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ABSTRACT OF THE THESIS

Design and Analysis of Low Noise Amplifiers in Ngspice with a Perspective on Machine
Learning Approaches

By

Pooya Khajeh

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2023

Assistant Professor Hamidreza Aghasi, Chair

The primary objective of this thesis is to explore the design and simulation of Low Noise

Amplifiers using Ngspice. Additionally, it delves into a machine learning approach aimed

at learning design based on threshold specifications, with Ngspice serving as the simulation

engine.

Chapter 1 introduces the background and underscores the significance of the research. Chap-

ter 2 delves into Ngspice, highlighting its applications in analog and RF design. Chapter 3

is dedicated to the design and simulation of a Low-Noise Amplifier (LNA) utilizing Ngspice.

Chapter 4 revisits our prior work titled ”Learning to Design Analog Circuits to Meet Thresh-

old Specifications”, placing special emphasis on the LNA circuit incorporated within.
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Chapter 1

Introduction

RF (radio frequency) and analog circuit design are of great importance in modern electron-

ics. Analog circuits are essential for many electronic systems, enabling functions such as

amplification, filtering, and signal processing. Meanwhile, RF circuits are critical for high-

performance electronic systems such as wireless communication, high-speed data converters,

and precision measurement systems. These systems require circuits with high linearity, low

noise, and high dynamic range, which can only be achieved through careful RF and analog

circuit design. Moreover, power-efficient analog and RF circuits are essential for modern

portable electronic devices, such as smartphones and wearable, to conserve battery life and

enable wireless communication. Furthermore, continuous innovation in RF and analog cir-

cuit design is necessary to drive new technologies and applications, such as 5G wireless

communication, autonomous vehicles, and internet of things (IoT) devices. Overall, RF and

analog circuit design plays a critical role in high-performance, power-efficient, and innovative

electronic products and technologies[1] [21].

It is important to point out that Analog and RF design is a topic of great interest, as is the

case with any important topic, but it can also be difficult and Challenging. It is important
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for the engineer to possess a thorough understanding of Electromagnetic Theory, Signal

Processing, and Circuit Design principles to be able to design these systems effectively. In

addition, designing can be burdensome for designers because of a variety of factors, including:

The designs of RF and analog ICs are often quite complex due to the large number of

components involved and interactions between them. As a result of this complexity, it can

be difficult for designers to optimize the performance of their circuits while simultaneously

meeting power consumption, noise, and other specifications. RF and analog circuits are usu-

ally sensitive to small variations in component values, temperature, and other environmental

factors. It may be challenging for circuit designers to ensure that their circuits will operate

reliably in a wide range of operating conditions as a result of this sensitivity. The design

of RF and analog integrated circuits is time-consuming, as designers are often required to

perform numerous simulations and tests in order to ensure that their circuits are functioning

properly. The cost of errors in RF and analog IC designs can be very high, as even small

errors may have a significant effect on performance or even result in circuit failure.

Significance of a precise and reliable simulation engine , is paramount in ensuring accuracy

and efficiency in electrical engineering and circuit design endeavors. In the next chapter one

of these functional and pivotal simulators (Ngspice) is studied.

Beyond the precision of a simulation engine, tools that streamline and expedite the simu-

lation process are invaluable. Machine learning serves as one such tool, offering potential

advancements in efficiency and effectiveness[2]. Machine learning as an assisting tool can

minimize the time spend on a design while making the design more effective and also prevent

human errors.Utilizing machine learning as an auxiliary tool can significantly reduce design

time, enhance design effectiveness, and mitigate human errors. chapter 4 discusses a novel

method for designing analog circuits by deploying threshold specification technique[12].
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Chapter 2

Ngspice

Ngspice is an open-source mixed-level/mixed-signal electronic circuit simulator. It is a suc-

cessor of the famous SPICE simulator (Simulation Program with Integrated Circuit Empha-

sis), originally developed at the University of California, Berkeley, in the late 1970s.

NGSpice has gained popularity for several reasons. It is open-source and freely available

for anyone to use, modify, and develop. For students and researchers who lack access to

commercial simulation software, NGSpice is an attractive option. This community also

provides comprehensive documentation, and tutorials making it easier to get the most out of

the software. Being open-source its development is drived by large community of users and

developers. Thus, continuously updates, bug fixes and enhanced features are being added.

