG 176s 11.20x 11.38x 11.64x 12.18x 58.20 MB 759 MB
SP 1229s 1.82x 1.83x 1.83x 1.82x 9.65 MB 2.8 GB
guppie 160s 4.49x 4.67x 4.74x 4.89x 64 MB 519 MB
laplace 154s 8.55x 12.84x 14.76x 13.14x 0.52 MB 0.15 MB
mcop 247s 0.24x 0.52x 0.31x 0.29x 86.05 MB 121 MB
fib 13s 0.98x 0.99x 0.98x 1.14x 0.26 MB 1.31 MB
nqueens 123s 12.2x 12.8x 12.9x 13.4x 0.28 MB 85 MB
uts-upc 5s 25.4x 25.3x 26.0x 26.4x 40 MB 204 MB
Meraculous 216s 5.18x 5.44x 5.17x 5.79x 5.3 GB 2.1 GB

Table 2: OPR Overhead

De novo whole genome assembly reconstructs genomic sequence
from short, overlapping, and potentially erroneous fragments called
reads. We use optimized parallelized program of the most time-
consuming phases of Meraculous, a state-of-the-art production as-
sembler [17]. It is a novel algorithm that leverages one-sided com-
munication capabilities of UPC to facilitate the requisite fine-grained
parallelism and avoidance of data hazards. Nondeterminism is a
main feature of data-driven synchronization in de Bruijn graph traver-
sal. To traverse the graph, all threads independently start building
subcontigs and no synchronization is required unless two threads
pick k-mer seeds that eventually belong in the same contig. In
this case, the threads have to collaborate and resolve this conflict
in order to avoid redundant work. A lightweight synchronization
scheme is the heart of the parallel de Bruijn graph traversal. Es-
sentially, the synchronization protocol maintains a distributed state
machine. The readers could refer to [17] for more details.

In UTS, nondeterminism exists in dynamic work stealing, when
a thread needs to steal certain amount of work from other threads,
the thread that provides the stolen work depends on the current sta-
tus of each thread and the order that steal requests arrive. fib and
nqueens run on top of a work stealing task library.

8.1 Experiment Setup
Partial record and replay experiments are conducted on Edison,

a Cray XC30 supercomputer at NERSC. Edison has a peak per-
formance of 2.57 petaflops/sec, with 5576 compute nodes, each
equipped with 64 GB RAM and two 12-core 2.4GHz Intel Ivy
Bridge processors for a total of 133,824 compute cores, and inter-
connected with the Cray Aries network using a Dragonfly topology.

We are interested in record overhead and how it is affected by
different replay group sizes. For each experiment, we choose four
different R_Set sizes: 2,4,8 and 16. R_Set size is expected to be
small for partial replay. Since each node in Edison contains 24
cores, we make sure that threads in R_Set execute on different
nodes (e.g. when R_Set is 2, the threads are T24 and T48). In
total, we conduct 60 executions (4 for each application). The con-
currency during the initial program run and the recording phase is
given by the parameter NP in Table 1. Ideally, for replay phase, we
would have modified the UPC runtime so that we can execute just
threads in R_Set using smaller number of cores. We have not added
this support at this point as it involves nontrivial modifications to
UPC runtime system. Instead, we still start the same number of
threads in replay as full execution but modify the source code to
only execute the threads in R_Set after the execution starts. The re-
play correctness is verified manually by comparing the results and
outputs. Also note that we use only one node of Edison (24 cores)
for the replay phase, down from the original 1,024 cores (⇠ 40
nodes) in most cases.

8.2 Experimental Results



Table 2 shows our results. For each application, we show the
native execution time without any instrumentation, the overhead
for different R_Set sizes, size of shadow memory allocated and the
largest log size among all logs generated by threads in R_Set.

8.2.1 Record Overhead
We first consider the overhead of the smallest replay group size

(R_Set=2). We see that OPR introduce overhead from 1.39x ⇠
27.5x. For FT, the high overhead (27.5x) is due to the large ratio
between log size and shadow memory size. More details are ex-
plained later. For uts-upc, the high overhead (25.4x) is due to the
large number of shared memory accesses. They appear in when
polling (busy-waiting) on remote variables when waiting for the
stolen work from remote threads (e.g. line 7 in Listing 1). The
overhead for the other applications are mostly under 10x. Note that
the replay phase runs faster with instrumentation for two applica-
tions (mcop and fib). It is because of the nondeterministic behavior
in the algorithms. For example, mcop’s data distribution depends
on random numbers generated. Therefore, we observed different
execution characteristic in record and replay executions. Note that
we do not expect the native execution to have the same behavior as
the recorded executions. Among all R_Set sizes, OPR introduces
29.4x overhead at most in FT with 16 replayed threads.

