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ABSTRACT: India experiences some of the highest levels of ambient PM2.5 aerosol pollution
in the world. However, due to the historical dearth of in situ measurements, chemical transport
models that are often used to estimate PM2.5 exposure over the region are rarely evaluated.
Here, we conduct a novel model comparison with speciated airborne measurements of fine
aerosol, revealing large biases in the ammonium and nitrate simulations. To address this, we
incorporate process-level changes to the model and use satellite observations from the Cross-
track Infrared Sounder (CrIS) and the TROPOspheric Monitoring Instrument (TROPOMI)
to constrain ammonia and nitrogen oxide emissions. The resulting simulation demonstrates
significantly lower bias (NMBModified: 0.19; NMBBase: 0.61) when validated against the airborne
aerosol measurements, particularly for the nitrate (NMBModified: 0.08; NMBBase: 1.64) and
ammonium simulation (NMBModified: 0.49; NMBBase: 0.90). We use this validated simulation
to estimate a population-weighted annual PM2.5 exposure of 61.4 μg m−3, with the RCO
(residential, commercial, and other) and energy sectors contributing 21% and 19%,
respectively, resulting in an estimated 961,000 annual PM2.5-attributable deaths. Regional
exposure and sectoral source contributions differ meaningfully in the improved simulation (compared to the baseline simulation).
Our work highlights the critical role of speciated observational constraints in developing accurate model-based PM2.5 aerosol source
attribution for health assessments and air quality management in India.
KEYWORDS: air pollution, speciated aerosols, PM2.5 source attribution, satellite measurements, India

1. INTRODUCTION
India has some of the highest ambient air pollution levels in
the world,1,2 with studies estimating that elevated PM2.5
aerosol in the country contributes to between 0.4 and 1.1
million annual PM2.5-attributable deaths.1−7 High aerosol
concentrations have also been shown to impact regional crop
yields8,9 and disrupt seasonal rainfall over the subcon-
tinent.10,11 Aerosol pollution has severely impacted economic
productivity and quality of life in India, resulting in estimated
annual losses of $505 billion and $55 billion in welfare and
forgone labor output.12 Economic development is predicted to
drive a substantial increase in pollution in India over the
coming decades.1,13 However, as air quality management
becomes more stringent, the emissions of certain types of
pollutants are also expected to decrease.14 These trends are
expected to result in a meaningful shift in source-sector
emission profiles, amplifying the need for targeted air quality
management policies based on credible models that accurately
reflect the regionally specific sources and chemical composi-
tion of fine aerosol.15

PM2.5 particles are produced from a variety of sources.
Primary aerosols, like mineral dust and black carbon soot, are
emitted directly into the atmosphere, usually via mechanical

processes. In contrast, secondary aerosols are formed via
chemical and thermodynamic interactions in the atmosphere.
Recent work has indicated that a large fraction of the regional
PM2.5 burden in India is secondary in nature, even in urban
cities like Delhi.16−19 Regional chemical transport models
(CTMs) thus play a central role in estimating the sources and
fates of these air pollutants. Numerous studies rely on CTM
output to explore the importance of different emission sources
and determine the magnitude of health outcomes from PM2.5
exposure.1,3,4,20−24 In aggregate, these studies help form the
basis for air quality management strategies in the region.25

However, the complexities associated with the various
processes that dictate aerosol concentrations make accurately
simulating the mass and composition of PM2.5 very
challenging. This is compounded by the large spread in
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model configurations used across different studies, with
simulations varying significantly in their treatment of
emissions, chemistry, transport, and loss processes.
The uncertainties stemming from different model config-

urations have been exacerbated by the historical dearth of
chemically speciated aerosol measurements across most of the
country. India continues to have a much lower density of
surface PM2.5 monitors compared to other highly populated
countries,26,27 making it challenging to validate aerosol
simulations, despite evidence of model bias.28 To account for
these deviations, satellite aerosol optical depth (AOD)
retrievals have been used in conjunction with CTMs and
limited surface data to scale regional aerosol simulations.29−31

Previous studies, such as the Global Burden of Disease (GBD)
MAPS working group assessment, have used this approach to
estimate population exposures, health outcomes, and aerosol
source attributions over India.1 While these methods have
been shown to reduce the overall bias in simulated PM2.5
concentrations relative to surface observations, the scaling
approach does not identify or correct the underlying biases in
model aerosol composition, and the resulting source
attributions thus retain their relative biases.
The goal of this study is to go beyond previous work by

characterizing and remedying underlying model biases prior to
conducting a PM2.5 source apportionment and mortality
assessment over the Indian subcontinent. This study leverages
a suite of novel measurements and explores the key role of
speciated aerosol constraints. The resulting analysis represents
a comprehensive framework for source-segregated premature
mortality assessments associated with PM2.5.