Also, given its open-source nature and versatility, it can be widely used in academia for

teaching and research purposes.

Aside from that, Ngspice has attracted the attention of circuit designers due to its accuracy,

versatility, compatibility with SPICE and other tools. Simulations are provided using the

SPICE engine, which is a reliable source of information. It supports AC, DC, transient,

noise, and more simulations. Ngspice is a mixed-level/mixed-signal simulator capable of
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simulating analog, mixed-signal, and digital circuits. This makes it suitable for a wide range

of applications from simple analog circuits to complex integrated circuits. It is compati-

ble with SPICE syntax, so a SPICE user can simply and quickly exploit Ngspice features.

Additionally, it can be integrated with other commercial and open-source tools such as Ki-

Cad for Printed Circuit Board design, GNU Octave for numerical computations, or different

graphical interfaces for post-processing simulation data.

In subsequent chapters, we delve into the design of a Low Noise Amplifier (LNA) as one

of the most vital and popular components in Recievers. Additionally, we explore design

methodologies employing machine learning approaches, all implemented and analyzed using

Ngspice as the simulation engine.
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Chapter 3

Low Noise Amplifier

3.1 Background

In many receiver structures, low noise amplifiers are the first active block used, and hence

are of significant importance and . Based on Friis equation shown [8] in Equation 1, Gain

and noise of the Whole receiver chain can be impacted by first stages characteristics.

Ftotal = F1 +
F2 − 1

G1

+
F3 − 1

G1G2

+ ...+
FN − 1

G1G2...GN−1

(3.1)

Hence LNA plays an important role in general performance of a receiver, and as a result is

of great importance. Consequently, ample research has been undertaken on LNAs, resulting

in the proposal of numerous circuitries and topologies. In this work a single ended cascode

inductive degeneration LNA is designed and studied. The common structure of this LNA is

shown in fig.3.2
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LNA
RF 

Transceiver
Modem

F1

G1

F2

G2

F3

G3

FN

GN

Figure 3.1: General block diagram of receiver

Vcascode

LL

M2

Vout

M1

Ls

LGC1Vin

Vdd

Figure 3.2: General block diagram of a Cascode LNA
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3.2 Design

Using an impedance match method for the input of the LNA, and optimizing the width of

the cascade transistors, the input network is designed as shown in fig.3.3. According to the

figure, the source resistance is considered 50 ohms. The value of C1 as the DC blocking

cap is chosen to prevent deviations in gate to source bias of transistor.M1. Transistor M3

Serves as the current mirror for the transistor M1 and has a small fraction of M1’s width to

limit the power overhead. [14]. Resistors R1 is serving as the identifier of the current value

passing through M3. R2 is chosen large enough to isolate the biasing circuit impedance, and

have negligible noise current[24]

3.2.1 Matching and S-parameters

To draw the impedance smith chart of the input resistance first S-parameters obtained using

the commands in Ngspice shown in fig.3.4. In Figure you can see that the S-parameters are

measured and extracted for frequencies between 1 MHz and 10 GHz, with arbitrary linear

stepping of 100 points being used. Subsequently, the s-parameters are extracted in the format

of S n n, which n indicated the number of RF ports used. To monitor the input matching

S11 is calculated in dB and it is plotted as shown in fig.3.5. As shown for frequencies with

S11 < −10dB a bandwidth of almost equal to 850 MHz for S11 is achieved.

