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An Overview of SuperLU: Algorithms,
Implementation, and User Interface

XIAOYE S. LI

We give an overview of the algorithms, design philosophy, and implementation techniques in the
software SuperLU, for solving sparse unsymmetric linear systems. In particular, we highlight the
differences between the sequential SuperLU (including its multithreaded extension) and parallel
SuperLU_DIST. These include the numerical pivoting strategy, the ordering strategy for preserving
sparsity, the ordering in which the updating tasks are performed, the numerical kernel, and the
parallelization strategy. Because of the scalability concern, the parallel code is drastically different
from the sequential one. We describe the user interfaces of the libraries, and illustrate how to
use the libraries most efficiently depending on some matrix characteristics. Finally, we give some
examples of how the solver has been used in large-scale scientific applications, and the performance.

Categories and Subject Descriptors: G.1.3 [Mathematics of Computing]: Numerical Linear
Algebra—sparse, structured, and very large systems (direct and iterative methods); G.4 [Math-
ematics of Computing]: Mathematical Software— Parallel and Vector Implementations

General Terms: Algorithms;Performance
Additional Key Words and Phrases: Sparse direct solver,supernodal factorization,parallelism,
distributed-memory computers,scalability

1. INTRODUCTION

SuperLU contains a set of sparse direct solvers for solving large sets of linear equa-
tions AX = B [Demmel et al. 1999b]. Here A is a square, nonsingular, n x n
sparse matrix, and X and B are dense n x nrhs matrices, where nrhs is the num-
ber of right-hand sides and solution vectors. Matrix A need not be symmetric or
definite; indeed, SuperLU is particularly appropriate for matrices with very un-
symmetric structure. The routines appear in three different libraries: sequential,
multithreaded and parallel. They can be linked together in a single application. All
three libraries use variations of Gaussian elimination (LU factorization) optimized
to take advantage both of sparsity and the computer architecture, in particular
memory hierarchy (caches) and parallelism. Below is a brief summary of the three
libraries.
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2 : X. Li

—Sequential SuperLU is designed for sequential processors with one or more
layers of memory hierarchy [Demmel et al. 1999].

—Multithreaded SuperLU (SuperLUMT) is designed for shared memory multi-
processors (SMPs), and can effectively use up to 16 or 32 parallel processors on
sufficiently large matrices in order to speed up the computation [Demmel et al.

1999a].

—Distributed SuperLU (SuperLU_DIST) is designed for distributed memory
parallel processors, using MPI [MPI | for interprocess communication. It can
effectively use hundreds of parallel processors on sufficiently large matrices [Li

and Demmel 1998; 2003].

The kernel algorithm in SuperLU is sparse Gaussian elimination. The high-level
algorithm can be summarized as follows:

(1) Compute a triangular factorization P,D,AD.P, = LU. Here D, and D, are
diagonal matrices to equilibrate the system, P, and P, are permutation matri-
ces. Premultiplying A by P, reorders the rows of A, and postmultiplying A by
P, reorders the columns of A. P, and P. are chosen to enhance sparsity, nu-
merical stability, and parallelism. I is a unit lower triangular matrix (L;; = 1)
and U is an upper triangular matrix. The factorization can also be applied to
non-square matrices.

(2) Solve AX = B by evaluating X = A~'B = (D;'P7'LUP-'D;Y)"'B =
D.(P.(U=YL=Y(P.(D,B))))). Thisis done efficiently by multiplying from right
to left in the last expression: Scale the rows of B by D,. Multiplying P, B
means permuting the rows of D, B. Multiplying L=!(P, D, B) means solving
nrhs triangular systems of equations with matrix L by substitution. Similarly,
multiplying U~1(L~!(P, D, B)) means solving triangular systems with U.

Table I summarizes the current status of the software. All the routines are imple-
mented in C, with parallel extensions using Pthreads (POSIX threads for shared-
memory programming) or MPI (for distributed-memory programming). We pro-
vide Fortran interface for all three libraries. Sequential SuperLU also has a MATLAB
interface to the driver via MEX files. In addition to the kernel algorithms afore-
mentioned, we provide routine for performing iterative refinement, estimating the
componentwise error bounds, and estimating the condition number.

The error bounds are based on the componentwise error analysis [Anderson et al.
1999; Arioli et al. 1989; Demmel 1997; Higham 1996; Oettli and Prager 1964], rather
than the normwise one. The componentwise error bounds respects the presence of
zero or tiny entries in A, and hence are more appropriate for sparse systems. The
componentwise ralative backward error is given by

BERR =max ——————— .
i (lA]- ||+ [b]):

This means the computed z is the exact solution of a slightly perturbed system
(A+ E)z =b+ f, where |E;;| < BERR - |Aj;| and |fi| < BERR - |b;] for all i and
j. In other words, E and f are small relative perturbations in each entry of A and
b, respectively.

ACM Transactions on Mathematical Software, Vol. x, No. x, x 2003.
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Table I. SuperLLU software status.

Sequential SuperLU | SuperLUMT SuperLUDIST
Platform serial shared-memory | distributed-memory
Language C C 4+ Pthreads C + MPI
(with Fortran interface) (or pragmas)
Data type real /complex real real /complex
single/double double double

The forward error bound is the bound on the accuracy of the solution: ||z —
#||eo/]|2||lcc < FERR. This depends on the conditioning of the system as well as
BFERR. In practice, FERR is calculated by the following formula:

A—l
[E41P®
Here, f is a nonnegative vector whose components are computed as f; = |F|; +

m; € (|A] |&| + |b])s, 7 is the computed value of the residual b — Az, and m; is the
number of nonzeros in row ¢ of A. The norm in the numerator is estimated using
the same algorithm that estimates the condition number.

Note that for SuperLUDIST where we use static pivoting instead of partial piv-
oting, we have yet to include the forward error bound estimation in the software.
This is because the error analysis is less understood in this case and remains our
future work.

