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Abstract 

ENHANCING GROUND PENETRATING RADAR SIGNALS THROUGH FREQUENCY 

COMPOSITING 

by 

Roger S. Tilley 

 

In this dissertation, we explore methods to combine multiple frequency Ground Penetrating 

Radar (GPR) signals in a manner to improve the resolution of images of deeply buried 

targets.  We propose using an optimization problem solver to combine multiple GPR 

frequency scans over the same area to improve image resolution.  First, we discuss GPR 

basics.  Second, we report on a method to simulate GPR radar scans over any type of terrain, 

any frequency, and any target depth for use in our study of GPR compositing methods.  

Third, we define an optimization problem solver, exploring its capability to achieve 

reasonable results as well as propose a figure of merit for the best solution measurement tool.  

In comparing the optimization problem solver result to methods previously explored in the 

literature, detailed by Dougherty [8], then Booth [5][48] and finally Bancroft [3], we found 

our algorithm exhibits a meaningful improvement compared to the named methods.  As an 

extension, we explored comparing scans from various heights using the optimization problem 

solver method with a Chirp excitation function at the same heights, finding edge detection 

improved with the response from the Chirp excitation function, but depth detection poorer 

than the optimization problem solver. 
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Chapter 1 

Introduction 

Interference reduction is vital in delivering a clear usable signal, whether in the form of 

beamforming in a noisy environment of radar target responses or effective communication in 

the presence of noise for mobile phone users, as examples.  Methods used to render a 

cleaner signal can also be used to combine signals of various frequencies.  Compositing of 

differing GPR frequencies has become popular to increase the resolution of GPR scans for 

deeply buried targets. 

The idea of compositing differing frequencies of GPR scans appears to be derived from the 

knowledge that the best frequency for clear signals varies dependent on the depth of the item 

to be imaged.  Adding these signals together, smartly, eliminates having to know at what 

depth an item is buried.  The difficult part is determining a way to combine the differing 

frequencies such that the best frequency is dominant at the depth that it images the best.  Of 

the methods to increase the resolution of GPR scans by compositing of differing frequencies, 

none that we have found use an optimization problem solver to determine the percentage or 

weight of each frequency that is combined for an optimal result. 

Defining GPR scans at differing frequencies of the same object or objects, as a cluster of like 

items, redefines the problem to one where an optimization problem solver can describe the 

relationship of items in the cluster.  The optimization problem solver of interest is the 

Expectation-Maximization (EM) Algorithm.  The EM algorithm, so named by Dempster, 

Laird, and Rubin (DLR) [7], is used on problems where the iterative computation of 
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maximum likelihood estimation is needed.  Incomplete data problems, missing data, grouped 

observations, mixtures, log linear models are some of the statistical models where the EM 

Algorithm has been applied.  Applying the EM Algorithm to finite mixture models like a 

collection of probability distributions is the statistical model we intend to explore.  We have 

modeled a GPR scan as a Gaussian probability distribution because Gaussian is the limit of 

the infinite sum of many other probability distributions.  The Gaussian distribution is used 

with linear systems because of its additive and multiplicative properties.  Our statistical EM 

algorithm method becomes a Gaussian Mixture Model (GMM) and a solution of the mixture 

weights, as the best representation of the sum of differing GPR scan frequencies over the 

same area, is sought.  Included with our method is a proposed a figure of merit for the best 

solution measurement tool. 

To develop the methodology with actual GPR scans was problematic because finding suitable 

sights to scan, the availability of scanning equipment, and nominal weather conditions for soil 

stability were not always readily available.  A couple of software programs were found with 

one we certified with actual field data to generate the data commensurate with actual scans.  

A second proprietary program in shell form (not as complete as the first) provided 

corroborative results.  With the software in hand, test cases were developed and theoretically 

scanned. 

Three methods representing the state of the art from literature were compared to the EM 

GMM method with interesting results.  Preliminary results indicate the EM GMM method 

displays data at deeper depths than the other 3, but sharpness is sacrificed.  Using the EM 

GMM method is the first use of technique to solve the compositing of GPR frequencies 

problem.  Illustrated in the following chapters are a more in-depth presentation of the 

development of the EMM GMM method as it relates to GPR compositing of frequencies of 
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deeply buried objects.  The dissertation is organized as follows.  In Chapter 2, basic GPR 

definitions are presented.  In Chapter 3, the details of the EMM GMM method are described.  

Chapter 4 discusses the use of the EM method over the Maximum Likelihood Expectation 

method for the solution to a class of problems.  A comparison of computer generated GPR 

scans with actual GPR scans is presented in Chapter 5.  In Chapter 6, examples of the EM 

GMM method’s use on test cases are exhibited.  Chapter 7, sections 7.1, 7.2 and 7.3 describe 

the three competing techniques by Dougherty [8], Booth [5][48], and Bancroft [3].  A 

comparison of these methods with the EM GMM method is discussed in Chapter 8.  Chapter 

9 explores using the EM GMM method on GPR scans from various heights above ground on 

buried targets.  In Chapter 10 a chirp function is developed for use as a GPR excitation 

function.  A comparison of results from a chirp excitation function and the EM GMM method 

is discussed in that Chapter.  In Chapter 11 conclusions are drawn and future work is 

discussed. 
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Chapter 2 

Ground Penetrating Radar Basics 

2.1 Basic analysis modes 

A Ground Penetrating Radar is a radar technique to map sub-surface artifacts using radio 

waves.  In practice, there are three modes of operation; reflection, velocity sounding 

(common mid-point) and trans-illumination, all depicted in Figure 2.1.  The most common 

mode is the reflection mode, where a radio wave from a transmitter at or above the ground 

surface propagates through ground medium to a buried artifact or target, reflecting the radar 

wave back to a receiving antenna.  The depth of the target can be determined by the length of 

time it takes to send and then receive the radar signal combined with the speed of the radar 

wave through the medium encountered during the radar path (two-way-travel-time). 

 

Figure 2.1. GPR Scanning Modes [1] 
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2.1.1 Reflection mode 

Relevant to the reflection mode method are signal arrival types, the theoretical resolution of 

the system and what item is the major contributor to the velocity in a medium.  Signal arrival 

types are direct air wave, critically refracted wave, direct ground wave and reflected wave, all 

depicted in Figures 2.2 and 2.3; where equations governing time, depth and velocity 

measurements appear. 

 

 

Figure 2.2. GPR Arrival Types [10]              Figure 2.3. Simple CMP plot w/equations for 
Arrival Types [10] 

 

The theoretical resolution is proportional to ¼ of the velocity in a medium divided by the 

frequency of the radio wave (i.e. the wavelength in a medium divided by 4; 

	 	 	 4⁄  ).  The velocity in a medium is proportional to the 

speed of light in a vacuum divided by the square root of the relative permittivity of the 

medium.  Permittivity of a medium is the major influence on the velocity in a medium.  

Permittivity is a measure of how an electrical field is affected by a dielectric medium and 

how it affects the same medium. 
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	 √⁄ ∗ 1  meters/ns                                   (2.1) 

c = speed of light (3e8 meters/sec) 

 – relative permittivity  

 

2.1.2 Common mid-point mode 

The velocity sounding (common mid-point) mode provides a method to determine the 

velocity of the radio wave through the medium it encounters.  This occurs by setting a 

transmitter and receiver at a specified distance apart; instituting a scan (transmitting a radar 

signal from a transmitter into media then recording the received signal at a receiving 

antenna).  The transmitter and receiver are then moved further apart, and the scan process is 

repeated several times.  The result provides a means to calculate the velocity through the 

medium encountered by the radio waves. 

The CMP (common mid-point) mode has two popular methods to calculate the velocity of a 

radio wave in a medium.  Figure 2.3 depicts the first method, a simple plot of the CMP result.  

The second method depicted in Figure 2.4 is called the Time2 – Transmitter (Tx)/Receiver 

(Rx) Separation2 analysis method (t2 – x2), where he slope of the plot is equal to 1/(velocity 

squared).  With simple manipulation of the result, the velocity can be determined. 
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Figure 2.4. Shows  	– 	 	   (st) [11] 

 

2.1.3 Trans-illumination mode 

The trans-illumination mode is used for bore hole scanning in two ways; One, a transmitter 

and receiver are moved in unison from one position to another beginning at the surface of the 

bore hole, continuing lower on either side of the area of interest.  Scanning is across the area 

of interest.  Two, with only 1 transmitter and several receivers placed at various depths 

scanning is commenced and recorded by the many receivers. 

 

2.2 GPR pulses 

Typically, short radar pulses are transmitted.  The most common pulses are “Ricker Pulse” or 

Monocycle.  A Monocycle pulse is the first derivative of a Gaussian pulse, where the second 
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derivative of a Gaussian pulse is the Ricker pulse.  Figure 2.5 depicts each pulse, Gaussian, 

Monocycle, and Ricker. 

 

 

Figure 2.5. Gaussian, 1st derivative (Monocycle), 2nd derivative (Ricker), (normally GPR 
response signals for Monocycle and Ricker are inverted) [12] 

 
 
 

Most commercial equipment manufacturers do not divulge their transmit pulse type, but the 

“Ricker” pulse is assumed.  Figure 2.6 depicts plots of typical reflected signals received 

without a buried target at various frequencies. Of note is that the interval between the direct 

arrival pulse and the ground bounce appears to change as the frequency changes.  In reality, it 

does not because the interval between the “first break” and the ground bounce remains 

approximately the same.  As the frequency increases the ground bounce becomes more well 

defined and is more distinct from the direct arrival response. 
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   (a)      (b) 

   
   (c)      (d) 

Figure 2.6. Typical reflected signals without target (direct air wave and direct ground wave 
visible) 

 

The antenna orientation, polarization, transmission pulse shapes and the available power 

verses loss mechanisms determined by the radar range equation are of interest but are beyond 

the scope of this work. 

 

 

 

Ground Bounce 

Direct Arrival 

Direct Arrival 

Ground Bounce

Ground Bounce 

Direct Arrival 

Ground Bounce 

Direct Arrival 

First Break 
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2.3 Two-Way-Travel-Time (TWTT) 

The GPR traces depicted in Figure 2.7 represent the reflected wave at 20 MHz and 50 MHz 

of a target at 10 meters below ground and 15 meters from the Transmitters (Tx) and 

Receivers (Rx).  There are 2 mediums the signal travels through, free space (Tx/Rx to 

ground) and moist sand (ground to target).  The velocities of free space and moist sand are 

0.3 and 0.1 m/ns, respectively.  To determine the distance to the target from Tx/Rx pairs the 

following equation must be solved using Figure 2.7. 

	
2 ∗ ⁄ 	 	

	 	 	
																																									 2.2  

TWTT = 280 ns – 40 ns = 240 ns; from the 20 MHz graph of Figure 2.7, 

where 40 ns is the “first break”, the start of reflected signal. 

  Medium 1 – free space, velocity 0.3 m/ns, distance to ground from Tx/Rx is 5 meters. 

TWTT(1) = (2 * 5 meters)/ (0.3 m/ns) ≈ 33ns                                  (2.3) 

Medium 2 – moist sand, velocity 0.1 m/ns, find distance (d1) to target from ground. 

d1 = (0.1 m/ns * (240 ns – 33 ns [TWTT(1)] )) /2 ≈ 10.35 meters                 (2.4) 

The total calculated distance (d) from Tx/Rx to target is calculated to be 15.35 meters (5 

meters + 10.35 meters [d1] ).  This is close to the defined 15 meter distance of the problem, 

but accurate because the true distance from Tx/Rx to target is at an angle which is longer than 

the perpendicular distance from the target to Tx/Rx. 
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Figure 2.7. GPR trace depicting Two-way-transit-time for 2 frequencies of same target. 

 

TWTT 
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2.4 Modeling Basics 

The Transmission-Line matrix (TLM) method [6] and the Finite Difference Time Domain 

(FDTD) method [2][14][44] are the two methods used to model GPR analysis signals.  Both 

methods provide a solution to Maxwell’s equation subject to geometry, initial conditions, and 

boundaries of the defined problem.  The TLM method is implemented as an electrical 

network model solution to an electromagnetic field problem.  Transmission lines are 

interconnected at regular intervals to form TLM nodes.  Voltage and current pulses simulate 

the propagation of electric and magnetic fields.  The distance between TLM adjacent nodes is 

defined by the model space step.  The time step represents the time which a pulse takes to 

travel from TLM node to the next. 

The FDTD method is a solution to Maxwell’s equations expressed in differential form.  The 

partial derivatives in Maxwell’s equations are discretized using central difference techniques 

resulting in difference equations solved by an iterative process.  The FDTD model space and 

time steps are included in the difference equations. 

An FDTD model is formed by combining Yee cells [27] (Figure 2.8) as building blocks into 

an FDTD cell.  FDTD cells are combined into a grid (Figure 2.9); defining the area to 

analyze.  Yee cells are a discretized version of Maxwell’s curl equations applied to an FDTD 

cell.  Yee’s method defines the derivatives necessary to solve Maxwell’s equations in 3-D 

using the FDTD method.  The discretization is spatial (∆x, ∆y, ∆z) and temporal (∆t).  A 

solution is determined in an iterative manner.  Each iteration corresponds to one-time step 

representing the advance of electromagnetic fields propagating in each FDTD cell.  There 

remains a computational issue at the boundary of the model which is beyond the scope of this 
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dissertation.  The details of the Yee cell, FDTD grid, and boundary solutions can be found in 

references [9][28]. 

