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SUMMARY

The association of histone modification changes with
autism spectrum disorder (ASD) has not been sys-
tematically examined.We conducted a histone acety-
lome-wide association study (HAWAS) by performing
H3K27ac chromatin immunoprecipitation sequencing
(ChIP-seq) on 257 postmortem samples from ASD
and matched control brains. Despite etiological het-
erogeneity, R68% of syndromic and idiopathic ASD
cases shared a common acetylome signature at
>5,000 cis-regulatory elements in prefrontal and tem-
poral cortex. Similarly,multiple genes associatedwith
rare genetic mutations in ASD showed common ‘‘epi-
mutations.’’ Acetylome aberrations in ASD were not
attributable to genetic differentiation at cis-SNPs
and highlighted genes involved in synaptic transmis-
sion, ion transport, epilepsy, behavioral abnormality,
chemokinesis, histone deacetylation, and immunity.
By correlating histone acetylation with genotype, we
discovered >2,000 histone acetylation quantitative
trait loci (haQTLs) in human brain regions, including
four candidate causal variants for psychiatric dis-
eases. Due to the relative stability of histonemodifica-
tions postmortem, we anticipate that the HAWAS
approach will be applicable to multiple diseases.
INTRODUCTION

Autism spectrum disorder (ASD) is a collection of neuro-devel-

opmental disorders characterized by deficits in social interaction

and social communication, along with restricted and repetitive

behavior patterns. DNA sequence variation affecting the function

of several hundred genes has been implicated in the etiology of

ASD at various levels of significance (Abrahams et al., 2013; de la

Torre-Ubieta et al., 2016). These genetic changes include copy
C
This is an open access article under the CC BY-N
number variation, chromosomal rearrangements, and also rare

single-base pair mutations in coding genes (Devlin and Scherer,

2012; de la Torre-Ubieta et al., 2016). In addition, environmental

risk factors such as chemical toxins and maternal infection dur-

ing gestation are thought to play a role in the occurrence of

ASD (Grabrucker, 2013; Matelski and Van de Water, 2016).

Thus, the etiology of ASD is complex andmultifactorial, including

both genetic and environmental components.

Large-scale gene expression studies on ASD postmortem

brain regions, as well as the prenatal and postnatal developing

brain, suggest that alterations in common molecular pathways

such as transcriptional regulation, synaptic function, and immu-

nity may occur during brain development and contribute to ASD

pathophysiology (Voineagu et al., 2011; Parikshak et al., 2013;

Willsey et al., 2013). How the genetic and environmental hetero-

geneity is translated into shared molecular pathways is not well

understood. In addition, most of the efforts have so far focused

on gene expression and genetic changes in coding regions.

Many of these coding variants are extremely rare and account

only for a small proportion of ASD cases (Stein et al., 2013;

Geschwind and State, 2015). Therefore, it has been proposed

that epigenetic changes caused by non-coding genetic variation

or by environmental insults might contribute to ASD (Kubota

et al., 2012). An attempt to characterize epigenomic changes

in patients is thus likely to provide novel insights into the etiology

of ASD (Akbarian et al., 2015). Thus far, epigenome-wide associ-

ation studies (EWAS) of psychiatric and other diseases have

mostly focused on DNA methylation (Kubota et al., 2012; Mill

and Heijmans, 2013; Lunnon et al., 2014; Loke et al., 2015; Mon-

tano et al., 2016). In contrast, little is known about histone modi-

fication changes in psychiatric disease (Shulha et al., 2012) or the

genetics of population variation in histone modification (del Ro-

sario et al., 2015; Grubert et al., 2015; van de Geijn et al., 2015).

To address this lack of knowledge, we globally interrogated

the histone acetylomes of enhancers in a large cohort of ASD

and control samples by analyzing tissue from three brain regions

postmortem: prefrontal cortex (PFC), temporal cortex (TC), and

cerebellum (CB). These brain regions were chosen due to the

role of frontal and temporal lobe in social cognition and the
ell 167, 1385–1397, November 17, 2016 ª 2016 Elsevier Inc. 1385
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cerebellar dysfunction observed in some animal models of ASD

(Abrahams and Geschwind, 2010; de la Torre-Ubieta et al.,

2016). H3K27ac was selected as the representative acetylation

mark because it highlights active enhancers and promoters

(Wang et al., 2008; Heintzman et al., 2009; Creyghton et al.,

2010) and is also correlated with gene expression and transcrip-

tion factor binding (Kumar et al., 2013). We used the data to

define aberrantly acetylated enhancer and promoters in ASD

brain and thereby characterize commonly altered pathways, up-

stream regulatory factors, and developmental dynamics of

affected loci. In addition, we used chromatin immunoprecipita-

tion sequencing (ChIP-seq) reads to call SNPs within enhancers

and promoters. We then used the genotype-independent signal

correlation and imbalance (G-SCI) test (del Rosario et al., 2015)

to detect haQTLs in regulatory regions and assessed their rela-

tionship to known psychiatric disease-associated variants. This

dataset from post-mortem human brains will provide a rich

resource for futuremolecular analyses of ASD and serve as proof

of principle for the HAWAS approach, which can be applied to a

wide variety of human diseases.
RESULTS

Data Generation, Processing, and Differential
Acetylation Analysis
In total, we performed 257 H3K27ac ChIP-seq assays on tissue

samples from PFC, TC, and CB, in 94 individuals aged 10 years

and above (45 ASD, 49 control; Figure 1A; Table S1). Forty-eight

ChIP-seq profiles were discarded based on data quality, result-

ing in a final acetylome set comprising 209 profiles (STAR

Methods; Table S2): 81 from PFC (41 ASD, 40 control), 66 from

TC (30 ASD, 36 control), and 62 from CB (31 ASD, 31 control).

We used DFilter (Kumar et al., 2013) to call peaks in each of

the 209 ChIP-seq profiles and then defined two consensus

peak sets: 56,503 cortical peaks (union of PFC and TC) and

38,069 CB peaks. Each consensus ChIP-seq peak defined a re-

gion of focal histone acetylation and thus represented a putative

promoter or enhancer region.

The heights (aggregate read counts) of consensus peaks

represent acetylation levels of cortical and cerebellar regulatory

regions in each sample. We normalized these peak heights for

GC content (Figure S1) and distributional skews and then

controlled for confounders by regressing out multiple biological

covariates such as age, sex, and proportion of neurons and

also multiple technical covariates (STAR Methods; Figure S2).

Corrected peak heights were used to define an initial set of differ-

entially acetylated (DA) loci between ASD and control in each

brain region (Wilcoxon rank sum test; Q % 0.05, fold change

R1.3). Based on acetylation levels at these DA loci, we

measured inter-sample divergence and found that a small num-

ber of atypical ASD samples showed greater similarity to control

and vice versa (Figure S3). This was not surprising, given the

tremendous etiological heterogeneity of ASD and previous find-

ings from transcriptomic analysis (Voineagu et al., 2011). Never-

theless, in the majority of cases, ASD acetylomes resembled

each other more than they resembled control and vice versa

(Figure S3).
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In order to define the core set of chromatin aberrations in

typical ASD cases, we employed a systematic mathematical cri-

terion to exclude atypical samples (STARMethods). Because the

number of excluded samples was relatively small (5%–20% of

total cases and 14%–20% of dup15q), acetylation fold changes

were not substantially altered (PFC: R = 0.94, TC: R = 0.90, CB:

R = 0.98; Figure S4). We then used the remaining (typical) sam-

ples to define the final set of DA peaks for each brain region.

Strikingly, we detected 5,153 DA peaks in PFC and 7,009

in TC, indicating widespread, systematic histone acetylation

changes in ASD cerebral cortex (Figures 1B and 1C). In contrast,

only 247 DA peaks were detected in CB. The limited molecular

pathology of ASD cerebellum is consistent with results from tran-

scriptomic studies (Voineagu et al., 2011; Parikshak et al., 2016).