An efficient sparse Gaussian elimination procedure depends on good ordering
of equations and variables to minimize fill, fast symbolic algorithm to determine
the exact nonzero strcutre of the triangular factors L and U, and fast numerical
factorization with cheap accommodation of numerical pivoting. For unsymmetric
matrices, we usually use a column ordering that is obtained from a symmetric
fill-reducing ordering on a symmetrized matrix AT A or AT + A. The ordering
heuristics can be minimum-degree-like or nested-dissection-like. Row permutation
is independently performed for numerical stability. The symbolic factorization is
based on Gilbert-Peierls’s depth-first search traversal of the graph, which in time
is proportional to arithmetic operations [Gilbert and Peierls 1988]. We sped up
this process by combining the supernodal graph with Eisenstat-Liu’s symmetric
pruning [Eisenstat and Liu 1992; Demmel et al. 1999], so that the resulting graph
is much coarser. The numerical factorization is based on block submatrix update,
which effectively uses Level 3 BLAS. We also use 2D partition of supernodes (loop
blocking) to avoid cache thrashing and to increase parallelism.

From both the users’ and the algorithm’s points of view, SuperLUMT is very similar
to sequential SuperLU, therefore, we will not give further details on SuperLUMT.
Instead, we will focus on sequential SuperLU and SuperLUDIST. The rest of this
paper is organized as follows. In Section 2, we describe the main algorithmic and
implementational differences between the two libraries. In Section 3, we describe
the user interfaces for the two libraries. Some of the interfaces are common to
both, and some are different. In Section 4, we illustrate how SuperLLU can be
used in solving large linear systems and eigensystems arising from the scientific
applications. We also highlight the performance of the solver. Finally, in Section 5,
we discuss the future work.

ACM Transactions on Mathematical Software, Vol. x, No. x, x 2003.
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Table II. Major differences between SuperLU and SuperLUDIST.

SuperLU SuperLUDIST
Numerical pivoting to choose P, | partial pivoting with threshold | static pivoting
Sparsity ordering to choose P AT A-based (AT + A)-based
BLAS kernel BLAS-2.5 BLAS
Update ordering in GE left-looking, supernode-panel right-looking, 2D block

2. DIFFERENCES BETWEEN SEQUENTIAL AND PARALLEL SUPERLU

Although the high-level algorithms in the two libraries are the same: sparse Gaus-
sian elimination followed by the triangular solutions, there exist sigificant differences
in the actual implementation. Thus the performance is quite different even when
they are run on one processor. Their main differences is summarized in Table II.
In the following subsections, we describe in more detail each difference.

2.1 Numerical Pivoting

The goal of numerical pivoting is to control the element growth in the factors so
to avoid loss of accuracy. A commonly used strategy in the dense LU factorization
is partial pivoting, which swaps the largest element to the diagonal at each step of
elimination. In sparse factorizations, however, it is common to relax the pivoting
rule to trade for better sparsity and parallelism.

SuperLU uses partial pivoting with diagonal threshold. The row permutation P, is
determined during factorization. Suppose we have factorized the first j — 1 columns
of A, and are seeking a pivot for column j. Let a,,; be a largest entry in magni-
tude on or below the diagonal of the partially factored A: |a,;| = max;>; |a;;].
Depending on a threshold u (0.0 < u < 1.0) selected by the user, the code may
use the diagonal entry a;; as the pivot in column j as long as |a;;| > u - |am;l,
or else use ap,j. If the user sets u = 1.0, am; (or an equally large entry) will be
used as the pivot; this corresponds to the classical partial pivoting. If the user has
ordered the matrix so that choosing diagonal pivots is particularly good for sparsity
or parallelism, then smaller values of u tend to choose those diagonal pivots, at the
risk of less numerical stability. Selecting u = 0.0 guarantees that the pivots on the
diagonal will be chosen, unless they are zero. The code can also use a user-input
P, to choose pivots, as long as each pivot satisfies the threshold for each column.
The error bound BERR measures how much stability is actually lost. Below is the
pseudo-code to choose pivot for column j:

(1) compute thresh = u - |an;|, where |am,;| = max;>; |ag;];
(2) if user specifies pivot row k and |ay;| > thresh and az; # 0 then
pivot row = k;
else if |aj;| > thresh and a;; # 0 then
pivot row = j;
else
pivot row = m;

endif;

Partial pivoting turns out hard to be parallelized scalably on distributed memory
machines, because of the fine-grain communication and the dynamic data structures
required. Therefore, SuperLUDIST uses static pivoting instead. Here, P, is chosen

ACM Transactions on Mathematical Software, Vol. x, No. x, x 2003.
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before factorization and based solely on the values of original A; it remains fixed
during factorization. We use a weighted perfect matching algorithm and the code
Mce4 developed by Duff and Koster [Duff and Koster 1999]. In the permuted matrix
P, A, the magnitude of the diagonal elements are larger than that of the off-diagonal
ones. Since P, is chosen based on A not on the Schur complement at each elim-
ination step, the method is potentially less stable than partial pivoting. On the
basis of empirical evidence, when we combine this approach with diagonal scaling,
setting very tiny pivots to larger values, and iterative refinement, the algorithm
is as stable as partial pivoting for most realistic matrices. The detailed numerical
experiments can be found in [Li and Demmel 2003].

In this static pivoting apporach, since both row and column orders (P, and P,) are
fixed before factorization, the symbolic factorization is performed before numerical
factorization. We can perform extensive off-line optimization for the data layout,
load balance, and communication schedule [Grigori and Li 2002]. The price is a
higher risk of numerical instability, which is mitigated by several other numerical
techniques aforementioned. In the case when static pivoting does not give good
guarantee of accuracy, then at least an indication of the presence of numerical
problems is given by the error bound BERR.

2.2 Sparsity Ordering

For the unsymmetric factorizations, the preordering for sparsity is less well un-
derstood than that for the Cholesky factorization. Many unsymmetric ordering
methods use the symmetric ordering techniques on a symmetrized matrix (e.g.,
AT A or AT + A). This attempts to minimize certain upper bounds on the actual
fills. Which symmetrized matrix to use strongly depends on how the numerical
pivoting is performed.

