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PHYSICAL REVIEW FLUIDS 7, 014604 (2022)

Effect of finite Reynolds number on self-similar crossing statistics and fractal
measurements in turbulence

Michael Heisel *

Department of Atmospheric and Oceanic Sciences, University of California in Los Angeles,
Los Angeles, California 90095, USA

(Received 30 August 2021; accepted 23 December 2021; published 18 January 2022)

Stochastic simulations are used to create synthetic one-dimensional telegraph approx-
imation (TA) signals based on turbulent zero crossings, where the interval between
crossings is governed by a power-law probability distribution with exponent α. The power-
law exponent is determined for statistics of simulated TA signals, namely, the box-counting
fractal dimension D1, the energy spectrum exponent βTA, and the intermittency exponent
μTA. For the binary TA signal with no variability in amplitude, the parameters are related
linearly as D1 = 2 − βTA = 1 − μTA. The relations are unchanged if the crossing interval
distribution has a finite power-law region (i.e., inertial subrange) representing a flow
with a finite Reynolds number. However, the finite distribution yields statistics that are
not truly scale invariant and distorts the linear relation between the statistic exponents
and α. The behavior is due to finite-size effects apparent from the survival function, or
the complementary cumulative distribution, which for finite Reynolds number is only
approximately self-similar and has an effective exponent differing from α. An expression
presented for the effective exponent recovers the expected relations between α and the TA
statistics. The findings demonstrate how a finite Reynolds number can affect indicators of
self-similarity, fractality, and intermittency observed from single-point measurements.

DOI: 10.1103/PhysRevFluids.7.014604

I. INTRODUCTION

Turbulent fluid dynamics is one of relatively few fields where the existence of self-similarity
(scale invariance) is supported by both theory [1] and extensive observation [2]. The most
well-known power law in turbulence describes self-similarity within the energy spectrum: for
intermediate scales known collectively as the inertial subrange, the fluctuating energy decays as
E ∼ f −β . Here f is the frequency (or wave number) and β is the spectral exponent. From a
statistics perspective, mechanistic concepts underlying a power law include random walks [3,4],
fractal geometries [5,6], and self-organized criticality [7–9].

Attempts to relate self-similarity in turbulence to concepts such as fractal geometries have pro-
vided both promising (e.g., Refs. [10,11]) and conflicting [12–15] evidence, where the latter studies
observed a scale-dependent fractal dimension for isosurfaces and iso-crossings. The conflicting
evidence may be explained by a combination of several challenges in isolating specific self-similar
features in turbulence. For isosurfaces and iso-crossings near the mean value [12,13], diffusive
events are over-represented compared to level sets farther from the mean, leading to a relatively
narrower inertial subrange of scales (see, e.g., Ref. [16]). The same study [16] also demonstrated
how scalar ramp-cliff patterns can influence the box-counting fractal dimension estimated from
scalar concentration fields [12,14,15].
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An additional factor—and the focus of the present study—is the restriction of the self-similar
behavior to a finite range of scales based on the Reynolds number Re. The finite inertial subrange
is a form of truncated power law, where finite-size effects cause cumulative statistics to deviate
from a true power law [17,18]. Previous works have briefly mentioned how finite-size effects can
lead to an apparent scale-dependent fractal dimension [19,20], but these effects have not otherwise
been closely evaluated for power laws in turbulence. Specifically, it is not clear how the extent of the
inertial subrange influences the relation between power-law exponents of various statistics including
the energy spectrum and the fractal dimension.

One strategy to assess power-law relations in turbulence is to reduce the measured fluctuat-
ing quantity to a one-dimensional crossing signal. The properties of isosurface geometries are
ideally evaluated in three dimensions, but the reduction of the isosurface to its crossings of a
one-dimensional transect is often an experimental necessity, particularly for point measurements in
the high-Reynolds-number atmospheric surface layer. While the signal can be constructed based on
crossings of any arbitrary level set value, the most common signal is defined using zero crossings
of the velocity fluctuations [21–23]. The telegraph approximation (TA) signal [24,25] based on
these zero crossings is 1 when the fluctuating velocity is positive and is 0 when the velocity is
negative. The interval between crossings is known as the interpulse period [22,25] or persistence
[26–28]. The inertial subrange of the full velocity signal is similarly present in the zero-crossing TA
signal. Among other statistics, the spectrum of the TA signal and the probability distribution of the
interpulse period both exhibit self-similarity in the inertial subrange for sufficiently large Re (see,
e.g., Refs. [24,25,29,30]).

