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Mapping the Minimum Detectable Activities of
Gamma-Ray Sources in a 3-D Scene

M. S. Bandstra, D. Hellfeld, J. Lee, B. J. Quiter, M. Salathe, J. R. Vavrek, and T. H. Y. Joshi

Abstract—The ability to formulate maps of minimum de-
tectable activities (MDAs) that describe the sensitivity of an ad
hoc measurement that used one or more freely moving radiation
detector systems would be significantly beneficial for the conduct
and understanding of many radiological search activities. In a
real-time scenario with a free-moving detector system, an MDA
map can provide useful feedback to the operator about which
areas have not been searched as thoroughly as others, thereby
allowing the operator to prioritize future actions. Similarly, such
a calculation could be used to inform subsequent navigation
decisions of autonomous platforms. Here we describe a near real-
time MDA mapping approach that can be applied when searching
for point sources using detected events in a spectral region
of interest while assuming a constant, unknown background
rate. We show the application of this MDA mapping method
to a real scenario, a survey of the interior of a small building
using a handheld detector system. Repeated measurements with
no sources and with 137Cs sources of different strengths yield
results consistent with the estimated thresholds and MDA values;
namely, that for background-only measurements no sources are
seen above threshold anywhere in the scene, while when sources
are present they are detected above the thresholds calculated for
their locations.

I. INTRODUCTION

F INDING radioactive sources outside of regulatory control
has been a major focus of research in recent decades.

Mobile, airborne, and human portable detector systems and
detection algorithms have been developed to solve the prob-
lem of finding such sources amid the complex environments
presented by urban scenes.

Many have studied the problem of localizing one or more
point sources of radiation using a moving detector or an array
of static detectors [1]–[3], using a variety of methods, such
as maximum likelihood [4]–[9], Bayesian methods [10]–[16],
and geometric methods and clustering [17]–[21]. The problem
has been mostly explored by considering a two-dimensional
(2-D) representation of the geometry and assuming bare point
sources, but some have focused on 3-D environments [22]–
[26] and considered attenuation in the scene [27]–[30].

Recent advances in freely moving radiation detector systems
that can sense their position and orientation in 3-D space as
well as map the 3-D environment around them have enabled
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new search capabilities and prompted the development of new
algorithms to fully exploit the contextual data available [31]–
[33]. One such approach is Point Source Likelihood (PSL),
a maximum likelihood method in which photopeak events,
detector positioning information, and the environmental map
are used as inputs to an algorithm that attempts to locate
a single point source in the 3-D scene and obtain accurate
estimates and confidence intervals for the source location and
activity [24], [25], [34], even in the presence of attenuating
material [30]. A notable recent extension of PSL is solving
for discrete Gaussian sources, allowing for truly continuous
sources to be better fit [35].

Despite the extensive study of point source localization,
almost all studies have focused on detecting, localizing, and
estimating the activity of point sources that are actually
present near the detectors, although some have discussed the
calculation of detection limits [7]. However, to our knowledge
there are no approaches that have converted a detection limit
into a map of minimum detectable activity (MDA) values in
the scene in near-real time for arbitrary detector measurement
configurations.

By contrast, making maps of MDA values (or, more typ-
ically, minimum detectable concentration (MDC) values) is
standard in aerial surveys and in situ measurements, where sur-
vey measurements are performed to search for contamination
on or in the ground or water [36]–[38]. These surveys typically
assume a planar geometry and fixed detector orientation during
the survey portion of the flight, while a survey with a handheld
instrument in a lab will involve a 3-D geometry and more
complex detector-source orientations and distances.

This work provides a method for extending existing methods
in maximum likelihood point source search to mapping the
MDA in a complex, 3-D environment. The focus is on small
(order 100 cm3 active volume), handheld detector systems that
can leverage their motion through the scene to find count-
rate deviations that may provide contrary evidence to the null
assumption that only a constant background is being measured.
The formulation is also relevant for larger detectors, but the
assumption of constant background can be more difficult
to satisfy due to larger detectors generally having higher
background count rates and thus more statistical power to
reject the constant-background assumption.

The structure of this manuscript is as follows. In Section II,
the existing PSL method is described and its extension to
estimating MDA values is presented, including a method
for estimating and accounting for the statistical correlations
among PSL solutions, which strongly affect the estimated
MDA values. A comparison to the commonly used Currie
formula for MDA is also made. Then, in Section III, a
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toy model is used to demonstrate the concepts presented
in Section II. Finally, Section IV shows the application of
the method to survey measurements with a handheld system,
and Section V is a discussion of the results.

II. METHODS

Here we will introduce a maximum likelihood-based frame-
work for analyzing the detection of point sources (Point Source
Likelihood or PSL), and then we will use it to describe how to
calculate the MDA. Some of the notation and concepts used
in this section will closely follow the description of PSL given
in reference [30].