To evaluate the likelihood of false-positive DA peaks, we re-

peated the entire procedure (initial DA peaks, discarding atypical

samples, final DA peaks) after randomly permuting ASD and con-

trol labels. At the same false discovery rate (FDR) threshold (Q%

0.05), permuted datasets generated fewer than 100 DA peaks, on

average.Moreover, after 1,000 tries, noneof the permutateddata-

sets generated asmany DA peaks as the true dataset (Figure 1B).

Thus, the chromatin changes we detected in ASD samples were

far in excess of what would be expected by chance.

To further characterize the overall consistency of the DA peak

sets, we examined their overlaps. Over 45%of ASD-upregulated

regions in PFC overlapped ASD-Up peaks in TC (p z 0; Fig-

ure 1D). The samewas true of ASD-downregulated peaks. More-

over, the ASD-versus-control acetylation fold change was highly

correlated between PFC and TC (R = 0.86; p z 0). Thus, the

chromatin dysregulation signature of ASD was highly consistent

between the two cortical regions. Cerebellar DA peaks, on the

other hand, showed only �5% overlap with same-direction

cortical DA peaks.

Of the 45 cases, 7 had a monogenic form of ASD, duplication

15q syndrome (dup15q; Figure 1A), while the others had no

detectable structural variants and were therefore idiopathic

(Parikshak et al., 2016). It is possible that individuals with

syndromic ASD could have unique chromatin aberrations. We

therefore defined DA peaks separately for syndromic and

idiopathic ASD, relative to the same set of controls (STAR

Methods). Remarkably, acetylation changes were highly concor-

dant genome-wide between the two forms of ASD (Figure 1E,

R = 0.88 in PFC, R = 0.87 in TC). To maximize statistical power,

we therefore retained the original set of DA peaks based on all

ASD samples (syndromic plus idiopathic).

PFC and TC gene expression levels have been comprehen-

sively measured using RNA sequencing (RNA)-seq in a parallel

study on the same cohort (Parikshak et al., 2016). To investi-

gate the consistency between chromatin aberrations and

gene expression changes in ASD, we focused on promoter re-

gions of differentially expressed (DE) genes (FDR % 0.05; linear

mixed model) (Parikshak et al., 2016). We used the EFilter tool

(Kumar et al., 2013) to convert promoter histone acetylation

profiles into expression estimates and then identified the subset

of DE genes whose acetylation-based expression estimates

were significantly divergent between ASD and control (Q %

0.05; Wilcoxon test; Benjamini-Hochberg correction), after con-

trolling for covariates as before. At these gene loci, promoter
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Figure 1. Histone Acetylome-wide Association Study of ASD
(A) Overview of post mortem tissues in three brain regions used in this study. H3K27ac ChIP-seq was performed on prefrontal cortex (PFC), temporal cortex (TC),

and cerebellum (CB) samples from 45 ASD (A) and 49 control (C) individuals. ASD subjects with 15q duplication syndrome are highlighted in green.

(B) Number of DA peaks detected in the three brain regions. For comparison, the average number of DA peaks called in 1,000 randomized datasets (permutation

of case-control labels) is shown. The p value was computed as the fraction of randomized datasets yielding at least as many DA peaks as the true dataset.

(C) PCA of ChIP-seq peak heights (DA peaks only) in the three brain regions. Red dots, ASD samples; blue diamonds, control samples. Unfilled dots and di-

amonds indicate atypical samples. Variance explained by PC1 and PC2 are shown in parentheses. The vertical line, the threshold on ASD-specific global

acetylome signature (AGAS) score.

(D) Venn diagrams showingOverlap betweenDA peak sets from the three brain regions. The hypergeometric test was used to calculate p values, with the set of all

peaks as background. The density plot shows the log2 fold change in TC versus PFC in the union of DA peaks. The corresponding p value was calculated

assuming a t-distributed Pearson correlation coefficient.

(E) Correlation between log2 fold change of dup15q and idiopathic samples in PFC and TC. The correlation coefficient and its p value were calculated as in (D).

ChIP-seq peaks within the 15q duplication region are highlighted in red.

(F) Correlation between fold change of differential acetylation in the promoter region (DA) and differential gene expression (DGE) in PFC and TC. Only significantly

differential loci are shown (PFC:58 genes, TC:79 genes; STARMethods). Statistical significance of concordance in fold change direction was calculated using the

hypergeometric test.

See also Figures S1, S2, S3, S4, and S5 and Tables S1, S2, and S4.
acetylation changes were significantly correlated with expres-

sion fold change, both in PFC (R = 0.33; p = 0.016) and in TC

(R = 0.38; p = 0.0012) (Figure 1F). This analysis was not extended
to CB, due to the lack of detectable DE genes in that tissue.

Thus, while measurement noise and biological differences be-

tween chromatin variation and expression variation may have
Cell 167, 1385–1397, November 17, 2016 1387



attenuated the similarity between the two, we nevertheless

observed evidence of overall consistency between acetylation

aberrations and expression dysregulation in ASD.

Having confirmed the robustness and consistency of the DA

peak set, we constructed an ASD-specific global acetylome

signature (AGAS), defined as the first principal component

(PC1) of the corresponding peak height matrix. The strength

of this signature in each brain sample was thus given by its

PC1 score (X coordinate in Figure 1C). In all three brain re-

gions, ASD samples had significantly lower AGAS scores,

and disease status explained 12%–63% of the score variance

(Figures 1C and S5). Conversely, a simple threshold on the

AGAS score could be used to predict disease status for

68%–95% of samples in the three brain regions (Figure 1C).

Thus, ASD was associated with a coherent global shift in the

histone acetylome.

Functional Properties of ASD Chromatin Aberrations
Although ASD is known to be etiologically highly heteroge-

neous, we hypothesized that its diverse causal genetic and

environmental perturbations could potentially converge on a

small set of downstream pathways (Voineagu et al., 2011; Par-

ikshak et al., 2015). We therefore used the GREAT tool

(McLean et al., 2010) to test for significantly enriched (fold

change R 1.5, Q value % 0.01) gene categories in DA loci.

GREAT maps regulatory elements to flanking genes based

on proximity and uses the hypergeometric test to determine

if the fraction of DA peaks near genes from any particular func-

tional category is greater than expected by chance. Overall,

DA peaks in PFC and TC showed very similar functional pro-

files. In both cortical regions, upregulated DA peaks were

significantly enriched in neuronal functions known to be per-

turbed in ASD, including synaptic transmission, metal cation

transport, epilepsy, and the glutamate receptor pathway (Voi-

neagu et al., 2011) (Figure 2A; Table S3). Known ASD genes

from these categories include CACNA1C and GRIN2B (Splaw-

ski et al., 2004; O’Roak et al., 2011), which flank five and seven

DA peaks, respectively (Figure 2B). In light of the observation

that zinc deficiency is common in ASD (Yasuda et al., 2011),

it is intriguing that upregulated DA peaks were also enriched

in loci related to zinc ion homeostasis. Genes contributing to

this result include the SLC30A5 zinc transporter gene, which

flanks multiple DA peaks and has been shown to harbor rare

single nucleotide variants in ASD (O’Roak et al., 2011; Sanders

et al., 2012).

Downregulated DA peaks also showed highly significant

enrichment for specific functions (Figure 2C). Immune-related

terms such as abnormal immune serum protein physiology and

lymphatic system disease were most prominently enriched in

this peak set in PFC, perhaps reflecting unique microglial (Rodri-

guez and Kern, 2011; Zhan et al., 2014) or lymphoid cell states

(Louveau et al., 2015) in ASD cortex. Downregulated peaks in

TC showed similar immune-related enrichments (Table S3).

DA-Down peaks in the two cortical regions were also enriched

near histone deacetylase genes, including HDAC2 and HDAC4

(Pazin and Kadonaga, 1997). In particular, the syndromic autism

gene HDAC4 (Williams et al., 2010) neighbored 16 downregu-

lated DA peaks in TC and 4 in PFC (Figure 2D; Table S4; note
1388 Cell 167, 1385–1397, November 17, 2016
that some of the DA peaks in Table S4 have been annotated

with the names of smaller genes within the introns of HDAC4).