8.2.2 Overhead vs. R_Set Size
With different replay group sizes (R_Set=2,4,8,16), we see that

the record overhead only increases slightly or almost the same. The
reason is two-fold. First, the main overhead is introduced by instru-
mentation of read and write accesses. They are local overhead and
do not increase when the number of threads in replay group in-
creases. Second, the overhead due to vector clock does increase
when replay group size increases. However, because replay group
size is normally not large (we expect that bugs are normally lo-
calized among a small number of threads) and the scalability en-
hancements in our simplified vector clock algorithm, the overhead
increase is almost negligible.

8.2.3 Shadow Memory
For each application, we show the size of shadow memory al-

located. It includes both read and write shadow memory. We see
that different applications show drastically different characteristics.
For all applications, we found that the shadow memory size in-
creases when the executions start and then become stable after cer-
tain points. The largest shadow memory size appears in Meracu-
lous. Essentially, shadow memory of each thread captures the data
read and written by it. In this experiment, the input data is around
150 GB and we use 480 threads. OPR also uses a separate shadow
memory to keep written values, so the total size grows to 5GB.

8.2.4 Log Size
The final column shows the largest log size generated by a thread

in R_Set for each application. We also see that the log sizes vary a
lot. The naive implementation performs a log file write on each ac-
cess, this obviously incurs huge overhead. In our implementation,
we used a 1 GB log buffer in memory and only writes logged read
values into log file when the buffer is full. After this optimization,
the record overhead became reasonable.

Besides the instrumentation overhead, we found that the log size
and shadow memory size are also related to record overhead. In
general, the larger the ratio between log size and shadow mem-
ory size, the larger record overhead tends to be. It is particularly
true if the shadow memory size is large. The intuition is that,
shadow memory is a "filter" to decide whether values need to be

logged. Therefore, it needs to be accessed on all memory accesses.
When the ratio between the two sizes are large, it indicates that
for most accesses, value comparisons are needed. Such byte level
comparison contributes to the record overhead. This is the case
for FT, where the ratio is around 22. For Meraculous, although
the size of shadow memory is much larger than FT, the log size
is in fact smaller than shadow memory size. This suggests that
the data in shadow memory are mostly allocated and written once.
In another word, when deciding whether some values need to be
logged, we mostly find that chunk of data not appear in shadow
memory. Therefore, there are no byte level comparisons in those
cases. This observation also suggests future optimizations that po-
tentially avoids comparing values in some scenarios.

9. DISCUSSION
The overheads reported in this study are associated with the full

program run and are similar to other memory tracing tools. They
also capture the upper bound for values in practice as they contain
program initialization stages that sweep memory and bloat the logs.

The reported overheads are acceptable for debugging, but too
large for resilience purposes. This is especially true when con-
sidering that deterministic replay [40] for MPI reports less than 2⇥
slowdown. Since most of the OPR overhead comes from load/store
instrumentation, we believe that static analysis or profiling tech-
niques can greatly prune and reduce the instrumentation overhead.
Such techniques have been exploited by Park [29], that reports data
race detection at scale with less than 50% runtime overhead. The
insight is that only accesses to global data need to be tracked. To
disambiguate overlapping transfers (e.g. Puts), we need to capture
only the load of the first word in the transfer and program slicing
techniques can be employed to further reduce overhead.

We bound runtime overhead by running approximations of vec-
tor clocks and non-atomic instrumentation. For resilience purposes
this has no effect on correctness - the final memory contents after
replay are correct since they come from value logs. For debugging,
non-atomic instrumentation may mis-report communication order-
ings, e.g. it may confuse the order of two Put operations to the
same memory location. Given that we use data replay, the order
can be reconstructed by reconciling the payload with the observed
memory contents. Thus, the only scenario we cannot disambiguate
is when two Put with identical payload occur to the same mem-
ory location, with no causality in between (i.e. separated by Gets).
Hardware support may be required to this functionality when de-
bugging. Deadlock is not possible in replay run which is based on
potential imprecise event orders. Because in record phase, each ac-
cess updates vector clock and generates orders in program order. It
is not possible for an access in a thread to wait for an older access
in the same thread. Moreover, OPR does not support broadcast yet,
but the value changes due to broadcast are detected in the same way
by shadow memory.