A. Point Source Likelihood

The PSL algorithm is the reconstruction of a single point
source using a freely moving detector in a 3-D environment
using maximum likelihood [24], [25], [30], [34], [35]. To
perform PSL, we begin with a series of M measurements,
indexed by i, that consist of event counts ni in a chosen
spectral region of interest (ROI). The ROI is often a region
around a photopeak; e.g., around the 662 keV line of 137Cs. In
addition to the counts, the 3-D locations ri and orientations qi

of the detector at each measurement are determined, through,
e.g., GPS locations and compass directions, or simultaneous
localization and mapping (SLAM) [39], [40]. Another ingre-
dient needed for PSL is the detector response for the chosen
spectral ROI and angle of incidence, expressed as the effective
area A, which herein is the product of the geometric area
and the full-energy detection efficiency. The final requirement
for PSL is a series of test points, or hypothetical positions at
which a point source may be present in the 3-D environment.
We will assume there are N such points indexed by j. Test
points should be chosen carefully since they determine where
the solution could lie, so they should be densely spaced and fill
all relevant locations within the area of interest, but too many
and the calculation could become too slow to perform in near-
real time. We typically use a 3-D grid of points throughout the
search space with a pitch of 5–20 cm depending on the size of
the search space, and in general there will be many more points
than measurements (N ≫ M ). If available, some model of the
3-D environment, e.g., a point cloud from a laser detection and
ranging (LiDAR) unit, should be used to choose only points
lying on or inside solid surfaces, since we assume the source
or radioactive contamination has settled onto surfaces [30],
[34].

Each measurement is assumed to be the result of a Poisson
process consisting of a constant background and a single
possible point source at some location. For a background count
rate b and a source activity s at test point j, this assumption
means

ni ∼ Poisson [λij(b, s)] , (1)
λij(b, s) ≡ (b+Rijs)∆ti, (2)

where λij is the mean of measurement i due to a source at
test point j, ∆ti is the integration time of measurement i, and

Rij is an element of the M ×N point-source response matrix
R, which is

Rij =
A(qi, r̂ij)

4π|rij |2
BCτij , (3)

Here rij = rj − ri is the direction from the detector at
measurement i to the test point j and r̂ij is the corresponding
unit vector. The factor B is the photopeak branching ratio
(e.g., B = 0.85 for the 662 keV line of 137Cs), C is a factor to
convert the desired source activity units into nuclear decays per
second, and τij is the transmission factor for photons traveling
along rij . Here we assume no attenuation (τij = 1).

Maximum likelihood is used to simultaneously solve for the
background count rate and source activity at each test point j.
Using the likelihood for Poisson-distributed data, the negative
log-likelihood function minimized at test point j is

− logLj(n|b, s) =
M∑
i=1

[λij(b, s)− ni log λij(b, s)] , (4)

where terms that depend only on ni have been dropped
since the measurements are held constant during the iterative
MLEM solution process. The maximum likelihood expectation
maximization (MLEM) multiplicative update rules [41] can be
used to solve for b and s starting from any nonzero initial
guess, since the optimization problem is convex [30]. The
resulting maximum likelihood estimates will be denoted b̂j
and ŝj .

PSL localizes and quantifies the activity of a point source
by finding the test point index jmax whose fit results in the
maximum likelihood over all the test points. The likelihood-
ratio test (LRT) and Fisher information are used to construct
spatial and source activity confidence intervals, and the PSL
algorithm can run in real time [30].

B. Calculating the MDA for a single point

To estimate the MDA for a source at test point j, we first
calculate the Fisher information matrix Fj assuming the true
values for b and s are known. The Fisher information matrix
is the expectation value of the Hessian of the negative log-
likelihood function − logLj , which is

Fj(b, s) = E


 ∑

i
ni∆t2i
λ2
ij

∑
i
niRij∆t2i

λ2
ij∑

i
niRij∆t2i

λ2
ij

∑
i

niR
2
ij∆t2i
λ2
ij

 (5)

=

[ ∑
i

∆ti
b+Rijs

∑
i
Rij∆ti
b+Rijs∑

i
Rij∆ti
b+Rijs

∑
i

R2
ij∆ti

b+Rijs

]
(6)

≡
[

(Fj)bb (Fj)bs
(Fj)bs (Fj)ss

]
(7)

where we have defined the elements of Fj for convenience.
Note that Fj is symmetric by definition, and positive definite
for this particular problem, since its two eigenvalues must be
positive, as has been shown elsewhere (e.g., [30]).

In maximum likelihood, the covariance matrix of the pa-
rameter estimates b̂j and ŝj approaches the inverse of the
Fisher information matrix (i.e., the Cramér-Rao lower bound
(CRLB)) in the asymptotic limit, which means as a greater
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and greater total number of event counts are in the measure-
ment [42]. In Section II-D we will introduce criteria to ensure
that we are close enough to the asymptotic case to use the
CRLB as an approximation of the true covariance, although
we will include an optional small multiplicative factor to allow
for adjustments. We define the following function to estimate
the standard deviation of ŝj given the true background and
source parameters b and s:

σŝj (b, s) ≡ (1 + η)

√
(Fj)

−1
ss (8)

= (1 + η)

√
(Fj)bb

(Fj)bb(Fj)ss − (Fj)2bs
, (9)

where η ≪ 1 is a small nonnegative factor to allow for
adjustments for non-asymptotic behavior. (To first order, η ∝
1/
∑

i ni [42].) The exact value of η will depend on the
mean count rate and duration of the measurement, and for a
particular system under typical operational scenarios the value
could be adjusted until a desired false positive rate is achieved.