Available measurements of simplified turbulent crossing signals present their own challenges
for studying finite-size effects. First, a limited range of β values is observed from turbulent
measurements, which precludes empirical fits across the parameter space of β and other exponent
values. Second, even high-Reynolds-number flows have a narrow inertial subrange in the context of
finite-size effects, as will be seen in later results. For instance, measurements in atmospheric flows
typically have Taylor miscroscale Reynolds number Reλ ∼ O(103), corresponding to no more than
three decades (i.e., orders of magnitude) of self-similar inertial subrange [2].

To properly explore the full parameter space of Reynolds number and power-law exponents,
synthetic TA signals are constructed here using stochastic simulations based on idealized interpulse
distributions. Power-law statistics are computed across a range of interpulse exponent values, and
the effective Reynolds number is also varied by truncating the power-law region of the interpulse
distributions. The statistics evaluated here are the fractal box-counting dimension, the energy
spectrum, and an intermittency parameter. The simulations are analogous to a Monte Carlo analysis,
except the goal is to identify the ensemble average of statistics rather than their uncertainty. The
idealized simulations are purely stochastic and do not directly model any governing physics. This
approach assumes the original signal is self-similar and identifies the consequence of a finite
Reynolds number (truncated power law) on crossing statistics of the signal. While the analysis
is discussed in the context of turbulent flows, the findings are generally applicable to any finite
self-similar process.

The study is organized into the following sections: Sec. II describes the stochastic simulations,
Sec. III presents results of the simulations, Sec. IV introduces a correction for a finite Reynolds
number, and Sec. V summarizes the findings.

II. STOCHASTIC SIMULATIONS

The premise of the stochastic simulations is to create a synthetic TA signal s(t ) defined by a
sequence of “events,” where the interval τ between events is governed by a power-law probability
density function (PDF). In the context of a turbulent zero-crossing signal, each event represents the
position t (in space or time) where the fluctuating quantity s crosses 0. The design of the simulations
is detailed in the sections below for both “unbounded” and truncated interpulse power laws. The
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(a) (b)

(c) (d)

FIG. 1. Example synthetic telegraph approximation (TA) signal constructed from a power-law probability
distribution p ∼ τ−α . (a) Probability distribution for the interval τ between events in a signal following Eq. (1).
(b) Determination of a single τ value using inverse transform sampling of the cumulative distribution P and
Eq. (3). (c) Position t of events based on ten τ values. (d) TA signal s(t ) whose value 0 or 1 changes at each
event.

unbounded power law is used as a control case, and the truncated power laws approximate the
interpulse distribution for three Reynolds numbers spanning the range Reλ ∼ O(102–104).

A. Unbounded power law

For the unbounded control case, the TA interpulse distribution is modeled as a power law that
exceeds the extent of the simulation domain. The power-law PDF is defined as

p(τ ) = 1

1 − (τ2/τ1)1−α

α − 1

τ1

( τ

τ1

)−α

, (1)

where τ1 and τ2 are the minimum and maximum values of the distribution, respectively, and α is
the distribution exponent. The power law in Eq. (1) is equivalent to a Pareto distribution with the
exponent α − 1. The integral of the PDF is equal to unity—as required by the PDF definition—only
for α > 1 and if a minimum value is imposed. The integral is infinite and the PDF is not well defined
for α � 1. The minimum τ1 = 1 is used here for simplicity. While a maximum value τ2 is typically
∞ for an unbounded power law, τ2 = 10300 is employed to avoid infinite values in the simulations.
This value is close to the largest definable number in the double-precision floating-point format and
yields 300 decades of power law. An example PDF is shown in Fig. 1(a).

Inverse transform sampling is used to select values of τ from the distribution. In this approach,
the cumulative distribution function (CDF)

P(τ ) = 1

1 − (τ2/τ1)1−α

[
1 −

( τ

τ1

)1−α]
(2)

is inverted to define τ as a function of P:

τ (P) = τ1

{
1 −

[
1 −

(τ2

τ1

)1−α]
P
} 1

1−α

. (3)

The CDF value is simulated by selecting a random value between 0 and 1, and the corresponding
interval τ is determined from Eq. (3) as shown in Fig. 1(b). A small sample of events is shown in
Fig. 1(c), where each event is separated by simulated intervals τ .

