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ABSTRACT OF THE THESIS

Equitable Thermal Imaging through

Single-Shot Correction of Solar Loading

by

Ellin Qing Lan Zhao

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Achuta Kadambi, Chair

Thermal cameras enable rapid non-contact detection of body temperature and are widely de-

ployed for fever screening, but are inaccurate in unconstrained environments. Previous works

have studied the impact of ambient temperature on thermal measurements, and proposed

physics-agnostic correction of environmental effects. No previous studies have considered

solar loading, the increase in skin temperature due to solar radiation. Solar loading results

in spurious fever detection and is skin tone dependent, introducing inequity in non-contact

fever detection. We propose a method to improve fever detection by removing the solar load-

ing effect from thermal images of the face. We correct solar loading using only one frame of

data using a physics-informed neural network that leverages the skin temperature forward

model. Our model reduces solar loading mean absolute error (MAE) by 70.5% and achieves

100% specificity in fever detection. We ensure our model is robust by collecting a diverse

dataset of 100 subjects with thermal and RGB images and skin tone measurements. Our

works shows that it is possible to correct complex thermal perturbations to enable robust

and equitable human thermography.
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CHAPTER 1

Introduction

Infrared sensing enables rapid non-contact measurement of body temperature, an important

vital sign that signals the presence of infections and illnesses. In recent years, infrared

thermometers (IRTs) have been widely used in non-medical settings to curtail the spread of

diseases. In a typical scenario, a person is screened for fever upon entering a building. The

person is measured using an IRT, and the measured temperature determines how the person

is triaged. IRTs enable remote health sensing by preventing disease transmission through

contact-based measurement devices, and are important tools for protecting public health.

For all its benefits, infrared thermography comes with a major limitation—it is accurate

only when a person is at equilibrium with room temperature conditions. We call this equilib-

rium the baseline state. Infrared thermometers cannot measure body temperature directly;

instead, they measure skin temperature and convert the value to an estimated body temper-

ature. The conversion is derived from data taken from subjects in a baseline state, and as

such, thermometers are only accurate when operated in these conditions [17]. Unfortunately,

infrared thermometer usage diverges from this required condition: people are typically mea-

sured upon entering a building after they have been exposed to variable outdoor conditions,

such as hot air or sunlight.

Given the widespread use of IRTs, it is critical to understand their limitations and resolve

device inaccuracies. Previous works have shown that IRTs perform poorly after exposure to

hot or cold air temperatures [16, 44, 36]. Thus far, no works have studied how sunlight affects

thermometer measurements despite the prevalence of this issue. In our study, we found that

1



sunlight exposure, which we call solar loading, causes IRTs to overestimate temperature by

2-3°C, leading to false positive fevers and poor precision as shown in Figure 6.2. Solar loading

error is coupled with skin tone because darker skin absorbs more solar radiation and heats

up faster, resulting in worse fever precision for people with darker skin. The current solution

to solar loading is to wait for up to 30 minutes and then retake the temperature, which is

not practical [12, 2, 51, 41].

We present the first study on solar loading in the context of infrared thermography. We

collect an extensive dataset with 100 subjects to study solar loading. We record thermal data

using multiple IRTs and a thermal camera, and record objective skin tone measurements us-

ing a colormeter. Our dataset is diverse in skin tones, and contains over 140,000 paired

RGB-thermal images and 900 thermometer measurements. The dataset will be publicly

available and may be helpful for studying thermal methods in unconstrained environments

[21]. We present a single-shot method of baseline temperature reconstruction that reduces

solar loading error by 70.5%. We use a physics-informed neural network (PINN) to re-

construct physiologically accurate baseline images from a single solar loaded image. The

model is constrained to find solutions that are both faithful to the ground truth and are

stationary—that is, images that abide by the physical meaning of a baseline image.

We first review related works on infrared thermography and bias in medical devices.

We then introduce the bioheat equation, which describes skin temperature as a system

of partial differential equations (PDEs). We show the difficulties in using the PDEs to

constrain a neural network and derive a stationary constraint that can easily be integrated

into the neural network optimization. Since there are no previous works for comparison,

we additionally present a temporal solution to solar loading against which we compare our

single-shot method. Finally, using our collected dataset we show that (1) solar loading

exhibits a skin tone bias and (2) our physics-informed model can recover baseline temperature

accurately and equitably.
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CHAPTER 2

Related Works

We aim to improve human infrared thermography by studying skin tone bias and correcting

solar loading errors in a physically-constrained manner. We first review studies on infrared

thermography and skin tone biases in remote health sensing. We then discuss general ef-

forts to incorporate physics into machine learning models and specific applications to health

sensing.

2.1 Infrared Thermography

Infrared thermometers detect fevers by measuring skin temperature increase during febrile

states. Due to the rise in IRT usage during the COVID-19 pandemic, questions have been

raised about the accuracy and biases of the devices. [1] found that age and gender affect

IRT accuracy. Studies on skin tone bias have conflicting conclusions. [27] compared IRT

results across human-annotated skin tone categories: light, medium and dark. No skin

tone bias was found, although the dataset was heavily skewed towards light skin. [45]

compared the performance of IRTs across measurement locations and ethnic groups (Black,

White and mixed). Again, no bias was found. However, [4] showed that IRTs, specifically

temporal artery thermometers, underestimate temperature in Black patients. Participants

were grouped by self-reported ethnicity (Black and White). The authors hypothesized that

this bias is caused by different thermal emissivities in darker skin, but [9] show that skin

pigmentation does not affect emissivity. These conflicting studies show that race, ethnicity

and subjective skin tone labeling preclude an understanding of bias in IRTs.
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Lack of Solar Loading Studies IRTs measure hot areas of the face to be robust to envi-

ronmental effects, but they are still are inaccurate when the ambient temperature deviates

from room temperature [44, 16, 15, 32, 37, 47]. Recent works improve IRT operation in dif-

ferent environmental conditions by fitting relevant temperature variables to a linear function

[42, 36]. To the best of our knowledge, these are no prior works that study or correct solar

loading error in IRTs.