For SuperLU with partial pivoting, we use AT A-based ordering algorithms. The
reason is as follows. Consider the LU factorization with row interchanges P, A =
LU. Also consider the Cholesky factorization AT A = RT R, and the QR factoriza-
tion A = QR computed by Householder transformation.’ @ is represented by the
“Householder matrix” H whose columns are the Householder vectors. The nonzero
structure for L and U cannot be predicted immediately from the nonzero structure
of A, because the row interchanges during the factorization depend on the numeri-
cal values. However, for any row interchanges, the structures of L and U are subsets
of the structures of H (or RT) and R respectively [George et al. 1988; George and
Ng 1987]. Therefore, a good symmetric ordering P, on AT A that preserves the
sparsity of R can be applied to the columns of A, forming AP, so that the LU
factorization of API is sparser than that of the original A. This can be seen from
the relation P.(AT A)PT = (APT)T(APT).

For SuperLUDIST with a priori row permutation P., the A7 A-based ordering
methods may be too generous, since they attempt to account for all possible row
interchanges. Therefore, we use (AT + A)-based ordering methods. The reason is
as follows. The symbolic Cholesky factor of AT + A is a much tighter upper bound
on the structures of L and U than that of AT A when the pivots are chosen on the
diagonal. Note that after we find P,, we actually perform a symmetric permutation

1The R factor in the Cholesky factorization and the R factor in the QR factorization are identical.
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PC(PTA)PCT so that the diagonal entries of the permuted matrix remain the same
as those in P, A, and they are larger in magnitude than the off-diagonal entries.
Our experiments showed that the amount of fill can be reduced by more than a
factor of two with (AT 4 A)-based ordering compared to AT A-based ordering [Li
and Demmel 2003, Table II]. More recently, we realized that we can further im-
prove the ordering quality for SuperLUDIST by respecting the asymmetry of A’s
structure [Amestoy et al. 2003]. This new ordering scheme does not require any
symmetrization of A, and works directly on A itself. The scheme is similar to the
Markowitz scheme [Markowitz 1957] but limits the pivot search to the diagonal
entries. The efficient implementation is similar to that of approximate minimum
degree (AMD) [Amestoy et al. 1996], but it generalizes the (symmetric) quotient
graph to the bipartite quotient graph to model the unsymmetric node elimination.
The preliminary results showed that the new ordering method reduces the amount
of fill by 10-15% on average for very unsymmetric matrices, when compared to
applying AMD to AT + A. We plan to incorporate this new ordering code into
SuperLUDIST.

2.3 BLAS Kernel

Both factorization algorithms in SuperLU and SuperLUDIST are based on unsym-
metric supernodes [Demmel et al. 1999]. A supernode is a range (r : s) of columns
of L with the triangular block just below the diagonal being full, and the same
nonzero structure elsewhere (either full or zero). Matrix U is considered rowwise
partitioned by the same supernodal boundaries. But due to unsymmetric nature,
each partition of U does not have the nice dense structure as L. The nonzero struc-
ture of U consists of dense column segments of various lengths. The sparse storage
schemes for I and U are described in [Demmel et al. 1999] for SuperLU and [Li and
Demmel 2003] for SuperLUDIST. The most time-consuming kernel in factorization
is the following block update:

A(LJ) — A(I,J) = L(I,K) x U(K, J) .

Since L is partitioned by supernodes, each block L(7, K') has a regular dense struc-
ture in the compressed format. But block U(K,.J) is not so regular; it contains
dense vectors of different lengths. Because of this, it is not straightforward to call
the dense matrix-matrix multiplication routine (Level 3 BLAS).

In SuperLU, we perform multiple calls to the matrix-vector multiplication routine
GEMYV in Level 2 BLAS, for each vector in U(K,.J) block. We designed tunable
blocking parameters to ensure that the source block L(I, K) is small enough to
fit in the fastest cache. So we spend time to fetch L(I, K) only once across the
multiple calls to GEMV. We call this BLAS-2.5 kernel. The detailed analysis of
the blocking parameters can be found in [Demmel et al. 1999].

In SuperLUDIST, we realized that it is possible to use Level 3 BLAS. This is
achieved by padding zeros to the beginning of some dense column segments in
U(K,J), to make all the column vectors the same length, and then copying them
into a contiguous memory. After zero-padding and copying, we can call GEMM
straightforwardly. The zero-padding results in extra floating-point operations, but
copying is almost free because the data must be loaded in the cache anyway. Over-
all, the benefit of using GEMM well offsets the cost of the extra floating-point

ACM Transactions on Mathematical Software, Vol. x, No. x, x 2003.
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operations. We observed 20% to 40% uniprocessor performance improvement [Li
and Demmel 2003]. In the future, we will implement this scheme in sequential
SuperLU, and evaluate whether there is benefit compared with the BLAS-2.5 kernel
in that context.

2.4 Task Ordering in Gaussian Elimination

Gaussian elimination algorithm can be organized in different ways, such as left-
looking (fan-in) or right-looking (fan-out). These variants are mathematically
equivalent under the assumption that the floating-point additions and multiplica-
tions are associative. They perform the same number of floating-point operations,
but have very different memory access and communication patterns. In our block-
ing framework, the outer loop of the algorithm involves a block row or column of
the matrix. The pseudo-code for the left-looking algorithm is given in Algorithm 1.

ALGORITHM 1. Left-looking Gaussian elimination

for block K =1 to N do
(1) Compute U(1: K —1,K)
(via a sequence of triangular solves)
(2) Update A(K : N,K) — A(K : N,K)— L(1: N,1: K —1)-U(1: K — 1, K)
(via a sequence of calls to GEMM)
(3) Factorize A(K : N,K) — L(K : N, K)
(may involve pivoling)
end for

The pseudo-code for the right-looking algorithm is give in Algorithm 2.
ALGORITHM 2. Right-looking Gaussian elimination

for block K =1 to N do
(1) Factorize A(K : N,K) — L(K : N, K)
(may involve pivoling)
(2) Compute U(K,K +1:N)
(via a sequence of triangular solves)
(3) Update A(LK+1: N,K+1:N) —
AKA41:NK+1:N)—L(K+1:N,K)-U(K,K+1:N)
(via a sequence of calls to GEMM)
end for

For SuperLU, we chose to use left-looking algorithm for the following reasons.