The position t of each event is used to build a synthetic TA signal s(t ). Following the TA
definition given in the introduction, the s(t ) value alternates between 0 and 1 at each event as seen in
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Fig. 1(d). The signal is constructed on a discrete domain between 0 and tmax = 106. The resolution
between points on the domain is τ1 = 1, thus allowing for 6 decades of statistics in the signal. While
p(τ ) represents 300 decades of power law, only 6 decades can be observed in s(t ) due to the limited
domain. However, based on later results, the effect of truncation by the domain size is negligible for
this case, such that it is considered unbounded for the purpose of the study.

Later results present simulations for 100 values of α between 1.02 and 3. The value α = 1 is
excluded because the PDF is not well defined as discussed above. The approximate exponent for a
turbulent TA signal is α ≈ 1.5 [24]. For a given α, intervals τ are simulated until tmax is exceeded to
ensure the signal is fully populated. Statistics are thereafter calculated using s(t ), and the process is
repeated until the ensemble average statistics are converged. The number of signals contributing to
each statistic varies between 102 for large α and 104 for small α. The latter returns sparse signals,
which require a larger number of realizations to converge statistics.

B. Truncated power law

For a turbulent TA signal, the interpulse PDF is only a power law for τ values within the inertial
subrange of scales [24,25]. Smaller interpulse periods are well approximated by a log-normal distri-
bution [29,32], and larger τ values follow an exponential cutoff in boundary layer flows [22,25,27].
The same PDF shape—a blend of log-normal, power-law, and exponential distributions—is used
here to simulate the effect of a truncated power-law region. The case represents a weak power law
because a power-law expression does not describe the full range of values in the distribution [33].

Same as for the unbounded power law, inverse transform sampling is used to simulate s(t ) based
on a random selection of values for τ . For simplicity, the log-normal portion of the distribution is
defined using the parameters μ∗ = 1 and σ 2

∗ = 1, which respectively correspond to the mean and
variance of log(τ ). From these parameters, the mode of the log-normal curve is fixed at τ1 = 1. The
resulting PDF for τ is given by the piecewise function

p(τ ) =
⎧⎨
⎩

C1
τ

e
−(log(τ )−1)2

2 , τ � eα,

C2τ
−α, eα < τ � b,

C3e−λτ , b < τ � τ2.

(4)

The transition from the log-normal to the power-law curve occurs at eα . This point corresponds to
d log(p)/d log(τ ) = α along the log-normal curve, ensuring a smooth transition to the power law.
The transition to the exponential cutoff is imposed at b = 10xeα , where x is the desired number
of power-law decades. The exponential parameter λ = α/b enforces a smooth transition to the
exponential cutoff, i.e., d log(p)/d log(τ ) = α at τ = b. The factors are defined as

C1 =
[

C4 + e
α2−1

α

1 − α
C5 − e

1
2 (α2−1)+α

αbα−1

(
e−λτ2 − e−α

)]−1

,

C2 = C1e
α2−1

2 ,

C3 = C2

( e

b

)α

,

C4 =
√

π

2

[
erf

(
α − 1√

2

)
+ 1

]
,

C5 = b1−α − eα(1−α). (5)

The constants C2 and C3 are defined relative to C1 to ensure the amplitude of p(τ ) is matched
at the transition points, and C1 is defined to achieve

∫ τ2

0 p(τ ) = 1. The cumulative distribution
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(a) (b)

FIG. 2. Power-law distribution whose extent is truncated by log-normal and exponential curves. The
example exhibits one decade of power law, corresponding to Reynolds number Reλ ∼ 102. (a) Probability
distribution for τ following Eq. (4). The gray line is an example interpulse distribution from boundary layer
turbulence measurements [31], shifted for visual comparison. (b) Inverse transform sampling of P following
Eq. (7).

corresponding to Eq. (4) is

P(τ ) =

⎧⎪⎨
⎪⎩

C1
√

π
2

[
erf

( log(τ )−1√
2

) + 1
]
, τ � eα,

C1C4 + C2
1−α

(τ 1−α − eα(1−α) ), eα < τ � b,
C1C4 + C2C5

1−α
+ C3

λ
(e−λτ − e−α ), b < τ � τ2.