2.2 Bias in Health Sensing

Seminal work by [7] revealed racial and gender disparities in computer vision algorithms. Un-

fortunately, biases arise in other technologies, such as optical health sensing devices. Optical

biases arise when the light transport is inadequately characterized for certain groups, such as

people with dark skin [26]. For example, pulse oximeters and remote photo-plethysmography,

which measure blood oxygenation and heart rate respectively, are known to perform worse

for darker skin tones due to poor signal-to-noise ratio [31, 43]. Biases can be resolved com-

putationally by balancing skin tones in a dataset with synthetic data, or physically by using

multi-modal data [50, 49].

2.3 Physics-Informed Methods

The skin temperature forward model has been studied extensively, providing a set of con-

straints for correcting solar loading. We review methods that incorporate physics into neural

networks. In a standard physics-informed neural network (PINN), the model takes in a co-

ordinate (x, t) and outputs the field value at that location. The governing equations and

boundary conditions are used regularizers during training to constrain the model outputs

[11, 8]. The same idea can be applied physical models that are not PDEs. [3] use a deep

learning model to decompose images into blood and melanin parameters by incorporating
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biophysical priors. Beyond machine learning, the finite element method can also be used for

physics-guided inversion [13].

We discuss specific applications of physics-informed methods. [18] and [23] use the bio-

heat model to recover physiological parameters, such as blood flow, vessel location and tumor

size. Beyond medical applications, the bioheat equation has been used in computer vision

to improve facial recognition. [52] use blood perfusion maps obtained by approximately

inverting the bioheat equation as features for facial recognition. Similarly, [5] and [40] ex-

tract vessels from thermal images using anisotropic filtering and morphological operations

to perform facial recognition. These methods are less explicit in using the bioheat equation;

they simply reference heat diffusion from vessels to justify why they equate edges in ther-

mal images as blood vessels. Beyond the heat equation, [29] estimate blood perfusion using

attention masks on areas of face with strong pulse signals.
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CHAPTER 3

Background

To resolve solar loading biases in thermography, we must understand the operation of ther-

mography devices and the appearance of skin temperature during baseline and solar loaded

states.

3.1 Camera-Based Thermography

Infrared thermometers measure skin temperature using either a point sensor or camera,

and convert the skin temperature to body temperature using an empirically determined

function. [53] provide examples of body temperature functions for different measurement

locations. IRTs commonly measure skin at the forehead or medial canthus. These locations

are highly perfused by arterial blood resulting in a skin temperature that is highly correlated

with body temperature. Point sensors record at a distance of 2-3 cm from the forehead, while

camera-based systems record the entire face at a distance of up to 3 meters [17]. Fevers can

be detected from further distances by compensating for temperature falloff [10]. Although

camera-based IRTs capture the entire face, only the pixels at the canthus or forehead values

are used [38]. The IEC standard for IRT accuracy is ±0.5°C for commercial devices and

±0.3°C for clinical devices [24].
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3.2 Skin Temperature

Skin temperature is affected by many factors, and the two major factors are blood circulation

and environmental conditions. Blood, at temperature Tc, circulates from the body’s core and

perfuses tissue and skin [22]. Blood perfusion, varies spatially causing skin near major vessels

to be hotter.

Other heat sources affecting skin temperature are metabolic heat generation, m, and

external heat, qext, such as solar radiation. To summarize these effects, we define tissue tem-

perature over a 3D domain as u(x, t) where x = [x, y, z]⊤. Tissue temperature is described

by Penne’s bioheat equation:

ρc
∂u

∂t
= k∇2u+ b(x)(Tc − u) +m+ qext(x), (3.1)

where ρ, c, k are skin density, heat capacity and thermal conductivity. Blood flow is defined

as b = ρbcbvb, where ρb, cb, vb are blood density, specific heat and flow rate. Notation is

summarized in Table 3.1. The external heating, qext, will be discussed in detail later. At

u(z = 0), flux from the environment—air radiation and convection—must equal flux from

the skin, yielding the following Robin boundary condition:

k
∂u

∂z

∣∣∣∣
z=0

= h (u(z=0)− Te), (3.2)

where h is the combined radiative and convective coefficient and Te is the air temperature.

Equation (3.1) describes temperature under steady state and transient conditions. During

steady state, temperature does not change over time (∂u
∂t

= 0) and there is no external

heating. Skin temperature can be transient during both heating and cooling.

3.3 Skin Color

Skin heating, in certain ranges of the electromagnetic spectrum, is skin tone dependent.

We describe how skin tone affects heating and how we characterize skin tone for our bias
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analysis. When radiation impinges on the skin, a portion of the radiation is absorbed and

converted to thermal energy. The amount of absorbed energy depends on the radiation

spectrum and the skin’s absorption coefficient, µa. The sun emits nearly half of its energy as

visible light, which is absorbed by melanin in the skin. Melanin concentration varies across

the population, causing some skin heats up more than others. The skin absorption coefficient

is a linear combination of melanin absorption, µa,mel and baseline epidermal skin absorption,

µa,epi:

µa = fmelµa,mel + (1− fmel)µa,epi, (3.3)

where fmel is the volume fraction of melanin. [25]. Later, we will see how µa affects skin

heating.