 

 
Figure 2.8. Yee cell [27] 

 

 
Figure 2.9. FDTD Grid – made up of Yee cells [9][27] 
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Chapter 3 

Expectation-Maximization Gaussian Mixture Model Method 

3.1 Expectation-Maximization Algorithm 

The EM algorithm belongs to a class of optimization problem solvers.  Optimization problem 

solvers are used to solve many types of problems among them grouping like items contained 

in complex mixtures; solving incomplete data problems or determining the membership 

weights of data points in a cluster within a finite Gaussian mixture model [13][18].  It is this 

latter problem type we have exploited to combine multiple GPR frequency scans into a 

composite wave.  The Gaussian distribution is often used over other mathematical 

distributions when the distribution of the real-valued random variables is unknown.  We have 

defined a finite mixture ; of K components as mixtures of Gaussian functions: 

; 	 |	 																																																									 3.1  

Where: 

-  are K mixture components with a distribution defined over |  with 

parameters 	 ,   (mean, covariance) 

- 	 ⁄ 	| | ⁄
	                  (3.2) 

-  are the mixture weights, where  ∑ 1. 

- , ……… ,   Data set for a mixture component in d dimensional space. 
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The mixture weights ( ) are unknown, while parameters 	 , , (mean and 

covariance), are calculated from the data set for mixture components.  The K mixture 

components are defined as the GPR scan frequencies, and the number of points in the data set 

( ) in each scan are defined as n.  Equation 3.8, the log likelihood of ; , is to be solved 

for the mixture weights, but taking the derivative is challenging.  The solution is more easily 

handled by the EM algorithm method. 

The EM algorithm method can be simply described as a process where the probability of each 

possible outcome of missing data is computed, (E-Step).  From the probabilities of all the 

possible completions or outcomes, a weighted training set, , is created; equation 3.3, (E-

Step).  Then a modified MLE process uses this weighted training set to compute new 

parameter values, , , equations 3.5, 3.6 and 3.7, and a new value for the convergence 

designating equation; the log likelihood of ; , equation 3.8, (M-Step).  Using the 

weighted training set guarantees convergence to a local maximum of the likelihood function, 

with the local maxima increasing for each iteration.   

In each iteration of an EM algorithm there are 2 steps, the Expectation step (E-step) and the 

Maximization step (M-step).  The E-step computes the conditional expectation of the group 

membership weights ′  for  of K mixture components, including unobservable data 

given parameters .  The M-step computes new parameter values ,  to maximize the 

finite mixture model using the membership weights.  The E-step and M-step processes are 

repeated until a stated stopping criterion is reached which we define as convergence.  

Convergence is signaled by the log-likelihood of ;  not appearing to change substantially 

from one iteration to the next.  The E-Step, M-step and log-likelihood are described as 

follows: 
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E-Step – 

	
| ∗

∑ | ∗
                   (3.3) 

for  1	 ,			1 ;    

with constraint ∑ 1    

M-Step – 

	∑                      (3.4) 

	  , for  1	 	                   (3.5) 

	 ∑ ∗ 	                    (3.6) 

for  1 	 	    

		 ∑ ∗	 	 	                (3.7) 

Convergence (log likelihood of  ;  ) – 

Log  ∑ log ; 	 ∑ log∑                (3.8) 

 

The Expectation-Maximization Gaussian Mixture Model process is as follows: 

1. Initialize algorithm parameters; weights (mixture and group membership), mean, 

covariance, for each trace. 

2. Expectation step – estimate parameters. 
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3. Maximization step – maximize estimated parameters. 

4. Check for convergence – log likelihood of mixture model. 

5. Repeat steps 2 – 4 until the change from iteration to iteration is below or equal a 

defined value. 

6. Combine traces with defined mixture weights. 
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Chapter 4 

Maximum Likelihood Estimation Verses Expectation-Maximization 

Maximum Likelihood Estimation (MLE) and the Expectation-Maximum are complementary 

optimization problem solvers.  Both are methods of estimating parameters of statistical 

models given a set of observations. The EM algorithm is a generalization of the MLE case 

when the given set of observations is incomplete.  The MLE is a method to estimate the 

parameter values of a statistical model of observations that maximizes the likelihood of 

making those set of observations given the parameters. In the incomplete data case, there are 

multiple maxima and no closed form solution.  The parameters estimated using the MLE are 

dependent on the initial guess and reaching a global maximum is not guaranteed in the 

incomplete data case.  The EM algorithm method reduces the estimation problem into many 

simpler optimization problems where a unique global maximum exists and often computed in 

closed form.  The sub-problems are created in a way that guarantees corresponding solutions 

with each solution (local maximum) monotonically increasing towards a global maximum.  

The following example explains the differences mathematically.  Given a random sample X1, 

X2, …, Xn independent and identically distributed (i.i.d.) with a probability density function 

, ), where  is the unknown parameter to be estimated; the joint probability density 

function (PDF) can be derived as 

L( ) = P(X1 = , X2 = , ..., Xn = ) =  

; ∗ ; … ;    =   	∏ ; .																							 (4.1) 

Assuming the PDF is Gaussian with variance, , known and the mean, ,	unknown, then the 

likelihood equation is defined as the following: 
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L( ) = ∏ ; , 2 ⁄ exp ∑ 															 4.2  

To change from the multiplication of elements to the sum of elements, take the Log of the 

likelihood equation then solve for the mean  by taking the partial derivative with respect to 	

and setting the result equal to 0, solving for ;	the	maximum	likelihood	estimate.  To verify 

that the result represents the value which maximizes the likelihood function, take the second 

partial derivative of the log likelihood function with respect to , returning a negative value for 

verification. 

Log (L( )) =  log 	 log 2 ∑ 	–	
         (4.3) 

log	 2 1 ∑ 	
0    (4.4) 

Solve for ;       	
∑

       (4.5) 

The MLE process becomes hard when there is more than one data set and only part of the 

combined data sets can be observed (hidden).  Estimating mixture parameters with an MLE 

method is difficult also.  A mixture distribution has a PDF of the form 

	∑ ; , where there are K number of components in the mixture model for each k. 

The joint PDF with n observed data for each k is defined as 

| ,  ∏ ∑ ;	 ,     (4.6) 

with mixture weights , complete observed data set x with constraints ∑ 1 and 	

0 for all k.  The Log of the likelihood equation yields the following: 

Log ( | , 	∑ ∑ ; 																																					 4.7  
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The log of sums makes solving this equation using an MLE method challenging.  There are 

many local maxima that are less than the global maximum.  The weight values must be 

chosen.  Choosing the weight values that arrive at a global maximum is not likely initially, 

each choice a guess as to the exact weight values that reach a global maximum. 

The EM algorithm provides a means to estimate the weights and guarantees convergence of 

the likelihood equation to a non-decreasing local maximum with each completion of all steps 

of the algorithm, ending at a global maximum for the equation.  The EM algorithm reduces the 

MLE optimization problem to a sequence of sub-problems, simpler, that are guaranteed to 

converge. 

There are two examples we encountered in the literature which illustrate the power of the EM 

algorithm; both are coin toss problems described as follows.  One with two coins being tossed 

[21][26] and a second with three coins being tossed [20][22][23][24][25].  Both are hidden 

data problems.   In the first example, 2 coins are tossed creating 5 sets of 10 flip outcomes, 

shown in Fig, 4.1.  In the case where all data is known; which coins, A or B produced which of 

the 5 sets, the MLE process is straight forward to determine the probability of coin A landing 

on a head ( A) and the probability of coin B landing on a head ( B).  The calculation is shown 

in equations 4.12 and 4.13. 

H T T T H H T H T H coin B 
H H H H T H H H H H coin A 
H T H H H H H T H H coin A 
H T H T T T H H T T coin B 
T H H H T H H H T H coin A 

Figure 4.1. Coin A and Coin B recorded tosses 

MLE process solution – we have data points x1, x2, x3, … xn drawn from set X, representing 

coin flip heads (H) or tails (T) for any coin.  For a parameter vector  in a parameter space Ω	
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we have a distribution	P x| 	for any 	∈ Ω, such that ∑ | 1∈  and P(x| )  0 for 

all x.  The distribution P(x | ) is defined as: 

P x	|	 	 			
												 	
1 				 	 			 	 	 	 	 	 											 4.8 	

The likelihood is  

P x1,	x2,	…	xn	|	 	 	∏ 	| 	 .			 	 	 	 	 											 4.9 	

The log-likelihood labeled L( ) is  

L 	 		∑ log 	|	 	 		

log( Nh * (1- )(n – Nh)) = (Nh) log( ) + (n – Nh) log(1 – ).        (4.10) 

Where:  

- Nh is number of heads.  

- n is total number of tosses. 

The maximum likelihood estimator ( ml ) = 	  [set equal to 0 and solved for ]; 

	
	 	 	

	 	 	 	
																																																						 4.11  

Then the probabilities for coin A and B landing on a head are as follows: 

	 		
	 	 , 	

	 	 	 	 , 	
	
24

24 6
0.80																								 4.12  

	 		
	 	 , 	

	 	 	 	 , 	
	

9
9 11

0.45																							 4.13  
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EM process solution – we assume the same data points, parameter vector, parameter vector 

space with a different distribution because it is unknown which set of 10 coin flips belongs to 

coin A or coin B (hidden data).  Either coin is equally likely chosen when determining the 

probability of heads for coin A and coin B.  The distribution P(x, y | )  is defined as follows: 

 P(x, y | ) = P(y | ) P(x | y, ;			 	 	 	 	 										 4.14 	

Where: 

	  – { , A, B}. 

x – 5 sets of 10 coin flips with each flip either Heads or Tails. 

y – {coin A, coin B} 

A	–	probability of heads for coin A	

B	–	probability of heads for coin B	

P y	|	 	 	
											 	

1 				 	 			 	 	 	 	 										 4.15 	

P x	|	y,	 	 	
	 	 1 															 	 	
1 	 	 1 			 	 	

																																													 4.16 	

h – number of heads; t – number of tails 

The EM process is 2 steps, E-step and M-step.  The E-step for this case is defined as: 

 assume coins A and B are equally likely; (  = 0.5).  

 start with some initial guess for probability of heads for coin A and coin B. 

 compute the expected number of heads and tails for each coin. 

Probability of observation coming from either coin A or coin B or both: 

P x	|	 	 	 	 	 1 	 	 1 	 	 1 	 	 	 											 4.17) 
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Probability of observation coming from coin A: 

P y	 	coin	A	|	x,	 	 	P A 	 	
	 	

	 	 	 	 	 	
		 	 								 4.18 	

Expected number of heads for coin A: 

	P A 	*	 number	of	heads	in	observation	set	1,	2,	…	5 	 	 								 4.19 	

Expected number of tails for coin A: 

	P A 	*	 number	of	tails	in	observation	set	1,	2,	…	5 	 	 	 								 4.20 	

Probability of observation coming from coin B: 

P y	 	coin	B	|	x,	 	 	P B 	 	
	 	 	

	 	 	 	 	 	
		 	 							 4.21  

Expected number of heads for coin B: 

	 	P B 	*	 number	of	heads	in	observation	set	1,	2,	…	5 	 	 								 4.22 	

Expected number of tails for coin B: 

	 	P B 	*	 number	of	tails	in	observation	set	1,	2,	…	5 	 	 	 								 4.23 	

	

The M-step for this case is defined as: 

 Maximize the estimated parameters, computing new estimates. 

	
∑ 	 	 	 	 	

∑ 	 	 	 	 	∑ 	 	 	 	
																			 4.24  

	
∑ 	 	 	 	

∑ 	 	 	 	 	∑ 	 	 	 	
																		 4.25  

Repeat E-step and M-step until A and B converge. Numerical results for one iteration of the 

E-step and M-step procedures are summarized in the Table 4.1 and equation 4.26, assuming 
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that either coin chosen is equally likely for an observation (  = 0.5) and the initial guess for the 

probability of coin A and B heads is A = 0.60 and B	 	0.50	respectively. 

Table 4.1. Observations of coin flips coin A, B or both 

 Initial guess: A  = 0.60, B 	0.50 Coin A Coin B 
Observations Nh Nt P(A) P(B) Nh Nt Nh Nt 

x1: HTTTHHTHTH 5 5 0.45 0.55 2.2 2.2 2.8 2.8
x2: HHHHTHHHHH 9 1 0.81 0.20 7.2 0.8 1.8 0.2
x3: HTHHHHHHTH 8 2 0.73 0.27 5.9 1.5 2.1 0.5
x4: HTHTTTHHTT 4 6 0.35 0.65 1.4 2.1 2.6 3.9
x5: THHHTHHHTH 8 2 0.64 0.35 4.5 1.9 2.5 1.1

 sum 21.2 8.5 11.8 8.5
 

New estimates: 

	
21.2

21.2	 	8.5
0.71																																																		 4.26  

	
11.8

11.8	 	8.5
0.58																																																	 4.27  

 

After 8 iterations the probability of coin A landing on heads is 0.80 ( A) and the probability 

of coin B landing on heads is 0.52 ( B), the EM solution.  Figure 4.2 illustrates code that can 

be used to compute Table 4.1. 
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Figure 4.2. 2 coin problem EM Solution MATLAB code 
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In the second example, 3 coins are tossed with the first coin (coin 0) determining which of the 

next 2 coins, coin 1 or coin 2, will be tossed three times.  A sequence is generated where coin 

0 is tossed first; should the coin show heads (H), then coin 1 will be tossed three times.  