If s = 0 and there were no nonnegativity constraints on ŝj ,
one expects under maximum likelihood that in the asymptotic
limit ŝj would be distributed as a Gaussian with mean of zero
and standard deviation σŝj (b, 0) ∝

√
b. However, imposing a

nonnegativity constraint has the effect of clipping the values
of ŝj at zero when they would have been negative, and so
then asymptotically ŝj is distributed according to a rectified
Gaussian of the same parameters. Since we will only be
concerned with its cumulative distribution function (CDF)
going forward, this clipping of the distribution will not affect
the analysis but it will be apparent in histograms of ŝj .

Following the formulation of Currie [43], to estimate the
MDA we choose a false positive probability α under back-
ground conditions (s = 0) and false negative probability β
under source conditions (s > 0). The common choice of
α = β = 0.05 was used here.

The critical value, i.e., the source detection threshold, is
defined as

scritj = kα σŝj (b, 0) ∝
√
b, (10)

where kα ≡ Φ−1(1− α) and Φ is the cumulative distribution
function (CDF) of the standard normal distribution. The MDA
is found by increasing s until the following condition is
satisfied at the value smda

j :

smda
j = scritj + kβ σŝj (b, s

mda
j ), (11)

which is the activity at which a set of measurements of
constant background rate b would be able to detect a point
source with a confidence level of 1−β and reject background
at a confidence level of 1 − α. For α = β = 0.05, kα =
kβ ≈ 1.645. Since equation (11) cannot in general be solved
in closed form, an iterative method such as a bisection search
must be used. Figure 1 shows a diagram of the relationship
between the critical value and MDA.

C. Estimating a correction to account for all test points

In Section II-B it was assumed that only a single statistical
test was relevant (i.e., the presence or absence of a point source

P
(ŝ

j
)

0 ŝjscritj

σŝj (b, 0)

α

σŝj (b, s
mda
j )

β

smda
j

background only

source present at MDA

Figure 1. Demonstration of how MDA is calculated for a single test point,
inspired by Figure 2 from [43]. Not pictured are the delta functions at ŝj = 0
that result from the non-negativity constraint.

at a single test point); however, since PSL may potentially
consider thousands of test points simultaneously, if the critical
value from the previous section were used as-is then the false
positive rate for a detection of a source at any test point
would be larger than α, even approaching 100%. To tackle
this problem, here we will present a simplified version of
PSL, analyze it for insights into the statistical correlations of
its solutions, and use this analysis to derive an approximate
correction to kα.

To analyze the problem, we will temporarily adopt the Gaus-
sian approximation to simplify PSL, so instead of assuming
the counts have a Poisson distribution (ni ∼ Poisson(b∆ti)),
for the moment we will instead assume the counts are drawn
from a Gaussian distribution with the mean and variance of
the Poisson distribution, i.e.,

ni ∼ N (b∆ti, b∆ti). (12)

Minimizing the log likelihood function then takes the form of
a least squares problem:

− logLj(n|bj , sj) =
M−1∑
i=0

[ni − (bj + sjRij)∆ti]
2

2b∆ti
. (13)

This function can be straightforwardly minimized by setting
the gradients with respect to both bj and sj to zero. The re-
sulting minimum least-squares estimator for sj can be written
as a vector dot product

ŝj =
(
∑

i ∆ti)Rj − (
∑

i Rij∆ti)1M

(
∑

i ∆ti)
(∑

i R
2
ij∆ti

)
− (
∑

i Rij∆ti)
2 · n (14)

≡ Wj · n (15)

where Rj is the jth column of R and 1M is a column vector
of M ones. The vector Wj defined here is the jth column
vector of the M × N source activity estimation matrix W,
making the vector of least squares source estimates for all
points

ŝ = W⊤n. (16)
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Each of these estimated source activities is unbiased, i.e.,

E[ŝj ] = Wj · E[n] = Wj · b∆t (17)

∝

(∑
i

∆ti

)
Rj ·∆t−

(∑
i

Rij∆ti

)
1M ·∆t

(18)
= 0, (19)

so

E[ŝ] = 0N , (20)

where 0N is a column vector of N zeros.
In this approximation, ŝ is distributed as a multivariate

normal with a mean of 0N . Its covariance matrix is

var[ŝ] = W⊤ var[n]W = W⊤ diag(b∆t)W (21)

and the variances along the diagonal can be shown to be the
same as those obtained from the Fisher information matrix in
equation (8), i.e.,

(var[ŝ])jj = var[ŝj ] = σ2
ŝj (b, 0), (22)

which is not surprising because the asymptotic limit is as-
sumed for both this analysis and the analysis leading to
equation (8).