2. METHODS
2.1. Default Model Configuration. We use the GEOS-

Chem CTM32 (www.geos-chem.org) to simulate aerosol mass

concentrations over the Indian subcontinent, performing a
series of simulations ranging from 2016 to 2019. All
simulations are performed using the GEOS-Chem model
version 12.1.1 (https://doi.org/10.5281/zenodo.2249246),
using a custom-nested grid at a horizontal resolution of 0.5°
× 0.625° with 47 vertical hybrid-sigma levels. The nested
simulations (60°E to 105°E; 0° to 44°N) use boundary
conditions from a 2° × 2.5° global run and are driven using the
MERRA-2 assimilated meteorological product from the NASA
Global Modeling and Assimilation Office (GMAO), with a
transport time step of 10 min as recommended by Philip et
al.33 The model uses a coupled treatment of HOx-NOx-VOC-
O3 chemistry

34−36 with integrated peroxyacetyl nitrate and
halogen chemistry37,38 and simulates important aerosol species
including sulfate (SO4

2−), nitrate (NO3
−), ammonium (NH4

+)
(SNA),39 sea-salt,40 black carbon (BC),41,42 organic aerosol
(OA),43 and mineral dust.44,45 SNA thermodynamics are
described using the ISORROPIA II model.46 Black carbon is
modeled as two separate hydrophobic and hydrophilic species,
with the hydrophobic BC aging to hydrophilic BC in the
atmosphere, with a lifetime of 1.2 days.41 Primary organic
aerosol (POA) is similarly emitted to both hydrophobic and
hydrophilic species, with hydrophobic POA aging to hydro-
philic POA with an atmospheric lifetime of 1.2 days.47,48 OA
aerosol mass is estimated using an OA:OC ratio of 1.4 for
primary emissions and an OA:OC ratio of 2.1 for aged organic
aerosol.43 Model aerosol optical depth (AOD) is calculated
using RH-dependent aerosol optical properties.45,49 Aerosol
and gas dry deposition loss to surfaces is simulated using a
resistor-in-series scheme.50,51 Wet deposition occurs via
scavenging by rainfall and moist convective cloud up-
drafts.52−54

Model comparisons with aircraft observations are conducted
by sampling the simulation at the spatial and temporal

Figure 1. (a) Seasonal comparison of model skill for the ‘Base’ simulation relative to surface PM2.5 observations at 123 sites in India in 2017 using
the coefficient of determination (R2) and the normalized mean bias (NMB). Seasons are defined as winter (DJF), summer (MAM), monsoon (JJA)
and autumn (SON). (b) Observed fine aerosol concentrations along the SWAAMI flight tracks in June and July 2016. The dataset is divided into
individual regions (outlined in gray boxes) with the pie charts representing the fractional contribution of individual species to the total aerosol
burden within that region. (c) Difference in the modeled and observed fine aerosol concentrations for the Base simulation compared to both the
airborne (circles) and surface (rectangles) observations during the monsoon period (June to July 2016). The subpanel shows the NMB values for
individual model aerosol species and total fine aerosol less than 1 μm in diameter (PM1, defined here as the sum of the individual aerosol species)
compared to the airborne measurements. Refer to the Supporting Information for information on the SWAAMI instrumentation and model
comparison.
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coordinates consistent with the observational data. We filter
the observations to remove concentrations over the 97th
percentile for each flight, to limit the impact of localized
pollutant plumes that cannot be reproduced by an Eulerian
model.55 The model does not explicitly simulate particle size,
but assumes a standard log-normal distribution. PM1 model
aerosol mass can thus be estimated, since the fractional mass of
simulated dry BC, OA, and SNA aerosols above 1 μm in
diameter is negligible. We do not include fine dust and sea-salt
aerosol from the model in the PM1 comparisons since these
species were not measured during the aircraft campaign
(Section 2.3; Figure 1). However, we include all the above
species in the PM2.5 comparisons with the surface network,
after applying the appropriate growth factors at 35% relative
humidity49,56,57 and sub-sampling the model dust and sea-salt
aerosol mass to only include particles below 2.5 μm in
diameter. We conduct a year-long simulation for 2016 for the
main analysis, and also run simulations for 2017−2019 to
conduct comparisons with surface observations and TROPO-
MI satellite measurements (Sections 2.4 and 2.5). All model
simulations were spun-up for 3−6 months and use time-
appropriate dependencies (emissions, meteorology, etc.).
2.2. Model Emissions. Global anthropogenic emissions in