(6)

Finally, the inversion of Eq. (6) yields the transform equation used to simulate the finite power
law:

τ =

⎧⎪⎨
⎪⎩

exp
[√

2 erfinv
(√

π
2

P
C1

− 1
) + 1

]
, P � C1C4,[

1−α
C2

(P − C1C4) + eα(1−α)
] 1

1−α , C1C4 < P � C1C4 + C2C5
1−α

,

− 1
λ

log
[

λ
C3

(
C1C4 + C2C5

1−α
− P

) + e−α
]
, P > C1C4 + C2C5

1−α
.

(7)

In Eqs. (6) and (7), erf(x) and erfinv(x) refer to the error function and its inverse, respectively, and
the two notations for the exponential function ex and exp(x) are used interchangeably for readability.

Figure 2 shows a synthetic truncated power law. An example turbulent zero-crossing (interpulse)
PDF is included for reference. The interpulse is estimated from hot-wire anemometry measurements
of boundary layer turbulence [31] and exhibits a shape similar to that of the simulated PDF with one
decade of power law. Using the inverse transform of P in Fig. 2(b) and Eq. (7), the truncated signals
are simulated on the same domain and for the same range of α values as the unbounded case.

While the synthetic and experimental distributions in Fig. 2 appear to be qualitatively similar, the
idealized distribution is not designed to reproduce aspects of a zero-crossing signal that are outside
the scope of the work. For instance, the parameters for the log-normal region do not produce the
correct scaling for the mean value of τ [22], and the direct transitions between the different scaling
regions may not accurately reflect experimental observations.

The breadth of the simulated power-law region can be related directly to the Reynolds number.
Assuming the inertial subrange spans O(10η) to O(L) [34], where η and L are the Kolmogorov
microscale and the integral scale, respectively, the extent of the inertial subrange is O(0.01Re3/2

λ )
[2]. The number of decades in the inertial subrange is therefore 3

2 log10(Reλ) − 2. Results for
distributions with one (Reλ ∼ 102), three (Reλ ∼ 103), and five (Reλ ∼ 104) decades of power law
are presented herein. The six decades of resolution in the simulated domain yield Reλ � 105 for the
unbounded case.

III. RESULTS

A. Fractal dimension

The fractal dimension of the simulated signal is estimated here applying the box-counting method
(see, e.g., Refs. [6,35,36]) to the event positions featured in Fig. 1(c). In the box-counting approach,
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(a) (b)

(c)

FIG. 3. Statistics for the fractal dimension D1 estimated via box counting on simulated TA signals. (a) Box
count N ∼ 	t−D1 for the unbounded case and α = 1.1 (dotted line), α = 1.5 (solid line), and α = 2 (dashed
line). (b) Box count for α = 1.5 and varying Reynolds number, where the vertical lines delineate the power-law
region for the Reλ ∼ 102 case. (c) Fractal dimension D1 as a function of α with D1 = α − 1 (line) for reference.
The shaded region in panel (c) corresponds to the typical value α ≈ 1.5 for a turbulent TA signal. In this and
later figures, the legend indicates the number of power-law decades in p(τ ) and the order of the equivalent
Reynolds number Reλ based on the Taylor microscale.

the domain is discretized into segments of size 	t and the number of segments N containing at least
one event are counted. If the resulting dependency N (	t ) follows a power law,

N (	t ) ∼ 	t−D1 , (8)

the signal is considered statistically self-similar. Whether the signal is also considered to be a fractal
object depends on the definition, as fractality is sometimes reserved for geometric shapes. The
subscript 1 is adopted for the fractal dimension D1 in Eq. (8) because the estimate is made on a
one-dimensional signal. The value for D1 is bounded between 0 and 1. These limits correspond to a
signal with τ > 	t (for D1 = 0) or τ < 	t (for D1 = 1) for all intervals τ across the tested range
of 	t .