The following singular value decomposition (SVD) will
be helpful in diagonalizing var[ŝ] so that we can find a
transformation to uncorrelated variables:

diag
(√

b∆t
)
W = UΣV⊤, (23)

where U is an M×M unitary matrix, Σ is an M×N diagonal
matrix, and V is an N ×N unitary matrix. Because we can
assume in practice that we can always have more points than
measurements (N > M ), we can immediately remove all but
the first M columns of both Σ and V and preserve the exact
equality. Then Σ is an M × M square diagonal matrix, and
V is an N × M matrix that is no longer unitary but has
orthonormal columns: V⊤V = IM , but VV⊤ ̸= IN . It should
be noted that SVD can be efficiently calculated when limiting
the number of columns of V to M instead of (the potentially
orders of magnitude larger) N by using algorithms such as
TruncatedSVD available in scikit-learn [44].

The SVD decomposition diagonalizes var[ŝ] in the follow-
ing way:

var[ŝ] = W⊤ diag(b∆t)W (24)

=
[
diag

(√
b∆t

)
W
]⊤ [

diag
(√

b∆t
)
W
]

(25)

=
(
UΣV⊤)⊤ (UΣV⊤) (26)

= VΣU⊤UΣV⊤ (27)

= VΣIMΣV⊤ (28)

= VΣ2V⊤ (29)

We can then transform ŝ into orthonormal eigenmodes z:

z ≡ Σ−1V⊤ŝ. (30)

We can show that each dimension of z is statistically inde-

pendent and has a unit normal distribution. To be unit normal,
the means must all be zero:

E[z] = Σ−1V⊤ E[ŝ] = 0N (31)

and the covariance matrix is the identity matrix:

var[z] = Σ−1V⊤ var[ŝ]VΣ−1 (32)

= Σ−1V⊤VΣ2V⊤VΣ−1 (33)

= Σ−1IMΣ2IMΣ−1 (34)
= IM . (35)

In other words, under the Gaussian approximation consid-
ered in this section, we have transformed from N correlated
multivariate-normal random variables (ŝ) into M statistically
independent unit-normal random variables (z). Statistical fluc-
tuations in the background will “excite” these modes in pro-
portion to the size of their eigenvalues, in an analogous way to
the excitation of vibrational modes in acoustic and mechanical
systems. By estimating how large the several strongest modes
are on average, we can estimate how large of an “envelope”
is needed to describe these collective fluctuations at each test
point, and therefore increase the detection thresholds beyond
what a single test point would require on its own.

For purposes here, we are interested in how these modes
approximate the statistical correlations of the PSL solutions
across all test points, which will inform how we can adjust the
scaling factor kα for the critical value upwards from the single-
point estimate presented earlier, which was kα = Φ−1(1−α).
For this final step, we first consider only the first K dimensions
of z such that the fraction of the explained variance of those
K eigenmodes (

∑K−1
j=0 Σ2

jj/
∑M−1

j=0 Σ2
jj) is at least 99%,

which was selected arbitrarily. (This selection was made to
speed up the next step by neglecting any eigenmodes that
do not contribute a significant amount of variability to ŝ.)
Then, a large number J of random samples of z are made,
amounting to JK samples from a unit normal distribution.
The last M − K elements of each zsample can either be set
to zero or the relevant matrices be further truncated. These
samples are projected into ŝ values using the pseudoinverse
of equation (30):

ŝsample = VΣzsample. (36)

Finally, σŝj (b, 0) can be calculated for each test point ac-
cording to equation (8), denoted σ(b, 0) in vectorized form.
The scaling factor for each sample can be calculated as k =
max ∥ŝsample/σ(b, 0)∥, and kα was determined by finding the
value of k such that a fraction of 1−2α sample k values were
below kα and a fraction of 2α were above it. The absolute
value could be used since the reconstructed values of ŝ are
symmetric around zero, and thus the samples can be “reused”
for greater statistical power, while the factor of 2 is needed to
compensate for this effect.

For more clarity and an example of calculating this cor-
rection, please see Section III where a specific example is
worked through, including plots of some of the eigenmodes
to see how strongly the PSL solutions are correlated among
the test points.
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As a final note, equation (16) could also be sampled
directly without performing SVD, and in some cases this
approach might be less complicated without greatly increasing
calculation time. In this approach, zsample has length M and
each element is sampled from a unit normal, so then each
estimated vector of source activities is

ŝsample = W⊤
[
b∆t+ diag

(√
b∆t

)
zsample

]
(37)

= W⊤diag
(√

b∆t
)
zsample. (38)

Therefore JM unit normal samples would be required, and,
unless K ≪ M , this more direct sampling approach might be
preferred.

D. Requirements for a valid MDA approximation

To this point it has been assumed that the true background
and source values were known, however in actual measure-
ments they will not be known. The only information available
about the background and source is what can be gleaned from
the measurements themselves, and that information will be
limited by the total number of events detected. The limited
information provided by the measurements leads to two re-
quirements for the MDA approximation to be valid.