Chemokine gene loci were also enriched for DA-Down peaks

in both cortical regions. In addition, when all genes in the

genome were individually scored for enrichment near DA-

Down peaks, the chemokine receptor CX3CR1 ranked among

the top five in both PFC and TC (Table 1). Multiple gut-related

gene groups such as embryonic digestive tract morphogenesis

and digestive/alimentary phenotype showed significantly

reduced histone acetylation in ASD cortex. These gene sets

included multifunctional morphogenetic genes such as FGFR2,

chemokine ligand and receptor genes (including CX3CR1), and

the HDAC SALL3 (Table S3). Among the individually enriched

genes near downregulated peaks in TC, the behavior-related

gene GRB10 (Garfield et al., 2011) was the most statistically

significant (p < 1e-9).

We hypothesized that DA peaks might act as cis-regulatory

elements for some of the genes thought to be causal for ASD.

We therefore analyzed a curated list of 296 ASD genes for prox-

imity to DA peaks (SFARI database, gene score %4) (Abrahams

et al., 2013) (Table S5). In order to control for biases in gene length

and intergenic size, this analysis was performed using the same

statistical procedure as in the GREAT tool (McLean et al., 2010)

(hypergeometric test). In both PFC (p = 0.017) and TC (p =

0.025), peaks showing increased acetylation in ASD were signif-

icantly enriched near the ASD gene set (Table S5). ASD-downre-

gulated peaks in TC were also enriched, though not significantly

(p = 0.055) and downregulated peaks in PFC showed no enrich-

ment for known ASD loci. Cerebellar DA peaks were too few in

number to analyze in this manner. Cortical DA peaks as a whole

(union of the four DA peak sets) were clearly overrepresented

near ASD genes (p = 7.6e-4; fold enrichment = 1.1).

To identify transcription factors (TFs) that potentially mediate

aberrant histone acetylation in ASD, we used the HOMER tool

(Heinz et al., 2010) to scan for TF-binding motifs within DA

peaks. Most notably, we found strong enrichment of RFX mo-

tifs in ASD-upregulated peaks, both in TC and in PFC (Figure 3;

DA Up). RFX2 has a DA peak at its promoter and RFX3 con-

tains an intronic DA peak (Table S4). These two TFs are there-

fore the most likely candidates for driving increased acetyla-

tion in ASD. Three other TFs or TF families were enriched in

DA Up peaks across both cortical regions: PAR bZIP, AP-1

and MEF2. Among the PAR bZIP candidate TFs, E4BP4 and

HLF are the most promising, because their promoters are

acetylated in cerebral cortex. Among the MEF2 factors,

MEF2C is clearly the most prominent candidate, because the

corresponding gene locus hosts five DA peaks from the

downregulated list in PFC (p = 1.1e-4; Table S6). The nuclear

receptor motif enriched in ASD-upregulated peaks in TC could

relate to the glucocorticoid or mineralocorticoid receptor (GR

or MR), because the corresponding gene promoters are

marked by H3K27ac peaks. In contrast to the five to six motifs

overrepresented in DA Up peaks in each cortical region, SOX

was the only motif enriched in DA Down peaks in TC and

ETS the only motif in PFC. These binding site enrichment re-

sults potentially indicate the presence of master TFs that drive

dysregulation of groups of regulatory elements across the ASD

genome.
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Figure 2. Enrichment Analysis of Up and Down DA Peaks

(A) Functional enrichment analysis of ASD-Up DA peaks in PFC and TC (GREAT tool). MF, molecular function; BP, biological process; MP, mouse phenotype; DO,

disease ontology; PP, PATHER pathway.

(B) ASD-Up DA peaks in the CACNA1C (chr12: 2,161,809-2,900,900) and GRIN2B (chr12: 13,427,172-14,303,010) gene loci. Only the DA peaks closest to

CACNA1C and GRIN2B are visible in these genomic windows.

(C) Functional enrichment analysis of ASD-Down DA peaks in PFC and TC (GREAT tool). CC, cellular component.

(D) ASD-Down DA peaks in the GRB10 (chr7: 50,657,760-50,861,159) and HDAC4 (chr2: 239,960,131-240,388,294) gene loci. Only the DA peaks closest to

GRB10 and HDAC4 are visible in these genomic windows.

See also Table S3.
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Table 1. Top Five Genes Enriched in DA Peaks

Gene p Value Rank Raw p Value FDR Q Value Observed Expected Enrichment

PFC up

LOC100996286 (FBXW7 intron) 1 6.1e�13 2.1e�9 13 0.97 13

DEAR (FBXW7 intron) 2 2.1e�11 3.6e�8 8 0.37 22

MSRA 3 7.7e�9 9.1e�6 13 1.8 7.4

METTL24 4 4.7e�8 4.1e�5 7 0.46 15

SLC39A14 5 6.5e�8 4.6e�5 6 0.32 19

PFC down

LMOD3 1 5.7e�11 1.9e�7 12 1.0 12

NR2F2 2 3.7e�10 6.2e�7 7 0.31 22

ABCC4 3 1.2e�9 1.3e�6 9 0.63 14

FRMD4B 4 1.5e�8 1.3e�5 14 2.2 6.5

CX3CR1 5 3.9e�8 2.2e�5 7 0.45 16

TC up

SNAP25-AS1 1 1.0e�8 4.8e�5 9 0.81 11

GPM6A 2 2.7e�6 4.1e�3 9 1.3 6.8

SHANK2 3 3.1e�6 4.1e�3 8 1.0 7.7

LINC01616 4 3.6e�6 4.1e�3 5 0.35 14

NRG3-AS1 5 5.1e�6 4.6e�3 8 1.1 7.3

TC down

GRB10 1 4.3e�10 1.5e�6 16 2.4 6.5

FGFR2 2 6.7e�10 1.5e�6 17 2.8 6.0

CCL3L3/CCL3L1 3 3.1e�9 4.6e�6 8 0.59 13

LOC105375556 (CNTNAP2 intron) 4 1.4e�8 1.1e�5 8 0.66 12

CX3CR1 5 1.4e�8 1.1e�5 8 0.66 12

See also Table S6.
Developmental Stage Specificity of Epigenetically
Dysregulated Loci
It has been shown that genes upregulated during early postnatal

development are often differentially expressed in adolescent and

adult ASD brain (Parikshak et al., 2013). We therefore asked

whether early postnatal genes might also be enriched for the

ASD-related acetylation changes we detected in older subjects

(R10 years old). Using a database of human RNA-seq profiles

(BrainSpan, 2015), we defined the 2,000 genes most upregu-

lated at each developmental stage (fold change relative to me-

dian expression across all stages). We then tested for enrich-

ment of DA peaks near each such gene set. This analysis was

performed separately for PFC and TC, using expression profiles

from the corresponding regions of the developing human brain.

As expected, ASD-Up DA peaks in the adult (more precisely,

R10 year) brain were significantly overrepresented near adult-

upregulated genes (Figure 4). Surprisingly, however, we found

even greater enrichment of ASD-Up DA peaks near genes upre-

gulated at 10–12 months after birth, which corresponds to the

stage of synapse formation, and neuronal maturation. In

contrast, ASD-Down DA peaks did not show stage-specificity.

Thus, although chromatin aberrations in ASD affect genes with

a broad variety of developmental specificities, genes upregu-

lated at or near 12 months after birth are particularly strongly

associated with increased acetylation in ASD cortex.
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Histone Acetylation QTLs in Human Brain Regions
Noncoding genetic variants that affect disease susceptibility

potentially act via a gene regulatory mechanism (Boyle et al.,

2012; Maurano et al., 2012). Because histone acetylation serves

as a measure of gene regulatory function, such variants are also

likely to influence acetylation levels. It is therefore instructive to

identify histone acetylation QTLs (haQTLs), which are defined

as genetic variants that correlate with population variation in his-

tone acetylation (del Rosario et al., 2015). As we and others have

previously shown (del Rosario et al., 2015; Grubert et al., 2015),

haQTLs can be used to prioritize causal variants within disease-

associated loci.