Example box-counting results are shown in Figs. 3(a) and 3(b) for a range of α and power-law
truncation. The expected power law in Eq. (8) is approximately observed for the unbounded
distribution. However, in Fig. 3(b) N (	t ) becomes increasingly dissimilar from a power law as
the self-similar region in p(τ ) is increasingly truncated. This trend is consistent with similar
Monte Carlo simulations that showed D1(	t ) to vary with 	t for any truncated power law due
to finite-size effects [20]. As a result, a constant fractal dimension can only be achieved in an
approximate sense for finite Reynolds number flows. The absence of a true power law in Fig. 3(b)
is further discussed in Sec. IV.

Despite the departure from a power law, the dimension D1 is estimated by fitting Eq. (8) to the
curves of Figs. 3(a) and 3(b) assuming D1 is constant. The fit is performed within the range of 	t
corresponding to the self-similar region in p(τ ). The fitted values for D1 across the tested range of
α are shown in Fig. 3(c). The error bars correspond to the change in D1 when the region where the
power law is fitted is shifted by a factor of 2 in either direction. The error bars therefore increase
as the dependence D1(	t ) increases. The large error bars corresponding to small α in Fig. 3(c)
reflect the dissimilarity from a true power law observed in Fig. 3(b). The same method is used to
calculate the error bars in later figures.

For the unbounded PDF case in Fig. 3(c), D1(α) follows a linear trend D1 = α − 1 up to
approximately α ≈ 1.5, where the linear relation matches previous predictions [19,20]. Above
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(a) (b)

(c)

FIG. 4. Statistics for the energy spectrum power-law exponent βTA of simulated TA signals. (a) Spectrum
ETA for the unbounded case and α = 1.1 (dotted line), α = 1.5 (solid line), and α = 2 (dashed line). (b) Spec-
trum for α = 1.5 and varying Reynolds number, where the vertical lines delineate the power-law region for the
Reλ ∼ 102 case. (c) Exponent βTA as a function of α with βTA = 3 − α (solid line) for reference. The shaded
region in panel (c) corresponds to the typical value α ≈ 1.5 for a turbulent TA signal.

α ≈ 1.5, D1 asymptotically approaches 1. The same asymptotic behavior is observed for the
truncated distributions representing a finite Reynolds number. However, the results for small α

depart from the linear relation as the equivalent Reynolds number decreases. The reason for the
departure is related to the trends in Fig. 3(b) and is discussed in Sec. IV.

B. Energy spectrum

The energy spectrum is defined as ETA( f ) ∼ |ŝ( f )|2, where ŝ( f ) is the Fourier transform of
s(t ) in frequency or wave-number space. Prior to computing the transform, s(t ) is multiplied by a
Hamming window filter whose length matches the domain size tmax. The signal is also zero padded.
The window filter and zero padding mitigate aliasing in ŝ( f ).

Using the same format as Fig. 3, the resulting energy spectra are shown in Fig. 4. Spectra for
the truncated distributions in Fig. 4(b) exhibit self-similarity stronger than that of the box counts
in Fig. 3(b). The Fourier transform efficiently isolates local (in scale) contributions to the variance.
In contrast, the box-counting measures a cumulative effect capturing all intervals smaller than the
given 	t . For the cumulative statistics, the non-power-law behavior is spread across scales to the
expected self-similar region.

The spectral exponent βTA is estimated by fitting the power law ETA ∼ f −β to each individual
spectrum. The “TA” subscript is adopted because the value βTA ≈ 4/3 observed for turbulent flows
differs from the value β ≈ 5/3 for the full signal [29]. The dependency of βTA on α is shown
in Fig. 4(c). The apparent “roughness” of the curves is attributed to the shape of s(t ). Artificial
oscillations appear in the energy spectrum when the sinusoidal basis functions of the Fourier
transform are used to decompose the discontinuous signal. These oscillations may propagate to
βTA as the fitted power-law region varies with α.

As before, the error bars are largest for the lowest equivalent Reynolds number due to the
curvature of ETA( f ) immediately adjacent to the expected self-similar region. The trend for small α

observed in Fig. 3(c) is similarly present for the spectrum exponent. The unbounded case follows a
linear relation βTA = 3 − α in Fig. 4(c) up to α ≈ 2. This relation is applicable to a superposition
of Poisson processes [9] and appears similarly applicable to the self-similar process simulated here.
For α > 2, the results slowly deviate from the linear relation and there is agreement across cases. It
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(a) (b)

(c)

FIG. 5. Statistics for the intermittency exponent μTA of simulated TA signals. (a) Intermittency parameter
〈χ 2〉/〈χ〉2 for the unbounded case and α = 1.1 (dotted line), α = 1.5 (solid line), and α = 2 (dashed line).
(b) Intermittency for α = 1.5 and varying Reynolds number, where the vertical lines delineate the power-law
region for the Reλ ∼ 102 case. (c) Exponent μTA as a function of α with μ = 2 − α (solid line) for reference.
The shaded region in panel (c) corresponds to the typical value α ≈ 1.5 for a turbulent TA signal.

is assumed that βTA asymptotically approaches 0 as α increases, but this trend cannot be confirmed
due to the limited tested range of α.