—1In each step, the sparsity changes are restricted to the Kth block column, instead
of the whole trailing submatrix.

—There are more memeory “read” operations than “write” operations in Algo-
rithm 1 than in Algorithm 2. This is better for most modern cache-based com-
puter architectures, because “write” tends to be more expensive in order to main-
tain cache coherency.

For SuperLUDIST, we changed to use right-looking algorithm for the following
reasons, mainly motivated by scalability.

—The sparsity structure can be determined before numerical factorization because
of static pivoting.

ACM Transactions on Mathematical Software, Vol. x, No. x, x 2003.
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—More abundance of parallelism is available in updating the triailing submatrix
(step (3) of Algorithm 2). Whereas in each step of Algorithm 1, there is a limited
parallelism, unless we implement a sophisticated pipeline mechanism to exploit
parallelism across multiple loop steps.

—1In each step, we only need a small amount of buffer space for transferring a bolck
column of L and a block row of U, to facilitate the trailing submatrix update.
Whereas in Algorithm 1, a block column of L and U will be needed by different
loop steps, hence we either need to transfer them many times or need a large
buffer space to hold many previously-transferred block columns.

3. USER INTERFACES

In this section, we present the user interfaces of the SuperLLU libraries. Section 3.1
addresses the interface issues common to both SuperLU and SuperLUDIST. Sec-
tions 3.2 and 3.3 contain the interface issues specific in SuperLU and SuperLUDIST,
respectively.

3.1 Interfaces Common to Both SuperLU and SuperLUDIST

3.1.1 Sparse Matriz Data Structure. The principal data structure for a matrix
is SuperMatrix, which is defined in SRC/supermatrix.h. Figure 1 shows the spec-
ification of the SuperMatrix structure. The SuperMatrix structure contains two
levels of fields. The first level defines the three orthogonal properties of a matrix
which are independent of how it is stored in memory: storage type (Stype) indicates
the type of the compressed storage scheme in *Store; data type (Dtype) encodes
the four precisions; mathematical type (Mtype) specifies some mathematical prop-
erties. The second level (*Store) points to the actual storage used to store the
matrix. We associate with each Stype SLUXX a storage format called XXformat,
such as NCformat, SCformat, etc. The reader may refer to the Users’ Guide for the
memory layout of each storage format [Demmel et al. 1999b].

The SuperMatrix type so defined can accommodate various types of matrix struc-
tures and the appropriate operations to be applied on them. Although currently
SuperLU implements only a subset of this collection (mostly related to general
unsymmetric matrices), the structure is extensible to include, for example, the
symmetric capabilities in the future.

3.1.2 Options Argument. The options argument is the input argument to con-
trol the behaviour of the libraries. The user can tell the solvers how the linear
systems should be solved based on some known characteristics of the system. For
example, for diagonally dominant matrices, choosing the diagonal pivots ensures
stability; there is no need for numerical pivoting (i.e., P, can be an Identity ma-
trix). In another situation where a sequence of matrices with the same sparsity
pattern need be factorized, the column permutation P, (and also the row permu-
tation P, if the numerical values are similar) need be computed only once, and
reused thereafter. In these cases, the solvers’ performance can be much improved
over using the default settings. Options is implemented as a C structure con-
taining the following fields (some may be used only by SuperLU, and some only by
SuperLUDIST):

ACM Transactions on Mathematical Software, Vol. x, No. x, x 2003.
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typedef struct {
Stype_t Stype; /* Storage type: indicates the storage format of *Store. */
Dtype_t Dtype; /* Data type. */
Mtype_t Mtype; /* Mathematical type */

int nrow; /* number of rows */
int ncol; /* number of columns */
void *Store; /* pointer to the actual storage of the matrix */

} SuperMatrix;

typedef enum {

SLU_NC, /* column-wise, not supernodal (a.k.a. CCS) */
SLU_NR, /* row-wise, not supernodal (a.k.a. CRS) */

SLU_SC, /* column-wise, supernodal */

SLU_SR, /* row-wise, supernodal */

SLU_NCP, /* column-wise, not supernodal, permuted by columns

(After column permutation, the consecutive columns of
nonzeros may not be stored contiguously. */

SLU_DN, /* Fortran style column-wise storage for dense matrix */
SLU_NR_loc /* distributed compressed row format */
} Stype_t;

typedef enum {

SLU_S, /* single */

SLU_D, /* double */

SLU_C, /* single-complex */

SLU_Z /* double-complex */
} Dtype_t;

typedef enum {

SLU_GE, /* general */
SLU_TRLU, /* lower triangular, unit diagonal */
SLU_TRUU, /* upper triangular, unit diagonal */
SLU_TRL, /* lower triangular */
SLU_TRU, /* upper triangular */
SLU_SYL, /* symmetric, store lower half */
SLU_SYU, /* symmetric, store upper half */
SLU_HEL, /* Hermitian, store lower half */
SLU_HEU /* Hermitian, store upper half */

} Mtype_t;

Fig. 1. SuperMatrix data structure.

—Fact
Specifies whether or not the factored form of the matrix A is supplied on entry,
and 1f not, how the matrix A will be factorized base on the previous history, such
as factor from scratch, reuse P, and/or P,, or reuse the data structures of L and

U.

—Trans
Specifies whether to solve the transposed system.

—Equil
Specifies whether to equilibrate the system (scale A’s rows and columns to have
unit norm).

ACM Transactions on Mathematical Software, Vol. x, No. x, x 2003.
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——ColPerm

Specifies how to permute the columns of the matrix for sparsity preservation.