the baseline (Base) model follow the Community Emissions
Data System (CEDS) inventory v2018−08.58 Nitrogen oxides
are also emitted from lightning,59,60 soil,61 and ship62 sources.
Anthropogenic dust emissions from fugitive sources are also
included.63 Biogenic emissions for isoprene and terpene
species in GEOS-Chem are based on the coupled ecosystem
emissions model MEGAN (Model of Emissions of Gases and
Aerosols from Nature) v2.1.64 Year-specific pyrogenic
emissions are simulated at a 3 h resolution from the
GFED4s satellite-derived global fire emissions database.65 To
compare the differences in emission estimates across various
studies, we perform multiple nested simulations using five
different monthly varying anthropogenic inventories: CEDS
v2018-08,58 MIX v1.1,66 SMoG-India v0,67,68 ECLIPSE v5a,69

and EDGAR v4.3.70 The base inventory (CEDS) extends
natively to the years simulated in this study, but the other
inventories do not. When this is the case, we use emissions
from the closest year recorded in the inventory. Sensitivity
simulations are also conducted using the GFAS v1.2,71 FINN
v1.5,72 and QFED v2.473 fire inventories.
2.3. Airborne Aerosol Mass Measurements. The South

West Asian Aerosol Monsoon Interactions (SWAAMI) aircraft
campaign consists of 17 flights from June to July 2016 over the
Indian subcontinent.74 Speciated submicron non-refractory dry
aerosol mass concentrations of both organic and inorganic
species were measured on-board the aircraft using a compact
time-of-flight aerosol mass spectrometer (AMS),75 with an
estimated uncertainty of approximately 34−38% depending on
the species.76 Black carbon mass concentrations were
measured using a Single Particle Soot Photometer (SP2),77

with an uncertainty of approximately 30%.74

2.4. Satellite Observations. We use NASA satellite
measurements of Aerosol Optical Depth (AOD) from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument on board the TERRA and AQUA platforms to
analyze daily aerosol AOD78 over the Indian subcontinent for
the year 2016. We use 10 years of monthly Level 3 gridded
data from the Cloud-Aerosol Lidar with Orthogonal Polar-
ization (CALIOP) instrument79,80 aboard the Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observation (CALI-

PSO) satellite to estimate the fractional contribution of dust
over the Indian subcontinent during the monsoon season. We
use satellite column retrievals of NH3 and NO2 from the
Cross-track Infrared Sounder81−83 (CrIS, aboard Suomi-NPP)
and TROPOspheric Monitoring Instrument84,85 (TROPOMI,
aboard Sentinel-5 Precursor), respectively, to generate spatially
varying gridded monthly scaling factors, based primarily on the
ratio of model and satellite column concentrations, that are
then applied to the default model emissions. TROPOMI-
derived scale factors are based on model simulations
conducted in 2018−2019, since measurements are unavailable
for 2016. Additional details on the satellite products, averaging
kernel adjustments, and a comparison of TROPOMI retrievals
with NO2 measurements from the Ozone Monitoring
Instrument (OMI) are provided in the Supporting Informa-
tion.
2.5. PM2.5 Surface Measurements and ACSM Obser-

vations. To evaluate model output at the surface, we use
PM2.5 measurements made in 2017 from government
monitoring sites across 123 different locations in 52 cities,
acquired using the OpenAQ (www.openaq.org) cloud
repository.86−88 PM2.5 concentrations are measured using
beta ray attenuation monitors specified at 35% relative
humidity.57,89 Uncertainties were not defined at the individual
locations and can be expected to have a lower-bound of 10%90

but are likely much higher.27 These measurements are filtered
to only include positive non-zero observations, so as to
disregard non-physical values resulting from the lack of
standardized reporting across different sites. Measurements
above 500 μg m−3 were also filtered out to limit the impact of
large sub-grid plumes. These values were then averaged over
the model grid resolution over a monthly period to enable a
comparison with model output.
In addition, we use speciated aerosol measurements91 made

in 2017 from an Aerosol Chemical Speciation Monitor
(ACSM)92 located at the Delhi supersite location16 to conduct
a limited evaluation of model performance at that one location.
The ACSM measurements have an uncertainty of approx-
imately 20−25%.16
2.6. Pollution-Attributable Mortality Estimates. We

use an integrated exposure-response (IER) model, following
the GBD MAPS analysis over India1 and Burnett et al.,93 to
relate PM2.5 exposure to an increased risk in mortality from
lower respiratory infections, chronic obstructive pulmonary
disease, ischemic heart disease, lung cancer, and stroke using a
relative risk (RR) calculation:1,3,93,94

= +RR 1 (1 e )Z(PM )conc cf (1)