To obtain the input impedance, S-parameters are converted to Z11 by using [20]:

Z11 = Z0
(1 + S11)(1− S22) + S12S21

(1− S11)(1− S22)− S12S21

(3.2)
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Vin

Rs = 50 Ω  

 C1 =  300 fF

 LG = 10 nH

 LS= 750 pH

M1,2 [W]= 75um

M3 [W]= 6.5um

R1 = 1.5KΩ

R2 = 2.5KΩ

Figure 3.3: Input marching network and biasing of the LNA

Sp lin 100 1M 8G

let S11=S_1_1

let S12=S_1_2

let S21=S_2_1

let S22=S_2_2

let s11db=20*log(S11)

plot S11db

Figure 3.4: Ngspice code for S-parameters analysis

Figure 3.5: S11(dB)

8



Figure 3.6: Z11 Magnitude

let Ls_start=100p

let Ls_step=50p

let Ls_stop=2n

let Ls_test=ls_start

while Ls_test le ls-start

alter Ls = Ls_test

sp lin 100 1M 3G

let Z11(magnitude)= mag(50*((1+S11)*(1-S22)+S12*S21)/((1-S11)*(1-S22)-S12*S21))

let Z11=z11(magnitude)

plot Z11

Figure 3.7: Ngspice code for sweeping variable Ls

Z11is achieved.As can be seen in Fig. 3.8, the calculated Z11 for the proposed input matching

network has been shown. The best match to 50ohm-impedance occurs around f=2.5GHz, as

can be seen from the image.

As it stands, the value of the degeneration inductor, Ls, which is responsible for the real

part of the input resistance, has been swept over a range of possible values, and at the end,

the value of 750 pH was determined to be the most appropriate value. The commands for

finding the optimum value of Ls is shown in fig.3.7.
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 C1 =  300 fF
 LG = 10 nH

 LS= 750 pH

M1,2 [W]= 75um

M3 [W]= 6.5um

R1 = 1.5KΩ

R2 = 2.5KΩ

Rs = 50 Ω  

 LD = 4 nH

 CL = 400fF

Figure 3.8: Final LNA Schematic

V1 net7 0 dc 0 ac 1 portnum 1 z0 50

AC dec 100 10k 10G

plot vdb(out) xlog

Figure 3.9: AC analysis commands

3.2.2 AC Analysis and Voltage Gain

To have a higher gain at the desirable frequency, and providing a better band pass filtering,

LD is implemented to resonate with total capacitance at the drain of M2. The resonate

frequency as the output is arbitrarily chosen the same or close enough to the input resonance

frequency to have a narrow response[14]. A load capacitor of CL is also used at the output

for better bandwidth control. The final Schematic for the proposed LNA is shown in fig.

The Magnitude Bode plot for this LNA is achieved by running AC analysis as shown in

fig.3.9. Defining an input voltage source with AC value (in this example, 1) is necessary. An

AC analysis was conducted in decade increments, beginning at 100 kHz and concluding at

10 GHz. Bode plot for the magnitude of the gain is shown in fig.3.10.

As illustrated in Fig. 3.10, the value of LD is chosen to provide the maximum gain magnitude

10



Figure 3.10: Gain Magnitude Bode Plot

at the input resonant frequency of 2.5GHz.

3.2.3 Stability

A crucial aspect of LNA design is ensuring stability. Various methods exist to assess stability,

with the K and Delta method being one such approach[6], Which states For an amplifier to

remain stable, it requires that:

K > 1 (3.3)

and

|∆| < 1 (3.4)
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Which K and ∆ are[9]:

K =
1− |S11|2 − |S22|2 + |∆|2

2|S12S21|
(3.5)

and

∆ = S11S22 − S12S21 (3.6)

To ensure the stability, K and |∆| are simulated and verified as shown respectively in fig.3.11

and fig.3.12. As it is shown in the plots, K is bigger than one and |∆| is smaller than one

over the whole frequency spectrum. Hence, the amplifier is stable.

3.2.4 Noise Figure

As the name suggests, the primary function of an LNA is to amplify weak signals without

adding significant noise. The noise figure quantifies how much noise the LNA adds to the

signal it’s amplifying. LNA NF is a vital performance metric since , it is directly added to

that of the reciever[1]. In Ngspice an s-parameter analysis, with adding a ”Do Noise Option”

with capture Noise Figure in dB. The NF(dB) for the proposed LNA is shown in fig.3.13.

As shown the minimum NF is available around the favorable frequency of 2.5GHz.

3.2.5 Power Gain

In RF amplifier design and analysis, a pivotal performance metric is the power gain. Sophis-

ticated simulation tools such as Cadence offer direct capabilities to compute power gains.