C. Intermittency

The intermittency is another quantitative measure of variability in the distribution of events.
Intermittency can be parametrized using Obukhov’s local moving average [37]

χ (t,	t ) = 1

	t

∫ t+	t

t

∣∣∣∣ds2

dt

∣∣∣∣dt . (9)

Given the amplitude of s(t ) is invariable, the integral corresponds to the number of events
occurring within “windows” of size 	t . The intermittency is quantified using the scaling [24,38,39]

〈χ2〉
〈χ〉2

∼ 	t−μTA , (10)

where angled brackets 〈·〉 indicate an ensemble average across t . Equation (10) is defined here using
the second-order moment, but the same principle can be applied to higher-order moments. The
exponent μTA represents how the variability in the number of events across windows changes as the
window size is increased.

The intermittency parameter statistics are shown in Fig. 5. Results for the truncated distributions
in Fig. 5(b) exhibit a lack of self-similarity. Same as for the box-counting methodology, Eq. (9)
accounts for all intervals smaller than 	t , resulting in a cumulative metric.

Values for μTA, fitted using Eq. (10), are plotted as a function of α in Fig. 5(c). The curves
follow the same trends as D1 and βTA. A linear relation μTA = 2 − α is observed for the unbounded
distribution and small α values. Truncating the power-law distribution to represent a finite Reynolds
number leads to a departure from the linear relation. For larger α, all cases deviate from μTA =
2 − α as μ asymptotically approaches 0.
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(a) (b) (c)

FIG. 6. Relations between power-law exponents of the presented statistics for simulated TA signals.
(a) Fractal dimension D1 and intermittency exponent μTA, compared to μTA = D1 − 1 (solid line). (b) Di-
mension D1 and spectrum exponent βTA, compared to βTA = 2 − D1 (solid line). (c) Exponents μTA and βTA,
compared to βTA = μ + 1 (solid line).

D. Exponent relations

The relations between power-law exponents D1, βTA, and μTA are plotted in Fig. 6 for the tested
range of α. The lines correspond to the linear trends in panel (c) of Figs. 3–5. For visual clarity, the
error bars from previous figures are only reproduced in Fig. 6 for the truncated case with one decade
of self-similarity.

A robust inverse relation between μTA and D1 is observed in Fig. 6(a). The results are in close
agreement with the prediction μTA = 1 − D1 [39,40], which can be derived via the correlation
dimension [41]. The linear trend is invariant to the Reynolds number (i.e., the truncation of the
power-law PDF), and the primary difference across cases is the observed range in μTA and D1

values.
Linear trends βTA = 2 − D1 and βTA = μTA + 1 also exist for the spectral exponent in Figs. 6(b)

and 6(c). However, the linearity is limited to βTA � 1.2. The behavior for smaller βTA is attributed
to the slower rate at which βTA asymptotically approaches 0, compared to the corresponding rates
for D1 and μTA.

The results for p(τ ) with Reλ ∼ 102 are visibly offset from the other cases in Figs. 6(b) and
6(c). The difference in βTA is approximately 0.2, which is within the extent of the error bars. The
difference may therefore be due to the lack of self-similarity in the statistics and the precise range
chosen to fit the power-law exponents. The result highlights the challenge in recovering the expected
relations when the Reynolds number yields a narrow inertial subrange and the cumulative statistics
(D1, μTA) lose the signature of self-similarity.

Aside from the offset, the relations in Fig. 6 do not depend on the Reynolds number and the
bounds of the power-law PDF. Direct linear relations can be expected between power-law statistics,
even if the governing distribution p(τ ) is self-similar across a finite range of values. The effect of the
Reynolds number on the power-law exponent relations is therefore limited to the altered connection
between the statistics and the underlying probability exponent α.