Should coin 0 show tails (T), then coin 2 will be tossed three times.  The process is repeated 

several times producing a set of observations as follows: 

 Coin 0 – H, T, H, T, H 

 Coin 1 or 2 – HHH, TTT, HHH, TTT, HHH 

As with the two coin example, to determine the probabilities of coin 0 being heads, coin 1 

showing heads, and coin 2 showing heads, when all data is known, the MLE process is 

straight forward.  The model distribution, P(x, y | ) can be defined as before in the MLE 

solution of the two coin problem, with the model parameters to be estimated defined as 

 – {coin 0, coin 1, coin 2} = { , A, B}. 

The MLE process solution and numerical results are defined by the following equations: 

 probability of coin 0 heads =  

	 	 ,			 	0
	 	 	 	0	

	 	
3
5

0.6																														 4.28  

 probability of coin 1 heads = 

	
	 	 ,			 	1

	 	 	 	1	
	 	

9
9

1																															 4.29  

 probability of coin 2 heads =  

	
	 	 ,			 	2

	 	 	 	2	
	 	

0
6

0																														 4.30  
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A hidden data problem is created when the result of the coin 0 toss is unknown.  The coin (1 

or 2) that generated the observation sequence is also uncertain.  The EM process provides a 

solution using equations defined previously for the two coin case with some modifications.  

The chance of drawing a head from tossing coin 0 ( ) is not equally likely.  New parameter 

estimates for coin 0, coin 1 and coin 2 are generated using E-step and M-step equations 

defined in Appendix A, with an initial guess of λ = 0.3, θA = 0.3, θB = 0.6 as probabilities of 

coin 0, coin 1 and coin 2 showing heads when tossed.  A software program (Appendix B), 

written in the Python programming language, determines the EM process solution by 

computing the probabilities and expected values that appear in Table 4.2.  The EM process 

solution and numerical results are summarized in Table 4.2. 

Table 4.2. EM process numerical results for each Iteration 

Iteration  A B A_1 A_2 A_3 A_4 A_5 
0 0.3 0.3 0.6 0.0508 0.6967 0.0508 0.6967 0.0508
1 0.3092 0.0987 0.8244 0.0008 0.9837 0.0008 0.9837 0.0008
2 0.3940 0.0012 0.9893 0.0000 1.0000 0.0000 1.0000 0.0000
3 0.4000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

 

The items to note are the values for λ, qA, and  qB which are 0.4, 0.0, and 1.0 respectively.  

This indicates that coin 0 chooses tails most often.  Coin 1 chooses tails all the time while 

coin 2 chooses heads all the time.  For the observations shown the most likely outcome 

probabilities are presented in the table; exactly opposite to the result indicated when all coin 

toss data is defined, not hidden.  The variables A_1, A_2, A_3, A_4 and A_5 display the 

posterior probabilities of A for each of the 5 data groups of three coin tosses at each iteration 

through the E-step, M-step process as EM convergence is achieved. 

  



28 
 

Chapter 5 

Computer Generated Scans Verses Actual Scans 

5.1 Actual Scans 

To conduct this research, a method was needed to simulate actual scans to overcome issues 

such as weather events, GPR scanning machine availability, where and what depth objects are 

buried and in what media.  A viable simulation engine would allow for many variations to be 

attempted in short order, in a controlled environment.  With some assurance, single traces of 

GPR radar scans can be described, but the software that collects the traces and forms them 

into an image is a bit harder.  Scan descriptions point out the direct arrival, ground bounce 

and target reflection portions of each trace.  Forming an image of this collection of traces 

requires the traces to be re-oriented and scaled to display a 3-D image.  Fortunately, there are 

several programs that perform this process.  Among them are ReflexW [30], MATGPR 

[31][50][51], and GPR-SLICE [28].  GPR solvers create GPR radar scans that are easily 

processed by any of the listed scan process software programs using the TLM [6] or FDTD 

[14] methods to create the end result, briefly described in Chapter 2.  GPR solvers 

encountered include GPRSIM [29], GprMax [9] and an unfinished proprietary program from 

NEVA Electromagnetics, LLC of Yarmouth Port, Massachusetts.  GprMax [9] was the 

routine chosen to verify computer simulation results with actual scans because it appeared to 

be the most complete with many adjustable features. 

Early on during this study, an opportunity presented itself to acquire data using a state-of-the-

art scanner over an area where targets, type of media being used and weather conditions were 

mostly defined.  Forest Lodge or “Little Yosemite”, as it is often called, resides in the 
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Northern Sierra foothills near Greenville, California.  Greenville is at the north end of Indian 

Valley, one of the headwaters of the Feather River near Lake Almanor and Mount Lassen 

National Park, approximately 60 miles north of Lake Tahoe.  The weather is mild with 

temperatures in the 70’s from May to October.  Access to the site was allowed by KGO AM 

radio personality Dr. Bill Wattenburg.  On the site, a collection of metal (tin) roofing sheets 

were buried.  Each sheet was approximately 1.83 meters (6 feet) long, 66 centimeters (26 

inches) wide by 1.27 millimeters (0.05 inches) thick (in depth), Figure 5.1.  A total of 8 

sheets were buried at different levels.  The sheets were buried at depths of 0.5 meters (1.64 

feet), 1.0 meter (3.28 feet), 1.5 meters (4.92 feet), 2 meters (6.56 feet), 2.75 meters (9.2 feet), 

3.0 meters (9.84 feet), 3.5 meters (11.48 feet) and 4 meters (13.12 feet).  The distance 

between each sheet varied beginning with 1.22 meters (4 feet) continuing to 1.04 meters (3.4 

feet), 0.89 meters (2.92 feet), 1.1 meters (3.6 feet), 0.33 meters (1.08 feet), 2.1 meters (6.89 

feet) and 1.3 meters (4.27 feet), respectively, Figure 5.2.  Without a geological survey, the 

media was described as a mixture of clay and sand.  To scan the Forest Lodge site, a multi-

static radar by MALA GeoScience Corporation named MALA Imaging Radar Array System 

(MIRA), was used.  The MIRA radar consisted of 9 transmitters and 8 receivers constructed 

such that each receiver receives a signal from 2 adjacent transmitters at different times 

allowing for 2 channels received by one receiver; creating 16 channels of data, Figure 5.3.  

The center frequency of the MIRA radar was 200 MHz; cutting a 2 meter swath over the area 

where buried targets are located, collecting data to produce a 3-D image.  Figure 5.4 shows 

the result of the 200 MHz scan over the area containing the buried metal sheets.  Notice only 

4 of the 8 sheets are visible at 200 MHz. 
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Figure 5.1. Tin Roofing Sheets 

  
Figure 5.2. Tin roofing Sheets buried at different Depths at Forest Lodge 

 

   
Figure 5.3. MIRA Radar 
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Figure 5.4. 3-D output of 200 MHz scan by MIRA Radar at the Forest Lodge Test area 

 

A second radar was used to scan the Forest Lodge area.  The second radar was built by 

Sensors and Software, Inc., named pulseEKKO 100 radar.  This radar consisted of 1 

transmitter and 1 receiver and operates at 25 MHz.  The antennas were 3.68 meters (12 feet) 

in length, 11.4 centimeters (4.5 inches) in width and 1.6 centimeters (0.63 inches) thick.  

Figure 5.5 shows the pulseEKKO 100 radar at the Forest Lodge Site.  The pulseEKKO radar 

was mounted on a platform of PVC tubing with wheels, as shown.  The transmitter and 

receiving antennas were separated by approximately 9.14 meters (30 feet) to avoid signal 

saturation by the receiver.  Figure 5.6 shows both the MIRA radar and the pulseEKKO 100 

radar.  Figure 5.7 depicts the 2-D scan result using MATGPR software.  Due to the low 

frequency, only a rough outline of the buried roofing tiles is shown and not clearly.  For this 
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figure, the features of MATGPR used to generate the image include the following in order 

[32]: 

 Removed Global Background Trace – All traces are added together, then divided by 

the number of traces to form an average trace or background trace which is removed. 

 Remove DC Component – Remove the arithmetic mean from each trace by 

subtraction. 

 Applied Dewow Filter – Apply a zero-phase high pass FIR (Finite Impulse 

Response) filter with a cutoff frequency at 2% of Nyquist. 

 Trimmed Time window – Data after set cut-off time is discarded.  TWTT reduced to 

300 ns from 595 ns. 

 Resampled Scan Axis (x axis) – Increase or decrease the number of samples.  

Sampling rate increased from 55 samples to 5500. 

 Adjust Signal Position – Modify time “time zero” of all scans by removing data up to 

set amount.  Removed 25 MHz radar antenna separation of 9.14 meters, moving the 

time zero by 31 ns in free-space. 

 Resampled Time Axis – Increase or decrease the number of time samples.  Sampling 

increased for 86 to 860 samples. 

Implementing these features provided for a cleaner image, but not enough to distinguish the 

pulseEKKO 100 response from the 8 roofing sheets. 
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Figure 5.5. pulseEKKO 100 radar mounted on wheeled platform in front of test lane of 
buried roofing sheets 

 

 
Figure 5.6. MIRA radar and pulseEKKO 100 Radar at Forest Lodge Test Area 

MIRA 
pulseEKKO 100 
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Figure 5.7. pulseEKKO 100, 25 MHz Radar scan at Forest Lodge Test Area. 
1 – Direct Arrival/Ground Bounce. 2, 3 – Curve of reflections from roofing tiles. 4, 5 - Other 
buried artifacts and air gaps. 6 – Scan stopped here but data storage device continued to store 
information. 

5.2 Computer Generated Scans 

A 3-D model of the Forest Lodge Test area, Figure 5.8, was created using GprMax [9].  The 

roofing sheets were modeled as perfect electrical conductors; materials with infinite electrical 

conductivity or equivalently zero resistivity.  The model contains a 0.15 meter (0.5 feet) air 

space below 9 transmitters and 8 receivers, followed by roofing sheets buried at 0.5 meters 

(1.64 feet), 1.0 meter (3.28 feet), 1.5 meters (4.92 feet), 2.0 meters (6.56 feet), 2.75 meters 

(9.02 feet), 3.0 meters (9.84 feet), 3.5 meters (11.48 feet), and 4.0 meters (13.12 feet), in sand 

with a relative permittivity ( ) of 3.0 and an electrical conductivity of ( ) of 0.01 mS/m.  

The scan area is 30 meters wide with the spacing between roofing sheets at 1.22 meters (4.0 

feet), 1.04 meters (3.4 feet), 0.89 meters (2.92 feet), 1.1 meters (3.6 feet), 0.33 meters (1.08 

feet), 2.1 meters (6.89 feet), and 1.3 meters (4.27 feet).  In the model, each sheet is 1.83 

3 

2 

1 

4 

5 

6 
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meters (6 feet) long, 66 centimeters (26 inches) wide by 1.27 millimeters (0.05 inches) thick.  

The scan area is 30 meters (98.42 feet) in the x (scan) direction, 5 meters (16.4 feet) in the y 

direction and 2.5 meters (8.2 feet) in the z direction. 

 
Figure 5.8. GprMax [9] 3-D model of the Forest Lodge test site of buried roofing tiles 

The area was scanned at 200 MHz resulting in Figure 5.9 a-h, 2-D slices of the 3-D analysis 

at each receiver.  For the model case, all 8 roofing sheets are shown not just 4.  This is 

possible because the chosen media in the model, sand, was not exactly what the roofing 

sheets were buried in.  Without a geological survey, the exact mixture remains unknown, thus 

the speed through the media was not the same as the actual scan, and the attenuation of the 

radar signal was much greater in the actual scan.  Because the model is a simulation, 

variables can be adjusted to match the actual material, but no attempt was made.  The 

comparison of actual and computer-generated results is quite good which strengthens our 

argument that GprMax can be used to simulate imaging below ground when actual equipment 

is not available.  Figure 5.10 shows a typical GprMax [9] input file for a 3-D analysis. 

Sand ( 3  
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Figure 5.9. (a) through (h) represent a 2-D slice at each of 8 receivers for the 3-D simulated 
analysis of the Forest Lodge model. (a) receiver 1, (b) receiver 2, (c) receiver 3, (d) receiver 
4, (e) receiver 5, (f) receiver 6, (g) receiver 7, (h) receiver 8. 

a b

c d

e f

g h
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Figure 5.10. Typical GprMax [9] input file for a 3-D analysis 

A 2-D model of the Forest Lodge test area was created, using GprMax [9], to compare the 

result of an actual scan from the pulseEKKO 100 radar with the model.  The 2-D model, like 

the 3-D model, was constructed with a 0.15 meter (0.5 feet) air space followed by roofing 

sheets buried at 0.5 (1.64), 1.0 (3.28), 1.5 (4.92), 2.0 (6.56), 2.75 (9.02), 3.0 (9.84), 3.5 

(11.48), and 4.0 meters (13.12 feet) modeled as perfect electrical conductors.  The spacing 

between each sheet is 1.22 (4), 1.04 (3.4), 0.89 (2.92), 1.1 (3.6), 0.33 (1.08), 2.1 (6.89) and 

1.3 meters (4.27 feet), respectively.  The roofing sheets were buried in sand with a relative 

permittivity ( ) of 3.0 and an electrical conductivity ( ) of 0.001 mS/m.  The 2-D model 
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constructed was 5 meters in depth and 30 meters in width, Figure 5.11.  Figure 5.12 shows an 

example of a GprMax [9] input file that is used to run an analysis. 