12



Figure 3.11: K

Figure 3.12: |∆|
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Figure 3.13: Noise Figure(dB)

However, open-source platforms like Ngspice lack this direct feature. Nevertheless, under

certain specific conditions, Ngspice users can still navigate this limitation.

A crucial premise for achieving this is to ensure the amplifier’s source and load reflection

coefficients are matched to the conjugate values of S11 and S22, respectively. Meaning, for a

negligble S12 for the case of unilateral transducer gain we can say:[27]:

GTU = |S21|2
1− |ΓS|2

|1− S11ΓS|2
1− |ΓL|2

|1− S22ΓL|2
(3.7)

Hence if :

ΓS = S∗
11 (3.8)

14



Figure 3.14: Proposed LNA S21

let Transducer_Power_Gain= (vecmax (S21))^2

meas sp Resonant_Frequency WHEN S21 = vecmax (S21)

Figure 3.15: Commands to extract the Unilateral Transducer Power Gain and the resonant
frequency

ΓL = S∗
22 (3.9)

The we have:

GTU = GO = |S21|2 (3.10)

or

GTU(db) = 20log(|S21|) (3.11)

15



op

let iDC= @M1[id]

let DC_Power_Consumption= Vdd*iDc

Print DC_Power_Consumption

Figure 3.16: DC Analysis command

3.2.6 DC Power Consumption

Ngspice offers both DC and OP (Operating Point) Analysis, which can be employed to

compute the DC power consumption by multiplying the current with the headroom voltage.

By assessing the current flowing through the transistor M1, we can achieve an approximation

that closely represents the actual DC current measurement. Fig.3.16 presents the requisite

commands in Ngspice for this analysis.

3.3 Summary

In this chapter, a Low Noise Amplifier (LNA) was meticulously designed and subsequently

analyzed. A comprehensive summary of its performance metrics can be found in 3.1.

Specification Value
Center Frequency(GHz) 2.5

S11(dB) ≤ −10@[2.1GHz, 2.95GHz]
S21(dB) 18
Z11(Ω) 55
NF (dB) 2.4
PDC(W ) 0.004

K ≥ 5
|∆| < 0.8

Table 3.1: Designed LNA specifications

16



Chapter 4

Learning to Design Analog Circuits

The subsequent chapter is derived from our prior publication [12]. For the purposes of this

thesis, the discourse will be strictly confined to the intricacies of Low Noise Amplifier (LNA)

design.

4.1 Problem Statement

Human design through the use of advanced electronic design automation (EDA) tools [2] is

currently the primary method for designing electronic circuits. However, human-led design

is a slow process and is falling behind the human–computer co-design processes for digital

circuits [22]. In order to bridge the gap and allow for faster design of analog circuits, we aim

to facilitate a system that can automatically generate the parameters of an analog circuit

to meet a set of performance requirements. A good system should be able to function with

good accuracy across a variety of different circuit topologies.

In this work, the problem of designing one of the most important type of analog circuits,

low-noise amplifiers is examined.It is noteworthy that the selected performance metrics,

17



themselves diverse across the various circuits, exhibit different kinds of correlations and

tradeoffs.

4.1.1 Exact Specification

For a specified circuit topology, let n be the number of component parameters, such as

resistances, transistor widths, and voltages. Let X1, . . . , Xn be the operational ranges of

each of these parameters, and X =n
i=1 Xi the design space. We assume the availability of a

simulator f : X → Y , where Y = Rk
+ is the positive orthant of the real vector space of k

performance metrics of interest.

The problem of design from exact specification is that of finding a function g ≈ f−1 : Y → X

such that, when a user specifies target performance y ∈ Y , the system can suggest a design

x̂ = g(y). Upon suggesting x̂, it can be simulated to measure its performance ŷ = f(x̂). The

error of the system is measured by the relative difference in its performance metrics

δi =
|yi − ŷi|

yi
. (4.1)

For evaluation, the relative error is averaged across multiple test points as well as across

the k metrics. We also measure the success rate as the fraction of test points with relative

error within a given margin. We note that, in a real-world system, users can input a target

performance vector y for which no circuit exists with low error. The system can use the

simulator to check that the predicted circuit g(y) is incorrect, but it is a hard problem to

determine whether another circuit would be correct, particularly if the instance is out-of

distribution for the data used to train the system. We therefore focus on evaluating the

system on in-distribution data y ∈ f(X), and leave the challenging and interesting question

of out of distribution generalization to future work.