IV. EFFECT OF FINITE REYNOLDS NUMBER

The probability distribution definitions in Eqs. (1) and (2) impose a finite maximum value τ2. As
a result, intervals above τ2 are under-sampled relative to an infinite power-law distribution [17,18].
Values within the power-law region may be under- or oversampled, depending on the shape of the
cutoff regions bounding the power law.

The consequence of the sampling discrepancy is apparent in the survival function 1 − P(τ ), also
known as the complementary cumulative distribution. For the power law in Eq. (2), the survival
function can be expressed as

1 − P(τ ) = (τ/τ1)1−α − (τ2/τ1)1−α

1 − (τ2/τ1)1−α
. (11)
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(a) (b) (c)

(d) (e) (f)

P P P

FIG. 7. Effective exponent αe resulting from the distortion of the survival function by the truncated power
law, i.e., a finite Reynolds number. Rows correspond to the survival function 1 − P(τ ) (a,b,c) and the effective
exponent αe (d,e,f) following Eq. (13). Columns correspond to values of α: 1.1 [panels (a) and (d)]; 1.5 [panels
(b) and (e)]; and 2 [panels (c) and (f)].

Equation (11) is only a power law for an infinite Reynolds number with τ2/τ1 → ∞, and
otherwise has a finite additive constant distorting the probability that the next interval exceeds a
given value of τ . The distortion has led to the use of more generalized distributions such as the
Zipf-Mandelbrot law [42] to describe cumulative statistics of truncated power laws.

The survival functions for three values of α are shown in Figs. 7(a), 7(b), and 7(c). The trends
are consistent with the previously observed dependencies on α: for a finite Reynolds number with a
truncated distribution the survival function only approximates a power law, and the departure from
a power law is largest for small α values.

To quantify the deviation from a true power law, the effective exponent αe can be calculated from
the slope of the curves in Figs. 7(a), 7(b), and 7(c). Mathematically, the exponent is

1 − αe = d

d log(τ )
[log (1 − P)]. (12)

The chain rule can be used to simplify the derivative operation as d/d log(τ ) = τd/dτ . Using
Eq. (11) to compute the derivative of log(1 − P), the effective exponent can be expressed as

αe(τ ) = 1 + τ p(τ )

1 − P(τ )
. (13)

Importantly, the exponent changes as a function of τ , reflecting the fact that the survival function
is not a true power law for a truncated distribution. The effective exponent is shown in Figs. 7(d),
7(e), and 7(f) for each simulated case. The effective exponent is αe ≈ α for the unbounded case,
indicating the domain size is sufficiently large to approximately represent an infinite power law for
this study.

Within the range of τ where a power law is expected, αe in Fig. 7 becomes increasingly larger
than α as α decreases and as the Reynolds number decreases. The decreases in α and the Reynolds
number both represent an increase in the portion of the CDF that is “missing” due to the truncated
upper limit of the distribution. For a power law defined only in the range between τ1 and τ2, αe is

αe(τ ) = 1 + (α − 1)
(τ/τ1)1−α

(τ/τ1)1−α + (τ2/τ1)1−α
. (14)
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(a) (b)

(c) (d)

FIG. 8. Power-law exponent as a function of α (transparent markers) and the effective exponent αe (opaque)
for simulated TA signals. (a) Fractal dimension D1. (b) Spectrum exponent βTA. (c) Intermittency exponent μTA.
(d) Spectrum exponent βTA for boundary layer turbulence measurements of the streamwise (•) and wall-normal
(×) velocity components.

The result αe = α is recovered when τ2/τ1 → ∞, i.e., Re → ∞. The equation for the truncated
distribution in Fig. 2 follows a form similar to that of Eq. (14), except the right-side term in
the denominator depends on the prescribed cutoff behavior. In this sense, the log-normal and
exponential cutoffs employed here introduce minor quantitative differences in the results, but the
scale dependence of the survival function is a direct consequence of finite-size effects resulting
from the finite power-law region.

In practice, αe in Eq. (13) can be estimated from discrete histograms approximating the TA
interpulse distribution p(τ ). For simplicity, a single representative value of αe is employed here
using the average of αe(τ ) within the inertial subrange where power-law statistics are fitted.