 
Figure 5.11. GprMax [9] 2-D model of Forest Lodge test area with buried roofing sheets 

 

 
Figure 5.12. Typical GprMax [9] input file for a 2-D analysis 

Sand ( 3  
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The 2-D area was scanned at 25 MHz with the results shown in Figure 5.13.  As with the 

actual scan result, only a rough outline of the 8 roofing tiles is shown; albeit a bit better than 

the actual result.  Again, this is the result of not quite modeling the actual parameters of the 

media, like permittivity and conductivity.  The simulated result shown depicts the signal 

result at an elevated depth (TWTT less than actual scan).  This is most likely due to the exact 

height above the ground of the actual radar antennas not correctly depicted in the model.  The 

trend is correct, however.  The result for 3-D and 2-D analyses confirm that actual scans can 

be simulated by software programs specifically, by the GprMax [9] software program.  The 

actual 2-D data scan encountered unexplained problems which were not resolved because of 

the unavailability of the radar equipment and scanning site. 

 
Figure 5.13. 2-D simulated analysis of Forest Lodge Test Area (25MHz).  1 – Direct Arrival.  
2 – Ground bounce.  3,4 – Curve of reflections from roofing tiles. 

 
An analysis of the 2-D model was run at 900 MHz to ascertain the robustness of the GprMax 

[9] program and the input model developed.  Figure 5.14 shows the result of this analysis.  As 

1 2 

4 3 



40 
 

expected, the 8 roofing sheets are clearly illuminated.  Higher frequencies show objects with 

greater detail closer to the surface.  The items are delineated with better fidelity than at 200 

MHz.  Again, reflections below each sheet are shown as in the 200 MHz case.  The software 

program accurately captures the electromagnetic impedance changes that occur around an 

object when being scanned by GPR.  The result is an indication that this software 

implementation translates well over the frequencies of interest for our EM GMM study.  The 

tools needed for work with the EM GMM algorithm method are in place. 

 
Figure 5.14. 2-D Simulated analysis of Forest Lodge Test Area (900 MHz).  Depicting all 8 
roofing sheets  
 

To demystify the Y-axis in Figure 5.12, (a sample GprMax [9] input file), and Figure 5.11, 

(GprMax [9] 2-D model of Forest Lodge test area), the values shown are easily computed 

knowing that the Y-axis values in Figure 5.12 are the reverse of what is plotted in Figure 

5.11.  Also, the GprMax [9] convention is to accept the last description of a defined area as 
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the media to be used in any analysis.  An example is the line listing the sand media in Figure 

5.12, (“#box” line), the sand media is plotted first, then the line listing the free-space media 

overwrites a small portion of the sand media.  The top 0.15 meters (5 – 4.85 = 0.15) is free-

space in this case.  To get the Y-axis value of the first roofing sheet, take the max Y value 

from the “#domain” line which is 5 and subtract the last Y value (y2) on the “#box” line 

(noted as x1 y1 x2 y2) which is 4.35.  The resultant outcome is 0.65.  One more subtraction 

must occur to get the 0.5 meter value in Figure 5.11.  The free space Y value of 0.15 is 

subtracted from 0.65 equaling the 0.5 meter value shown. 
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Chapter 6 

EM GMM Process In Operation 

6.1 Combining Harmonics of Sine waves 

Having described GPR basics, discussed the EM GMM method, and the connection between 

EM and MLE, (answering the question “Why does EM work?”), we continue by applying the 

EM GMM method to examples or test cases.  The first test case involved summing sine 

waves at several frequencies to form a square wave.  A square wave is the sum of odd 

harmonics, all in phase, where the relative amplitude is 1/(harmonic number).  A Harmonic is 

defined as whole number multiples of a fundamental frequency.  Table 6.1 describes the 

properties of a few periodic signal characteristics. 

Table 6.1. Periodic Signal characteristics 

 Square Wave Triangle Wave Sawtooth 

Freq. components Odd # Harmonics Odd # Harmonics All harmonics 

Relative 
Amplitude 

1/Harmonic # 1/Harmonic # squared 1/Harmonic # 

Phase All Harmonics in 
phase 

Every other Harmonic 
180 deg. Out of phase 

Even Harmonics 
180 deg. Out of 
phase 

Harmonic – whole number multiples of the fundamental frequency 

 

A series of six sine waves were constructed, which when weighted properly, sum to a square 

wave.  Figures 6.1, 6.2, and 6.3 display the six sine waves (50, 150, 250, 350, 450, and 550 

Hz), all odd number harmonics (1, 3, 5, 7, 9 and 11) of a 50 Hz square wave.  Each sine wave 
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shown has an initial magnitude of 1, before being used in the EM GMM algorithm.  The 

result, after processing with the EM GMM algorithm, is shown in Figure 6.4.  Outlined in red 

is the desired square wave, achieved when the six sine waves are weighted properly (1.0, 

0.3333, 0.2000, 0.1429, 0.1111, 0.0909, respectively).  Outlined in blue, in Figure 6.4, is the 

result of the EM GMM algorithm combination of the six sine waves.  The EM GMM result is 

not quite square, but reasonably close.  The error can be attributed to the constraints 

associated with group membership weights, ( ), and/or the mixture weights, ( ).  Each 

are constrained to sum to 1, where the actual weights of the sine waves that create a square 

wave normally sum to a value greater than 1; how much greater than 1 depends on the 

number of harmonic signals added together. 

 

 
Figure 6.1. Sine Wave Frequencies 50, 150 Hz 
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Figure 6.2. Sine wave Frequencies 250, 350 Hz 

 

 
Figure 6.3. Sine wave Frequencies 450, 550 Hz 

 

 
Figure 6.4. EM algorithm result with Square wave desired signal 
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Table 6.1 column 2 suggests that modifying the 6 odd harmonic signals, from the square 

wave example, to alternate between an in phase (0o phase) harmonic signal and a 180 degree 

out of phase harmonic signal, would produce a triangle wave when the signals are processed 

by the EM GMM algorithm.  Figure 6.5 depicts the result of such an occurrence.  Again, the 

generated result is less than a complete triangle wave for the same reason encountered by the 

square wave example; the constraints (group membership weights, ( ), and/or the mixture 

weights, ( )) limit the response required to generate an entire triangle wave. 

 

 
Figure 6.5. EM algorithm result with Triangle wave desired signal 

6.2 GPR Test Case 1 

To judge the effectiveness of the EM GMM method on GPR analyses, the following test case 

was constructed.  Test case 1 consists of an object buried at 10 meters below ground with Txs 

and Rxs 5 meters above ground in air or free-space.  The object is modeled as a perfect 

electrical conductor (infinite conductivity or zero resistivity) 2 meters wide and 0.5 meters in 

depth (2-D model).  The object is buried in a moist-sand medium with a relative permittivity 

( ) of 9.0, an electrical conductivity of 0.5 mS/m (milli-Siemens per meter) and a velocity in 
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the medium of 0.1 m/ns.  The model area is 10 meters wide by 25 meters in depth.  Each 

Tx/Rx is stepped along the x axis (scan axis) at 0.25 meters per step for a total of 36 scans.  

The Tx starts at 0.5 meters ending at 9.5 meters; the Rx starts at 0.75 meters and ends at 9.75 

meters.  Each Tx/Rx remained at a height of 4.5 meters above ground as they are stepped 

along the x-axis.  The length of time for each scan is 425 ns; long enough to capture a 

received signal from 24 meters below each Tx/Rx, in media comprised of a combination of 

air and moist-sand.  The model area has a grid space of 200 points in the x-direction (∆x – 

0.05 meters) and 500 points in the y-direction (∆y – 0.05).  Figure 6.6 depicts the 2-D model 

of Test Case 1, showing the Tx/Rx positions, the target and media present for which a GPR 

scan was completed. 

 
Figure 6.6. Test Case 1 with buried target 10 meters below ground, Txs & Rxs 5 meters 
above ground. 

Test Case 1 was scanned at six different frequencies (20, 30, 50, 100, 500, and 900 MHz) and 

the result was processed using the EM GMM method to determine the weights of each 

frequency for the best result for the combination of frequencies.  Figures 6.7-6.14 show the 

target 

 = 1.0 Txs & Rxs 

 = 9.0 
Moist-sand 

Free-space 
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resultant 2-D display of each frequency scan using GprMax [9].  In each case, the Target is 

correctly identified at approximately 10 meters below ground (15 meters below the Txs and 

Rxs) or approximately 240 ns from the direct arrival signal.  The TWTT of 240 ns, reflects 

the increase in length of the transmitted then received signal length above the vertical 

distance due to the ray refraction produced by dissimilar mediums; free-space (velocity in the 

medium of 0.3 m/ns) to moist-sand (velocity in the medium of 0.1 m/ns), resolvable by using 

the Snell-Descartes law of refraction. 

   
    Figure 6.7. 2-D GPR Scan at 20 MHz          Figure 6.8. 2-D GPR Scan at 30 MHz 

   
    Figure 6.9. 2-D GPR Scan at 50 MHz         Figure 6.10. 2-D GPR Scan at 100 MHz 

1 

2 

3
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Figure 6.11. 2-D GPR Scan at 500 MHz     Figure 6.12. 2-D GPR Scan at 500 MHz w/traces 

      
Figure 6.13. 2-D GPR Scan at 900 MHz    Figure 6.14. 2-D GPR Scan at 900 MHz w/traces 

 

The direct arrival and ground bounce signals are shown in Figure 6.7, arrow 1.  Arrow 2 

shows the target reflection at depth for 20 MHz.  The target reflection at 30 MHz is shown by 

arrow 3 in Figure 6.8.  All remaining arrows, unlabeled, depict the target reflection at depth 

for the indicated frequency.  Figure 6.12 and Figure 6.14 display each trace to better delineate 

the target reflection.  As expected, as the frequency increased the target became more 

pronounced. 

To demonstrate that just adding the different frequency scans together is not a good solution, 

we added the six scan results together shown in figure 6.15.  Here, we removed the ground 

4
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bounce and direct arrival signals by simply running an analysis without the target in place, 

then subtracting that result from the analysis run with a target in place.  The outcome of the 

addition shows a very broad area of target reflection from approximately 240 ns to 320 ns 

(TWTT); a very broad indication of target depth.  It is possible that the broadness could be 

reduced by lining up the “first break” of each frequency signal then adding. 

 
Figure 6.15. Sum of frequency signals with direct arrival and ground bounce signals 
removed. 

 

  
Figure 6.16. EM processed sum of frequencies     Figure 6.17. EM processed signal traces 
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In Contrast to Figure 6.15 are Figure 6.16 and Figure 6.17.  They demonstrate the effect of 

processing the six scans using the EM GMM method to determine the weights of each 

frequency scan for combining the signals.  Figure 6.16 shows a very concise reflection of the 

area where the target resides.  However, the usual hyperbola that forms over the target is only 

slightly in place; even less than what is shown in Figure 6.15.  There are a couple of possible 

reasons.  The area being scanned is not wide enough to show the entire hyperbola; a 30-

meter-wide area should show more.  The current width is more like a bore hole, twice as deep 

as the width.  Another reason is the fact that the object is 2 meters wide causing a much 

broader hyperbola to form.  Or, it could be that the EM GMM method has very bad edge 

detection capability in its present form.  The current scan area width (10 meters) was chosen 

to limit the length of time required to run a GprMax [9] analysis to days rather than weeks. 

6.3 GPR Test Case 2 

A more complex test area structure was developed to test the EM GMM method.  This area 

corresponds to the buried sheet model constructed of the Forest Lodge test area.  The 

exception is the depth of each target.  The structure is shown in Figure 6.18.  It consists of an 

area 30 meters wide and 25 meters in depth with little or no space above the ground (0.15 

meters) for each Tx and Rx.  The Txs and Rxs are swept along the scan axis starting at 0.5 

meters (Tx) and ending at 29.5 meters (Tx).  The spacing between a Tx and Rx is 0.3 meters 

and each scan step is 0.2 meters.  The total number of GPR scans is 145.  Like the Forest 

Lodge Model, the media is sand, more specifically, dry-sand with an electrical conductivity 

( ) of 0.001 mS/m and a relative permittivity ( ) of 3.0; unlike the real Forest Lodge site in 

which the media was more like moist-sand.  The velocity through the medium is 0.1732 m/ns.  

Corrugated aluminum roofing sheets, 2 meters in length and 0.1 meters thick were buried at 8 
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different levels (4.565, 6.065, 8.56, 10.065, 12.815, 14.065, 16.565, and 18.065 meters).  The 

unusual metric values are due to a not well-defined start depth of approximately 15 feet 

(4.565).  Each additional increase in depth was computed in meters (1.5, 2.5, 1.5, …etc.).  

The horizontal distance between each sheet was not well thought out.  The horizontal 

distance, between sheets, ranges from 1.2 meters to 0.3 meters.  Because they are placed like 

stairsteps the physical distance is much larger than the range mentioned and should not 

interfere with the scanning outcomes.  Each sheet is modeled as a perfect electrical 

conductor.  Each scan is 425 ns in length and capable of receiving a reflected signal from 

roughly 37 meters below each Tx/Rx pair in a dry-sand media.  The model grid is 150 points 

in the x direction (∆x – 0.2 meters) and 2500 points in the y direction (∆y – 0.01 meters).  

The six scanning frequencies are the same (20, 30, 50 ,100, 500, and 900 MHz). 