18



4.1.2 Threshold Specification

When manual circuit design is challenging, guessing a feasible performance vector y ∈ f(X)

can be just as challenging, particularly if it consists of many metrics that are subject to

intricate tradeoffs. Instead, it would be easier for a user to specify performance thresholds

that the designed circuit should meet. We denote by λi the threshold direction of metric i,

i.e. λi = 1 or −1 respectively whether it is majorative (the more the better) or minorative

(the less the better).

Figure 4.1: The problem of automated design by threshold specification. A user specifies
threshold constraints on the circuit’s performance metrics. A design agent then generates a
circuit that, when simulated, meets the constraints.

The problem of design from threshold specification (fig.4.1) is that of finding a function

g : Y → X such that, when a user specifies target performance thresholds y ∈ Y , the

suggested design x̂ = g(y) aims to meet the thresholds y by having its simulated performance

ŷ = f(x̂) satisfy λŷ ≥ λy element-wise. The error of this system is measured by the relative

amount of threshold violation

δi =
max{λi(yi − ŷi), 0}

yi
. (4.2)

As before, we measure success rate by the fraction of test data for which the thresholds for

all metrics are met up to a given error margin.

To evaluate a system solving the threshold specification problem, we should use threshold
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queries that follow a similar distribution to that of real users. Leaving user studies to

future work, we approximate this distribution by perturbing simulated performance metrics

similarly to [15]. Given the measured performance y = f(x) of a simulated circuit x, we

sample standard uniform perturbations u ∼ Uk for the k metrics, independent and identically

distributed (i.i.d), and use the perturbed vector

ỹi = (1− ϵλiui)yi (4.3)

as the threshold query. Here ϵ is the perturbation magnitude hyperparameter; in this work

we use ϵ = 0.2. Note that, by construction, λy ≥ λỹ, so that there always exists a circuit

(namely, x) that meets the threshold ỹ.

4.2 Analog Automated Circuit Design

Automating the design of analog circuits has been studied before, particularly in operational

amplifiers (op-amps) that are specified by their voltage gain, bandwidth, and power con-

sumption (for a survey, see [16]). [26] proposes a reinforcement learning (RL) approach to

designing 3-stage amplifier circuits from threshold specification. Similarly, [23]adopts RL to

design 2-stage operational amplifiers. While RL is readily amenable to threshold constraints,

it suffers from poor data efficiency compared with supervised learning approaches [16]. [25]

uses supervised regression to design another type of circuits, a 4-bit current-steering Digital-

to-Analog converters (DAC), from exact specification of the performance metrics. Other

works have used supervised learning to design various opamps [18][15][17] with varying and

often incomparable data efficiency [16]. In this work, we step beyond the scope of op-amp

design to additionally investigate the design of other critical analog circuit blocks, in partic-

ular radio-frequency electronic circuits that are commonly used in cellular communication

applications [1]. It is noteworthy that some of the selected circuits, e.g., mixers and oscil-
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Figure 4.2: Proposed method for automated design from threshold specification. Circuit
parameters are sampled within a user-defined range, simulated, and measured. Performance
metrics are randomly adjusted to sample threshold queries. A data filtering process then
generates training data for supervised learning a circuit design agent that generates circuits
to meet threshold requirements.

lators, are among the most nonlinear analog circuits with high sensitivity to variations in

design parameters. Our results further show that design agents for amplifiers as well as more

intricate circuits can be learned by supervised regression from much smaller data sets than

previously accomplished. Finally, we learn to design these circuits from threshold specifica-

tion, in contrast to most previous supervised learning works. [15] previously considered this

setting, and proposed a method that is reproduce in this work under the name Dm.

We show that this method can lead to suboptimal performance, analyze the reason through

an ablation study, and propose a new method that mitigates this issue.