3.3.1 Skin tone measurement

To assess bias in infrared thermometry, we require a means of measuring skin color. Previous

studies on bias have used ethnicity or the Fitzpatrick skin type (FST) scale to characterize

skin color [31, 45, 4]. The Fitzpatrick scale was developed for phototherapy and divides skin

into 6 categories, which are skewed towards light skin, and there is no objective method

for determining FST [33]. Labeling skin color using ethnicity or FST does not isolate the

primary source of skin color: melanin. Skin tone can be objectively measured using a skin

colormeter (DSM III Colormeter, Cortex Technology), which measures the amount of light

reflected from the skin to determine melanin concentration. The melanin value returned by

the colormeter is not necessarily equal to µa.

3.4 Problem Statement

Our aim is to recover the baseline skin temperature after solar loading using only one thermal

image. The forehead temperature can be extracted from the reconstructed baseline and

used for downstream tasks, such as fever detection. The problem of recovering baseline

8



temperature is highly under-determined because skin temperature is a 4D function of space

and time, but we only observe the 2D skin surface at a single time. In the following chapter,

we describe our approach for recovering baseline temperature.
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Notation Meaning Units

U skin temperature image °C

U0 baseline skin temperature image °C

Û0 estimated baseline skin temperature image °C

S solar loading increase image °C

B blood flow map Wm−3 ◦C−1

R residual image °C

I RGB image -

u tissue temp °C

u0 baseline tissue temperature °C

s solar loading increase °C

Tc core temperature °C

Te ambient temperature °C

ρ, ρb density (skin, blood) kgm−3

c, cb heat capacity (skin, blood) J kg−1 ◦C−1

vb blood perfusion rate s−1

b blood flow term Wm−3 ◦C−1

k thermal conductivity Wm−1 ◦C−1

h convective heat transfer coefficient Wm−2 ◦C−1

qext external heating Wm−2

fmel volume fraction of melanin -

µa skin absorption coefficient m−1

µa,mel melanin absorption coefficient m−1

µa,epi epidermal absorption coefficient m−1

Table 3.1: Summary of mathematical notation for temperature and biophysical

parameters. Left columns shows the symbol and right column describes the notation.

10



CHAPTER 4

Theory

Given a solar loaded image, we want to recover the underlying baseline image. This is dif-

ficult because we are trying to separate temperature transients from an image using only

spatial information. Fortunately, baseline skin temperature has a canonical appearance due

to physiological factors, which can be captured using a deep learning model. We show the

canonical baseline pattern in Figure 4.1; the set of baseline images is low rank compared to

the solar loaded images [35]. The optimal reconstructed baseline should match the temper-

ature magnitude of the ground truth to enable accurate fever detection. By definition, the

estimated baseline should also be stationary (i.e., not time-varying). Drawing inspiration

from recent physics-informed neural networks, we use the bioheat equation to ensure that

the model outputs a stationary solution.

Our method uses a frequency-based loss to ensure that the reconstructed baseline is

stationary. In the following, we describe the skin temperature forward model and show

why it is difficult to constrain a model to learn stationary solutions. Next, we show that

viewing the problem from the frequency domain obviates these challenges. We formulate a

frequency-based loss function that enables a model to learn stationary solutions, and show

that the loss has a physical interpretation related to blood flow.
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Figure 4.1: Baseline skin temperature has a canonical appearance due to blood

perfusion, but solar loading has a wide range of appearances. (a) Example baseline

and solar loaded images. (b) Singular values for decompositions of baseline and solar loading

increase. Each baseline image is flattened into column and a matrix is created from all the

images. The matrix is then decomposed using the singular value decomposition. The same

process is repeated for the solar loaded data.

4.1 Solar Loading Pattern

Before we discuss stationary skin temperature, we describe the solar loading effect and its

link to skin tone. During solar loading, temperature increases proportional to skin tone and

incident radiation. Radiation from the sun with power P0 reaches the face from direction ℓ.

The radiation incident at each (x, y) on the face depends on the surface normal, n(x, y), and

follows the cosine law [46]:

P (x, y) = P0 ℓ
⊤n(x, y). (4.1)

Solar radiation is transmitted through the skin, and is attenuated as it travels deeper into the

skin. Transmitted radiation depends on the skin’s absorption coefficient, µa, and is described

by Beer-Lambert law:

qext(x) = P (x, y)e−µaz. (4.2)

The Beer-Lambert law approximately holds for skin. There is some deviation due to light

scattering from blood, but we are interested in melanin, which is contained in the bloodless
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Figure 4.2: Forehead temperature estimation is improved when the optimization

objective includes the spectrum of the thermal images. The näıve only uses ap-

pearance loss and the PINN uses both appearance and frequency loss. The reconstructions

appear similar, but the PINN has a lower forehead temperature MAE. The PINN replicates

the ground truth spectrum more accurately and captures small temperature variations from

blood, which can be seen in the cross sections. This results in a better forehead temperature

estimate.

epidermis [34]. Examples of solar loading patterns in Figure 4.1(a). The spatial pattern de-

pends on face geometry, leading to a wide range of possible solar loading patterns, compared

to baseline patterns.

4.2 Baseline Skin Temperature

The bioheat equation describes skin temperature under a variety of conditions including the

baseline state. During the baseline, skin temperature is stationary: ∂u0

∂t
= 0 as t → ∞.