To identify haQTLs in the three human brain regions, we used

the G-SCI pipeline that was previously validated on lymphoblas-

toid cell lines (del Rosario et al., 2015). The pipeline uses ChIP-

seq reads to call DNA sequence variants in active regulatory re-

gions, followed by filtering to remove low-confidence variants

(STAR Methods). By analogy to exome sequencing, this stage

of the pipeline can be termed ‘‘regulome sequencing.’’ A unique

aspect of the G-SCI method is that called variants need not be

explicitly genotyped. Rather, counts and base qualities of refer-

ence- and alternative-allele ChIP-seq reads are used to infer ge-

notype likelihoods. These likelihoods are then used to compute

the haQTL p value of the variant using theG-SCI test, whichmax-

imizes statistical power by combining information from peak
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PFC up
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Figure 3. Enrichment of Transcription Factor-Binding Motifs in DA Peaks

(A) Motifs significantly enriched in ASD-Up or ASD-Down DA peaks in TC (HOMER tool).

(B) Similar table, PFC.
height variability and allelic imbalance across all individuals

within the cohort. In order to separate the cis effect of regulatory

SNPs frommore general disease effects, we first adjusted ChIP-

seq peak heights by regressing out the diagnosis variable (ASD

versus control). We then applied the G-SCI test to called SNPs

and identified �2,000 haQTLs in each of the three brain regions

(Figure 5A; Table S7). Note that these haQTLs are not specific to

ASD. Rather, they represent region-specific regulatory variation

in the general population.

GWAS analyses have not so far uncovered statistically sig-

nificant ASD-associated variants that have been replicated in
independent analysis at a genome-wide level. We therefore in-

tersected the haQTL set with genome-wide significant (p %

5e-8) variants known to be associated with shared aspects of

five psychiatric disorders: schizophrenia, bipolar disorder, major

depressive disorder, ASD, and attention-deficit/hyperactivity

disorder (Cross-Disorder Group of the Psychiatric Genomics

Consortium, 2013). While this GWAS set was too small to test

for statistical enrichment near haQTLs, we did uncover two in-

stances where brain haQTLs were strongly linked (R2 R 0.8) to

disease-associated variants (Table S7). Most notably, an haQTL

(rs4765905) in an intron of the syndromic ASD gene CACNA1C
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Figure 4. Enrichment of DA Peaks near

Genes Upregulated at Specific Stages of

Brain Development

(A) ASD-Up DA peaks in PFC are most significantly

enriched near genes upregulated 1 year after

birth. Bar height indicates enrichment Q value

(FDR). Numbers above bars indicate fold enrich-

ment (Q % 0.05).

(B) Similar plot, TC.
was linked to multiple psychiatric disease-associated SNPs

within the locus (Figure 5B). Based on Hi-C data from

GM12878 cells (Jin et al., 2013), the putative enhancer contain-

ing this haQTL SNP was predicted to form a long-range loop

to the CACNA1C promoter, suggesting that it could exert its in-

fluence on psychiatric disease by modulating the chromatin

state of CACNA1C. In addition, we intersected haQTLs with

128 SNPs associated with schizophrenia in a recent large-scale

meta-analysis of schizophrenia (Ripke et al., 2014). This analysis

revealed two additional haQTLs strongly linked to psychiatric

disease-associated variants (Table S7). For example, we found

that the haQTL SNP rs8054791 was linked to the schizo-

phrenia-associated variant rs9922678 in an intron of GRIN2A,

a glutamate receptor gene that has also been associated with

ASD (Figure 5C).

DISCUSSION

Despite etiological heterogeneity, our results indicate that

shared aberrations in histone acetylation are widespread in

ASD cerebral cortex: over 5,000 enhancer or promoter loci

were systematically shifted up or down (Figure 1B). The fact

that histone acetylation changes were broadly similar between

PFC and TC indicates similarity in ASD mechanisms across

cortical regions and also suggests that our results on differential

acetylation are unlikely to represent methodological artifacts.

Note that, as expected for a complex disorder with highly hetero-

geneous etiology, this global signature of chromatin alteration is

not shared by all ASD samples (Figure 1C). An earlier transcrip-

tomic study revealed a similar pattern of changes shared by

many, but not all, ASD cases (Voineagu et al., 2011). Neverthe-

less, the fact that the majority of patients conform to a single

global epigenomic pattern indicates that the diverse causal

mechanisms of ASD have shared downstream effects on the

acetylome. In contrast to cerebral cortex, only 247 loci were

found to be perturbed in cerebellum, indicating that the former

is affected to a much greater degree. This disparity between

ASD cerebrum and cerebellum has also been observed at the

transcriptomic level (Voineagu et al., 2011). Syndromic dup15q

cases showed acetylome alterations that were highly correlated

with those observed in idiopathic ASD (R R 0.87 in cerebral

cortex), suggesting that most chromatin aberrations are shared

between idiopathic ASD and this syndromic form.

To examine the genetic basis of the epigenomic aberrations

detected in ASD, we tested all high-coverage SNPs within DA
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peaks for genetic differentiation between patients and controls

(chi-square test). The distribution of genetic differentiation p

values was close to uniform (data not shown), suggesting that

genetic variation in cis SNPs is not a major contributor to case-

control acetylation differences at DA peaks. It is thus likely that

ASD-specific differential acetylation is driven mostly by other

factors such as environmental influences, SNPs in trans (at a

different locus), indels, and larger chromosomal variants (Krumm

et al., 2015).

Overall, acetylation changes in ASD cerebral cortex were

significantly correlated with differential gene expression, consis-

tent with the known functional consequences of these alterations

in chromatin structure (Figure 1F). However, the majority of DA

peaks did not lie next to DE genes. This is consistent with previ-

ous studies; we and others have shown that differences in chro-

matin state between two sample types are only moderately

correlated with differential expression (Kumar et al., 2013; Yen

and Kellis, 2015). Differences in the sensitivity of ChIP-seq and

RNA-seq at various loci could provide one explanation for this

phenomenon. For example, post-mortem RNA degradation or

low steady-state mRNA levels could reduce the detectability of

DE genes in some cases, while low readmappability or occlusion

of the acetylated epitope (for example) could limit the sensitivity

of DA peak analysis at other loci. Moreover, noise levels could

vary between the mRNA and chromatin readouts at individual

loci, resulting in differential statistical power. Finally, although

histone acetylation and gene expression are correlated in gen-

eral, post-transcriptional regulation, other histone modifications,

DNAmethylation status, and the influence of additional regulato-

ry elements within the same locus could all contribute to genuine

biological differences between mRNA fold change and acetyla-

tion shifts. Thus, case-control chromatin profiling could serve

as a valuable complement to the more common strategy of tran-

scriptomic profiling by highlighting novel disease mechanisms.

We found evidence for shared pathways and functional

themes among DA loci in ASD cerebral cortex (Figure 2). Among

loci with increased H3K27ac, there was strong enrichment for

genes related to ion channels, synaptic function, and epilepsy/

neuronal excitability, all of which have previously been shown

to be dysregulated in this disorder (Voineagu et al., 2011; Bour-

geron, 2015). Moreover, these adult DA loci were strongly en-

riched for genes developmentally upregulated at or around

12 months of life (Figure 4), which coincides with the peak of

early experience-dependent synaptogenesis. A similar temporal

enrichment has also been observed for cerebral DE genes in
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Figure 5. Histone Acetylation Quantitative

Trait Loci and Linkage with GWAS SNPs

(A) Pie chart, number of histone acetylation quan-

titative trait loci (haQTLs) called in PFC, TC, and CB.