4.3 Method

We use supervised learning to approximate the inverse of the simulator function mapping

circuit parameters to performance metrics (fig.4.2). We interface an external simulator to

generate a dataset D0 consisting of circuit parameter vectors x ∈ Rn and their respective
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measured performance metrics vectors y ∈ Rk. We (optionally) pass this dataset through

a filtering pipeline that prepares it for solving the threshold specification problem Finally,

we employ a supervised learning algorithm, such as gradient-based optimization, to train a

design agent. In this section we describe the system components: the simulator, the agent

model, and several alternatives for the filtering pipeline.

4.3.1 Simulator

In this work, we use the NgSpice simulator [19]. The circuit topology and its fixed parame-

ters, as well as the simulation parameters, are provided to the simulator via a format called

netlist [13]. In addition to the netlist, the simulator loads analysis commands that determine

how it measures the performance metrics of interest. For some circuits, multiple analysis

commands are given to measure the circuit under distinct conditions.

The external simulator is wrapped by a Python interface to allow easy access to two func-

tionalities. First, to generate simulation data, a user inputs the range and step size of

each circuit parameter, and the simulator loops through this grid to output a dataset D0 of

parameter–metrics pairs. Second, to evaluate the trained model, predicted circuit parame-

ters are input to the simulator, and the measured performance is compared with the target

performance.

4.3.2 Agent Model

Before the raw data from the simulator can be put through the model, we apply a few data

pre-processing steps. The different features of the data have vastly different scales. In order

to allow the model to learn across such different scales, we first shift and scale all values

to the range [−1, 1]. This normalization is applied both to the performance metrics before

22



they are fed to the model and to the ground-truth circuit parameters used for training, and

an appropriate inverse operator is applied to the model’s parameter predictions. In this

work, we experiment with three different agent models. The main model is a neural network

with an architecture of a simple multi-layer perceptron, trained with the Adam optimizer

[11]. The network takes in a vector of desired performance metrics and predicts a vector

of circuit parameters, which is then compared with the ground-truth parameters using an

absolute (L1) loss. The sizes of the first and last layers of the network are adjusted to reflect

the number of performance metrics and circuit parameters, respectively, which are different

for each experiment described in the experiment section. An alternative model we consider

is ensembles of decision trees trained with the Random Forests algorithm [5]. Finally, to

assess the need for any learning at all, we compare with a lookup method that memorizes

the training data and selects, for each test performance vector, the training circuit that

minimizes the relative performance error.

4.3.3 Filtering Pipeline

The problem of design from exact specification can be solved by supervised learning, in

which the training set is the simulation dataset D0, inverted so that performance metrics

y are inputs and circuit parameters x are outputs. However, this method is unlikely to be

sufficient for the threshold specification problem , in which some threshold vectors are out-

of-distribution for D0, because no circuit has them as its exact performance. We therefore

propose a filtering pipeline that constructs, from the same D0, a second dataset which, when

used for supervised learning, trains a model that predicts circuit parameters from threshold

specification.

To prepare a circuit for the threshold specification problem, two properties of the metrics

vector need to be provided. First, because some metrics, such as gain or bandwidth, are
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majorative (the more the better), while others, such as power consumption, are minorative

(the less the better), we need to know for each metric i its threshold direction λi ∈ {−1, 1}.

Second, a specification asking for the highest gain at power consumption at most p is dif-

ferent from one asking for the lowest power consumption that achieves gain at least g. We

may therefore have a preference order over metrics, such that we lexicographically prefer

improving yi over improving yj, whenever i < j, as long as all threshold constraints are

approximately met. We say that y is lexicographically better than y′ if there exists i such

that yj = y′j for all j < i and λiyi > λiy
′
i. The filtering pipeline starts by finding, for each

performance vector y ∈ D0, all feasible performance vectors y′ ∈ D0 that meet the threshold

specification y, i.e.