 
Figure 6.18. Test Case 2, (8) roofing sheets 2 meters long, 0.1 meters thick, buried at 8 
different levels 

 

The result of the GPR scans processed by the EM GMM method are shown in Figures 6.19 

and 6.20.  In both Figures 8 objects are identified at approximately the correct depth (50, 70, 

100, 116, 148, 160, 190, and 208 ns for two-way travel times).  To compute the depth, 

Dry sand ( 3  
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multiply the velocity through the media (0.1732 m/ns) times the two-way travel time, then 

divide by 2; (e.g., 
∗ .

	 4.33 meters, approximately the depth of the first sheet).  The 

edges of each object are depicted, not well but reliably with less fidelity as one descends in 

depth.  Figure 6.20 displays the GPR trace response instead of the image response. 

 
          Figure 6.19. EM processed results            Figure 6.20. EM processed signal traces 

6.3 GPR Test Case 3 

A repeat of Test Case 2 was structured to study the response of the EM GMM method in non-

uniform media with buried objects.  A model area was created with dry-sand, clay, concrete, 

granite and limestone as the media to contain the roofing sheets.  Roofing sheets were again 

buried at the same depths, the same distance between the sheets, and the Tx/Rx pair placed 

just barely above ground at 0.15 meters, as before.  The roofing sheets were, again modeled 

as perfect electrical conductors.  Figure 6.21 notes the model structure, materials, and the 

relative permittivity of each material.  Color differences for the different materials are also 

noted.  Dry-sand media covers an area from 0.15 to 7 meters in the y direction and 0 to 30 

meters in the x direction.  Dry-sand has a permittivity ( ) of 3.0 and a velocity through the 

medium of 0.1732 m/ns.  The clay media encloses an area from 7 to 13.5 meters in the y 
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direction and 0 to 14 meters in the x direction.  Clay media has a permittivity ( ) of 5.0 and a 

velocity through the media of 0.1342 m/ns.  The concrete media encompasses an area from 

13.5 to 16 meters in the y direction and 0 to 20 meters in the x direction.  Concrete media has 

a permittivity ( ) of 6.0 and a velocity through the media of 0.1225 m/ns.  The granite media 

covers the area of 7 to 16 meters in the y direction and 14 to 30 meters in the x direction 

minus the area occupied by the concrete media of 13.5 to 16 meters in the y direction and 14 

to 20 meters in the x direction.  Granite has a permittivity ( ) of 4.0 and a velocity through 

the medium of 0.15 m/ns.  The final media in the model is limestone which encompasses an 

area from 16 to 25 meters in the y direction and 0 to 30 meters in the x direction.  Limestone 

has a permittivity ( ) of 7.0 and a velocity through the medium of 0.1134 m/ns.  

 
Figure 6.21. GPR Test Case 3, (8) roofing sheets 2 meters long, 0.1 meters thick, buried at 8 
different levels, in non-uniform media. 
 

Figures 6.22 and 6.23 describe the result of an EM processed GPR scan of the non-uniform 

media example.  All 8 roofing sheets are visible.  Looking closely there are signal echoes 

which represent the interference of EM waves during the scanning process.  As expected, 

Dry sand ( 3  

Clay 5  Granite 4  

Concrete 6  
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with depth the illuminated objects are less clear.  Figure 6.23 displays the scanned signal 

trace response of the same area. 

 
Figure 6.22. EM processed GPR scan of non-uniform media Test Case 3. 

 
 

 
Figure 6.23. EM processed signal traces of non-uniform media Test Case 3. 
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The importance of Figures 6.22 and 6.23 is that they show scanned complicated media 

processed with the EM method can illustrate buried objects reliably.  Typical sites that are 

scanned are not homogenous and are littered with other artifacts included with the object that 

is searched for.  Having the capability of better illuminating an area of multiple media types 

is an important tool to have to study problems encountered when conducting searches for 

hard to find objects.  Test Case 3 suffers from the problem that each medium is not very thick 

and the velocity through each medium is very similar, though the media are quite different.  

This lends to GPR responses similar to the homogenous media examples except for the signal 

refraction occurrences at each media boundary making the signal path slightly longer.  The 

result is an encouraging demonstration of the capability of the EM method in illuminating 

objects.  Remaining items to look at are: How well does the method do from various heights 

above ground? How well does the method perform compared to other state of the art 

methods? and How well does the EM method perform compared to other excitation functions 

like chirp?  
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Chapter 7  

Other GPR Frequency Scan Compositing Methods 

A constant in compositing has been the work conducted by archaeologist using various 

methods.  GPR time-slice analysis, overlay analysis and GPR isosurface rendering, are a few 

of the methods used; all similar in approach.  That approach consisted of illuminating the 

strongest reflections with a color or shading then combining the information by layers of 

depth, displaying the result [55].  Not like the approach being considered in this study of 

weighting the individual frequency responses then summing. 

Earlier than our use of the EM optimization problem solver method, other authors made 

attempts to determine how to weight each GPR frequency scan to be combined to produce a 

clearer signal at depth; developing an optimal result.  Three of those authors were first M. 

Dougherty [8], then A. Booth [5][48] followed by S. Bancroft [3].  Each author, in turn, 

discussed the previous author’s work suggesting improvements.  None, however, explored 

the use of optimization problem solvers.  Below, each author’s method is discussed, and the 

result is compared to our EM GMM optimization problem solver method. 

7.1 Dougherty’s Method 

Dougherty’s [8] task was to combine GPR signal traces for site characterization and 

bandwidth enhancement.  The real data represented GPR signal traces from a former lumber 

mill waste site near Boise, Idaho.  The data was to aid in delineating possible areas of fill 

from surrounding fluvial sediments and fill areas from undisturbed natural sediments.  The 
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fill consisted of wood or organic matter intermixed with native sedimentary material 

organized in layers of the following: 

 Tree bark 

 Cobblestone rock 

 Mixture of Sand and fine organic materials 

 Lumber debris consisting of planks, boards, timbers and logs 

The areas were scanned with a Sensors and Software pulseEKKO IV GPR radar unit using 3 

different frequencies, 50, 100 and 200 MHz.  The goals of his study were to process 

information on shallow reflections by removing the direct arrival (air wave) signal, then 

determine the change in radar data that occurs in fill zones using cross-correlation and, 

finally, to increase the resolution and depth perception by combining the 3 GPR scan 

frequency results.  Dougherty reports on his success and failures to solve this challenge in 

reference [8]. 

Our interest in Dougherty’s work is two-fold, the process of removing the direct arrival signal 

and his method of combining GPR frequencies.  Removing the direct arrival signal is 

important because it tends to be orders of magnitude greater in scale than the target response 

signals, dominating any calculations made using the data.  The Dougherty [8] method of 

removing the direct arrival signal entails creating an estimate of the signal then subtracting 

that estimate from the original signals.  To remove the direct arrival signal, Dougherty [8] 

horizontally aligns each trace along its time axis, for 1 frequency.  DC shifts and any low 

frequency “wow” components are removed, followed by scaling each trace by the L2 norm of 



58 
 

the direct arrival pulse.  Summing the traces of 1 frequency creates an estimate of the direct 

arrival signal for that frequency.  Subtracting this estimate from each trace removes the direct 

arrival signal or a major portion of it.  This process is repeated for all frequencies scanned. 

To combine the frequencies scanned, Dougherty [8] first applies a gain recovery function to 

each processed trace (traces with the direct arrival signal removed and scaled by the L2 

norm); then applies equal weighting to each trace for all frequencies, summing the result and 

scaling the sum of traces by the number of frequencies summed.  The Dougherty [8] result 

achieved reflection enhancement and increased spectral bandwidth, but the resultant signal 

was overwhelmed by the lower frequencies in the summation indicated by the spread in width 

of the combined reflected signal results. 

Dougherty [8] process steps: 

1 Align each trace by direct arrival signal. 

2 Remove the DC shift. 

3 Remove low Frequency (wow). 

4 Scale each trace by L2 norm of direct arrival pulse. 

5 Sum traces to form an estimate of direct arrival signal. 

6 Subtract estimate from each trace. 

7 Apply exponential gain recovery function. 

8 Apply equal weighting to each trace. 

9 Sum each trace for all frequencies. 
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7.2 Booth’s Method 

Booth examined five methods, with a few variations, to achieve an increased bandwidth in 

the frequency domain and thus a more approximate delta function in the time domain through 

evaluating composite synthetic GPR wavelets.  Booth used real data acquired at a site on the 

Waterloo Moraine west of Waterloo, Ontario, Canada.  The data resulted from a high-

resolution stratigraphic study being conducted.  The site was composed of clean, well-graded, 

medium to coarse grain sand, offering good depth penetration and multiple size targets.  Data 

was collected using a Sensors and Software pulseEKKO 1000A system with a 200-volt 

transmitter and bistatic antennas with center frequencies of 225, 450 and 900 MHz.  For all 

data sets the TWTT was 100 ns.  All other system scan parameters were defined in reference 

[5]. 

Booth [5] looked at the simple summation technique of Dougherty [8], as one method.  For a 

second method (method 2), a scaled summation approach was examined, where the 

maximum value of the frequency spectra for all traces of one frequency was determined.  

Each spectrum was obtained by the Fourier transform of a trace.  The maximum valued 

spectra for each frequency were then equalized.  The values used to equalize the spectra 

provided the signal weighting before summation.  As a variation, the frequency spectra for 

each trace was averaged for one frequency.  This process was repeated for all frequencies.  A 

weight value was determined that would equalize the averaged spectra for all frequencies.  

This value provided the signal weighting for summation. 

A third method, required shifting traces such that the main peaks of the direct arrival pulses 

were aligned with the most dominant peak; then the scaled summation technique of method 2 

was applied.  This method (method 3) provided the best result for increased spectral 
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bandwidth, the best delta function and GPR resolution for synthetic wavelets of the three 

methods analyzed thus far.  Booth [5] repeated this method with one variation, the time-

shifting of traces was changed to align the first break of each trace at 0 ns; then method 2 was 

applied. 

Method 4 involved time-shifting traces to align the first break of each trace at 0 ns. The 

frequency spectra of each trace were averaged for one frequency creating an ensemble 

estimate, then the frequency weight was determined as before to equalize the ensemble 

spectra for all frequencies.  The magnitude needed to equalize the ensemble spectra 

determined the weight for that frequency.  Method 4 was named dominant frequency 

amplitude equalization (DFAE). 

The final weighting method (method 5) involved determining weighting factors from a least 

squares analysis that attempts to match the summed result to a defined optimal amplitude 

spectrum.  This method Booth [5] named optimal spectral whitening (OSW).  A defined 

optimal spectrum section over a set of frequencies determines which frequencies in the 

frequency data sets would be enhanced.  Frequency variant weighting functions must be 

developed to implement the least squares analysis of the OSW technique [5]. 

The OSW process determined a time window to operate on by choosing the longest wavelet 

period of the GPR scanned frequencies.  A frequency spectrum of each trace for each time 

window was calculated.  The spectra for each trace for a frequency were averaged together 

and a magnitude was determined for each scanned frequency over the defined time window.  

The computed magnitude constituted a row in the OSW matrix.  The process was repeated for 

each scan frequency for the defined time window resulting in an over-determined linear 

system for the frequency weights of a defined desired spectral amplitude.  The desired 
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spectral amplitude was usually defined as identical values (constant); one for each scan 

frequency.  The OSW process is complete with the combining of traces for that time window 

with the computed weights.  A time-variant weighting function is produced by repeating the 

OSW process for each time window over a GPR reflection scan [5]. 

The over-determined linear system for OSW consists of a matrix A, where a row represents 

the spectral amplitude at one frequency (f1) over a limited frequency data set M (one column 

for each component of the data set).  A second row represents the spectral amplitude at 

another frequency (f2) over the same limited frequency data set M.  A new row definition 

follows with each additional frequency.  Each component in the limited data set has a weight 

Wm.  Matrix A multiplied by column matrix Wm produces a desired spectral amplitude for 

each frequency (Sf); equation 7.1.  With known values for matrix A and desired spectral 

amplitude Sf the weights can be determined from the standard least squares solution, 

	 ∗ ∗ 	 ∗ .  The desired spectral amplitude is usually specified as identical values 

(constant), one for each scan frequency.  The OSW process is complete with the combining 

of traces for that time window with the computed weights.  This process can be repeated for 

each time window of a GPR reflection scan, should more than one time window be defined.  

Of the two strategies developed for estimating the weighting factors for amplitude scaling, 

Booth pointed to the processing flexibility of the OSW process with its balanced set of 

weighting factors over the DFAE process.  The DFAE disadvantage was that the dominant 

frequency within a data set may not represent the distribution of useful signal energy should 

the spectrum of a GPR wavelet not be symmetrical.  The OSW process considers the energy 

distribution across the entire useful frequency range.  Process steps are listed below with 

some slight modifications from Booth [5]. 
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∗               ⋮ …	 ⋮ ∗ 	 ⋮ 	 ⋮                               (7.1) 

Booth [5] process steps for methods 2-5 are as follows: 

Method 2 – scaled summation 

1 Determine the frequency spectrum (wavelet) of each trace at a frequency; 

determining the largest magnitude for that frequency.  Repeat for all frequencies. 

2 Equalize spectra for all frequencies; the magnitude needed to equalize the spectra 

determines the weight for that frequency. (method 2 variation – average the 

frequency spectra of each trace for one frequency then, determine the weight to 

equalize the average spectra, repeating for all frequencies). 

3 Sum each wavelet of all frequencies with the previously determined weight for each 

wavelet. 