(B) A SNP within an intron ofCACNA1C is an haQTL

(Q = 1.5e-4) in CB and is in LD with four genome-

wide significant SNPs from GWAS of five psychi-

atric disorders (Table S7). Histone acetylation

tracks (chr12: 2,343,551-2,354,513), read depth

analysis (bar graph) and peak height boxplots

indicate that the reference ‘‘G’’ allele has higher

histone acetylation than the non-reference ‘‘C’’

allele. All acetylation tracks are plotted on the same

fold-enrichment scale (y axis: 0–120).

(C) A SNP within an intron of GRIN2A (chr16:

9,936,580-9,951,221) is an haQTL (Q = 2.2e-2)

in TC and CB and is in LD with a genome-

wide significant SNP (rs9922678; R2 = 0.91) for

schizophrenia. Histone acetylation tracks (chr12:

2,343,551-2,354,513), read depth analysis (bar

graph), and peak height boxplots indicate that the

reference ‘‘A’’ allele has higher histone acetylation

than the non-reference ‘‘G’’ allele. All acetylation

tracks are plotted on the same fold-enrichment

scale (y axis: 0–50).

See also Table S7.
ASD (Parikshak et al., 2013). Loci with decreased acetylation in

ASD also converged on shared functional categories, such as

digestive tract morphogenesis, chemokine signaling, HDAC ac-

tivity, and immune processes related to microglia. Note that it is

possible for functional categories to appear systematically en-

riched in DA peaksmerely because of the contribution of a single

highly enriched ‘‘jackpot’’ gene. However, our results are likely to

be robust to such artifacts, because we discarded functional

terms that had fewer than five genes near DA peaks and then

manually inspected the remaining top hits (shown in Figure 2)

for jackpot effects. While the primary causes of ASD are highly

heterogeneous, it appears that they nevertheless converge on

shared downstream epigenomic changes associated with spe-

cific functions. It is possible that these shared chromatin alter-

ations could in turn drive some of the shared symptoms of ASD.
Cel
The above functional enrichments have

intriguing links to ASD epidemiology and

results from model organisms. In addition

to the well-studied roles of synaptic, ion-

channel, and glutamate-pathway genes

in ASD (Schmunk and Gargus, 2013; Par-

ikshak et al., 2015), exposure to HDAC in-

hibitors in utero has been linked to ASD

and ASD-like symptoms in humans and

has also been demonstrated to cause so-

cial deficits in rodents (Chomiak et al.,

2013; Christensen et al., 2013). HDAC

suppression could thus be a common

epigenomic feature of ASD. Chemokine

pathway changes in ASD are also plau-

sible. Suppression of the chemokine re-

ceptor gene CX3CR1, which flanks eight
downregulated peaks in TC (p = 1.4e-8, Table 1), causes micro-

glial activation (Wolf et al., 2013). Moreover, CX3CR1 knockout

mice have two phenotypes observed in autism: impaired

social interaction and increased repetitive behavior (Zhan

et al., 2014). Finally, the enrichment of downregulated DA peaks

near digestive tract morphogenesis genes could point to the

existence of pleiotropic loci potentially contributing to the co-

morbidity of gastrointestinal problems with ASD (McElhanon

et al., 2014).

In addition to pathway-level chromatin aberrations, we found

strong enrichment of DA peaks near individual genes. The che-

mokine pathway genes CCL3L1/CCL3L3 (p = 3.1e-9) and

CX3CR1 (p = 1.4e-8) were both among the top five genome-

wide for enrichment in downregulated TC peaks (Tables 1 and

S6). The top-ranked gene in the same downregulated peak list
l 167, 1385–1397, November 17, 2016 1393



was GRB10 (p = 4.3e-10), an imprinted gene expressed via the

paternal allele in neurons and the maternal allele in most other

adult mouse tissues (Plasschaert and Bartolomei, 2015). Dele-

tion of the paternal allele specifically affects social behavior in

mice (Garfield et al., 2011). Moreover, the GRB10-interacting

GYF proteins GIGYF1 and GIGYF2 are known to harbor de

novo loss-of-function mutations in ASD (Krumm et al., 2015).

At a functional level, GRB10 mediates a negative feedback

loop that damps mTORC1 signaling (Yu et al., 2011), a pathway

with multiple links to ASD. mTORC1 hyperactivity alters the syn-

aptic excitation/inhibition ratio and causes multiple autism-like

symptoms in mice (Gkogkas et al., 2013). In addition, mTORC1

is negatively regulated by four syndromic autism genes (Wang

and Doering, 2013). Thus, GRB10 deacetylation could represent

a common epigenetic mechanism of idiopathic ASD via a

pathway that is also affected by rare genetic variants in syn-

dromic ASD. HDAC4 provides yet another example of mecha-

nistic parallelism between rare genetic and common epigenetic

mechanisms. The HDAC4 gene is mutated in a syndromic form

of ASD (Williams et al., 2010) and flanks 16 peaks deacetylated

in ASD (Table S4). The syndromic ASD gene CNTNAP2 provides

yet another example—it ranks fourth in the genome for deacety-

lated TC peaks in ASD (Table 1). On a broader scale, the conver-

gence of rare genetic mutations and common ‘‘epimutations’’ on

similar pathways in ASD is supported by the genome-wide sim-

ilarity of histone acetylation changes between dup15q syndrome

and idiopathic ASD (Figure 1E).

Among the TFs highlighted by motif analysis of DA peaks up-

regulated in ASD, the neurodevelopmental factor MEF2C (Li

et al., 2008) has substantial evidence for genetic association

with ASD (Novara et al., 2010; Neale et al., 2012). Encouragingly,

it has also been identified through motif analysis of co-regulated

gene networks containing ASD risk genes (Parikshak et al.,

2013). The MEF2 complex is known to interact with HDAC4

(Gruffat et al., 2002), which raises the hypothesis that downregu-

lation of HDACs in ASD cerebral cortex could relieve the repres-

sion of MEF2C target sites, thus increasing their histone acetyla-

tion level. AP-1, another TF enriched in DA peaks, has also been

shown to interact with HDAC4 (Yamaguchi et al., 2005). As the

most highly enriched motif in PFC (p = 4e-19) and TC (p = 8e-

31) DA peaks, RFX is particularly noteworthy. Though there is

no known genetic association of RFX TFs with ASD, members

of this family play key roles in neurodevelopment (Benadiba

et al., 2012; Bae et al., 2014), and our results raise the hypothesis

that they could serve as mediators of diverse upstream causal

factors. The enrichment of MR binding sites at upregulated

peaks in TC is also noteworthy—the NR3C2 gene encoding

MR was recently shown to be significantly associated with

autism in a recent exome-sequencing study (De Rubeis et al.,

2014).

Although ASD is the focus of the current study, the haQTLs

detected in PFC, TC, and CB (Table S7) are not specific to

ASD. Thus, they can serve as a resource for prioritizing causal

SNPs for a broad range of brain-related disorders. For example,

the haQTL set included candidate causal SNPs at four GWAS

loci for schizophrenia and other psychiatric disorders, including

GRIN2A and CACNA1C (Figure 5; Table S7). At these loci, we

hypothesize that perturbed histone acetylation could constitute
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a mechanistic intermediary between genotype and phenotype.