One requirement comes from estimating how precisely
the background is known assuming no source is present.
Assuming the simplest case that the true source activity is
zero, minimizing equation (4) leads to the mean background
value

b̄ ≡
∑

i ni∑
i ∆ti

, (39)

which, as expected, has no dependence on test point index j.
The standard deviation of b̄ can be estimated as 1/

√
(Fj)bb,

which reduces to

σb̄ =

√
b̄∑
i ∆ti

≡
√∑

i ni∑
i ∆ti

, (40)

and which is what would be expected from the Poisson nature
of
∑

i ni.
In order to use b̄ in the place of the true background b, it

is useful to require that the relative uncertainty of b̄ is a small
fraction of b̄, e.g.,

b̄

σb̄

≥ kb (41)

where kb is the number of “sigma” that b̄ is away from zero.
Choosing kb = 10 as a threshold for using the approximation
leads to the requirement that∑

i

ni ≥ k2b = 100, (42)

or, in other words, that the total number of events is large
enough to use the Gaussian approximation to the Poisson
distribution. This condition not only ensures that we can
assume b̄ ≈ b, but also that the statistically asymptotic
relationship implicit in equation (8) is a good, though not
perfect, approximation.

However, if a point source is actually present, using b̄ as the
background estimate in the MDA calculation can lead to MDA
values that are biased higher than they need to be, since the
additional counts from the source would increase b̄ above the
true background rate, and, as shown earlier, scritj ∝

√
b̄. For a

weak source the effect may not matter, but for a strong source
it will lead to MDA estimates that are larger than necessary. It
is possible within this framework to account for the possible
presence of a point source before calculating the MDA, by,
e.g., using the fitted background at the best fit point b̂jmax

in
place of b̄. However, the added complexity of this approach,
coupled with the possibility of model mismatch, probably
severely limits its utility.

E. Relationship to the Currie formula

The formulation of the previous sections provides a way to
estimate the MDA for the general case when the background
and source cannot be cleanly separated in time. The well
known Currie formula for radioactive signal detection for
paired observations (i.e., background only versus background
with source) [43] can be recovered for the special case when
Ri = 0 for half of the measurement time and Ri = R is
constant for the other half of the measurement time. (There
is effectively only a single test point in this situation, so we
have dropped the index j for the time being, and we do not
need to apply the correction to kα described in Section II-C.)

Letting T be half of the measurement time, then the
elements of the Fisher information matrix are

Fbb =
T

b
+

T

b+Rs
(43)

Fbs =
RT

b+Rs
(44)

Fss =
R2T

b+Rs
. (45)

Then we get

σŝ(b, s) = (1 + η)

√
2bT +RsT

RT
(46)

Assuming α = β and η = 0, this formula leads to the critical
value

scrit = kα

√
2bT

RT
(47)

and so

smda = scrit + kα

√
2bT +RsmdaT

RT
. (48)

Finally, solving for smda yields the familiar formula for paired
background and source observations [43]:

smda =
k2α + 2

√
2 kα

√
bT

RT
(49)

≈ 2.71 + 4.65
√
bT

RT
(50)

once again using α = 0.05 and the single-point value for
kα of 1.645 and assuming η → 0. The numerator contains
bT , which is the mean number of counts due to background
during each half of the measurement. The denominator RT
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is the sensitivity to the test point, i.e., the mean number of
counts due to a source being present per unit source activity,
and so RsmdaT is the expected number of counts in addition
to background due to the source at the MDA.

Finally, the b̄ validity condition equation (41) with kb = 10
leads to the requirement that

∑
i ni ≥ 100. Since the mean of∑

i ni is 2bT , this requirement translates to bT ≥ 50, which
is slightly more stringent than the common requirement that
bT > 30 for using the Gaussian approximation to the Poisson
distribution (e.g., [45]).

F. Application of the MDA approach to other situations

PSL and the MDA calculation have been presented assum-
ing a single detector system with a single detector channel,
but the approach can be straightforwardly extended to multiple
detector modules and/or multiple detector systems. To extend
PSL, one must decide whether to require that all detector
channels have the same background rate, have known channel-
specific fixed proportions, or have rates that must be fit
independently of one another. To extend the MDA calculation,
the situation is simpler — one can just use the most appropriate
background estimate b̄ for whichever detector channel a given
measurement i pertains to. Thus the MDA method shown here
can be applied without much modification to one or more
detector systems, each of which may or may not be moving,
and each of which may contain one or more detector modules.

Another case is when the background level is to be regarded
as fixed at a known, constant value. In this case, the standard
deviation of the estimator ŝj (equation (8)) reduces to

σŝj (b, s) = (1 + η)
1√

(Fj)ss
(51)

=
1 + η√∑
i

R2
ij∆ti

b+Rijs

(52)

and it would be prudent to also perform a qualitative or
quantitative test that the measured background is indeed in
agreement with the presumed background rate.

III. RESULTS FOR A TOY PROBLEM

To demonstrate the MDA approximation method outlined
in Section II, a simple toy problem was devised. In the
scenario a small, handheld detector traversed a search area
in a raster pattern. The detector was assumed to have an
isotropic effective area of 5 cm2 for photons from a hypothet-
ical gamma-transition with a branching ratio of 100%. The
detector was moved in a raster pattern at a speed of 0.4 m/s,
which was approximated as a series of discrete measurement
points spaced along a path by 0.2 m, each point with a dwell
time of 0.5 s, and the simulated mean background rate was
2.0 cps. In total, 236 discrete measurement positions were
simulated, comprising a measurement duration of 118 s. The
test points were chosen to lie in a plane 1 m below the plane
of the raster to simulate a “floor” over which the search was
taking place, and the points were chosen to lie on a regularly
spaced grid with a pitch of 10 cm, for a total of 5,307 points.