Figure 8 compares the power-law exponents as a function of α and αe. Substituting for the effec-
tive exponent αe accounts for the trends observed in panel (c) of Figs. 3–5. Further, the corrected
results follow the linear relations exhibited by the unbounded case. The remaining deviation in the
Reλ ∼ 102 case is within the extent of the error bars and may be due to the strong departure from
self-similar statistics previously discussed.

As a practical example, Fig. 8(d) shows the correction of α for measured turbulent TA signals.
The signals were acquired from a range of positions within a wind tunnel boundary layer above
both smooth and rough surfaces [31]. The results for the spectrum exponent βTA(αe) align with the
expected linear relation and exhibit reduced scatter compared to βTA(α). The observed difference
in βTA between the streamwise and wall-normal velocity components is due to the smaller integral
length for the wall-normal component, leading to a narrower inertial subrange and a greater effect
of truncation. The effective exponent αe in Fig. 8(d) successfully accounts for this difference.

The discrepancy between βTA(α) in Fig. 8(d) and βTA = 3 − α has been previously explained
as an effect of intermittency. Specifically, the correction βTA = 3 − μTA/2 − α was proposed [24].
The present simulations demonstrate that βTA = 3 − α is applicable to intermittent, self-similar
processes governed by an unbounded power law. Adjusting the unbounded power law in Fig. 4 for
intermittency would lead to incorrect results. Rather, the relations between the power-law statistics
and p(τ ) must consider the effective exponent αe in Eq. (13) resulting from a finite Reynolds
number. The success of the correction in Fig. 8 demonstrates that the distortion of the survival
function propagates to statistics based on the simulated signals and that the resulting parameters D1,
βTA, and μTA depend on the survival function and its effective exponent 1 − αe.
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V. SUMMARY

For a binary stochastic process described by an unbounded power-law probability distribution,
linear equations exist to relate the power-law exponent of various statistics. The fractal dimension
D1, the energy spectrum exponent βTA, and the intermittency exponent μTA are related as D1 =
2 − βTA = 1 − μTA. The relation between D1 and μ matches the predicted analytical solution. The
statistics are also linearly related to the probability exponent α, e.g., as βTA = 3 − α, for the range of
α applicable to turbulent signals (α ≈ 1.5). While a small selection of statistics are evaluated here,
similar linear relations and trends are expected for other parameters like the correlation integral
[43].

These relations are directly applicable to the TA of turbulent crossing signals and estimates
of the fractal dimension from single-point measurements. However, certain aspects of the results
depend on the Reynolds number and the extent of the inertial subrange where power-law behavior
is expected, in which a finite Reynolds number yields truncated power-law statistics. Specifically,
a finite Reynolds number changes the effective exponent αe of the survival function for the TA
interpulse τ , which propagates to ensuing statistics. The original linear relations between α and
the other exponents can be recovered by considering the effective exponent αe in Eq. (13). Yet,
cumulative statistics such as the fractal dimension are not self-similar, as αe(τ ) is strongly scale
dependent when the Reynolds number is small. The departure from self-similarity may be even
greater in practice, as the effect of an exponential cutoff on the scale invariance of the power law is
not considered here [44].

These finite Reynolds number effects may help to explain experimental observations in turbu-
lence. Previous findings on the scale dependence of the fractal dimension [12,13] are likely due
to a combination of the technical challenges discussed in the Introduction [16] and the finite-size
effects studied here. Additionally, deviations from βTA = 3 − α in turbulent TA signals (Fig. 8)
are well described by the proposed correction derived from the survival function. The Reynolds
number required for these statistical effects to become negligible, Reλ � 105, is well beyond current
numerical and laboratory capacities. These findings are specific to one-dimensional signals, as the
extension of the statistical effects to higher dimensions is not explored here.

Based on the design of the simulations, the linear trends and the effective exponent discussed
above are purely statistical properties of truncated power laws. The findings are independent of the
governing Navier-Stokes equations or underlying mechanisms such as self-organized criticality. The
relations provide no information on causality, and the only prerequisite is for self-similarity to exist
within the signal. In this regard, the conclusions apply to any binary process defined by a truncated
power-law probability distribution. Importantly, the linear expressions cannot be directly applied to
the full turbulent signals exhibiting amplitude variability beyond 0 or 1. In this case, certain relations
also depend on the phase of the signal [45].
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