The α, β, Zcf, and δ parameters for each disease category are
derived from Monte Carlo simulations conducted by Burnett
et al.93 and are available at http://ghdx.healthdata.org/sites/
default/files/record-attached-files/IHME_CRCurve_
parameters.csv. We determine the mean RR while also
calculating the 95th percentile confidence interval using
these coefficients to provide an uncertainty range. This interval
does not include uncertainty in the model PM2.5 estimate,
baseline mortality rates, or population distribution. The
number of attributable deaths from all disease categories due
to PM2.5 exposure is calculated using the following relation-
ship:
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= × ×

PM attributable deaths
RR 1

RR
BMR POP

2.5

disease

disease
disease

(2)

Age-specific and state-specific baseline mortality rates
(BMR) across India are aggregated from the State of Global
Air Portal.95 Gridded population (POP) data is derived from
the Gridded Population of the World (GPW v4) dataset96

based on the 2011 national census97 and scaled using national-
level 2016 population estimates from the World Bank.98 This
dataset is also used to estimate population-weighted annual
PM2.5 exposure across different states (Table S1). An
alternative health-impact analysis following the methodology
described by McDuffie et al.,5 which uses the 2019 GBD
concentration-response functions and national-level mortality
and exposure data, is also conducted and detailed in the
Supporting Information.
2.7. Sectoral Pollutant Source Attribution. To estimate

the relative importance of different sectoral emission sources,
sensitivity simulations are conducted via multiple model runs
that iteratively remove individual sectoral emissions across all
pollutant and precursor species within India. Sectoral source
influence is then determined based on subtracting regionally
averaged PM2.5 concentrations from the corresponding values
in the baseline simulation. Attributable deaths are estimated by
linearly apportioning the total disease burden based on the
fractional contribution of an individual sector to the
population-weighed PM2.5 exposure in each grid box. When
aggregated across all sectors, individual contributions account
for around 113% of the total population-weighted PM2.5
exposure, indicating the general robustness of this approach
despite the non-linear response in aerosol burdens from
changing emissions. Secondary species like nitrate display a
stronger non-linear response. Refer to Tables S2 and S3 for
more information.

3. RESULTS AND DISCUSSION
3.1. Assessing Model Fidelity. A comparison of annual

average GEOS-Chem CTM surface PM2.5 concentrations for
2017 with total PM2.5 mass observations from 123 different
surface monitoring sites in India (Figure 1a) suggests that the
model is reasonably skilled at capturing total PM2.5 magnitude
and variability across the region (R2 of 0.65 and normalized
mean bias (NMB) of 0.03). However, a seasonal comparison
of the same data (Figure 1a) indicates that the model
performance is significantly degraded in the summer and
monsoon seasons, pointing to underlying mechanistic
deficiencies.
To evaluate the model’s ability to capture individual aerosol

species, we leverage observations from the 2016 SWAAMI
airborne campaign,74 the first real-time speciated airborne
measurements of fine submicron (PM1) dry aerosol mass over
India (Figure 1b). The observed aerosol mass burden is
dominated by organic and sulfate species, with large localized
contributions from ammonium (NH4

+) and nitrate (NO3
−)

aerosol. Overall, the model overestimates PM1 aerosol
concentrations in the north and underestimates concentrations
in the south and northwest during the flight campaign period
(monsoon season: JJA). The Base model simulates 48% of the
observed variability in the airborne fine aerosol concentrations,
with a somewhat high aggregate bias (NMB: 0.61) (Figure 1c).
Model comparisons with the observed BC, OA, and SO4

2− are
generally robust and consistent with the performance seen in
global comparisons.43 However, this evaluation reveals
substantial biases in the simulation of ammonium and nitrate
aerosol, with nitrate aerosol in particular demonstrating an
extremely high model overestimate (NMB: 1.64). A seasonal
comparison with speciated fine particulate concentrations over
a single surface site in Delhi (refer to the Supporting
Information) confirms the large discrepancies in simulated
nitrate (NMB: 1.04). Thus, while the standard simulation
generally captures the variability in the aggregate fine aerosol

Figure 2. Box plots describing the spread in 2016 emission estimates for India, shown by sector (in Tg year−1). The sectoral emissions for each
individual emission inventory are illustrated as filled circles when available. Pyrogenic emissions are based on a 12-year average obtained from
Carter et al.99 Sectors are abbreviated as follows: total (TOT), agricultural (AGR), energy (ENE), industrial (IND), residential, commercial, and
other (RCO), transport (TRA), and waste (WST). See the Methods section for details on the emission inventories.
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mass during SWAAMI, an analysis of the individual species
reveals large deviations in model fidelity, highlighting the
inadequacy of evaluating the model with total PM1 or PM2.5
mass constraints alone. Furthermore, the large, pervasive biases
in the ammonium and nitrate simulations demonstrate the
challenge and risks associated with using the Base model
configuration for assessing speciated pollutant exposures and
source attributions.
Coincident comparison of the simulated aerosol optical

depth (AOD) against MODIS satellite observations during the
2016 monsoon season indicates that model AOD is biased low
in the north and west (Figure S1), in contrast with the spatial
bias in fine aerosol concentrations measured during the
SWAAMI airborne campaign (Figure 1c). An analysis of 10
years of LIDAR-based AOD data from the CALIOP
instrument suggests that dust accounts for a major fraction
of the AOD column over northern India during the monsoons
(Figure S1), consistent with a previous study that demon-
strated that the regional dust source is biased in the model.63