As the number of genetic association studies increases and

cohort sizes grow ever larger, the haQTLs identified here will

serve as a valuable resource for mapping causal regulatory

mutations within brain disease-associated loci. This is, to the

best of our knowledge, the first cohort-scale HAWAS study,

and as such it lays a foundation for future studies of histone

modification changes in disease. Moreover, this initial analysis

of human brain haQTLs paves the way for multiple future studies

of chromatin-altering variants in primary samples based on

ChIP-seq, DNase-seq (Degner et al., 2012), assay for transpo-

sase-accessible chromatin using sequencing (ATAC-seq), and

other assays.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

H3K27ac Active Motif Cat#39133; RRID: AB_2561016

Chemicals, Peptides, and Recombinant Proteins

Protein G Dynal magnetic beads Invitrogen Cat#1003D

Ligase Enzymatics Cat#L6030-HC-L

Polynucleotide kinase Enzymatics Cat#Y9040L

T4 DNA polymerase Enzymatics Cat#P7080L

Phusion Polymerase NEB Cat#M0530L

Klenow exo- Enzymatics Cat#P7010

PCR_Primer_Index_4:

CAAGCAGAAGACGGCATACGAGATTGG

TCAGTGACTGGAGTTCAGACGTGTGCTC

TTCCGATCT

Illumina N/A

PCR_Primer_Index_5:

CAAGCAGAAGACGGCATACGAGATCAC

TGTGTGACTGGAGTTCAGACGTGTGCT

CTTCCGATCT

Illumina N/A

PCR_Primer_Index_6:

CAAGCAGAAGACGGCATACGAGATATT

GGCGTGACTGGAGTTCAGACGTGTGCT

CTTCCGATCT

Illumina N/A

PCR_Primer_Index_7:

CAAGCAGAAGACGGCATACGAGATGAT

CTGGTGACTGGAGTTCAGACGTGTGCT

CTTCCGATCT

Illumina N/A

Deposited Data

Raw and analyzed data This paper https://www.synapse.org/#!

Synapse:syn4587616

human reference genome NCBI build 37,

GRCh37

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

Raw and analyzed data for RNA-seq Parikshak et al., 2016 http://biorxiv.org/content/early/2016/09/

23/077057

Raw data Bernstein et al., 2010; NHGRI Epigenome

Atlas

http://www.genboree.org/epigenomeatlas/

index.rhtml

Please see Table S3 for the GREAT results This paper N/A

Please see Table S5 for the curated ASD

Gene list

SFARI gene https://gene.sfari.org/autdb/GS_Home.do

Refseq gene set Refseq https://www.ncbi.nlm.nih.gov/refseq/

Gencode gene set Gencode https://www.gencodegenes.org/

Analyzed data for human brain

development RNA-seq

BrainSpan http://brainspan.org

Transcription factor motif database TRANSFAC http://www.gene-regulation.com/pub/

databases.html

Transcription factor motif database JASPAR http://jaspar.genereg.net/

‘‘Self Chain’’ regions of the genome UCSC Genome Browser http://genome.ucsc.edu/index.html

EUR SNPs and indels database 1000 Genome http://www.internationalgenome.org/

GWAS SNPs on schizophrenia Ripke et al., 2014 N/A

(Continued on next page)
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GWAS SNPs on 5 psychiatric disorders Cross-Disorder Group of the Psychiatric

Genomics Consortium, 2013

N/A

Other

Autism Tissue Program (ATP) Harvard Brain Tissue Resource Center http://www.autismtissueprogram.org/site/

c.nlKUL7MQIsG/b.5183271/k.BD86/

Home.htm

UMB BTB University of Maryland Brain and Tissue

Bank

http://medschool.umaryland.edu/btbank/

the Oxford Brain Bank University of Oxford https://www.ndcn.ox.ac.uk/

Software and Algorithms

BWA Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

SAMtools Li et al., 2009 http://www.htslib.org/

DFilter and EFilter Kumar et al., 2013 http://collaborations.gis.a-star.edu.sg/

�cmb6/kumarv1/dfilter/

CETS Guintivano et al., 2013 https://r-forge.r-project.org/projects/cets/

GREAT McLean et al., 2010 http://bejerano.stanford.edu/great/public/

html/

HOMER: findMotifsGenome.pl script Heinz et al., 2010 http://homer.salk.edu/homer/motif/

GATK (v3.2-2) DePristo et al., 2011 https://software.broadinstitute.org/gatk/

G-SCI test del Rosario et al., 2015 http://collaborations.gis.a-star.edu.sg/

�cmb6/G-SCI_test/

R The R Project for Statistical Computing https://www.r-project.org/

MATLAB MathWorks http://www.mathworks.com/products/

matlab/?s_tid=hp_ff_p_matlab
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the Lead Contact Shyam Prabhakar

(prabhakars@gis.a-star.edu.sg).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
Brain samples from 45 ASD and 49 control individuals were acquired from the Autism Tissue Program (ATP) at the Harvard Brain

Tissue Resource Center, the University of Maryland Brain and Tissue Bank and the Oxford Brain Bank. Sample acquisition protocols

were followed for each brain bank, and samples were de-identified prior to acquisition. Sample swapswere verifiedwith independent

genotyping. Brain sample and individual level metadata are provided in Table S1.

METHOD DETAILS

ChIP-Seq on Brain Tissue
For each ChIP-seq experiment approximately 100mg of frozen brain tissue per sample was aliquoted and thawed on ice in 1ml PBS

buffer. Tissue was then homogenized using a manual glass douncer with 7-15 slow strokes on ice. The cell suspension was filtered

with a 40uM cell strainer (Falcon) by spinning at 2000rpm for 1 min at 4C in a swing bucket centrifuge (Eppendorf Centrifuge 5810R).

Pellets were then washed twice with cold PBS, crosslinked with 1% formaldehyde for 15 min at room temperature and excess form-

aldehyde quenched by addition of glycine (0.625M). Cells were lysed with FA and nuclei were collected and re-suspended in 300 mL

SDS lysis buffer (1%SDS, 1%Triton X-100, 2mMEDTA, 50mMHEPES-KOH [pH 7.5], 0.1%Sodium deoxy cholate, Roche 1XCom-

plete protease inhibitor). Nuclei were lysed for 15 min, after which sonication was used to fragment chromatin to an average size of

200–500 bp (Bioruptor Next gen, Diagenode). Protein-DNA complexes were immuno-precipitated using 3 mg of H3K27acetyl anti-

body of the same lot for all 257 ChIP experiments (catalog number 39133; Active Motif) coupled to 50 mL protein G Dynal beads

(Invitrogen) overnight. The beads were washed and protein-DNA complexes were eluted with 150 mL of elution buffer (1% SDS,

10mMEDTA, 50mMTris.HCl [pH 8]), followed by protease treatment and de-crosslinking at 65�Covernight. After phenol/chloroform

extraction, DNA was purified by ethanol precipitation. 5% of sheared chromatin was aliquoted and treated with Pronase and RNase
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treated following de-crosslinking in the same manner as the ChIP DNA. To prepare pooled input libraries for each brain region, DNA

was then quantified and equal amounts from 10 ASD and 10 control samples (randomly chosen) were pooled. 100ng of pooled DNA

were used for library preparation. Input libraries were multiplexed and sequenced in one HiSeq lane. Library preparation was per-

formed as in Quail et al. (2008). After 15 cycles of PCR using indexing primers, libraries were size selected for 300-500 bp on low

melting agarose gel and 4 libraries were pooled and sequenced in one lane of 2 3 100bp using the same Illumina HiSeq 2000

with V3 reagents.

Read Alignment and Peak Calling
Reads from 257ChIP-seq libraries weremapped to the human genome (hg19) using BWA (Li and Durbin, 2009). Duplicate readswere

filtered out using SAMtools (Li et al., 2009). 17 libraries were then discarded due to low quality (< 200,000 reads or mapping rate <

6%). Peaks were called in the remaining 240 libraries using DFilter (Kumar et al., 2013) which used the input DNA library for the cor-

responding brain region as a control. On average 20,447 ChIP-seq peaks were called in PFC, 20,583 in TC and 21,685 in CB. 11

samples were then discarded because they contained fewer than 10,000 peaks, leaving 229 samples for further processing. In

CB, singletons were defined as peaks detected in only a single individual (zero overlap with peaks in other libraries). Non-singleton

peaks were then merged across individuals (overlap > 0 bp) to define the consensus set of 38,069 CB peaks. Because peaks in PFC

and TC were highly overlapping, we combined these two brain regions to define the consensus set of 56,503 neocortical peaks. All

subsequent analyses of PFC and TC were performed on this neocortical peak set.