Baseline skin temperature, u0 satisfies the governing equation,

ρc
∂u0

∂t
= k∇2u0 + b(Tc − u0) +m. (4.3)

One way to ensure an estimated solution is stationary is use the forward Euler method;
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that is, advance the estimated solution by a few time-steps and penalize deviations from the

initial value. However, there are certain challenges to executing this. Before discussing these

challenges, we will modify Equation (4.3) to apply to 2D thermal images. First, we rewrite

Equation (4.3) using finite differencing on t, x, y, z:

∂u0

∂t
≈ u0(x, t+ 1)− u0(x, t)

∆t
(4.4)

∂2u0

∂i2
≈ u0(i− 1, t)− 2u0(i, t) + u0(i+ 1, t)

∆i2
(4.5)

∇2u0 ≈
∑

i∈{x,y,z}

∂2u0

∂i2
. (4.6)

The baseline temperature equation in discretized time steps is:

u0(t+ 1) = u0(t) + ak∇2u0(t) + ab(Tc − u0(t)) + am, (4.7)

where we have defined a = ∆t
ρc
. Next, we combine the first two terms on the right hand side,

u0 + ak∇2u0. These terms constitute a blurring of u0. We can see this by using the spatial

finite differencing and rewriting the expression as a convolution. We set ρ = 1, c = 3.77, k =

0.21 and assume that ∆x = ∆t = 1 [19]. The convolution filter has shape 3×3×3, but for

brevity we write the filter in only one direction, x:

u0 + ak∇2u0 ≈ u0 ∗
[
ak 1− 2ak ak

]
(4.8)

≈ u0 ∗
[
0.06 0.88 0.06

]
(4.9)

≈ u0 ∗ gx. (4.10)

We call the full 3D filter g 1. Since u0 is the stationary solution, we have u0(t+ 1) = u0(t).

Plugging this into Equation (4.7):

u0 = g ∗ u0 + ab(Tc − u0) + am, (4.11)

1In the z-direction, the filter will be truncated because the skin cannot diffuse heat beyond the skin
surface

14



where we have dropped t. This equation describes a continuous temperature distribution,

but we are working with 2D images. We define the i, j element of the following matrices as:

U0[i, j] = u0(i∆x, j∆y, z = 0) (4.12)

B[i, j] = b(i∆x, j∆y, z = 0). (4.13)

Let G be the 2D blur filter g in the x and y directions. Equation (4.11) becomes:

U0 ≈ G ∗U0 + aB⊙ (Tc −U0) + am, (4.14)

where ⊙ is the Hadamard product. We ignore the diffusion in the z-direction, so Equa-

tion (4.14) is an approximation.

Challenges For a given Û0, we can ensure it is stationary by advancing by a time step

using Equation (4.14). However, we do not know B, Tc or m. Assuming we have paired

(U,U0) data, we may invert for B̂ using U0 and use B̂ to constrain reconstructions from

U. Tc and m can be constrained to physically accurate values. This approach requires the

images to be well aligned pixel-wise, otherwise we will incur errors in our stationary check.

We may block reduce (U,U0) to reduce alignment issues, but blood flow, B, presents as thin

edges so the loss in spatial resolution again can lead to errors [40, 5]. For these reasons, it is

difficult to apply the stationary constraint in the spatial domain.

4.3 Spectral Stationary Constraint

We can circumvent the difficulties with the stationary constraint by working in the frequency

domain. Any estimate of U0 should satisfy Equation (4.14) in order to be a stationary

solution. The same applies after taking the Fourier transform, F{·}, of the equation:

F{U0} = amδ(ω) + F{G ∗U0}+ aF{B⊙ (Tc −U0)}, (4.15)

where δ is the Dirac delta. The spectral steady state constraint states that the spectrum

of U0 can be decomposed based on frequency bands. The DC term and blurring make up
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the low frequency content, so the remaining blood-dependent term must capture the high

frequency content in U0.

The optimal reconstruction should match the appearance of the baseline and be sta-

tionary. We next discuss how each frequency band can be used to satisfy the optimization

objectives.

Low Frequencies The estimated image is matched to the baseline appearance using the

appearance loss, Lapp, which is the mean squared error (MSE) between the estimate and

ground truth:

Lapp(Û0,U0) =
∥∥∥Û0 −U0

∥∥∥2

F
(4.16)

It is known that minimizing the MSE results in smooth solutions. That is,

argmin
Û0

Lapp(Û0,U0) = argmin
Û0

∥∥∥G ∗ Û0 −G ∗U0

∥∥∥2

F
(4.17)

Minimizing the appearance loss inherently minimizes the difference between the estimated

low frequency component in to the ground truth low frequencies in Equation (4.15).

High Frequencies Although the appearance loss minimizes the error between the low fre-

quency components, the stationary constraint may not be satisfied. To ensure the constraint

is satisfied, we can add an additional loss on the high frequency features:

Ls(Û0,U0) =
∥∥∥F{Û0 −G ∗ Û0} − F{U0 −G ∗U0}

∥∥∥2

F
. (4.18)

This the the stationary loss. When both the appearance and stationary losses are minimized,

the estimate satisfies the stationary constraint. To better understand what this loss is

optimizing, we define the estimated baseline as Û0 = U0 +R, where R is the residual. The

stationary loss becomes:

Ls(Û0,U0) = ∥F{B⊙R}∥2F (4.19)
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where ⊙ is a Hadamard product. We move back to the spatial domain. Using Parseval’s

identity and the definition of mean squared error, we have:

∥F{B⊙R}∥2F = 2π∥B⊙R∥2F (4.20)

= 2π
n∑

i=0

n∑
j=0

b2ijr
2
ij. (4.21)

Since B is fixed, a trivial solution that minimizes the summation is R = 0. Assume that R

is not zero. The summation is minimized when rij is low where bij is high and vice versa,

forcing the residual to be uncorrelated with blood flow. This is important because the parts

of the face that are used for fever screening are highly perfused areas, such as the forehead.