This highlights the limitations of relying exclusively on satellite
AOD products, which are inherently unspeciated, to constrain
speciated PM2.5 CTM simulations over the Indian subcon-
tinent.
3.2. Emission Uncertainties. Emissions are a key

uncertainty in characterizing aerosol pollution over India.100

Figure 2 highlights the variance in sectoral emissions estimates
across different species for five different emissions inventories
commonly used by CTMs to simulate aerosols in the region
(spatial patterns are shown in Figure S2). While these
inventories vary in terms of sectoral disaggregation and the
years that they represent (spanning emission years 2010−
2015), there is a particularly wide spread in emission estimates
for ammonia (NH3; factor of 10.2) and nitrogen oxides (NOx;
factor of 2.3), important precursors for ammonium and nitrate
aerosol. The large uncertainties in emissions estimates, and the
wide variation among the resulting inventories, are important
drivers of model uncertainty when conducting exposure
estimation and sectoral apportionment, and likely contribute
to the lack of model fidelity in simulating ammonium and
nitrate during SWAAMI.
3.3. Improving the Model Simulation. Our comparison

of the baseline simulation with the airborne AMS data provides
insight into species-specific model biases and enables us to
identify and target the most beneficial avenues for model
improvement. In this instance, the compositional analysis
directs us to improve the nitrate simulation over the region.
We begin by updating the model dry deposition scheme,101

with the goal of improving HNO3 dry deposition (a nitrate
precursor species). We also incorporate modifications to the
model treatment of dinitrogen pentoxide (N2O5) uptake onto
aerosol, based on a recent empirical parameterization of the
process, as well as modifications to constrain the N2O5 uptake
efficiency and the ClNO2 production yield.

102,103 Given the
high burden of dust in the region, we also configure the model
to include an explicit mechanism for acidic uptake onto dust
particles.104 The above updates were found to have a modest
but directionally accurate impact on the simulation, resulting in
a decrease in model bias of around 10%.
Given that the SWAAMI campaign largely sampled

monsoon conditions, we expect the model treatment of wet
scavenging to play an important role in determining model
fidelity. We thus incorporate a number of modifications to the
wet deposition scheme (described by Luo et al.105) that

replace the constant in-cloud condensation water (ICCW)
assumed in GEOS-Chem with a variable value derived from
the assimilated meteorology product. We also implement an
empirical washout rate for nitric acid from the same study,
which affects the below-cloud scavenging rate. These changes
result in a substantial increase in depositional losses relative to
the Base simulation. We note that the above modifications to
the wet deposition scheme also impact a variety of other
aerosol and precursor burdens (e.g., dust and organic aerosol).
To constrain the large uncertainties in the nitrate and

ammonium precursor emissions (Section 3.2), and to better
capture their spatial and temporal distributions, we also
generate emission masks based on monthly averaged model-
satellite comparisons for NO2 and NH3 by estimating the
relative ratio in column concentrations and deriving a scale
factor for each grid box (refer to the Supporting Information
for more details on averaging kernel and air mass factor
application). The comparisons were conducted at a model grid
resolution of 0.5° × 0.625°, regridded to a CEDS emission
inventory resolution of 0.5° × 0.5, and then interpolated across
the region. Scaling factors were bound between 0.5 and 2 to
prevent localized plume effects and to limit any excess
deviation from the original emissions estimate. To account
for the limited availability of CrIS observations during the
monsoon season, the available gridded scaling factors for NH3
were averaged across 14 Agro-Climatic zones (refer to the
Supporting Information) for the months of June and July. The
resulting monthly emission masks for NH3 and NOx were then
applied consistently across the 2016−2017 model simulation
years. This approach provides only a coarse constraint on
regional emissions. A more robust inverse modeling effort
could help separate emissions sectors and geographical
contributions at a greater precision, but would require an
additional suite of novel observational constraints and a
different modeling paradigm (i.e., an adjoint model; e.g., Choi
et al.).106