—IterRefine

Specifies whether to perform iterative refinement, and in what precision to com-

pute the residual.
—PrintStat

Specifies whether to print the solver’s statistics.

—DiagPivotThresh (only for SuperLU)

Specifies the threshold used for a diagonal entry to be an acceptable pivot.
—RowPerm (only for SuperLUDIST)

Specifies how to permute the rows of the matrix for numerical stability.

—ReplaceTinyPivot (only for SuperLUDIST)
Specifies whether to replace the tiny diagonals by /¢ - ||A|| during the LU fac-

torization.

—Solvelnitialized (only for SuperLUDIST)
Specifies whether the initialization has been performed to the triangular solve.
—RefineInitialized (only for SuperLUDIST)
Specifies whether the initialization has been performed to the sparse matrix-
vector multiplication routine needed in the iterative refinement.

The routine set _default_options() sets the following default values for SuperLU:

Fact

Trans

Equil

ColPerm
DiagPivotThresh
IterRefine
PrintStat

DOFACT /* factor from scratch */
NO

YES

COLAMD

1.0 /* partial pivoting */

NO

YES

The routine set_default_options dist() sets the following default values for

SuperLUDIST:

Fact

Trans

Equil

ColPerm

RowPerm
ReplaceTinyPivot
IterRefine
Solvelnitialized
RefineInitialized
PrintStat

DOFACT /* factor from scratch */
NO

YES

MMD_AT_PLUS_A

LargeDiag /* use MC64 */

YES

DOUBLE

NO

NO

YES

The users can reset each default value according to their needs.

3.1.3 Ordering Option. Finding a good ordering to preserve the sparsity of the
factors has been an active research area. Many algorithms have been proposed,
and high quality codes based on some of those algorithms are also available. It is

ACM Transactions on Mathematical Software, Vol. x, No. x, x 2003.
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impossible to incorporate all these algorithms and codes into SuperLU. Right now,
SuperL.U contains only two minimum degree ordering algorithms, one is due to Liu
and the code is called MMD [Liu 1985], another is due to Davis et al. and the code
is called COLAMD [Davis et al. 2000] (an AT A-based ordering method). In addition,
the library has a flexible interface so that the user can easily plug in any other
ordering algorithm. Here is how it works. The options.ColPerm field can take the
following values:

—NATURAL: use natural ordefring (i.e., P. = T).

—MMD_AT PLUS_A: use minimum degree ordering on the structure of AT + A.
—MMD_ATA: use minimum degree ordering on the structure of A7 A.
—COLAMD: use approximate minimum degree column ordering.

—MY _PERMC: use the ordering given in the permutation vector perm_c[], which is
input by the user.

If options.ColPerm is set to the last value, the library will use the permuta-
tion vector obtained from any other ordering algorithm. For example, the nested-
dissection type of ordering codes include Metis [Karypis and Kumar 1998], Chaco [Hen-
drickson and Leland 1993] and Scotch [Pellegrini 2001]. SuperLU also contains
user-callable routines to form the structure of A7 + A or AT A. These routines are
named at_plus_a() and getata().

3.1.4 User-tunable Parameters Related to Performance. SuperLU chooses such
machine-dependent parameters as block size by calling an inquiry function sp_ienv(),
which may be set to return different values on different machines. The declaration
of this function is

int sp_ienv(int ispec);

Ispec specifies the parameter to be returned, (See [Demmel et al. 1999] for their
definitions.)

ispec = 1: the panel size (w)
= 2: the relaxation parameter to control supernode amalgamation (relaz)
= 3: the maximum allowable size for a supernode (mazsup)
= 4: the minimum row dimension for 2-D blocking to be used (rowblk)
= 5: the minimum column dimension for 2-D blocking to be used (colblk)
= 6: the estimated fills factor for L. and U, compared with A

Sequential SuperLU uses all the six parameters, whereas SuperLUDIST uses onlyd
three of them, which are 2, 3 and 6. The users are encouraged to modify this
subroutine to set the appropriate values for their own local environments.

The relax parameter (2) allows several consecutive columns (< relaz) at the
bottom of the elimination tree to be amalgamated into a supernode, and the su-
pernode structure i1s the union of the structures of the columns. That is, after
padding explicit zeros, we will get supernodes of larger size. This parameter usu-
ally set between 4 and 10, which gives better prformance and not too much more
fill.

The fill estimate parameter (6, call it FILL) is used differently in SuperLU and
SuperLUDIST. In SuperLU, the number of nonzeros in L and U is not known a priori.
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So in the beginning we callocate arrays for L and U of size FILL*#nnz(4). If this
is not enough, we expand each array dynamically. If this value is too large, there
will be too much wasted memory. If it is too smaller, there will be more memory
expansions. In practice, setting it to be 20 works quite well. In SuperLUDIST with
static pivoting, the symbolic factorization is separate from the numerical factoriza-
tion. This value is used only in the symbolic factorization, where a much coarser
graph is involved. Therefore, a smaller value, say 4 or 5, is usually sufficient.

For the other three blocking parameters (3, 4 and 5), the optimal values depend
mainly on the cache size and the BLAS speed. If your system has a very small
cache, or if you want to efficiently utilize the closest cache in a multilevel cache
organization, you should pay special attention to these parameter settings. As a
general rule of thumb, you need large blocks for better BLAS performance. On the
other hand, if the blocks are larger than the cache, the BLAS 2.5 in SuperLU will
not perform well. In [Demmel et al. 1999], we described a detailed methodology
for setting these parameters for SuperLU. For SuperLUDIST, in addition to the cache
performance, block size also also affects load balance and amount of parallelism.
Relatively smaller blocks are preferable in this case.

We ackowledge that automatic tuning for block size still remains to be an open
research problem, and is especially difficult for a parallel environment.