Full Physics-informed Loss Function One problem with the frequency loss is that

it is applied to the entire image. Some parts of the face may have more blood flow and

high frequency content, but there is no notion of where the high frequency content belongs

spatially. To alleviate this, we can apply the loss to patches of the image:

Ls,tot =

np∑
i=0

Ls(pi(Û0), pi(U0)) (4.22)

where np is the number of patches and pi(·) extracts the i-th patch. The full physics-informed

loss is:

L(Û0,U0) = Lapp(Û0,U0) + γLs,tot(Û0,U0), (4.23)

where γ is a weight for the second loss term.

Summary From the bioheat equation, we obtained a stationary constraint on baseline

solutions. We could not directly apply the constraint in the spatial domain because the

blood flow is unknown. We showed that the stationary constraint can be enforced using the

high frequency content of the images. We need to select width of the blur kernel so that

the constraint is stable, but this is far easy than dealing with the unknown blood map in

the spatial domain. We show how the frequency loss improves reconstructed temperature in

Figure 4.2.
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4.4 Elevated Body Temperature

For completeness, we describe skin temperature for febrile states, although we do not ex-

plicitly use this in our model. During a fever, body temperature is elevated from a healthy

temperature causing the skin temperature to increase. A healthy body temperature is ap-

proximately 37°C and a fever is 38°C or higher. We define the difference between the febrile

and healthy body temperature as ∆Tc, and difference for skin temperature as ∆u. The

spatial pattern of the skin temperature increase can be described by Equation (3.1):

0 = k∇2(∆u) + b(x)(∆u−∆Tc). (4.24)

We observe that the spatial pattern of blood drives the change in febrile skin temperature.

This is different from solar loading where skin temperature changes based on face geometry

and sun location.
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CHAPTER 5

Implementation

To evaluate solar loading, we collect a new dataset of face temperatures in different condi-

tions. An overview of our dataset is given in Table 5.1 We describe our dataset and our

neural network implementation details.

5.1 Dataset

Our dataset contains thermal data (camera, thermometers) for baseline and solar loaded

states. Each subject’s skin color is recorded as melanin index, using the colormeter described

in Section 3.3.1, and through manually annotated Fitzpatrick skin type. The dataset contains

100 subjects of diverse skin tones to allow us to evaluate bias. The skin tone distribution is

shown in Figure 5.1. While we use this dataset specifically for solar loading, it can be used

to analyze thermal methods under transient conditions, such as thermal face recognition. In

the following, we describe the data collection protocol and how we generate a dataset for

our supervised learning model.

5.1.1 Experimental Protocol

One purpose of the dataset is to evaluate solar loading increase over different skin tones.

The solar loading effect depends not only on skin tone, but also on environmental conditions

such as wind, solar angle, and cloudiness. To control for these covariates, we only collect

data under the following conditions:
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• Solar zenith close to 0 (12:00-15:00)

• Minimal to no clouds (solar power > 900 Wm-2)

• Minimal to no wind (wind speed < 3 ms-1)

Collecting data in a limited time of day also controls for diurnal variations, so that our equity

analysis is not biased by body temperature fluctuations.

Data collection is split into three sessions: baseline, solar loading, cooling. The base-

line and cooling sessions are completed indoors, and the solar loading session is completed

outdoors. During the baseline portion, the subject is in a thermoneutral state. Body tem-

perature does not change over the course of data collection, so we record it once using an

oral thermometer. We record skin tone using a colormeter, and Fitzpatrick skin type is de-

termined by the average value from 5 annotators performed on white-balanced RGB images

taken during the baseline. To provide a point of comparison for solar loaded data, we record

the subject’s face temperature for 1 minute using a thermal camera.

Next, the subject is solar loaded outside for 5 minutes. The solar power is recorded

to remove solar strength as a covariate for solar loading. Afterwards, the subject returns

indoors and their face temperature is recorded for 5 minutes while they cool down. This

mimics the scenario of a person being screened when they enter a building. The cooling data

is what we use to train and evaluate our model. After each of the three sessions, we collect

forehead measurements using 3 infrared thermometers. We additionally measure indoor air

temperature and relative humidity using an anemometer.

5.1.2 Hardware Setup

We collect data using commercially available infrared thermometers and a custom camera

setup. We show the devices used in Figure 5.2. We use three common forehead infrared ther-

mometers (Welch Allyn 105801, ADC Adtemp 429, Joytech Sejoy DET-306). Ground truth
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Figure 5.1: Our dataset captures an diverse range of skin tones. Skin tone is

recorded as Fitzpatrick skin type (FST) and as a melanin index.

Type Value Notes

Skin tone Melanin, erythema -

Fitzpatrick skin type -

Body temperature Infrared thermometers 6 readings

Oral thermometer -

Images Thermal camera 1440 frames

RGB camera 1440 frames

Indoor conditions Solar power -

Air temperature -

Relative humidity -

Table 5.1: For each subject, we record skin tone labels, thermal data and the en-

vironmental conditions. Our dataset contains 100 subjects, yielding over 140,000 paired

RGB-thermal images in our dataset.
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Figure 5.2: Our dataset contains thermal data captured over multiple tempera-

ture states: baseline, solar heating and cooling. (a) During the baseline and cooling

sessions, we capture paired RGB and thermal images, as shown in the top row. (b) Images

are recorded using a synchronized RGB-thermal camera system, shown in the top row. We

record values from commercial instruments shown in the bottom row: colormeter, 3 infrared

thermometers and 1 oral thermometer.

body temperature is recorded using an oral thermometer (Boncare Digital Thermometer MT-

601A). Indoor conditions are recorded using a handheld anemometer (BTMeter Anemometer

866A) and solar radiation strength is recorded using a solar power meter (Tenmars Solar

Meter TM-206).