3.4. Modified Model Performance. The adjustments and
modifications described in Section 3.4 result in a large increase
in aerosol precursor removal via wet deposition, with the total
deposition of NH3 and HNO3 over India increasing by 4% and
62%, respectively, relative to the Base simulation. When
comparing model concentrations of NO2 and NH3 with the
satellite retrievals (described in Section 3.3), we find that the
difference between monthly mean satellite retrievals and
simulated column concentrations (from the mechanistically
adjusted simulation) can be substantial, exceeding a factor of 2
in 71% and 15% of cases for NH3 and NOx, respectively. The
satellite-based scaling increases annual national NH3 and NOx
emissions by 26% and 32%, respectively, with important
seasonal differences (Figures S3 and S4). Recent work has also
indicated that TROPOMI column retrievals are biased low
over polluted regions,107 suggesting that the NOx scaling
factors in this study might be conservative.
Overall, the refined simulation (referred to here as the

‘Modified’ simulation) substantially outperforms the Base
simulation when evaluated against the SWAAMI campaign
(Figure 3), with a significantly lower normalized mean bias
(Base: 0.61; Modified: 0.19) and a slightly improved R2 (Base:
0.48; Modified: 0.51) across the total aerosol PM1 mass. The
simulation of individual species is also improved for the
monsoon season. In particular, the bias in the nitrate
simulation is drastically decreased (NMB Base: 1.64; Modified:
0.08), although the simulation remains unable to capture the
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spatial variability in the nitrate observations (Figure 3a). Figure
S5 shows that the vertical profile is also better represented in
the Modified simulation.

Revisiting the PM2.5 comparisons shown in Figure 1a
(Figures S6 and S7), the Modified simulation modestly
improves the Base model’s ability to capture the observed
annual variability (R2 − Base: 0.65, Modified: 0.68) but results
in a significant reduction in bias during the monsoon season
(NMB − Base: 0.38, Modified: 0.02), providing more
independent validation of the modifications made to the
Base simulation. When compared to speciated measurements
of PM1 aerosol mass from an urban surface monitoring
location in Delhi, the Modified simulation significantly reduces
the Base model overestimate of nitrate aerosol (NMB − Base:
1.04, Modified: 0.60) and improves the ammonium simulation
for all seasons except the winter (Figure S8). Despite the
substantial improvements in the simulation of individual
species, the sulfate simulation remains biased high when
compared to the SWAAMI dataset. This sulfate bias may also
contribute to the remaining bias in ammonium aerosol.
Regional SO2 emission estimates from the CEDS inventory,
used in these simulations, are higher than regional estimates
from the other four inventories considered in Figure 2,
potentially contributing to this high bias. Unfortunately,
satellite measurements of SO2 are not sensitive enough to
appropriately constrain these precursor emissions.
3.5. PM2.5 Exposure, Health Assessment, and Source

Attribution. The more robust performance of the Modified
simulation against the independent observations from aircraft
and surface measurements enables a validated estimate of
population exposure to ambient aerosol. The resulting annual
population-weighted aerosol exposure in India, of 61.4 μg m−3

for 2016, is an order of magnitude higher than the recent

Figure 3. Comparison of model skill between the Base (blue) and
Modified (orange) simulations when compared to the aircraft AMS
observations from the SWAMMI airborne campaign in 2016 (see
Figure 1b) using (a) the coefficient of determination and (b) the
normalized mean bias.

Figure 4. (a) Annual mean PM2.5 concentrations and (b) attributable deaths in the Modified simulation. Difference in (c) annual mean PM2.5
concentrations and (d) attributable deaths between the Modified and Base simulations. All model outputs are for 2016.
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annual exposure guideline of 5 μg m−3 established by the
World Health Organization (WHO). There are also large
differences in the mean population-weighted aerosol exposure
estimates for different states (Figure 4a and Table S1), with the
most severe chronic pollution levels manifesting over the
northeast states of West Bengal (99 μg m−3), Bihar (96 μg
m−3), and Uttar Pradesh (89 μg m−3). Our refined estimate of
the national population-weighted annual exposure (of 61.4 μg
m−3) is 11% lower than the Base simulation estimate of 69.2 μg
m−3. Reductions in simulated aerosol exposure between the
Base and Modified simulations are particularly large over the
most severely polluted northeast states (Figure 4c), with
substantial differences (≥20%) also manifesting across large,
more moderately polluted southern states like Andhra Pradesh,
Kerala, and Tamil Nadu (Table S1). We note that both the
Base and Modified estimates are lower than the population-
weighted annual exposure calculations of 92.2, 80.2, and 74.3
μg m−3 from the GBD project,95 McDuffie et al.,5 and the