3.1.5 FEzample Programs. In the source code distribution, the EXAMPLE/ direc-
tory contains the several examples of how to use the driver routines. The examples
illustrate the following usages:

—solve a system once
—solve different systems with the same A, but different right-hand sides
—solve different systems with the same sparsity pattern of A

—solve different systems with the same sparsity pattern and similar numerical
values of A

Except for the one-time solution case, all the other examples can reuse some
of the data structures obtained from a previous factorization, hence, save some
time compared with factorizing A from scratch. The users can easily modify these
examples to fit their needs.

3.2 User Interfaces of SuperLU

3.2.1 Driver Routines. For each precision, there are two types of driver routines.
The driver routines can handle both column- and row-oriented storage schemes.

—A simple driver dgssv(), which solves the system AX = B by factorizing A and
overwriting B with the solution X.

—An expert driver dgssvx(), which, in addition to the above, also performs the
following functions depending on the options argument:
—solve ATX = B;
—equilibrate the system if A is poorly scaled;
—estimate the condition number of A, check for near-singularity, and check for
pivot growth;
—refine the solution and compute forward and backward error bounds.
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Table III. Fill-ins for matrix Zhaol, with diagonal pivoting and MMD(AT + A) ordering.
relaxation with postorder | weak relazation without postorder
no relaxation | 8051345 8051345
relar = 4 29550911 8598797

We expect that most users can simply use these driver routines to fulfill their
tasks without the need to directly call the computational routines.

3.2.2 Symmetric Mode. In many applications, matrix A may be diagonally dom-
inant or nearly so. In this case, pivoting on the diagonal is sufficient for stability
and is preferable for sparsity than off-diagonal pivoting. To do this, the user can
set a small (less-than-one) diagonal pivot threshold (e.g., 0.0, 0.01) and choose an
(AT 4+ A)-based column permutation algorithm. We call this setting symmetric
mode. Note that, when an diagonal entry is smaller than the threshold, the code
will still choose an off-diagonal pivot. That is, the row permutation P. may not be
Identity.

One performance inefficiency may arise in the symmetric mode. This is related
to the postordering of the column elimination tree (i.e., etree of AT A) [Demmel
et al. 1999, Sections 2.3 and 2.4]. Recall that the postordering of column etree
serves two purposes:

(1) Tt brings together larger unsymmetric supernodes;

(2) Tt allows several consecutive columns at the bottom of the etree to be treated
as a relaxed supernodes.

Tt is shown that, without supernode relaxation (2), permuting the matrix columns
using this postorder does not change the sparsity of the L and U factors [Demmel
et al. 1999, Theorem 3.2]. When (2) is introduced and an AT A-based column
ordering is used, the number of structural zeros introduced is still well restricted.
This is because the objective of AT A-based ordering is to minimize an upper bound
on the fill-ins. However, when (2) is used in the symmetric mode (using (AT + A)-
based ordering), there can be many more structural zeros generated throughout the
factorization. This is because the objective of an (AT + A)-based ordering is to
minimize a lower bound on the fill-ins, and some structural zeros in a column etree
postorder may lead to an amount of fill far from the lower bound.

We recently improved the relaxation algorithm for the symmetric mode: we use
the original heap-ordered column etree to identify the relaxed supernodes. Only
when the nodes in a subtree are numbered consecutively we consider this subtree as
a relaxed supernode. We call this weak relazation scheme, or a more conservative
approach. Compared to the postorder-based relaxation, the weak relaxation gives
fewer number of relaxed supernodes. Table IIT shows an example matrix Zhaol?
with two relaxation schemes. The weak relaxation gives less than one-third of the
fill-ins, and is much more effective in preserving sparsity in the symmetric mode.

3.3 User Interfaces of SuperLUDIST
3.3.1 Input Formats. There are two input interfaces for matrices A and B. One

is the global interface, another is an entirely distributed interface.

2 Available at http://www.cise.ufl.edu/~davis/sparse/Zhao
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In the global interface, A and B are globally available (replicated) on all the pro-
cesses. The storage type for A is SLUNC, as in sequential case (see Section 3.1.1).
The user-callable routines with this interface all have the names “xxxxxxx_ABglobal”.

In the distributed interface, both A and B are distributed among all the processes.
They use the same distribution based on block rows. That is, each process owns
a block of consecutive rows of A and B. FEach local part of sparse matrix A is
stored in a compressed row format, called SLUNR_loc storage type. It is known as
distributed compress row storage.

For better scalability, L and U are represented as 2D block matrices, and are
distributed in a 2D block-cyclic fashion [Li and Demmel 2003]. The users do not
need to understand the L and U data structures. The library contains routines
to re-distribute the input A into the L and U structures. Recently, we conducted
performance study for both global and distributed interfaces, and found that the
distributed interface is as fast as the global interface on the IBM SP [Li and Wang
2003].

3.3.2 SuperLU 2D Process Grid and MPI Communicator. SuperLUDIST uses
MPI [MPI ] for interprocess communication. All MPI applications begin with a
default communication domain that includes all processes, say N, of this parallel
job. The default communicator MPI_COMM _WORLD represents this communication
domain. The N, processes are identified as a linear array of process IDs in the range
0 ... N, — 1. SuperLUDIST does not use MPI_COMM_WORLD for its communicator,
instead, it creates a new process group derived from an existing group using N,
MPI processes. This way, the message passing calls within SuperLUDIST will be
isolated from those in other libraries or in the user’s code. We map the 1D array of
N, processes into a logical 2D process grid. This grid has nprow process rows and
npcol process columns, such that nprow x npcol = N,. A process can be referred
to either by its rank in the new group or by its coordinates within the grid. The
routine superlu gridinit() maps the existent processes to a 2D process grid.

superlu_gridinit (MPI_Comm Bcomm, int nprow, int npcol,
gridinfo_t *grid);

This process grid will use the first nprow x npcol processes from the base MPI
communicator Bcomm. The processes are assigned to the grid in a row-major or-
dering. The input argument Bcomm is an MPI communicator representing the ex-
istent base group upon which the new group is formed. For example, it can be
MPI_COMM WORLD. The output argument grid represents the derived group to be
used in SuperLUDIST. Grid is a structure containing the following fields:

struct {
MPI_Comm comm; /* MPI communicator for this group */
int iam; /* my process rank in this group  */
int nprow; /* number of process rows */
int npcol; /* number of process columns */
superlu_scope_t rscp; /* process row scope */
superlu_scope_t cscp; /* process column scope */

} grid;

In the LU factorization, some communications occur only among the processes
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in a row (column), not among all processes. For this purpose, we introduce two
process subgroups, namely rscp (row scope) and cscp (column scope). For rscp
(cscp) subgroup, all processes in a row (column) participate in the communication.