The exact arrangements of the measurement locations and the
test points are shown in Figures 2 and 3.

The correction described in Section II-C was calculated
for the toy scenario. The first four eigenmodes found by
the method are shown in Figure 2. Using a cutoff of 99%
on explained variance, only the first K = 31 eigenmodes
were needed, instead of the maximum of M = 236 modes.
After generating J = 10,000 random samples (i.e., a total of
JK = 310,000 draws from a unit normal distribution), the
correction factor was found. The final result was an increase
in kα from 1.645 (assuming α = 0.05 and a single point) to
3.023 to account for the statistical correlations between the
test points.

The toy problem provides an opportunity to test whether the
overall method results in the desired false positive rate (5%)
using the full statistics of the problem and not the Gaussian
simplification. To do this test, 2,000 random resamples of the
measurements were performed and PSL was applied to each
one for all test points, and the PSL-derived source activities
were compared to the critical values. Using the single-point
value for kα, 1.645, the false positive rate of the samples was
75.1%. Using the corrected kα value, 3.023, the false positive
rate was 7.6%, much closer to the goal of 5%. An asymptotic
correction factor of η = 0.05 brought the false positive rate to
5.2%, which was statistically consistent with the targeted 5%.
Using these final values for kα and η, the MDA was calculated
and is shown in Figure 3.

Although the overall false positive rate was consistent
with expectations, the distribution of false positives across
test points was found to have systematic variations beyond
the variability expected from Poisson statistics alone. These
variations seem to be caused by small departures from the
Gaussian assumption that depend on the column of the system
matrix R and were only seen after increasing the number of
random resamples to 100,000 or more. In this particular case,
the false positive rate among the test points varied within
±25% of the mean rate, but the extent of this non-ideal
behavior will depend on the exact statistics of a given problem.
A more quantitative exploration of these variations and their
detailed impact on MDA levels requires further research, and
a full treatment would likely not be possible in near-real time
applications.

As an additional consistency check, 2,000 random samples
were also drawn where, in addition to background, there was
a point source located at the test point at the origin with
an activity equal to the calculated MDA for that point. Two
scenarios were considered — the MDA for the single-point
assumption, and the MDA including the multi-point correction.
The resulting source activity estimates were calculated and are
plotted in Figure 4 to show that the toy model is in general
agreement with the theory sketched out in Figure 1. The top
histograms assume a single test point when calculating the
critical value, while the bottom histograms increase the critical
value to account for the presence of all of the other test points.
The expected distributions are Gaussian with means of 0 and
smda and standard deviations of σŝ(b, 0) and σŝ(b, s

mda),
respectively, with some portion of the distributions “piling up”
at zero and resulting in delta functions due to the nonnega-
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Figure 2. The first four eigenmodes of the source reconstruction matrix for the toy model assuming a background count rate of b of 2 cps. These modes are
excited by random samples of the measurements and represent correlations between the test point solutions. These correlations must be accounted for when
estimating the critical values (detection thresholds) at each point.

Figure 3. The map of MDA values found for the toy problem.

tivity constraint on ŝ. The only differences between the two
scenarios is the value of kα used in the calculation of the
critical value and the resulting value of smda. An asymptotic
correction factor of η = 0.05 was used for all of the expected
distributions.

IV. EXPERIMENTAL RESULTS

The MDA estimation method described in Section II was
also applied to measured data. The results that will be shown
here use the Neutron Gamma Localization and Mapping Plat-
form (NG-LAMP) system, which consists of four 1×1×2-inch
Cs2LiLa(Br,Cl)6:Ce (CLLBC) detectors with a package of
contextual sensors, including a camera, inertial measurement
unit (IMU), and a light distancing and ranging (LiDAR)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Estimated source activity (s) [ Ci]

0

500

1000

1500

2000

2500

3000

3500

Co
un

ts
 p

er
 b

in

scrit

smda

background only
source present at MDA
background (expected)
source (expected)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Estimated source activity (s) [ Ci]

0

500

1000

1500

2000

2500

3000

3500

Co
un

ts
 p

er
 b

in

scrit smda

background only
source present at MDA
background (expected)
source (expected)

Figure 4. Histograms of the estimated source activities for a test point at the
origin in the toy problem when the data are truly from a constant background
(blue) and when the data are from a constant background with a point source
at the origin and with an activity equal to the MDA implied by the background
rate (red). The top histograms were made assuming a single test point when
calculating the critical value, while the bottom histograms were made by
increasing the critical value to account for the presence of all of the other test
points.
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Figure 5. The four individual CLLBC detector spectra and the summed
spectrum for run 3. The four numbers in the legend are the channel numbers
of the CLLBC detectors, and the vertical lines denote the spectral ROI chosen
to fully enclose the 662 keV peak of 137Cs. Also visible are other background
features, such as the ≈30 keV X-ray lines and 1436 keV gamma-ray line of
138La, a primordial isotope present in the detector material. This latter line
forms a doublet with the 1460 keV line from natural 40K decays.