GBD MAPS report,1 respectively, that all use satellite- and
surface-derived PM2.5 constraints.
Figure 5 shows the range of population-weighted seasonal

exposure estimates for different aerosol species when using
different emission inventories in India (under the Base
configuration). The highest estimated PM2.5 exposure is 43−
84% greater than the lowest estimated PM2.5 exposure,
depending on the season. The ranges are most pronounced
for the OA, nitrate, and ammonium constituents, which are
influenced by primary emissions sources with some of the
largest uncertainties,108 illustrating the urgent need for
additional emissions data and constraints on these species
and their precursors. The CEDS inventory,58 used in the Base
and Modified simulations, appears near the upper limit for
most aerosol species, indicating that regional exposure
estimates using this version of the inventory might be viewed
as an upper-bound relative to the other inventories tested here.
We note that the Modified scheme decreases estimated
exposure across all seasons and species, compared to the

Figure 5. Populated-weighted seasonal and annual exposure to PM2.5 and its constituent species for 2016 across different simulations. The bars
bound the spread in exposure estimates, and the lines denote the mean values across the different simulations. Seasons are defined as winter (DJF),
summer (MAM), monsoon (JJA), and autumn (SON). DST and SALA are fine aerosols from dust and sea salt, respectively.

Figure 6. Annual PM2.5-related deaths attributable to each source sector, aerosol species, and state in India. States with less than 30,000 annual
attributable deaths, and union territories, are lumped under “other”. The height of each node and width of each connection correspond to the
attributable deaths. Figure S11 provides a complementary illustration of the magnitude of attributable deaths using the Base simulation.
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Base simulation. The decrease in total PM2.5 exposure is largest
in the summer and monsoon seasons.
Using the Modified simulation, we estimate that aerosol

pollution accounted for around 961,000 (95th percentile
confidence interval: 563,000 | 1,307,000) annual PM2.5-
attributable deaths in 2016, compared to approximately
1,013,000 (95th percentile confidence interval: 598,000 |
1,370,000) PM2.5-attributable deaths estimated using the Base
simulation. The estimates are based on an integrated exposure-
response model (see the Methods section and the Supporting
Information) using age and state-specific baseline mortality
rates (BMR), following the India-specific GBD MAPS
assessment methodology, which estimated 1.09 million
attributable deaths in 2015.1 (Refer to the Supporting
Information for a complementary analysis based on McDuffie
et al.5). Our estimates are well within previous pollution-
attributable mortality calculations that vary between approx-
imately 0.4 and 1.1 million.1−7 The attributable deaths are
highest in polluted states with dense populations (Figures 4b
and 6), with the states of Uttar Pradesh (188,000), West
Bengal (90,000), Maharashtra (74,000), and Bihar (73,000)
experiencing the highest PM2.5-attributable deaths. The 11%
decrease in population-weighted exposure between the Base
and Modified simulations translates to a smaller (5%) relative
decrease in estimated attributable deaths due to the non-linear
nature of the exposure-response function. This non-linear
response also results in a disproportionate decrease in
attributable deaths in the southern part of the country when
comparing the Base and Modified simulations (Figure 4d).
Developing air quality management policies to address the

health burden of aerosol pollution in India requires a robust
source-sector analysis. Figure 6 and Figure S9 illustrate the
source sensitivities of six different anthropogenic emission
sectors as well as natural (including biomass burning) and
transboundary sources from the observationally constrained
modified simulation. Figure 6 also segments the total PM2.5-
attributable deaths for each source sector, aerosol species, and
state in India. In aggregate, the RCO sector (residential,
commercial, and other) that is dominated by residential
burning contributes the greatest share (21%), followed by the
energy sector (19%), consistent with previous stud-
ies.1−3,5,25,109,110 State-level attributions are shown in Figure
S10 and Table S2. The RCO sector dominates across OA and
BC, accounting for 50 and 55% of the total contribution for
these species, respectively. Emissions from the energy sector
account for over 49% of the total sulfate. Energy, transport, and
agricultural emissions all play a vital role in controlling nitrate
and ammonium concentrations (Table S3). The agricultural
contribution to local BC and OA exposure has been shown to
be meaningful,111,112 particularly in the post-harvest months of
April to May and October to November, and is likely
underestimated in this study since the sectoral emissions of
these species in the CEDS inventory are at the low end of the
other inventories analyzed (Figure 2). Background levels of
PM2.5 alone, from natural and transboundary sources, account
for a population-weighted exposure of 17.5 μg m−3 (28% of the
total estimated exposure), with important implications for
determining a policy-relevant background level and setting air
quality targets. There are also meaningful differences in the
relative sectoral contributions between the Base and Modified
simulations (Figures S9 and S11 and Table S2), highlighting
the importance of observationally validating model simulations
before using them for source-apportionment purposes. In