For some applications, such as block-diagonal preconditioning (see Section 4), it
is desirable to divide the processes into several subgroups, each of which solves a
distinct linear system. Thus, we cannot simply use the first nprow xnpcol processes
to define the grid. We can use superlu gridmap() to create a grid with processes
of arbitrary ranks.

superlu_gridmap(MPI_Comm Bcomm, int nprow, int npcol,
int usermap[], int ldumap, gridinfo_t *grid);

The array usermap[] contains the ranks of the processes to be used in the newly
created grid. usermapl[] is indexed like a Fortran-style 2D array with 1dumap as
the leading dimension. So usermap[i+j*ldumap] (i.e., usermap(i,j) in Fortran
notation) holds the process rank to be placed in {i, j} coordinate of the 2D process
grid. After grid creation, this subset of processes is logically ranked in the range
0 ... nprow#npcol—1 in the new grid. For example, if we want to map 6 processes
with ranks 11 ... 16 into a 2 x 3 grid, we define usermap = {11, 14,12,15,13,16}
and ldumap = 2. Such a mapping is shown below

0 1 2
0111|1213
1114|1516

In the actual implementation, superlu _gridinit () simply calls superlu_gridmap()
with usermap[] holding the first nprow x npcol process ranks.

3.3.3  Drwer Routines. There are two driver routines, one is called pdgssvx_ABglobal()
for the global input interface, and another is called pdgssvx() for the distributed
input interface. Their calling sequences are as follows.

pdgssvx_ABglobal(superlu_options_t *options, SuperMatrix *A,
ScalePermstruct_t *ScalePermstruct,
double B[], int 1ldb, int nrhs, gridinfo_t *grid,
LUstruct_t *LUstruct, double *berr,
SuperLUStat_t *stat, int *info);

pdgssvx(superlu_options_t *options, SuperMatrix *A,
ScalePermstruct_t *ScalePermstruct,
double B[], int 1ldb, int nrhs, gridinfo_t *grid,
LUstruct_t *LUstruct, SOLVEstruct_t *SOLVEstruct, double *berr,
SuperLUStat_t *stat, int *info);

Five basic steps are required to use the above routines:

(1) Initialize the MPT environment and the SuperLUDIST process grid.
This is achieved by the calls to the MPI routine MPI _Init () and the SuperLUDIST
routine superlu gridinit() or superlu gridmap(). The grid structure is
then input to the driver routine and all the underlying computational routines.
(2) Set up the input matrix and the right-hand side.
In most applications, the matrices can be generated on each process without
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the need to have a centralized place to hold them. In this case, using pdgssvx()
is more convenient.

(3) Initialize the input arguments: options, ScalePermstruct, LUstruct, stat.
The subroutine set _default_options_dist() sets the default values for options
argument. The user can modify any of its field afterwards. ScalePermstruct
is the data structure that stores the several vectors describing the transforma-
tions done to A, including permutations and equilibrations. The routine
ScalePermstructInit () initializes this structure. LUstruct is the data struc-
ture in which the distributed L and U factors are stored, and can be initial-
ized by the routine LUstructInit(). Stat is a structure collecting the statis-
tics about runtime and flop count, etc., and can be initialized by the routine
PStatInit().

(4) Call the SuperLUDIST routine pdgssvx_ABglobal() or pdgssvx().

(5) Release the process grid and terminate the MPI environment.
After the computation on a process grid has been completed, the process grid
should be released by calling superlu gridexit(). When all computations
have been completed, the MPI routine MPI Finalize() should be called.

3.3.4  Dustributed Sparse Matriz-vector Multiplication Routine. Sparse matrix-
vector multiplication is needed in the iterative refinement routine to compute the
residual » = b — Az. It is also of great interest by itself, because it is a key
kernel in most iterative solvers. It is worth mentioning the routine designed for
the distributed input interface, where A is distributed by block rows. Consider
y «— Ax. For each i, we need to compute y; = 2?21 a; jx;j, where a;; are on
the same processor for all j. But some z; may be on some other processor, so
there is a need to communicate the  components. The algorithm consists of an
initialization phase and an actual multiplication phase. In the initialization phase,
each processor processes the local graph of A (i.e., all @; ;), and determines all the
J’s such that z; is nonlocal. It then informs those processors who own z; so that
they know they need to send z; to this processor. This phase involves an all-to-all
communication so in the end every processor knowns which of my local z; needs
to be sent to which other processors. Some optimization i1s performed to reduce
communication. For example, if a processor needs to send several z;’s to one other
processor, these z;’s are packed into one message, so that each processor sends no
more than one message to any other processor. Note that the initialization phase
is time-consuming, so we run it only once and save the communication pattern.
In the actual multiplication phase, each processor sends the corresponding local
parts of z to the processors who need them. Each processor also receives all those
nonlocal parts of z, and together with the local part of z, it then performs the
multiplication.

The initialization routine is called pdgsmv_init () and the multiplication routine
is called pdgsmv(). These routines are quite independent from the rest of the
library, and can be easily used outside SuperLUDIST. From our performance study
for large matrices on the IBM SP at NERSC, the initialization phase is usually only
3- to 4-fold slower than the multiplication phase [Li and Wang 2003]. So this pair
of routines can be very useful for many iterative solvers.
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4. ILLUSTRATION OF USE IN LARGE APPLICATIONS

In this section, we describe two applications in which SuperLUDIST has played a
critical role. The timings were obtained on the IBM SP at NERSC. A compute
node of the system contains sixteen 375-MHz Power3 processors.