Techniques for choosing the replay sets in practice have been de-
scribed by Xue et al [40]. They identify groups of threads that inter-
act most and provide evidence that these have indeed few members
only in their applications of interest. Another interesting potential
approach is to use Symbiosis [22], a concurrency debugging tech-
nique based on differential schedule projections (DSPs). A DSP
shows the small set of memory operations and data-flows respon-
sible for a failure, as well as a reordering of those elements that
avoids the failure. OPR could choose R_Set based on the small set
of memory operations. Moreover, logs generated by OPR could
also help Symboisis reproduce or search for failures. We leave this
as future work. In the resilience realm, modern techniques [13]
already advocate a logical decomposition into thread groups that



can be independently restarted and manipulated. Other debugging
tools such as data race detectors [29] or stack inspectors [9], already
identify groups of threads of interest.

A separate and perhaps more interesting question when consider-
ing resilience is whether programming using one-sided communi-
cation is worth the trouble. One-sided communication is perceived
as being able to provide better performance than two-sided commu-
nication. Scalable resilience requires uncoordinated recovery, aka
group recovery. As our study indicates, group recovery for SPMD
using one-sided communication is likely to be more expensive than
group recovery for SPMD two-sided. It really remains to be seen if
compiler assist can lower enough the overhead necessary to provide
deterministic replay for one-sided communication.

10. OTHER RELATED WORK
Deterministic R&R has been studied for multiple programming

languages and models. Early work [12] for Java infers and controls
thread schedule by intercepting all calls to the synchronization API.

PinPlay [30] provides deterministic R&R for pthreads and
MPI based programs. It uses the same technique for value logging
as we do. While replaying groups of pthreads, PinPlay can’t
maintain order for process based implementations, so it can replay
only a single MPI rank. OPR handles groups of tasks, independent
of their instantiation (pthread or process). We have already dis-
cussed state-of-the art MPI group [40] replay and the differences
between one-sided and two-sided communication.

Altekar et al [8] introduce the notion of output deterministic re-
play for multicore debugging. ODR infers data race outcomes from
an output deterministic run. An output deterministic run inferred in
polynomial time using information recorded during a test run. In a
sense, our approach in OPR when using non-atomic instrumenta-
tion provides output deterministic replay.

Hardware support for replay has received attention, mostly for
shared memory. In distributed memory, MPReplay [36] proposes
architectural supports for deterministic R&R for MPI programs.
The hardware tracks nondeterministic synchronization events such
as wildcard receives (e.g. MPI_ANY_SOURCE, MPI_ANY_TAG,
etc.). They are MPI two-sided specific mechanisms and not appli-
cable in our context. However, architectural support for one-sided
communication is likely to critical to reduce the overhead or R&R
techniques. This includes atomic logging of transfers NIC/CPU to
infer communication order. However, this support solves the de-
bugging problems and it may not be worth for resilience purposes
when using value logging.

11. CONCLUSION
One-sided communication is widely used in Partitioned Global

Address Space (PGAS) programming models. Despite the poten-
tial performance advantages, its inherent nondeterminism makes
debugging even more difficult. In this paper, we present a general
tool, OPR (One-sided communication Partial Record and Replay)
to support deterministic R&R for one-sided communication. Par-
tial replay allows users focus on events within a specified small set
of threads. It could ease debugging experience and relieve users
from monitoring all concurrent events from potentially thousands
of threads. OPR is built based on Berkeley UPC. OPR allows users
to deterministically replay a subset of threads in a full execution
without executing the rest of threads. The principle of data-replay
is used to ensure replay correctness, inter-thread communications
among threads in replay group are inferred at replay phase based
on value matching. To the best of our knowledge, OPR is the first
software tool that supports deterministic R&R for one-sided com-

munication. We demonstrate practicality of our approach by eval-
uating the tool using 15 applications. OPR introduced an overhead
ranging from 1.3⇥ to 29⇥, when running on 1,024 cores and track-
ing up to 16 threads. In future, we will exploit the application of
our techniques on resilience mechanisms using uncoordinated or
quasi-synchronous checkpointing and recovery.
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