F (y;D0) = {(x, y′) ∈ D0|λy′ ≥ λy}. (4.4)

The design agent needs to map the threshold specification y to one such x ∈ F (y), but it

may not be immediately clear which one. We hypothesize that, crucially to learning with

high success rate from small datasets, our training dataset must be systematic in selecting a

representative of F (y). This systematicity manifests as a pattern that the learning algorithm

can generalize, whereas including the entire F (y) or selecting from it sporadically might lead

to conflicts that impede generalization. We propose to select the lexicographically best

training-set circuit that meets the threshold

D̄∗
0 = {(x, y)|y ∈ D0, x = F (y;D0)} (4.5)

where we select for x a single representative (x, y′) of F (y) that maximizes y′ lexicographi-

cally. In the notation D̄∗
0, the bar denotes feasibility of x for y and the star denotes selection

of the best representative. We note that, by definition, all members of F (y) have good

circuit parameters that meet the threshold y. However, adding all of them to our training

set, similar to the method proposed by [15], would create conflicts where the same network
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input y is mapped to different outputs. By breaking “ties” in a consistent way — and in

accordance with user-specified preference over metrics we create a dataset more conducive

of learning. The new dataset D̄∗
0 has the same size as the simulation dataset D0 and the

same set of performance vectors. The circuit parameter vectors in D̄∗
0 are those that define

its Pareto frontier, that is, for which no other simulated circuit is better in all performance

metrics. Thus, D̄∗
0 consistently maps feasible performance vectors to frontier circuits.

Threshold Queries

Previously we, discussed how performance metrics measured in simulation are perturbed to

generate threshold queries (Eq. (4.3)). We denote thus perturbed data by

Dϵ = {(x, (1− ϵλu)y)|(x, y) ∈ D0, u ∼ Uk i.i.d}. (4.6)

Note that the distribution of threshold queries y ∼ Dϵ is different than the distribution of

simulated metrics vectors y ∼ D̄∗
0. To avoid a mismatch of the training and test distributions,

we combine the filters to form a dataset of threshold queries with a principled selection of

target circuits:

D̄∗
ϵ = {(x, ỹ)|ỹ ∈ Dϵ, x = F (ỹ;D0)}. (4.7)

D̄∗
ϵ is a dataset mapping ϵ-perturbed metrics vectors ỹ to circuits whose (unperturbed)

simulated metrics are feasible for the threshold query ỹ, selecting the lexicographically best

such circuit.
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Baseline and Ablation

We compare our dataset construction methods, D̄∗
0 and D̄∗

ϵ , with a baseline that closely

follows [15]. We define Dm
ϵ as the union of m i.i.d. samples of Dϵ

Dm
ϵ =

m⋃
t=1

Dϵ[ut]; ut ∼ Uk i.i.d. (4.8)

In our experiments, m = 20. The reasons are that by construction, in each (x, ỹ) ∈ Dm
ϵ

the circuit x is feasible for the threshold query ỹ, i.e. λf(x) ≥ λỹ ; and that the training

distribution ỹ ∼ Dm
ϵ is identical to our evaluation distribution ỹ ∼ Dϵ. Note that, in

contrast to most of the literature on analog circuit design automation via supervised learning,

which employs a simulation dataset akin to D0, D
m
ϵ is suited for the threshold specification

problem [15]. Unfortunately, the dataset Dm
ϵ can be very confusing to learn from. Because

the simulator function f is not necessarily injective, there may exist multiple circuits with

similar performance vectors. Moreover, such vectors have overlapping supports of their

perturbation distributions. The result is that Dm
ϵ will tend to have similar threshold queries

mapped to vastly different circuit parameters, rendering their prediction difficult.

We propose an ablation that more directly demonstrates this issue. In D̄m
ϵ , we select for

each ỹ ∈ Dϵ the m lexicographically best feasible circuits, rather than only the single best

in D̄∗
ϵ (Eq. (4.7)):

D̄m
ϵ = {(x, ỹ)|ỹ ∈ Dϵ, x ∈ F (ỹ;D0)}. (4.9)

We expect this method to perform suboptimally, more similarly to Dm
ϵ than to D̄∗

ϵ . This

would provide evidence that the main aspect impacting the prior method, compared with

the novel one, is the existence of multiple targets for each query, rather than the other

differences namely, the selection of circuits from the feasible set F (y), or the preference of
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lexicographically better circuits.