Method 3 –  

1 Shift all traces such that the main peaks of the direct arrival signal are aligned. 

(variation – align the first break of each trace to 0 ns). 

2 Continue by applying the steps of method 2. 

Method 4 – DFAE 

1 Remove the DC shift. 

2 Remove low frequency (wow). 
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3 Shift all traces to the first break of direct arrival signal 

4 Remove direct arrival signal (mute, ramping from 0% to 100% magnitude at chosen 

mute time) 

5 Determine the frequency spectrum of each trace. 

6 Average spectra for ensemble estimate for a frequency.  Repeat for all frequencies. 

7 Equalize ensemble spectra for all frequencies.  The magnitude needed to equalize a 

spectrum determines the weight for that frequency. 

8 Sum each trace of all frequencies with appropriate weight for that frequency. 

Method 5 – OSW 

1 Remove the DC shift. 

2 Remove low frequency (wow). 

3 Shift all traces to the first break of direct arrival. 

4 Remove direct arrival signal (mute, ramping from 0% to 100% magnitude at chosen 

mute time). 

5 Average traces for each frequency. 

6 Compute spectra of average trace for each frequency. 

7 Determine magnitude at scan frequencies for each spectrum.  This becomes a row in 

OSW matrix “A”,  one row for each frequency. 
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8 Determine idealized frequency spectra vector “S”; vector usually set to value of one 

for each scan frequency. 

9 Determine weights by solving matrix equation 	 ∗ ∗ 	 ∗ . 

10 Combine weighted frequency traces; ∗ . 

11 Repeat steps 6 – 10 for all analysis time windows over the GPR reflection profile.  A 

time window should be greater than the longest wavelet period to be sampled. 

 

Earlier, Booth [5] examined another site, an outwash near Guelph, Ontario, Canada with a 

different Sensors and Software system (pulseEKKO IV) using first 200, 100, 50 and 25 MHz 

antennas with 1000-volt transmitter and second with 200, 100 and 50 MHz antennas with a 

400-volt transmitter.  Booth looked at the equalization of the frequency amplitudes and 

optimal spectral whitening of the composite area techniques with similar results as the 

Waterloo Moraine site [48]. 

7.3 Bancroft’s Method 

Bancroft [3] noticed that a nominal GPR data set only provides an incomplete view of the 

subsurface with regards to spatial resolution and penetration depth.  He noticed that 

incorporating multiple GPR data sets from different center frequency radars into a single 

survey could reduce the limitations of a single GPR data set; thus, interpreting multiple data 

sets jointly.  Bancroft discussed three ways that joint interpretation of multiple frequencies 

had occurred; side-by-side analysis of multiple spatially similar profiles at different 

frequencies, simple summations of multiple frequencies and combining data sets in a manner 
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that maximizes the bandwidth to increase wavelet deconvolution effectiveness (Booth [5]).  

Bancroft [3] sought to develop, evaluate and compare methods to existing deconvolution-

based methods using a GPR survey of Santa Rosa Island, Florida.  Our interest is in the 

methods Bancroft sought to develop and evaluate. 

Deconvolution attempts to remove a wavelet from a recorded seismic trace by reversing the 

process of convolution which occurs during the TWTT of a GPR signal through a medium.  

The attempt is to separate the source wavelet from the Earth’s reflectivity (series of 

impulses), compress the source wavelet into a zero-phase spike, removing any multiple 

reflections to increase the vertical resolution of the seismic data.  Wavelet or spiking 

deconvolution was not a topic of our interest in compositing.  It is a follow-on process Booth 

[5] among others (e.g. Leinbach [52]) have attempted to use to enhance the GPR response. 

None of the details are discussed in this work. [53][54]. 

Bancroft [3] acquired data at the Eglin Air Force Base, where Santa Rosa Island resides, 

located along the Florida panhandle from Destin to Pensacola Pass. Santa Rosa Island is 

bounded to the north by Pensacola and Choctawhatchee Bay, to the south by the Gulf of 

Mexico.  Of interest, are the changes caused by hurricanes, natural deposits and erosion.  

Bancroft [3] used a MALA Radar making passes over an area with 100, 250, 500 and 800 

MHz antennas.  Data sets were processed with ReflexW [30] and MATLAB software 

programs. 

Bancroft’s [3] steps for creating composite radargrams were comprised of the following: the 

basic processing steps (static correction, dewow filtering, gain, spectral filter and time length 

cutting), a common data definition representing each frequency data set, amplitude scaling, 

applying time shifts and summation.  The basic processing steps are loosely defined as: 
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 Static correction – remove the DC component. 

 Dewow – removing low frequency energy that has yielded a slow time-varying 

component added to the measured data caused by the close proximity of an Rx and 

Tx with electrostatic and inductive fields. 

 Gain – scaling the amplitude of the data such that low amplitudes are emphasized 

with respect to the data with high amplitudes. 

 Spectral filter – eliminate noise by bandpass filtering or compute an average trace of 

all traces of one frequency and subtract the average trace from each trace. 

 Time length cutting – equalize scan time for all frequency traces and frequencies. 

Bancroft [3] surmised that Dougherty [8] was unable to optimize the high frequency data 

because at depth these signals were much lower in magnitude than the low frequency signals.  

Just adding the signals together without amplitude scaling would not improve the resultant 

outcome.  Bancroft [3] noted that Booth’s OSW technique [5] of modifying the magnitude of 

defined scan frequencies by adjusting the magnitude of a spectra over a defined range of 

frequencies was equivalent to the linear ramp summation method by gradually introducing 

lower frequency energy in the summation.  Because of his observations, Bancroft [3] 

introduced and studied three new methods to improve the compositing process of Dougherty 

[8] and Booth [5].  These methods were the double ramped summation technique, the 

Amplitude Envelope Equalization (AEE) technique and a subjective method to determine the 

scanned frequency weighting through visual inspection of each data set. 

The double ramped summation technique is where the higher frequency data is suppressed by 

the same amount the lower frequency data is enhanced over the TWTT of a GPR scan.  The 
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technique required working with three parameters to achieve a good result; which function to 

use to create the ramps (e.g. Butterworth or linear), the ramp length of time; and the ramp 

start time.  Bancroft [3] used both Butterworth and linear function ramps in his studies.  The 

ramp length for each frequency was determined by multiplying the wavelength period of a 

frequency by the arbitrary number 15, for 15 wave periods.  For the double ramped method 

two adjacent frequencies were used.  One frequency is enhanced while the other is 

suppressed.  The ramp length was determined by the 15th wave period of the frequency that 

is being suppressed.  The third parameter, ramp start time, was defined as the point when a 

frequency data set is sufficiently attenuated to begin suppressing it.  This ramp start time was 

determined by examining the amplitude envelope of a trace, finding the minimum value of 

the log of the averaged amplitude envelope for all traces for that frequency.  An averaged 

amplitude envelope is calculated as the Hilbert transformation of a single trace for that 

frequency averaged over the amplitude envelope of all traces of that frequency.  The 

compositing process involved summing each pair of frequencies, one enhanced and one 

suppressed, over the ramp length of the suppressed frequency at the defined ramp start time. 

Bancroft double ramped summation process steps: 

1 Clip data prior to the first arrival. 

2 Remove low frequency (wow). 

3 Automatic gain control (AGC) gain. 

4 Bandpass filter the data. 

5 Determine the length of decreasing ramp in nanoseconds beginning with the highest 

frequency. 
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6 Determine amplitude envelope of all traces (without AGC) of 1 frequency and 

average them.  Repeat for all frequencies. 

7 Determine the suppression start time by finding the minimum value of the log of the 

averaged amplitude envelope. 

8 Process traces, adding them using the double ramp summation technique. 

Bancroft [3] named the second method the AEE technique where a set of multipliers were 

developed as the ratio of the average envelope value of the lowest frequency to the average 

envelope value of the other frequency data sets, both without AGC applied.  The weights 

determined by this method were applied to the AGC processed frequency data sets over the 

portion of time that each frequency was to be enhanced resulting in approximately equal 

amplitude envelopes.  The weights determined by this method were used in conjunction with 

the double ramped summation method defined earlier.  Determining the portion of time that 

each frequency was to be enhanced was accomplished by finding the minimum value of the 

log of the averaged amplitude envelope for that frequency.  

Amplitude Envelope Equalization technique steps: 

1 Clip data prior to first arrival. 

2 Remove low frequency (wow). 

3 Automatic gain control gain. 

4 Bandpass filter the data. 

5 Determine the length of decreasing ramp in nanoseconds beginning with the highest 

frequency. 

6 Determine amplitude envelope of all traces (without AGC) of one frequency and 

average them.  Repeat for all frequencies. 
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7 Determine suppression start time by finding the minimum value of the log of the 

averaged amplitude envelope. 

8 Determine AEE multipliers as a ratio of the averaged envelope of the lowest 

frequency data set and the average envelope of the other frequency data sets, both 

without AGC). 

9 Apply the AEE multipliers to the ramped summation technique. 

Bancroft [3] considered a third method where the length of the summation ramp(s), the 

starting point of the summation ramp(s) and frequency data set weights were chosen by visual 

inspection of each nominal frequency data set.  However, the process to implement this 

subjective method is not significantly defined well enough to duplicate his example. 
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Chapter 8  

Comparison of EM Process with Other Methods 

The methods described in Chapter 7 provided modeling approaches to compare the EM 

GMM compositing method with the state-of-the-art methods found in the literature.  The 

literature search was by no means an exhaustive one, but the methods discussed appeared to 

be examples of the methods with the best results.  The software program MATGPR 

[31][50][51] was used to plot the GprMAX [9] output analysis files. 

8.1 Dougherty’s Method Comparison 

Figure 8.1a depicts the Dougherty [8] process on Test Case 1 of Chapter 6, shown side-by-

side with the EM GMM result, Figure 8.1b.  In comparison, the Dougherty case (Figure 8.1a) 

correctly identifies the depth at 240 ns or 15 meters below the Txs and Rxs but less crisp than 

the EM result (Figure 8.1b).  However, Figure 8.1a shows better edge detection.  The width is 

better defined (approximately 5m), but still wider than the actual defined area of 2 m.  The 

Ground bounce is slightly visible, but the Dougherty process is still a very effective method. 

  
            (a)         (b) 
Figure 8.1. (a) Dougherty standard response to Test Case 1. (b) Figure 6.16. (Repeated here) 
EM processed sum of Frequencies 
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Figures 8.2 and 8.3 compare the 1-D plots of individual traces for the Dougherty process and 

the EM GMM analysis with Txs at 5 meters above ground, for Test Case 1.  Figure 8.2a 

shows trace (18) at 5 meters out of 10 meters in the x direction of the model, roughly over the 

target for the Dougherty process.  Figure 8.2b shows the same x direction trace for the EM 

GMM analysis. 

 

  
   (a)             (b) 
Figure 8.2. (a) Trace 18 of 36 traces total; roughly 5 m out of 10 m in total distance in the x 
direction of Test Case 1 model, 1-D plot of Dougherty method. (b) Trace 18 of 36 traces 
total; roughly 5 m out of 10 m in total distance in the x direction of Test Case 1 model, 1-D 
plot of EM GMM analysis. 
 

The Dougherty trace shows the remnants of the direct arrival/ground bounce signal which 

Dougherty attempted to remove (signal results occurring less than 100ns in time).  The target 

reflection (at approximately 240 ns) is just slightly broader in the Dougherty case verses the 

EM GMM analysis case.  This is indicated by a thicker area (in depth) over the target 

reflection area in the 2-D plots (Figure 8.1a and Figure 8.1b). 

Figure 8.3 depicts 3 traces at approximately 0.3 meters (trace 1), 5 meters (trace 18) and 8.3 

meters (trace 30) in the x direction of Test Case 1 model.  Figure 8.3a shows the Dougherty 

method response while Figure 8.3b shows the EM GMM analysis response.  As expected, 
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trace 18 has the largest reflected magnitude because it is over the target, while traces 1 and 30 

are at the sides of the target. 

 

  
   (a)               (b) 
Figure 8.3. (a) Traces 1, 18 and 30, 1-D plots of Dougherty method response for Test Case 1. 
(b) Traces, 1, 18, and 30, 1-D plots of EM GMM analysis method response for Test Case 1. 

 

Figure 8.4a depicts the Dougherty [8] process on Test Case 2 of Chapter 6, a model of buried 

roofing sheets situated in a stairstep fashion in dry sand.  Comparing the Dougherty response 

to the EM processed response to Test Case 2 (Figure 8.4b), it is apparent that only 5 and 

barely 6 of the 8 plates are shown in the Dougherty [8] response verses all 8 plates shown in 

the EM response.  Plate edges are equally vague in both Figures.  Of the plates shown, the 

target depths are the same as the EM processed results, which are correct. 



73 
 

  
            (a)            (b) 
Figure 8.4. (a) Dougherty response of Test Case 2. (b) Figure 6.19. (repeated here) EM 
processed results 
 

In general, the Dougherty [8] method results are not as extensive as the EM method.  Buried 

objects in media are not illuminated as often as with the EM processed method.  However, in 

reviewing the Dougherty [8] processing steps, it is apparent that a step (Chapter 7 section 7.1 

step 7) was not followed as Dougherty [8] suggested.  A gain recovery function was used but 

not exponential.  Exponential gain recovery functions increase the gain as the signal 

progresses in time.  Figure 8.5 shows an example result from one possible method described 

by equation 8.1 [49] below with a(i), the original amplitude trace, a vector of ones.  The 

equation was changed slightly from that of the reference [49]; the sample rate (dt) is divided 

by 1,000 instead of value 10,000 found in the reference.  Plots of b(i) using both values did 

not seem noticeably different. 