unit [33]. The system was hand-carried in three similar surveys
through two rooms of a small building by an operator who had
no knowledge of whether any sources were present nor their
potential locations during the surveys. The three surveys were:
(1) with no sources, (2) with one ≈8 µCi 137Cs source on a
desk, and (3) with two ≈8 µCi 137Cs sources stacked in the
same position as (2). The IMU and LiDAR data were used to
perform SLAM, which resulted in pose solutions (i.e., ri and
qi at each measurement time) and 3-D point clouds.

Gamma-ray event data from the four CLLBC detectors were
reported at a frequency of 4 Hz, so ∆ti = 0.25 s was used as
the integration time for the method. Event data were also kept
separate by detector so that detector-specific responses could
be used, enabling the exploitation of the shielding effects from
neighboring detectors to provide crude directional information.
A spectral ROI of 600–750 keV was chosen to analyze the
data, a region wide enough to fully enclose the 662 keV
photopeak in all four detectors. Figure 5 shows the spectra
from each of the four detectors during run 3, as well as their
sum and the spectral ROI. To calculate the response matrix, 4π
response functions derived from simulations and benchmarked
with lab measurements were used to estimate the effective
area of each detector [34]. Test points were generated by
voxelizing the point cloud at a pitch of 10 cm and selecting the
centers of any voxels that contained any LiDAR points (i.e.,
the “occupied” voxels). In this way we obtained points that
essentially covered the surface of the 3-D office space. For
the three runs, between 61,000 and 68,000 test points were
obtained in this way and used in the analysis.

The MDA approximation described in Section II was ap-
plied to each dataset, and PSL was also calculated. The
resulting MDA maps are shown in Figure 6. In each of the
maps, the detector system’s path and orientation were nearly
identical, although the path in run 3 covered a slightly larger
region than the other two. Because sources were present for

Figure 6. Top-down view of the MDA maps calculated for each of the surveys,
with the detector system’s path and orientation annotated. To obtain this 2-D
projection from the 3-D map, the maximum MDA value along each vertical
column is displayed. White regions represent areas where there are insufficient
LiDAR points to create occupied voxels anywhere in the vertical column. For
runs 2 and 3, where PSL solutions were found above the critical value, a
red “X” marks the location of the maximum likelihood test point, which is
consistent with the true location.

runs 2 and 3, the mean count rate b̄ was higher than run 1,
and the overall MDA levels were accordingly slightly higher.
For all three runs, J = 1,000 random samples were used to
estimate the corrected kα, and K = 26, 29, and 31 eigenmodes
were needed to explain 99% of the eigenmode variances for
the three runs, respectively. The resulting kα values were
approximately 3.0 (cf. the single-point value of 1.645). An
asymptotic correction factor of η = 0.05 was used since the
minimum number of detected events (282 for run 1) was
similar to the expected number of events in the toy model
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(236). In general, the MDA is lowest for the points closest to
the system’s path, which agrees with the expectation that it
should be lowest at points with the greatest exposure.

TABLE I summarizes the results of the PSL and MDA anal-
yses. For run 1, no test point had a PSL-derived source activity
above the calculated critical value, which was consistent with
the ground truth (no source present). For both runs 2 and 3,
point sources were (correctly) found above the corresponding
thresholds, and the 95% spatial confidence intervals included
the true locations and 95% activity confidence intervals in-
cluded the true activities. Figure 7 shows the best fits to the
measured count rates for each of the three runs. Each plot
shows two fits: the background-only model consisting of a
single constant rate, and the fit of constant background plus
the best-fit source contribution (except for run 1, where no
source was detected).

Finally, Figure 8 shows a 3-D view of the MDA map
produced for run 2 with the 95% source location confidence
interval from PSL overlaid. Figure 8 reveals what Figure 6
obscures by showing only the maximum MDA value along
each vertical column — that the MDA can vary significantly
in the vertical direction, with points at the same height as the
system generally having the lowest MDA values, and points
along the same vertical wall can have MDAs spanning nearly
an order of magnitude. This full 3-D MDA information, as
well as the 3-D PSL solution, can be provided to an operator
to visualize the sensitivity of the detector system to any part
of the scene.

Although this demonstration is limited in scope (only one
trial was performed for each of three scenarios), it does
demonstrate the feasibility and potential usefulness for the
method in field measurements.

V. DISCUSSION

With the advent of new technologies (handheld detectors
with real-time SLAM capabilities), we have applied well
known statistical principles (maximum likelihood and MDA
theory) to a well studied problem (point source localization
and quantification) to enable a new capability (the generation
of MDA maps to describe measurement sensitivities of a 3-D
environment). These maps could be generated in near-real
time, leading to the potential of using such maps during search
operations so that an area can be “cleared” by, e.g., ensuring
the MDA at every point in the area is below a chosen MDA
value. This capability will enhance the situational awareness of
operators performing search in complex environments. It could
also be used to direct autonomous survey instruments, where
the system (e.g., a drone-mounted detector) could be instructed
to choose pathways through the scene until the entire area has
been cleared to a chosen MDA.