Peak Height Normalization
For each brain region, reads were counted in 100-bp bins for each library and scaled to normalize for sequencing depth (total read

count). Binned counts were then adjusted by normalizing their GC-content against the average GC-content of all libraries in each

brain region. In each peak region, the sum of bin-wise normalized counts was defined as the peak height. Finally, to reduce technical

variation, the heights of peaks in the union peak set were quantile-normalized (Bolstad et al., 2003).

Quality Control of 229 ChIP-Seq Datasets
The set of 229 ChIP-seq datasets contained 13 pairs of biological replicates. The average peak height correlation (Pearson) between

replicate datasets was 0.92, which is similar to replicate correlations in H3K27ac ChIP-seq data from the NHGRI Epigenome Atlas

(Inferior Temporal Lobe: 0.90; Mid-Frontal Lobe: 0.91) (Bernstein et al., 2010). For each of the 229 datasets, we quantified the mean

Pearson correlation (mPC) with other datasets from the same brain region. Then, from each of the 13 pairs of replicates, we discarded

the dataset with lower mPC. From the remaining 216 datasets, we discarded 7 that had low mPC values relative to the norm for the

corresponding brain region (< first quartile – 2.5xinter-quartile range). The remaining 209 ChIP-seq datasets from 94 individuals were

used for downstream analysis.

Removal of Confounding Factors
First, the normalized peak heights were transformed into the log2 domain. Then principal-component analysis (PCA) was performed

to detect potential confounding factors by correlating the top 5 principal components (PCs) with the biological covariates (diagnosis,

age, sex, neuronal cell fraction, ethnicity, and agonal state) and technical covariates (sequencing batches, brain bank, fragment me-

dian insert size from paired-end sequencing, percentage of duplicated reads, sequencing depth of each library and number of peaks

for each library). The neuronal cell fraction for each sample was estimated using CETS (Guintivano et al., 2013) fromDNAmethylation

data generated in a parallel study on the same cohort (C.C.Y.W., R. Smith, E. Hannon, L. Schalwyk, A. Kepa, J.P., W.S., N.N.P., S.P.,

D.H.G., and J.M., unpublished data). Neuronal cell fractions for samples that were not included in the parallel DNAmethylation study

were assigned with the median neuronal cell fraction across all samples. Covariates that significantly correlated with top 5 PCs were

regressed out from the peak height matrix. For PFC, regressed out covariates included age, sex, neuronal cell fraction, sequencing

batches, brain bank, fragment median insert size, percentage of duplicated reads, sequencing depth and number of peaks. For TC,

regressed out covariates included age, sex, neuronal cell fraction, sequencing batches, brain bank, fragment median insert size,

sequencing depth and number of peaks. For CB, regressed out covariates included age, sex, neuronal cell fraction, sequencing

batches, brain bank, fragment median insert size, percentage of duplicated reads, sequencing depth and number of peaks. PCA

was performed again after regression to confirm that no confounding factors correlated strongly with the top 5 PCs (Figure S2).

Downstream analyses were based on the peak height matrix after covariate regression.

Analysis of Differentially Acetylated (DA) Peaks
In each brain region, an initial set of differentially acetylated (DA) peaks between ASD and control was constructed based on the

above-described peak height matrix (fold-changeR 1.3;Q% 0.05; Wilcoxon rank sum test; Benjamini-Hochberg correction). Using

this initial set of DA peaks, we calculated the pairwise Pearson correlation coefficient matrix R of peak heights, and raised each

element of the matrix to the ninth power (Rij
9). The resulting row vectors were used to define the coordinates of ASD and control

samples in correlation space, for the purpose of calculating Euclidean distances. For each sample, two distances were calculated:

the median Euclidean distance to all the ASD samples (Distance_A) and the median Euclidean distance to all the control samples

(Distance_C). Any ASD sample with Distance_A > 1.05xDistance_C was discarded (Figure S3). Similarly, any control sample with
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Distance_C > 1.05xDistance_A was discarded. A final set of DA peaks was constructed between ASD and control using the remain-

ing samples, with the same Q-value and fold change cutoffs as above (Table S4). To test whether these DA peaks were genuine, we

generated 1,000 randomized datasets by permuting sample labels (ASD, control). For each permuted dataset, we called DA peaks

using the above-described two-step approach. For each brain region, the P-value of the number of DA peaks in the actual data was

calculated as the fraction of permuted datasets with an equal or greater number of DA peaks (Figure 1B).

Functional Enrichment of DA Peaks
First, we masked the dup15q locus in the complete peak height matrix. We then used the GREAT tool (McLean et al., 2010) to deter-

mine the enrichment of gene categories in DA peaks. Genes were associated with regulatory regions using the basal+extension as-

sociation rule defined by GREAT. The hypergeometric test was performed to determine if a gene category was enriched for genes

associated to DA peaks (foreground set) compared to genes associated to all peaks (background set). Gene categories with fold-

change R 1.5 and Q % 0.01 were retained. Additionally, we discarded the enriched gene category if less than 5 genes were asso-

ciated with DA peaks in that category. To display the non-redundant significantly enriched gene categories in Figure 2, we further

selected the top 3 non-redundant gene categories in biological process andmolecular function gene ontologies. Top 1 gene category

from cellular component, PANTHER pathway, mouse phenotype and disease ontology are shown in the figure as well. The complete

GREAT results can be found in Table S3.

Enrichment of DA Loci for Expression at Specific Developmental Stages
A similar analysis was performed to determine the enrichment of DA peaks in SFARI genes (Tables S5 and S6), DA peaks near indi-

vidual genes (Tables 1 and S6) and DA peaks near developmental stage-specific genes (Figure 4). Again, the dup15q locus was

excluded. The Refseq gene set (RefSeq, 2002) was used in the first two analyses. Gencode v10 gene set (Harrow et al., 2012)

was used in enrichment analysis in brain development. Human brain RNA-seq profiles were downloaded fromBrainSpan (BrainSpan,

2015). We defined expressed genes as RPKM > 5 in at least 2 dataset. Then quantile-quantile normalization was performed on the

RPKM values across each developmental time point (8 post-conception weeks to 40 years old) in brain regions that develop into PFC

and TC. At each time point, the median RPKM values were used if there are replicate samples. We computed the coefficient of vari-

ation (CV) of each gene and clustered the samples across time points based on top 5,000 most variable expressed genes (high CVs).

11 and 12 stages were finally defined in PFC (Figure 4A) and TC (Figure 4B) by grouping similar time points based on the dendrogram,

respectively. Samples at 2-3 years old were discarded due to low RNA quality (low RIN values). At each developmental stage, genes

were ranked based on their gene expression fold change relative to the other stages. The top 2,276 (PFC) and 2,549 (TC) upregulated

genes (fold change R 1.5) at each developmental stage were tested for enrichment of DA peaks.

Motif Analysis
For motif enrichment analysis, we used the HOMER ChIP-seq pipeline’s findMotifsGenome.pl script with the ‘‘-mknown’’ option

(Heinz et al., 2010). Motif models were drawn from the TRANSFAC vertebrate database (Matys et al., 2006) and the analysis was

performed separately on Up and Down DA peaks from each of the 3 brain regions (6 DA peak sets in total), with all peaks from

the same brain region as background. Motifs were classified as enriched based on fold enrichment (R1.3), FDR (%0.01) and number

of foreground peaks that had a motif match (R20). The list of enriched motifs was almost identical when we used the JASPAR data-

base (Mathelier et al., 2016) instead of TRANSFAC (data not shown).