We record images using a custom RGB-thermal camera setup. A thermal camera (FLIR

Lepton 3.5 LWIR) is mounted next to a RGB camera (Arducam) on a 3D printed component.

Images are taken at a sampling rate of 4 Hz. The RGB images are used to compute facial

landmarks that are used for data preprocessing. The RGB and thermal images are not

aligned pixel-wise, so we calculate the homography needed to register the images. We image

a cold metal sheet placed behind a cardboard cutout checkerboard pattern, to create distinct

thermal and RGB image features. We manually match the key points using MATLAB’s

image registration procedure. All RGB-derived data is warped to be aligned with the IR

images. In lieu of a black-body reference, the wall in the background of the images is used as

a pseudo-reference to help correct for camera flat-field correction effects. The camera setup
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and example images are shown in Figure 5.2.

5.2 Paired Dataset Generation

The goal of solar loading correction is to take an input image, U, and output the baseline

state, U0. To realize this using a supervised approach, we need paired images (U,U0) for

training. The paired imaged should be aligned to enable a model to learn temperature

differences and not facial expression or head pose differences. We describe our approach for

generating this dataset.

5.2.1 Data Cleaning

We filter out frames where the subject is not facing forwards to allow us to extract the

forehead temperature, which is not affected by directional emissivity. All frames are cropped

to the facial region and resized to 64×64. We use dlib to find the facial landmarks from the

RGB images [28]. We check if the landmarks are symmetric; if there are not, the subject is

not facing forwards and the frames are discarded. The thermal camera periodically performs

a flat-field correction (FFC), during which the output frames are unusable. The FFC results

in temperature spikes, which we can detect using an object of known temperature in the

scene. In our case, the background temperature is known to be steady. We extract the

background temperature over all frames and use scipy.find peaks to detect peaks that

match the calibration periodicity [14]. Data occurring during the FFC is not used.

5.2.2 Finding Optimal Pairs

Finding the best image pair using only thermal data is difficult because the temperature

distribution changes after solar loading. Instead, we can find the best matches using the

facial landmarks derived from RGB images. Assume vi is a vector of landmarks derived
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from the i-th RGB image. For the baseline session we have {(Ui
0,v

i
0)}

N1
i=1 and for the cooling

session we have {(Ui,vi)}N2
i=1. For a given solar loaded image, Ui, we find the best aligned

U∗
0 by:

U∗
0 = min

j

∥∥vi − vj
0

∥∥
2

(5.1)

5.2.3 Training and Test Sets

We split our dataset into training and test sets, and the training set is further divided for

8-fold cross validation. The training set contains 80 subjects, with a total of 18,390 paired

frames for training, and the test set contains 20 subjects, with 5,017 paired frames. Each

subject appears in exclusively in either the training or test set to prevent overfitting. We only

use the first 2 minutes of cooling data because past this time, the amount of solar loading is

low and it is ambiguous whether there is solar loading. We apply random horizontal flips to

the images as data augmentation.

5.3 Model Details

5.3.1 Base Model Architecture

Our model is based on the UNet architecture, which is extensively used for image-to-image

tasks such as denoising and segmentation [39, 20]. The encoder of the UNet consists of 4

downsampling layers, where each downsampling layer contains 2 convolutional blocks (convo-

lution, batch normalization, ELU), followed by max pooling. The number of feature channels

is 32, 64, 128, 128. The decoder follows a symmetric architecture, with the maxpooling re-

placed by upsampling. We apply a scaled sigmoid on the final model output to scale the

output into a known range of temperature values (26.7 ≤ u ≤ 43◦C). We use a batch size of

32 and train using the Adam optimizer with learning rate of 1e-4 and weight decay of 1e-4.
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We train for 15 epochs. For the näıve model, the loss function is the appearance loss (MSE

between the estimated and ground truth face images).

5.3.2 Physics-informed Network

For the physics-informed network, we use the stationary loss in addition to the appearance

loss. For each estimate, we compute the 2D FFT of the image and filter out low frequencies

using a Gaussian blur kernel with width of 5 pixels and a standard deviation of 5. The MSE

between the filtered ground truth and estimate spectra constitutes the physics-informed loss.

Our final model calculates the FFT on patches of size 32×32.

5.4 Evaluating Performance

Our work is the first to tackle the problem of solar loading and as such, there are no existing

methods against which we can compare our results. We instead report solar loading errors on

uncorrected data, and the results of our temporal and spatial solutions. We report the mean

squared error (MSE), root mean squared error (RMSE) and mean absolute error (MAE) of

our models. We compare the MAE to the fever threshold. Additionally, we report the mean

absolute percentage error (MAPE), which is defined as:

MAPE(y, ŷ) =
1

n

n∑
i=0

∣∣∣∣yi − ŷi
yi

∣∣∣∣ . (5.2)

All errors are calculated using the forehead temperature. The goal of correcting solar loading

is to reduce false positive fevers. To evaluate practical or clinical relevancy of our results,

we report the specificity of our model:

Specificity =
TN

TN + FP
, (5.3)

where TN and FP are the number of true negatives and false positives respectively. The

fever threshold for forehead temperatures in prior works is between 35.1-35.6°C [30, 17], so
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we use a fever threshold of 35.35°C. Since we have no fever datapoints, we do not report the

sensitivity or precision values.
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CHAPTER 6

Results

Forehead (°C)

Method MSE (↓) RMSE (↓) MAE (↓) MAPE (↓) Specificity (↑) Pearson R (↑)

No correction 4.946 2.224 2.048 0.062 0.451 0.607

Ours (10 sec temporal fit) 24.915 4.991 4.178 0.120 0.548 0.170

Ours (5 min temporal fit) 2.718 1.649 0.764 0.022 0.935 0.737

Ours (basic CNN) 0.602 0.776 0.650 0.020 1.000 0.659

Ours (PINN) 0.523 0.723 0.605 0.018 1.000 0.720

Table 6.1: Our single-shot model achieves the best performance over all the error

metrics, and shows high correlation with the ground truth. The temporal correction

model performs well with 5 minutes of data, but fails when given a duration that is more

reasonable for fever screening (10 seconds).