At the same time, we have necessarily had to elide some
real-world complexities to make the method practical, and
these issues should be carefully considered when applying
this work. We have relied on a single spectral ROI capturing
an isotope’s photopeak, and the related assumption that the
background in the spectral ROI be constant. This assumption
may often be valid for small detectors in areas where the
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Figure 7. The measured count rates in the spectral ROI for each of the
three runs, with fits assuming background only and background with the
most likely source. For simplicity the count rates shown are summed over
all four detectors, but the analysis has been performed without the detector
measurements co-added. Execution of the MDA algorithm on run 1 (top)
resulted in no source found above the critical value, so no source fit is shown.

background does not change much, but there can be situations
where the background varies too much (here PSL will also
fail). To improve the robustness of this approach (and also
PSL), one could consider analyzing more parts of the spectrum
than a single ROI. For example, one or more additional
spectral ROIs could be used to estimate the background within
the primary ROI, or perhaps a technique could be developed
to use the entire spectrum outside the ROI to estimate the
background within the ROI.

Additionally, computational speed was not optimized here
but would have to be for a real application. For run 3, which
was 90 s long and used ≈68,000 test points, a CPU imple-
mentation of PSL alone took 41 s, and the MDA estimation
took an additional 250 s, also on a single CPU. Most of the
MDA calculation time was spent performing SVD (148 s) to
obtain M = 1440 eigenmodes, while only K = 31 were
needed to explain 99% of the variance. Significant speedup
could be obtained by an iterative approach to SVD, stopping
once the explained variance is high enough, since the total
variance can be known beforehand (it is the trace of var[ŝ]).
In this case, performing SVD for only the first K eigenvectors
was ten times faster (15 s). The second largest step by time
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TABLE I
PSL RESULTS FOR THE THREE MEASUREMENTS.

Run name Duration [s] Total counts b̄ [cps] Corrected
kα

True source
activity
[µCi]

ŝjmax [µCi] 95% Confi-
dence inter-
val [µCi]

run 1 73.0 282 0.97 2.99 0 N/A N/A
run 2 78.0 404 1.29 3.04 7.7 11.2 4.8 – 23.0
run 3 90.0 641 1.78 3.00 15.5 18.1 11.7 – 27.1

Figure 8. Three-dimensional view of the MDA map for run 2, shown with the system pose solution (black lines and points show the position of the track,
and red, green, and blue axes denote the orientation) and the PSL source localization 95% confidence interval (shades of red and orange).

usage (40 s) was the iterative solution to equation (11). A
simple bisection search was implemented that took 70 s to
reach an MDA accuracy of 1% of the critical value. The
calculation time was dominated by the repeated calculation
of σŝj (b, s) for each of the test points. This step would
benefit from another method that more rapidly converges to the
result, perhaps an implementation of Newton’s method using
numerical derivatives, and more accurate initial estimates.

Care must also be taken in the non-asymptotic approxima-
tion used here, captured by the factor η. In most practical
applications, one cannot accrue enough statistics to assume
the standard deviations of the estimated parameters are exactly
equal to the CRLB. To quantify the exact departure from
asymptotic behavior, one could perform bootstrapping, a time-
consuming process [7]. To develop a methodology that could
be performed in real time or near-real time, the η factor
was introduced in equation (9) to allow the method to be
sufficiently accurate. We expect that appropriate values for η
for a given system and measurement can be estimated using
representative toy problems, as was done here.

A final additional complexity that has been elided is that the

MDA values presented here are calculated for unshielded, bare
sources at each test point, but the influence of attenuation and
scattering by passive material in the environment can change
the spectral signatures seen by the detector. If assuming no
attenuation, estimated MDA values may end up lower than
they would be if attenuation were taken into account, which
could mislead an operator into thinking an area has been
cleared that has not been. There has been some work to include
attenuation within PSL [30], but more research is needed to
understand how to provide a useful range of MDA estimates
given a 3-D scene.

A potential extension of this work lies in adapting the
method to calculate the MDA in the scene after a source has
been detected. This situation is highly relevant to operations
— if an area were being surveyed and a source were found
somewhere in it, the current method does not allow one to set
maximally stringent limits on the rest of the scene, owing
to the incorporation of source counts into the background
estimate. One way to extend the method would be to fix
the maximum likelihood test point index jmax and activity
(ŝjmax

). This assumption is sensible since once the first source
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is found, the operator (or autonomous system) would be able to
focus on measuring the area immediately around that source,
thus giving high confidence in the location and activity of the
source. The same analysis steps could be followed as presented
in Section II, but now incorporating the first point source
contribution into the count rate estimate λij , and continuing to
fit new values of b and s. Then s would become the activity of
a potential second source in the scene. Various other extensions
of this MDA method that exploit the latest 3-D contextual
information available from freely moving systems may also
be possible.
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