∗ ∗ 	 ∗ ∗        (8.1) 

Where: 

 i  -  sample 

 a(i)  -  ith sample of original amplitude trace. 
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 g  -  exponential gain constant. 

 dt  -  sample rate. 

 b(i)  -  ith sample of gain recovered trace. 

 

 
Figure 8.5. Exponential Gain Recovery Function Example 

 

Each exponential gain trace vector was scaled based on the vector’s maximum value, then the 

Dougherty method continued processing with step 8.  Figures 8.6 (2-D plot) and 8.7 (1-D 

plots) show the result for Test Case 1 with an exponential gain constant of 10 (arbitrarily 

chosen).  Figure 8.6 shows the target reflection to be broader in width like the EM processed 

result (Figure 6.16), due to the enhancement of weaker reflection GPR responses.  This result 

is not very appealing for target width detection.  Figure 8.7 shows a 1-D plot of trace 18 

(Figure 8.7a) and then traces 1, 18 and 30 (Figure 8.7b) of the Dougherty process response 

with an exponential gain of 10.  The magnitude of the target reflection at approximately 240 

ns has increased significantly over the remaining direct arrival/ground bounce signal (signal 
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magnitude at less than 100 ns).  The result is apparent in the 2-D plot (Figure 8.6) with 

increased target width.  

 
Figure 8.6. Dougherty response to Test Case 1 with exponential gain function 

 

  
   (a)             (b) 
Figure 8.7. (a) Trace 18 of 36 traces total; roughly 5 m out of 10 m total distance in the x 
direction, 1-D plot of Dougherty method with an exponential gain of 10. (b) Traces 1, 18 and 
30, 1-D plots of Dougherty method with an exponential gain of 10. 
 

Figure 8.8 shows a response to Test Case 2 like the EM processed result.  All 8 plates are 

depicted, though plates 7 and 8 appear thicker than the EM processed counterpart (Figure 
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8.4b).  We can only speculate that changing the exponential gain factor might improve this 

result but put at risk losing the recognition of the plates 6 through 8.  Edge detection appears 

to have improved over the EM method. 

 
Figure 8.8. Dougherty response to Test Case 2 with exponential gain function. 

 

8.2 Booth’s Method Comparison 

Booth [5] explored five methods, with some variations, to enhance GPR wavelet responses.  

Booth favored the last method, optimal spectral whitening, as the best method to use.  We 

thought it important to mention 2 others Booth considered before settling on the OSW 

method; Booth method 3 and Booth dominant frequency amplitude equalization. 

Figures 8.9 and 8.10 depict 1-D plots of both methods (method 3 and DFAE), while Figure 

8.12 displays the 2-D response to the Test Case 1 model for both methods.  The items to 

remember from the casual review of these figures are that the magnitudes are similar in the 

area over the target (240 ns in time or 15 m below the Txs), the reduction in the ground 
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bounce signals through Booth’s average spectra weight equalization technique, and the poor 

delineation in the 2-D plots. 

  
   (a)             (b) 
Figure 8.9. (a) Trace 18 of 36 total; roughly 5 m out of 10 m in total distance in the x 
direction of Test Case 1 model, 1-D plot of Booth method 3. (b) Trace 18 of 36 total; roughly 
5 m out of 10 m in total distance in the x direction of Test Case 1 model, 1-D plot of Booth 
DFAE method with the first 36 ns in time reduced to small value to eliminate the largest 
portion of the remaining direct arrival/ground bounce signal. 

 

  
   (a)             (b) 
Figure 8.10. (a) Traces 1, 18 and 30, 1-D plots of Booth Method 3 for Test Case 1. (b) Traces 
1, 18 and 30, 1-D plots of Booth DFAE method for Test Case 1, with the first 36ns reduced to 
a small value to eliminate the largest portion of the remaining direct arrival/ground bounce 
signal. 

 



78 
 

When looking at Figure 8.10, the notion of proper GPR analysis is bolstered by the fact that 

as one approaches the center of target the magnitude of the GPR response increases as it 

should (trace 1 to 18 to 30 or 0.3 m, 5 m, 8.3 m).  The width in time on the 1-D plots (Figure 

8.10) is reflected in the 2-D plots (Figure 8.12) as target thickness in depth. 

 
Figure 8.11. Complete Trace 18 of 36 total; roughly 5 m out of 10 m in the x direction of 
Test Case 1 model. 
 

Figure 8.11 is included to show the portion of the remaining direct arrival signal (less than 

10ns) that became enhanced by the weighting factors from the DFAE spectra weighting 

method Booth used.  We have routinely used a linear ramp approach to remove the direct 

arrival signal for 4 time periods calculated for each trace frequency, translated to the number 

of time steps.  At 0 ns the magnitude is very small, increasing as one proceeds to 200 ns 

(14,133 time steps) for 20 MHz and 4.5 ns (315 time steps) for 900 MHz with 30,032 total 

samples.  For the composite summed frequencies, the ground bounce largely remains at 

approximately the 30 ns time for TWTT or 10 meters (half being 5 m in distance, the correct 

distance from Txs; Figure 8.10). 
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In Figure 8.12, the width of the target reflection cannot be determined; it is largely flat for the 

entire 10 meters.  There is however a slight bulge in thickness at the area of the target 

reflection. 

  
   (a)            (b) 
Figure 8.12. (a) Booth Method 3 response to Test Case 1. (b) Booth DFAE method response 
to Test Case 1. 
 

Figure 8.13a is a 2-D plot comparing Booth’s OSW method response to Test Case 1 model to 

our EM GMM processed response (Figure 8.13b).  For this analysis, both the direct arrival 

signal and the ground bounce have been removed. 

  
         (a)      (b) 
Figure 8.13. (a) Booth OSW response to Test Case 1. (b) Figure 6.16. (Repeated here) EM 
processed sum of frequencies. 
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Figures 8.14 and 8.15 compare the 1-D plot for Booth OSW method and the EM GMM 

method for Test Case 1.  Depicted here is the width in time for Booth’s OSW method verses 

the EM GMM processed result.  Booth’s thicker (in time) response translates into a thickness 

in depth in the 2-D plot depicting true target depth and thickness uncertainty.  For multiple 

traces, it is shown that the trace responses are right on top of each other for the EM GMM 

method but different in height as expected.  As the radar scan approaches the target the 

magnitude of the reflection response increases; as the scan recedes from the target, the 

magnitude of the radar response reduces.  The difference in thickness in depth is evident in 

the 2-D plots shown in Figure 8.13a verses Figure 8.13b.  In either case, the edge detection 

(width of the target in 2-D trace) is very poor. 

 

  
   (a)             (b) 
Figure 8.14. (a) Trace 18 of 36 traces total; roughly 5 m out of 10 m in total distance in the x 
direction of Test Case 1 model, 1-D plot of Booth OSW method. (b) Trace 18 of 36 traces 
total; roughly 5 m out of 10 m in total distance in the x direction of Test Case 1 model, 1-D 
plot of EM GMM analysis. 
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   (a)            (b) 
Figure 8.15. (a) Traces 1, 18 and 30, 1_D plots of Booth OSW method response for Test 
Case 1. (b) Traces 1, 18 and 30, 1-D plots of EM GMM analysis method response for Test 
Case 1. 
 

For Test Case 1 model, there are “bore hole” effects.  Test case 1 has an area twice as deep as 

it has width (bore hole); very narrow width scanning area.  The significance is that the width 

is not wide enough to show the usual entire hyperbola that normally forms above and around 

the object being scanned.  The hyperbola formation is affected by the length of the target at 

depth.  As the depth is increased the hyperbola tends to flatten out for a “bore hole” scan.  

This seems to be occurring for Test Case 1 model examples.  Widening the scan axis to 30 

meters or more decreases this effect.  Figure 8.16 demonstrates the effect of increasing the 

scan axis width for 3 frequencies, marking in red the 10 m area that is used for Test Case 1 

model analyses. 
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Figure 8.16. Wider scan axis example (30 m) for Test Case 1 showing hyperbola for 20, 30 
and 100 MHz; Original scan axis width shown in Red. 
  

10 m Scan axis used in 
Test Case 1 analyses 
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Figure 8.17a. depicts the response of Booth OSW method to Test case 2, compared with the 

EM GMM processed response of Figure 8.17b.  Not all plates are shown for Figure 8.17a.  

The first 4 plates are easily shown, but plates 5 and 6 are barely visible of the 8 plates total.  

Compared to the EM GMM method, Booth’s method falls short in depth and the edge 

detection is poorer, but it is comparable to Dougherty’s method without exponential gain, but 

worse than Dougherty’s method with exponential gain recovery.  A part of the ground bounce 

signal remains in the 2-D plot of Booth’s OSW method.  Of the plates shown, target depths 

are the same as the EM results. 

 

  
            (a)            (b) 
Figure 8.17. (a) Booth OSW response to Test Case 2 including direct arrival/ground bounce. 
(b) Figure 6.19. (repeated here) EM processed results. 
 

8.3 Bancroft’s Method Comparison. 

Bancroft [3] explored three methods to combine multiple frequencies with two representing a 

variation of each other (double ramped summation and AEE) and a third not clear on how to 

implement.  Figures 8.18 and 8.19 show 1-D plots of the Bancroft AEE method response to 

Test Case 1.  The ground bounce and direct arrival signals have been removed using the same 
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linear ramp “mute” method discussed in section 8.2 and used on Booth [5] traces.  For these 

results (Figures 8.18a, 8.19a and 8.20a), we applied a modified AEE method consisting of the 

calculated weight multipliers only and not the ramped summation add-on because the 

calculated start and end times of each ramp conflicted with each other, which is not the case 

for the scan frequencies chosen by Bancroft [3].  The items to notice in the plots are the start 

time of the pulse and its thickness in time.  The start time (240 ns) represents the TWTT 

response from the target; translating to an object approximately 15 meters below Txs and Rxs 

in a moist sand and free-space environment.  The thickness in time of the Bancroft [3] AEE 

modified method is wider in comparison to the EM GMM method, but comparable to 

Dougherty [8] (with and without exponential gain recovery) and the Booth [5] method 3 

approaches, but better than the Booth [5] OSW method.  Again, the 1-D thickness in time 

translates to a thickness in depth in a 2-D plot, consistent with target depth uncertainty.  

Therefore, the Bancroft [3] AEE modified method target depth is more uncertain than the EM 

GMM method.  In Figure 8.19a, three traces are shown depicting the target response from 

three different vantage points.  Trace 18 of 36 is the strongest response and resides directly 

over the target.  Traces 1 and 30 of 36 are at each end of the scan space, reflected by the 

reduced magnitude compared to trace 18.  Figures 8.18b and 8.19b are EM processed 1-D 

plots to compare with the Bancroft [3] AEE 1-D plots. 
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            (a)            (b) 
Figure 8.18. (a) Trace 18 of 36 traces total; roughly 5 m out of 10 m in total distance in the x 
direction of Test Case 1 model, 1-D plot of Bancroft AEE modified method. (b) Trace 18 of 
36 traces total; roughly 5 m out of 10 m in total distance in the x direction of Test Case 1 
model, 1-D plot of EM GMM analysis. 
 

  
           (a)            (b) 
Figure 8.19. (a) Traces 1, 18 and 30, 1_D plots of Bancroft AEE modified method response 
for Test Case 1. (b) Traces 1, 18 and 30, 1-D plots of EM GMM analysis method response for 
Test Case 1. 
 

Figure 8.20a shows the 2-D response from the Bancroft AEE modified method compared 

side-by-side to the EM GMM 2-D response.  The Bancroft response suffers from “bore hole” 

effects because of the problem definition but is noticeably flatter over the scan axis area than 

the EM GMM (Figure 8.20b) response.  Edge detection for both methods is nonexistent. 
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           (a)     (b) 
Figure 8.20. (a) Bancroft AEE response to Test Case 1, without direct arrival/ground bounce. 
(b) Figure 6.16 (repeated here) EM processed results. 
 

Utilizing the Bancroft AEE modified method on the Test Case 2 area produced the 2-D plot 

of the response in Figure 8.21a.  This is compared to the EMM GMM method response of 

Figure 8.21b.  Of the 8 plates, 4 are depicted with the possibility of 3 more.  Reflections or 

“ghost” plates appear below for the 4 depicted plates in Figure 8.21a.  No targets are buried 

below the plates that are shown.  Edge detection is better than Booth [5] and Dougherty [8] 

(with and without exponential gain recovery).  Of the plates shown, the target depths are the 

same as the EM processed results. 

   
            (a)             (b) 
Figure 8.21. (a) Bancroft AEE response to Test Case 2 with direct arrival/ground bounce. (b) 
Figure 6.19. (repeated here) EM processed results. 
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For Test Cases 1 and 2, the EM GMM method performed better than Dougherty [8] (without 

exponential gain), Booth [5] (method 3, DFAE, OSW), and Bancroft [3] modified AEE 

method approaches.  The Dougherty [8] (with exponential gain) method and the EM GMM 

method are comparable in response, but edge detection is worse with Dougherty [8]. 
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Chapter 9 

“Stand Off” GPR Methods 

In earlier chapters, compositing GPR scans of various frequencies with the EM GMM 

process focused on scans from 5 meters above ground with targets buried 10 meters below 

ground in dry sand or moist sand materials.  The targets have been buried in a uniform media 

for the entire scan area.  To understand the capabilities of the EM GMM process, other 

heights and non-uniform materials must be studied to broaden the knowledge base around 

this process.  To achieve this result, heights of 10, 20 and 40 meters above ground in a 

combination of uniform moist sand medium, dry-sand medium, and a non-uniform medium 

of dry-sand, clay, concrete, granite and limestone for various perfect electrical conductor 

targets will briefly be investigated.  The height 5 meters (above ground) was chosen 

originally to explore GPR scan results as though the GPR radar was suspended on an airborne 

mobile platform of no specific type in a free-space or air medium.  Other height choices, if 

successful, expand the EM GMM capabilities. 