We present the results of our physics-informed solar loading correction model. We em-

phasize that there is no existing method to compare our results to. To provide a better

assessment of our single-shot correction, we include results from a temporal correction model.

6.1 Temporal Solution

Solar loading can be corrected with time series data by finding the steady state of the

temperature decay.
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Figure 6.1: Solar loading can be detected by fitting time series data to an ex-

ponential function. (a) Variation in forehead temperature over 10 seconds. (b) Average

temporal fits over all subjects. Fitting using 300 seconds of data yields accurate results, but

using 10 seconds does not.

We extract temperature at the forehead while skin is cooling after solar loading, and fit

a decaying exponential to the data. Specifically, we find A > 0, B > 0 and û0 such that:

u(t) = Ae−Bt + û0. (6.1)

We constrain the steady state to a valid range of temperatures, 32 ≤ û0 ≤ 37◦C. We find

the best exponential fit to the data using scipy .curve fit. The curve fitting using 10

seconds of data and 5 minutes of data is shown in Figure 6.1(b). Solar loading can be

removed (MAE=0.764°C) using 5 minutes of data, but that requires 5 minutes of continuous

measurement. Using a more reasonable time frame, such as 10 seconds, results in poor

performance (MAE=4.991°C). This is because the noise in the temperature over 10 seconds

obscures the cooling trend. For reference, the thermal camera used in this study has a

NETD of 0.05°C [48]. Figure 6.1 shows the variation in temperature over 10 seconds and

fitted curves averaged over the entire dataset.
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Figure 6.2: Our spatial correction models accurately estimate baseline temper-

ature enabling better fever detection. (a) The estimated baseline temperatures are

shown against the fever threshold (red line). Error bars show ±1 SD. No error bar is shown

for the temporal method because the standard deviation is greater than the limits of the

plot. (b) The results of our model are within ±0.5°C (blue lines) of the ground truth.

Figure 6.3: Our baseline estimates improve the correlation correlation (R = 0.723)

compared to the uncorrected solar loading (R = 0.607). Although the solar loading

correlation is high, the absolute error is also high.
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Figure 6.4: Baseline reconstructions from our single-shot methods achieve both

low temperature errors and high PSNR.We show the model input (solar loaded image)

and outputs (PINN and näıve reconstructions) for 4 subjects in the test set. Overall, the

PINN achieves lower temperature error and higher PSNR than the näıve model.

6.2 Single-Shot Solution

We present results from our single-shot solar loading correction models. Both the näıve and

physics-informed model significantly reduce the solar loading error and produce accurate

reconstructions of facial temperature.

6.2.1 Forehead Temperature Estimation

Solar loading errors in temperature estimation typically occur when a person is being screened

for fever. As such, we report the accuracy of forehead temperature estimation and fever de-

tection. The results are summarized in Table 6.1. The PINN has the best performance

across all but one metric, the Pearson correlation coefficient. Our temporal model has the

highest correlation (R = 0.737) and the PINN has the next best correlation (R = 0.720). We

show the correlation of the solar loaded and PINN corrected temperatures with the ground

truth in Figure 6.3.

Both of the single-shot methods improve the solar loading error, and the PINN out-

performs the basic model across all metrics. The PINN reduces the solar loading error by

70.5% and and the naive model reduces the error by 64.9%. The correction enables more
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accurate fever detection. Without correction, only 45% of solar loaded data was classified as

non-febrile, but our model correction results in 100% of subjects being correctly classified as

non-febrile. In Figure 6.2, we show the corrected temperatures against the fever threshold

of 35.35°C.

6.2.2 Reconstruction Quality

In addition to accurate forehead temperature estimation, our model produces reconstructions

of the entire face that are faithful to the ground truth. Our aim is not to optimize image

quality, but assessing the quality of the full face reconstructions shows that the model is

not simply overfitting to the forehead temperature by removing a constant temperature

offset. The reconstructions from our single-shot models are shown in Figure 6.4 along with

the forehead MAE and image PSNR values. PINN outptus have lower forehead MAE and

higher PSNR values than the naive model, in all but one of the examples. For Figure 6.4(d),

the PINN has a higher MAE but it is only 0.09°C greater than the naive model error. We

see that PSNR is not indicative of the forehead error: fig. 6.4(a) and (b) have similar PSNR

values, but a large difference in temperature error. Figure 6.4(b) shows a clear difference

in the reconstructions between the PINN and naive models. The naive model keeps heat

centered on the forehead, similar to the input solar loaded image. The PINN, however,

directs heat towards the edges of the forehead where the temporal arteries are located. This

results in a more accurate temperature estimation: the PINN has a MAE value of 0.46°C,

while the naive model has a MAE of 0.77°C.