The first application is in the solution of a long-standing problem of scattering
in a quantum system of three charged particles. The particles’ wave functions are
represented by the time-independent Schrodinger equation. A team of scientists
discovered a new exterior complex scaling formulism to represent the scattering
states. This significantly simplified the boundary conditions, and made the problem
computationally tractable [Baertschy et al. 1999]. Their finite difference scheme led
to complex, nonsymmetric linear systems. The matrix is sparse but has a block
structure, as shown in Figure 2. Each diagonal block A;; has the structure of a 2D
finite difference Laplacian matrix. It is very sparse: the number of nonzeros per
row i1s no more than 13. The block size is usually between 200,000 and 350,000.
For some model problem, it can go up to 2 million. Each off-diagonal block d;; is
a diagonal matrix. The total dimension of the whole system can be as large as 8.4
million.

An 4 °°°

3 A33 eee
A44 eee
. . . . .
. . . . L
. . . .

Fig. 2. The block-matrix structure of the quantum mechanics application.

These systems are very ill-conditioned. Even for the small model problems, none
of the iterative algorithms with simple preconditioners converge. On the other
hand, it is infeasible to use direct solver for the whole system, because the long-
range connectivity in the structure would cause tremendous fill using any ordering
algorithm. What we finally used is a combination of iterative and direct algorithms.
SuperLUDIST is used in building the block diagonal preconditioners for the CGS
iterative solver. That is, we solve a transformed linear system M~1Az = M~1b,
where M = diag(A11, Aaa, Ass, ...). The processors are divided into several groups,
each of which uses SuperLUDIST independently to factorize a diagonal block Aj;;
once, and performs a triangular solution for each preconditioning step. This shows
the usefulness of being able to arbitarily group processes into a SuperLUDIST grid
via superlu gridmap(), see Section 3.3.2.

To illustrate the scaling of SuperLUDIST, Table IV shows the times of factoriza-
tion and triangular solution for a diagonal block of order 2 million, using different
number of processors. The factorization achieved 10-fold speedup from 4 to 128
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Table IV. SuperLUDIST timings for the quantum mechanics matrix of order 2M.
P=4|P=8|P=16 | P=32 | P=64 | P =128
LU 5813.4 | 3160.6 1748.3 1070.5 742.2 560.6
Solve 66.5 85.4 53.9 53.9 36.1 27.5

processors, and 30 Gflops factorization rate. The solve time is usually under 5% of
the factorization time, but its scaling needs to be improved.

In the typical production runs, the number of CGS iterations ranges between 12
to 35 depending on models. Since each CGS iteration requires two preconditioning
steps, 24 to 70 solutions of the diagonal blocks are required. For a block of size
1 million, SuperLUDIST takes 1209 seconds to factorize using 64 processors (this
is done only once), and it takes 26 seconds to perform a triangular solve (this is
done repeatedly in each preconditioning step). The total execution time is about
1 hour. See [Baertschy et al. 2001; Baertschy and Li 2001] for more details on the
computations. This calculation was unprecedented, and the scientific breakthrough
result was reported in a cover article of Science [Rescigno et al. 1999].

The second application is in the solution of Maxwell equations in the electro-
magnetic field. This arises from the accelerator design where the cavity mode
frequencies and the field vector are sought. The researchers at the Stanford Lin-
ear Accelerator Center developed the widely used Omega3P simulation code for
this purpose. The finite element methods lead to large sparse generalized eigen-
system Kz = AMz. They need to find certain number of interior eigenvalues
and the associated vectors. We developed an exact shift-and-invert eigensolver for
Omega3P [Husbands et al. 2003]. That is, to speed up Lanczos convergence to the
interior eigenvalues, we solve a transformed eigensystem M(K —oM)~ 'z = pMz,
where p = 1/(A — o) and o is a shift close to the desired eigenvalues. We inte-
grated SuperLUDIST with PARPACK [Lehoucq et al. ], a parallel Lanczos code, to
construct a shift-and-invert eigensolver. In each step of the Lanczos process, we
need the matrix-vector multiplication M (K — oM )~'y. Here, SuperLUDIST com-
putes (K — o M)~ 1y. Tt factorizes (K — o M)~! first and only once for each shift,
then performs a triangular solve in each step of the Lanczos iteration. This eigen-
solver is competitive and often faster (up to 2.6-fold) than the existing inexact
shift-and-invert algorithm used in Omega3P, and is more reliable. The largest sys-
tem solved so far is of order 7.5 million, with 304 million nonzeros in each matrix.
Using one shift, we are able to find 10 eigenvalues close to that shift. PARPACK needs
about 5.5 solves for each eigenvalue. Using 24 processors, the factorization takes
3347 seconds, one triangular solve takes 61 seconds, and the total eigensolver time
is about 2.5 hours.

5. FUTURE WORK

We reviewed the algorithms and the implementation techniques in SuperLU. In
describing the user interface, we illustrated how the solver’s functionalities can be
easily deployed and expanded. The Users’” Guide [Demmel et al. 1999b] should
serve as a complete documentation on all the user-callable routines. Looking at
the real applications that used SuperLUDIST to solve linear systems and eigenvalue
problems, we demonstrated the solver’s usability and capability of handling very
large systems. Future work is planned in the following areas:
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—Improve the performance of the parallel triangular solution routine.
This becomes important because many applications use SuperLLU in a precondi-
tioning context, such as the two mentioned in Section 4. In those cases, for one
factorization, there needs many triangular solutions.

—Improve numerical robustness for SuperLUDIST.
We can enhance the current iterative refinement routine by using extra precision
to compute the residuals [Li et al. 2002]. In addition to the standard iterative
refinement, we can add other iterative solvers such as GMRES or QMR as an
option to the refinement method.

—Parallelize the symbolic factorization routine.
This will enhance the memory scalability of SuperLUDIST.

—Add ILU capability.
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