To summarize, we consider six datasets: (1) D0 is the simulation data; (2) Dϵ has perturbed

performance metrics that resemble the threshold query distribution, and is used for method

evaluation; (3) D̄∗
0 and (4) D̄∗

ϵ are our proposed methods, without and with perturbation to

match the test distribution; (5) Dm
ϵ is a baseline similar to [26]; and (6) D̄m

ϵ is an ablation

study.

4.4 Experiments

We experiment with our methods on a diverse group of seven circuit topologies, detailed

below. Best practices in circuit design suggest that circuit parameters are chosen based on

their impact on performance metrics [3][4][10]. Only these parameters are used to optimize

performance for each circuit. The simulated LNA Circuit is using a parameter grid consisting

4096 points, 4 parameters, and hence 1024 points per parameter.

To facilitate result reproduction. The supplementary details of the LNA circuit employed in

our experiments can be found in Tables 4.1, and 4.2.

Our main method uses the D̄∗
ϵ dataset to train a neural network and evaluate its success

rate in 10-fold cross-validation. For each circuit topology, we perform three comparisons

of this method. First, we compare the main method with the five other data construction

methods described in the previous section. Second, we compare the gradient-based learning

algorithm with Random Forests and a simple lookup method. Third, we study the sensitivity

to the amount of training data by varying it. We compare the success rate of 10-fold cross

validation, which uses 90% of the data for training each fold, with using 5%, 10%, 20% and

50% of the data for training. We do this by randomly splitting the data into (respectively) 20,

10, 5, and 2 disjoint subsets, training on one subset, testing on the rest, and then averaging
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the result across the splits.

The solid curve is the average over 10 runs of data splitting and training, and the shaded

area is the standard-error of the mean (SEM) over those runs.

Table 4.1: Range LNA Performance Metrics

Performance Metric
LNA

Min Max
Power Gain (db) 5.16 18.65

S11(db) -19.1 -17.3
NF(db) 2.15 2.39

Table 4.2: LNA Design Parameters and Range of Variations

Circuit Variable Start Step End

LNA

M1,2[w] 73um 0.5um 76.5um
Lg 9.4nH 0.2nH 10.8nH
Ls 747pH 1pH 754pH
Ld 3.7nH 0.1nH 4.4nH

4.4.1 Performance Metric Ordering Variations

In our study, we subjected the LNA circuit to an assessment using two distinct orders

of performance metrics: Order A (Power Gain, S11, NF), and Order B (S11, NF, Power

Gain). We optimized for maximizing Power Gain and minimizing S11 and NF in both

orders. Notably, the circuits generated by Order A showcased an average Power Gain that

was larger (thus better) by 0.84 dB compared to those generated by Order B. Additionally,

these circuits exhibited an average S11 that was higher (thus worse) by 0.53 dB in comparison,

concluding that the user-specified order of performance metrics effectively creates the desired

preference over them.
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Figure 4.3: Comparing success rate in the threshold specification problem for different train-
ing datasets for the low-noise amplifier Circuit

Table 4.3: Circuit Comparison Info at 1 %

ML/Circuit LNA

Lookup 0.998 ± 0.001

NN 0.998 ± 0.0

RF 0.995 ± 0.001

Table 4.4: Circuit Data Size Comparison Info at 1 %

LNA DO D∗
ϵ

0.05 0.994 ± 0.005 0.972 ± 0.003

0.1 0.993 ± 0.012 0.985 ± 0.003

0.2 0.991 ± 0.003 0.991 ± 0.002

0.5 0.992 ± 0.007 0.996 ± 0.003

0.9 0.998 ± 0.001 0.997 ± 0.001

Table 4.5: Circuit Comparison Info at 1 %

D/Circuit LNA

D0 0.996 ± 0.001

Dϵ 0.957 ± 0.009

Dm
ϵ 0.542 ± 0.003

D̄m
ϵ 0.801 ± 0.024

D̄∗
0 0.847 ± 0.021

D̄∗
ϵ 0.936 ± 0.012

Table 4.6: Comparing Results with the previous work

Performance Metric This Work (%) Best Reported (%) Related Works

L
N
A

GT 0.0028±0.001
< 5 [7]S11 0.007±0.001

NF 0.002±0.0005
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