6.3 Ablation Study

We have seen that the addition of a physics-informed loss improves the temperature estima-

tion. We provide more results to this effect in an ablation study. The results are summarized

in Table 6.2. Reported values are averaged over 8-fold cross validation on the training set.
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Forehead (°C)

Method MSE (↓) RMSE (↓) MAE (↓) MAPE (↓)

No corr 5.483 2.335 2.134 0.064

Näıve 0.553 0.735 0.606 0.018

Näıve + fever aug 0.619 0.772 0.605 0.018

PINN (16x16) 0.622 0.764 0.596 0.018

PINN (32x32) 0.517 0.709 0.566 0.017

PINN (32x32) + fever aug 0.631 0.780 0.611 0.018

Table 6.2: Ablation study on model hyperparameters. We evaluate the performance

of the physics-informed loss with varying patch sizes, and the performance of synthetic fever

augmentation. The best metrics are highlighted in green.

6.3.1 Physics-Informed Loss

We compare model performance with and without the physics-informed loss. For the physics-

informed loss, we vary the patch size to see how it improves the performance. We test patch

sizes of 16×16 and 32×32. In theory, smaller patch sizes should yield better results (at

the expense of runtime) because blood-dependent frequency features are better localized.

However, we found that this was not the case. Using a 32×32 patch size resulted in the

best performance across all metrics. This is likely because slight image misalignment at finer

patch scales causes spuriously high loss values. The physics-informed model trained with no

fever augmentation outperformed the näıve model’s MAE by 0.04°C.

6.3.2 Synthetic Fever Augmentation

We hypothesized that the model may be over reliant on temperature magnitude and may

not learn from the full spatial pattern of the face. We added synthetic fever images to the

model to prevent overfitting to magnitude. We added a random constant temperature offset
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in the range of 2-3°C to skin pixels in the baseline images, as was done in [54]. We found

that this did not improve the results for both the näıve and physics-informed models. The

fever augmentation degraded the PINN results to a higher extent, with the MAE increasing

by 0.05°C. Our method of generating synthetic fever images may not be physically accurate,

which results in poorer performance with the fever augmentation.

6.4 Equity Analysis

We described the theoretical basis for solar loading skin tone bias in Section 4.1, and we now

show that (1) the bias is captured by our dataset and (2) our model reduces the bias. We

show the correlations between solar loading increase and melanin index in Figure 6.5. For

skin temperature, we average the forehead temperature increase over the first 20 seconds of

cooling, and use this as the solar loading increase. For the IRTs, solar loading increase is the

difference between the solar loading and baseline measurements. We use a non-parametric

measure of correlation (Spearman correlation coefficient) because the specific relationship

between solar loading increase and melanin is unknown.

In Figure 6.5(a), we show that there is a positive correlation between melanin and solar

loading bias for both skin temperature and IRT measurements. The correlation is positive,

albeit low, but it is a statistically significant result (p < 0.1). The IRT measurements show

a stronger skin tone bias with (R = 0.338) than the skin temperature (R = 0.133). This

difference may arise from the experimental procedure. The IRT measurements were taken

immediately after sun exposure, while the skin temperature measurements were taken after

the subject re-entered the building (10-20 seconds). The skin may be slightly cooled by the

beginning of the skin temperature measurement, resulting in an apparently lower bias. Our

model reduces the skin tone bias: as shown in Figure 6.5(b), the temperature errors are not

correlated with melanin.
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Figure 6.5: Solar loading increase is correlated with melanin levels for skin and

IRT temperature. Our model corrects solar loading and removes bias. We report the

Spearman correlation coefficient (p-value < 0.1).

Figure 6.6: Example reconstructions for cases with high temperature error. We

report the forehead MAE and PSNR. Although the PSNR is high, the temperature error is

also high.
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CHAPTER 7

Discussion

We have presented the first method to combat solar loading biases in thermography. We

have shown that the bioheat equation can be used to constrain a model to learn realistic

baseline images. Our model is able to reduce solar loading error by 70%, resulting in better

specificity for fever detection. We collected an extensive dataset of thermal images under

baseline and solar loaded conditions. The data and code will be made publicly available. As

alternate modalities continue to be used in computer vision, this dataset may also be used

for studying thermal face recognition and emotion analysis in unconstrained environments.

7.1 Limitations

This work only considers temperature transients induced by solar radiation, but there are

other factors that cause skin temperature to deviate from its baseline state, such as air

temperature and wind. These are not considered because they require a different physical

model, and solar loading is an important enough problem to merit a standalone study. There

exist other studies on ambient temperature effects, but none so far on solar loading. Our

dataset does not contain any subjects with fevers, as that would require infectious disease

controls as part of data collection. Expanding the dataset is a direction for future work.
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7.2 Future Work

We only use temperature magnitude as input to our model, but thermal and RGB im-

ages provide a wealth of information about human health. Imaging photoplethysmography

(iPPG) methods detect heart rate from RGB images, which can indicate exposure to tran-

sient conditions [6]. To detect fevers, our model removes transients from skin temperature,

but it may be helpful to estimate body temperature directly to eliminate compounding er-

rors in downstream systems. With a higher resolution thermal camera, we may also jointly

estimate the blood flow map and the baseline skin temperature. Since this is the first study

on solar loading, there is a multitude of directions for follow up works.

7.3 Ethics

We have studied the solar loading problem in a targeted manner by focusing on optical

melanin biases, but thermography may be biased in other ways. It is important for future

works to study bias along other axes.

7.4 Conclusion

We present a method to improve fever detection in unconstrained environments, namely

under solar loading conditions. Our physics-informed model improves solar loading MAE

by 70.5%, allowing for equitable fever detection. Our method preserves the rapidness of

standard IRT measurement and expands the usability of the devices. Our hardware setup

uses an inexpensive thermal camera—costing under $200 USD—and along with our open-

source code, this setup is easily adoptable in place of standard IRTs. The benefit of our

computational method is that it can be incorporated into existing camera-based thermogra-

phy systems. Research on bias in imaging and optical devices is important, and this work

studies an important application where skin tone bias arises.
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