SNP-Calling Pipeline
ChIP-seq reads were aggregated across all three brain regions for each individual and then passed to the multi-sample SNP-calling

pipeline. Reads used for SNP calling were de-duplicated and retained only if they were mapped to the genome in the correct orien-

tation. We performed indel realignment, base-quality-score recalibration and SNP calling using GATK version 3.2-2 (DePristo et al.,

2011). 1,297,168 SNPswithin peaks in all three brain regions were called using GATK’s Haplotype Caller at a SNP quality threshold of

50. Subsequently, SNP calls were filtered out with the following criteria: MQ0Fraction > 0.001, QD < 4.3, within 6 bp of an indel, more

than seven SNPs within a 100-bp region, Mapping Quality < 45, Homopolymer Run > 10, MQ0 > 9.5, Dels > 0.255. Moreover, only

SNP calls covered by at least 5 non-reference reads across all libraries and 3 or more non-reference reads in at least one library were

retained. SNPs that violated Hardy-Weinberg equilibriumwith a binomial testP-value 13 10�3 were discarded. To eliminatemapping

artifacts, SNPs in highly paralogous regions of the genome implicated by the ‘‘Self Chain’’ track on the UCSCGenome Browser (Kent

et al., 2002) (normalized scoreR 90) were filtered out. Finally, a high-confidence set of 821,606 SNPs within PFC and TC peaks and

560,972 SNPs called within CB peaks were obtained. Note that we did not perform genotype calling, since the G-SCI test does not

require prior knowledge of genotypes. Rather, it integrates over the likelihoods of all three genotypes for each individual, given the

data (del Rosario et al., 2015).

haQTL Calling
haQTLs were called in the 84 Caucasian samples using G-SCI test (del Rosario et al., 2015). The diagnosis status and top PCs which

account for more than 5% variance were regressed out from peak heights before haQTLs calling. We then performed the G-SCI test

on each of the 821,606 SNPs within peaks for PFC and TC regions and the 560,972 SNPs within peaks for CB. For each SNP, an
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adjusted P-value was computed using a permutation test from 10,000 to 1million permutations until a nonzero P-value was obtained.

After 1 million permutations, if the adjusted P-value was still 0, it was set to 5 3 10�7. We then used the Benjamini and Hochberg

multiple testing correction to calculate the FDR. At FDR threshold of 10%, 9094, 7468 and 9860 candidate haQTLs were identified

in PFC, TC and CB. To detect possible artificial haQTLs due to different mapping rates to the reference genome between alleles, we

simulated all possible 100 bp paired-end reads covering the haQTL and flanking SNPs and indels. The union of our SNP and indel

(quality > 50 by GATK) calls and the 1000 Genome EUR SNPs and indels (The 1000 Genomes Project Consortium, 2012) were used.

The fragment length of the simulated paired-end reads was set to be equal to 180 which is the median fragment size of all libraries.

The simulated reads were then mapped to the reference genome using BWA. 1510, 1192 and 693 haQTLs were discarded because

their inferred allelic imbalances from the ChIP-seq data were smaller than five times the mapping bias estimated from the simulation.

The remaining haQTLs were further filtered by an effect-size filter which calculated the Pearson correlation between peak height and

the fraction of Q30 nonreference bases and haQTLs with R2 < 0.1 were discarded. The final set of 1912, 2012 and 2255 haQTLs in

PFC, TC and CBwere from the remaining haQTLs after effect-size filter and only themost significant SNP in each ChIP-seq peak was

retained.

LD between Pyschiatric Disorder GWAS SNPs and haQTLs
We downloaded two sets of GWAS SNPs, one on schizophrenia (Ripke et al., 2014) and another on 5 psychiatric disorders (Cross-

Disorder Group of the Psychiatric Genomics Consortium, 2013). For the schizophrenia study we used all 128 SNPs while for the 5

psychiatric disorder study, we used a P-value threshold of 5e-8 (99 SNPs). The LD was calculated on the EUR population, hence

for this analysis we only used SNPs that are polymorphic in the 1000 Genomes EUR population (The 1000 Genomes Project Con-

sortium, 2012), yielding 1,863 BA41 haQTLs, 1,714 BA9 haQTLs and 2,141 Vermis haQTLs. An haQTL was considered to be in

LD with a GWAS SNP if R2 was at least 0.8.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Method of Computation
Statistical methods and software used in this study are cited in the STAR Methods and the Figure legends. The statistical analyses

were performed in MATLAB and R. The initial and final sets of DA peaks were constructed using the Wilcoxon rank sum test and

Benjamini-Hochbergmultiple testing correction with fold-changeR 1.3 andQ% 0.05 (e.g., Table S4). TheP-value of the permutation

test was calculated as the fraction of permuted datasets with an equal or greater number of DA peaks (e.g., Figure 1B). In the Venn

diagram, the P-values were calculated using the hypergeometric test with the set of all peaks as background (e.g., Figure 1D). The P-

values in the dotplots (e.g., Figures 1D, 1E, and S4) and the violin plot (Figure S5) were calculated assuming a t-distributed Pearson

correlation coefficient. The P-value in the dotplot (e.g., Figure 1F) was calculated using the hypergeometric test. The gene category

enrichment (e.g., Figure 2; Table S3), the enrichment of DA peaks in SFARI genes (e.g., Table S5), DA peaks near individual genes

(e.g., Tables 1 and S6) and DA peaks near developmental stage-specific genes (e.g., Figure 4) were evaluated using the hypergeo-

metric test. When calling haQTLs using G-SCI test, an adjusted P-value was computed for each SNP using a permutation test from

10,000 to 1million permutations until a nonzero P-value was obtained. After 1 million permutations, if the adjusted P-value was still 0,

it was set to 53 10�7. We then used the Benjamini and Hochberg multiple testing correction to calculate the FDR with a threshold of

10% (e.g., Figure 5A; Table S7).

Inclusion and Exclusion Criteria of Any Data
After mapping to the reference genome, 17 samples were discarded due to low quality (< 200,000 reads or mapping rate < 6%). 11

samples were discarded after peak calling because they contained fewer than 10,000 peaks.

DATA AND SOFTWARE AVAILABILITY

Data Resources
The accession number for the ChIP-seq data reported in this paper is Synapse: syn4587616.
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Supplemental Figures
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Figure S1. GC Content Distribution of Samples in Three Brain Regions, Related to Figure 1

(A) GC content distributions of 81 samples in PFC were normalized to the mean GC distribution in PFC.

(B) GC content distributions of 66 samples in TC were normalized to the mean GC distribution in TC.

(C) GC content distributions of 62 samples in CB were normalized to the mean GC distribution in CB.
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Figure S2. Correlation between Top 5 Principal Components and Covariates in Three Brain Regions before and after Regression, Related to

Figure 1

(A) PFC.

(B) TC.

(C) CB.

Pearson correlation coefficient is shown at each grid point. After regressing out correlated confounding factors, the top 5 PCs correlated with none of the co-

variates except diagnosis. InsertSize: fragment median insert size; Dup: percentage of duplicated reads; Reads: sequencing depth; Peaks: number of peaks;

Neuron: neuronal cell fraction.
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Figure S3. Identification of Atypical Samples, Related to Figure 1

Scatterplot of median divergence between acetylomes in PFC (A), TC (B) and CB (C). In this analysis, the acetylome is defined as the vector of peak heights at DA

peaks. x axis: median Euclidean distance to other control acetylomes; y axis: median Euclidean distance to other ASD acetylomes (STAR Methods). Red dots:

ASD samples; blue diamonds: control samples. Solid line: Y = X; Dotted lines: Y = 1.05X and X = 1.05Y. ASD samples above the Y = 1.05X line and control samples

below the X = 1.05Y line were defined as atypical samples.
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Figure S4. Acetylation Fold Change between ASD and Control, Calculated Using All Samples Displayed on the Y Axis or Using Only Typical

Samples Displayed on the X Axis, Related to Figure 1

(A) PFC. The P-value of the fold-change correlation was calculated assuming a t-distributed Pearson correlation coefficient.

(B) Similar plot, TC.

(C) Similar plot, CB.
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Figure S5. ASD-Specific Global Acetylome Signature Scores, Related to Figure 1

Violin plot of AGAS scores in PFC (A), TC (B) and CB (C). A: ASD samples; C: control samples. The P-value was calculated assuming a t-distributed Pearson

correlation coefficient.
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