particular, the Base simulation appears to overestimate the
contribution of agricultural NH3 emissions to PM2.5 via
ammonium nitrate formation, while underestimating the
contributions (of NOx) from energy, transport, and industrial
sources.
In aggregate, all the major sectors contribute substantially to

aerosol pollution in the region (Figure S9), indicating that air
quality management in India must take on a holistic approach
to emissions regulations, consistent with previous work.25 We
also note that reductions in emissions from any given source
sector would result in a smaller decrease than the total
attributable deaths indicated in Figure 6, due to the non-linear
exposure-response relationship. There is thus a need for
substantial reductions in emissions across multiple sectors
before most of the health benefits can be fully realized.
While sensitivity analyses are informative, they rely on

accurate sectoral emission estimates within the model
inventories. The RCO sector, in particular, consists of a wide
range of different emissions that are aggregated together, with
large variance in fuel types and usage patterns. There is thus an
urgent need for more openly accessible and granular emission
estimates. Previous studies have also highlighted emissions
from municipal waste burning as currently under-represented
in most inventories.113,114 Similarly, the large seasonal
contribution from the burning of agricultural waste in the
northern parts of the country111 is not effectively captured by
most inventories and is very likely underestimated in this
study. Advances in high-resolution satellite imaging may help
capture smaller agricultural (and non-agricultural) fires over
the region and improve emission estimates.115 Recent aerosol
measurements have demonstrated the large influence of
chloride aerosol in certain Indian cities,16−19 accounting for
up to 16% of the total fine aerosol during seasonal pollution
episodes in Delhi.19 The SWAAMI observations show that, on
average, <1% of PM1 is chloride during the monsoons,
indicating that this species is likely not a major contributor to
national PM2.5 exposure in this season. However, a validated
representation of the sources and formation mechanisms for
chloride aerosol would likely improve model performance in
certain urban regions, particularly during the winter. Similarly,
dust emissions are expected to be dominated almost entirely by
natural sources, but a more robust inventory of anthropogenic
dust and particulate metal emissions (from construction, roads,
agriculture, industry, etc.) could be important in certain
regions.63 Prioritizing the study and development of
mechanisms that have a disproportionate impact on regional
nitrate burdens116,117 and better constraining the emissions
and atmospheric fate of ammonia118 will also greatly improve
aerosol simulations over the Indian subcontinent. Given the
large impact of the modified wet deposition scheme in this
study, observational constraints on speciated aerosol dry and
wet deposition are also urgently needed to validate these
important loss processes.

4. CONCLUSIONS
Limitations in the mechanistic fidelity of CTMs, and the large
uncertainties in emission estimates, have important implica-
tions for climate, epidemiological, and economic research that
leverages model output to inform policy decisions. Observa-
tionally assessing CTMs prior to applying them to develop
policy recommendations is thus of paramount importance.
This work demonstrates the value of using compositional
information to improve CTM performance and highlights the
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urgent need for more observational constraints on speciated
fine particulate matter as well as its gas-phase precursors. Our
results suggest that such measurements are needed both at the
surface and in the remote troposphere in order to enable a
systematic evaluation of regional models, and make them
effective diagnostic and predictive tools. This study illustrates
how targeted mechanistic adjustments and satellite constraints
that are informed by such compositional analyses can
substantially improve regional aerosol simulations over India.
We note that there are a few important limitations to this

study. The dearth of speciated airborne (and surface)
observations in the region limits the ability to robustly validate
the model across different seasons. For instance, we are unable
to investigate why the modified simulation increases surface
PM2.5 bias in certain seasons and regions (Figure S7).
Additionally, the emissions scaling approach adopted in this
study does not leverage a formal inverse modeling approach,
which could, particularly when used with seasonally distributed
measurements, provide improved insight into geographically
and sectorally distributed emissions. The sectoral-apportion-
ment techniques adopted in this study, while consistent with
the state-of-the-science, are adversely impacted by the non-
linear response of certain key species like ammonium and
nitrate (Tables S2 and S3). As a result, the contribution from
certain sectors (like energy and agriculture) could be over- or
underestimated in this analysis.
While further model development is necessary to constrain

regional PM2.5 over India, this study is one of the first to
demonstrate how speciated measurements of aerosols (and
their precursors) can be used to improve aerosol simulations
over the region. As India develops industrially, and as the
population ages, we might expect PM2.5-attributable mortality
to rise meaningfully in the absence of science-based air quality
management strategies. Model development and validation
efforts that adopt a compositional lens could significantly
improve our understanding of aerosol exposure and source-
sector sensitivities over the Indian subcontinent and other
developing regions, enabling more effective air quality
management decisions in these polluted environments.
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