9.1 Test Case 1 style analysis 

Figures 9.1, 9.2 and 9.3 are 2-D plots in the style of Test Case 1, but at heights above ground 

of 10, 20 and 40 meters, respectively.  Figures 9.4, 9.5 and 9.6 represent the response of the 

EM GMM compositing process for 6 different frequencies (20, 30, 50, 100, 500 and 900 

MHz) at the 3 different heights above ground for Txs and Rxs.  In each instance, the target is 

modeled as a perfect electrical conductor buried in a medium of moist sand, 10 meters below 

the ground.  Moist sand has a relative permittivity ( ) of 9.0, and an electrical conductivity 

of 0.5 mS/m.  Each target is 2 meters in length and 0.5 meters in depth.  Each model area is 
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10 meters in width and either 30, 40 or 60 meters in depth, dependent on the defined height 

above ground for the free space section inserted in the model.  Each Tx/Rx is moved along 

the scan axis (x – axis) 0.25 meters per step for a total of 36 scans.  Each Tx position starts at 

0.5 meters ending at 9.5 meters, and the Rx position starts at 0.75 meters ending at 9.75 

meters.  The total scan time defined for 10 and 20 meter heights above ground is 550ns; for a 

40 meter height above ground, the total scan time is 1100ns, long enough to receive a 

reflected signal from the bottom of the model area. 

Figure 9.1 shows a test area in the style of Test Case 1 with Txs and Rxs 10 meters above 

ground.  For the analysis, the minimum grid space of the defined model is 200 points in the x 

direction, (∆x – 0.05 meters), and 600 points in the y direction, (∆y – 0.05 meters).  For free 

space, the velocity in the medium is 0.3 m/ns; for moist sand the velocity is 0.1 m/ns. 

 
Figure 9.1. Test case 1 style, Tx/Rx 10 meters above ground. 

 

Figure 9.2 shows a test area in the style of Test Case 1 with Txs and Rxs 20 meters above 

ground.  The minimum grid space for analysis of this defined model is 200 points in the x 

Free-Space ( 1  
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direction (∆x – 0.05 meters), and 800 points in the y direction (∆y – 0.05 meters).  The 

mediums are the same as in Figure 9.1 therefore, the velocity in the mediums are the same. 

 
Figure 9.2. Test Case 1 style, Tx/Rx 20 meters above ground. 

 

Figure 9.3 depicts a test area in the style of Test Case 1 with Txs and Rxs 40 meters above 

ground.  The minimum grid space for this model area is 200 points in the x direction, (∆x – 

0.05 meters), and 1200 points in the y direction (∆y – 0.05 meters). 

 
Figure 9.3. Test Case 1 style, Tx/Rx 40 meters above ground. 

 

Free-Space ( 1  

Free-Space ( 1  



91 
 

Figure 9.4 depicts the ground penetrating radar response after analyzing the defined model of 

Figure 9.1 with the EM GMM process.  As a reminder, the direct arrival and ground bounce 

signals have been removed by direct subtraction.  The analysis was run with the target in 

place and without the target in place; then the two results were subtracted, removing the 

direct arrival and ground bounce signals along with any other common anomalies such as 

boundary reflections.  The target is correctly depicted at 20 meters (270 ns – TWTT) below 

the Txs and Rxs.  The “bore hole” effect is shown prominently with virtually no edge 

detection.  However, the darkened area from 3 to 6 meters on the scan axis defines a widened 

target. 

 
Figure 9.4. EM GMM response for Test Case 1 style model, Tx/Rx 10 meters above ground. 
 

Figure 9.5 shows the EM GMM response to the defined model area similar to Test Case 1 but 

with Txs and Rxs 20 meters above ground.  The direct arrival and ground bounce signals 

have been removed so they do not appear in the 2-D plot.  The target area is correctly shown 

buried at 30 meters (335 ns) below the Txs and Rxs in a combination of free space and moist 

sand mediums.  Shown is a flat response with no edge detection besides the darkened area 
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from 3 to 6 meters along the scan axis.  Two other darkened areas appear on either side of the 

noted area which tends to confuse where the target is located.  However, the depth is correct. 

 
Figure 9.5. EM GMM response for Test Case 1 style model, Tx/Rx 20 meters above ground. 
 

Figure 9.6 depicts the ground penetrating radar response of model area similar to Test Case 1 

but with Txs and Rxs 40 meters above ground using the EM GMM process.  The direct 

arrival and ground bounce signals have been removed as before.  The target depth is correctly 

identified at 50 meters (468 ns) below the Txs and Rxs.  The result is similar to Figures 9.4 

and 9.5 with the target area shown a bit deeper.  The blackened target area from 

approximately 3 to 6 meters along the scan axis is repeated as before.  No edge detection is 

visible. 

For this simple model area, the results are interesting in that, besides the depth movement 

with an increase of the height above ground, very little signal degradation occurs as the depth 

increases.  A study of more complicated models is warranted to better show the true result 

that, signal degradation occurs as depth increases.  The EM GMM method does nothing to 

change that phenomenon. 
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Figure 9.6. EM GMM response for Test Case 1 style model; Tx/Rx 40 meters above ground. 
 

9.2 Test Case 2 style analysis 

Figures 9.7, 9.8 and 9.9 depict a more complicated model in the style of Test Case 2 with 

heights above ground for Txs and Rxs of 5, 10, 20 and 40 meters.  As in Test Case 2, the 

mediums used are free space and dry sand, uniformly.  The targets are tin roofing sheets 

modeled as perfect electrical conductors, buried at different depths in a staircase fashion.  The 

dimensional specifics of the models are repeated here for clarity.  Each sheet was 

approximately 2 meters in length and 0.1 meters in depth.  Eight sheets were buried at levels 

4.565, 6.065, 8.565, 10.065, 12.815, 14.065, 16.565 and 18.065 meters plus the added free 

space medium height above ground value of 5, 10, 20 or 40 meters.  The odd metric values 

are due to a not well-defined start depth of 15 feet (4.565 meters).  Each additional increase 

was computed in meters (1.5, 2.5, 1.5, …etc.).  The horizontal distance, between sheets, 

ranges from 1.2 to 0.3 meters.  Admittedly a poorly designed model but adequate for 

reasonable scanning outcomes. 

Figure 9.7 shows the defined model based on Test Case 2 but with a 5 meter free space 

section added between the Txs and Rxs and the modeled buried sheets.  For analysis, the 
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minimum grid space was 150 points in the x direction (∆x – 0.2 meters) and 3000 points in 

the y direction (∆y – 0.01 meters).  For dry sand the velocity in the medium is 0.1732 m/ns. 

 
Figure 9.7. Test Case 2 style model; Tx/Rx 5 meters above ground 

 

Figure 9.8 depicts a Test Case 2 style model with a free space section of 10 meters added 

above the buried targets but below the Txs and Rxs.  The minimum grid space is 150 points 

in the x direction (∆x – 0.2 meters) and 3500 points in the y direction (∆y – 0.01 meters). 

 
Figure 9.8. Test Case 2 style model; Tx/Rx 10 meters above ground 

 

Dry sand ( 3  

Free-Space ( 1  

Free-Space ( 1  

Dry sand ( 3  
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Figure 9.9. shows a Test Case 2 style model with Txs and Rxs 20 meters above ground in free 

space, between buried targets and Txs and Rxs.  The minimum grid space used in analyses is 

150 points in the x direction (∆x – 0.2 meters) and 4500 points in the y direction (∆y – 0.01 

meters). 

 
Figure 9.9. Test Case 2 style model; Tx/Rx 20 meters above ground. 

Depicted in Figure 9.10 is a Test Case 2 style model with a free space section of 40 meters 

between the Txs and Rxs and the buried simulated corrugated aluminum sheets, modeled as 

perfect electrical conductors.  The minimum grid space for this model is 150 points in the x 

direction (∆x – 0.2 meters) and 6500 points in the y direction (∆y – 0.01 meters). 

 
Figure 9.10. Test Case 2 style model; Tx/Rx 40 meters above ground. 

Free-Space ( 1  

Free-Space ( 1  

Dry sand ( 3  

Dry sand ( 3  
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Figures 9.11, 9.12, and 9.13 show the EM GMM analysis response for Test Case 2 style 

models with 5, 10, 20 and 40 meter free space section inserted between the Txs and Rxs and 

the buried targets simulating buried aluminum sheets.  The message to take away from these 

2-D plots is that normal signal degradation occurs as the target depth increases from 5 to 40 

meters.  The number of plates recognizable and detection of edges diminishes with depth.  No 

further conclusions are realized.  

 
Figure 9.11. EM GMM response to Test Case 2 style model; Tx/Rx 5 meters above ground; 
8 sheets shown. 
 

  
             (a)             (b) 
Figure 9.12. EM GMM response to Test Case 2 style model with (a) Tx/Rx 10 meters above 
ground; 8 sheets shown. (b) Tx/Rx 20 meters above ground; barely 8 sheets shown. 
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Figure 9.13. EM GMM signal traces response to Test Case 2 style model; Tx/Rx 40 meters 
above ground; 7 to 8 sheets shown. 
 

The target depths are the same as the EM processed results after accounting for the TWTT 

added for the additional height above ground in free space.  Add a bit more than 30ns for 

every 5 meters in height above ground per the Snell-Descartes law of refraction. 

9.3 Test Case 3 style analysis 

What remains to explore, for “stand off” methods, is the EM GMM response when non-

uniform media replaces the uniform media as defined in the Test Case 3 model.  Figures 9.14, 

9.15, 9.16 and 9.17 show defined model spaces in the style of Test Case 3 with a free space 

section inserted between the Txs and Rxs and the buried targets.  Each model is sectioned 

such that 6 different media are present.  The media are free space, dry sand, clay, granite, 

concrete and limestone.  Free space has a relative permittivity ( ) of 1.0, an electrical 

conductivity of 0 mS/m or lossless and the velocity though the media of 0.3 m/ns.  Dry sand 

has a relative permittivity ( ) of 3.0, an electrical conductivity of 0.001 mS/m and the 

velocity through the media of 0.1732 m/ns.  Clay has a relative permittivity ( ) of 5, an 

electrical conductivity of 2.0 mS/m and the velocity through the media of 0.1342 m/ns.  
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Granite has a relative permittivity ( ) of 4, an electrical conductivity of 0.01 mS/m and the 

velocity through the media of 0.15 m/ns.  Concrete has a relative permittivity ( ) of 6, an 

electrical conductivity of 0.01 mS/m and the velocity through the media of 0.1225 m/ns.  

Limestone has a relative permittivity ( ) of 7, an electrical conductivity of 0.5 mS/m and the 

velocity through the media of 0.1134 m/ns.  These parameter settings for free space, dry sand, 

clay, granite, concrete and limestone were used in additional analyses. 

Figure 9.14 depicts a non-uniform media model in the style of Test Case 3 with a 5 meter free 

space area between the Txs and Rxs and the targets buried in the dry sand media.  The 

minimum grid space used in the analysis is 150 points in the x direction (∆x – 0.2 meters) and 

3000 points in the y direction (∆y – 0.01 meters). 

 
Figure 9.14. Test Case 3 style model; Tx/Rx 5 meters above ground. 

 

Figure 9.15 shows a non-uniform media model in the style of Test Case 3 with a 10 meter 

free space section between dry sand media and the Txs and Rxs.  The minimum grid space 

used in the analysis is 150 points in the x direction (∆x – 0.2 meters) and 3500 points in the y 

direction (∆y – 0.01 meters). 

Free-Space ( 1  

Dry sand ( 3  

Clay ε 5  Granite 4  

Concrete 6  

Limestone ( 7  



99 
 

 
Figure 9.15. Test Case 3 style model; Tx/Rx 10 meters above ground. 

 

Figure 9.16 depicts a Test Case 3 style model of non-uniform media with a 20 meter free 

space section above the dry sand section but below the Txs and Rxs.  The minimum grid 

space used in the analysis is 150 points in the x direction (∆x – 0.2 meters) and 4500 points in 

the y direction (∆y – 0.01 meters). 

 
Figure 9.16. Test Case 3 style model; Tx/Rx 20 meters above ground. 

 

Figure 9.17 displays a Test case 3 style model of non-uniform media with 40 meters of free 

space above dry sand media just below the Txs and Rxs.  The minimum grid space used in 
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the analysis is 150 points in the x direction (∆x – 0.2 meters) and 6500 points in the y 

direction (∆y – 0.01 meters). 

 
Figure 9.17. Test case 3 style model; Tx/Rx 40 meters above ground. 

 

EM GMM process analysis results for the above non-uniform Test Case 3 style models are 

shown in Figures 9.18, 9.19, and 9.20.  Results are similar to the uniform media cases, as 

expected.  Also, the signal degradation as depth increases is greater than the uniform media 

cases and the minimal edge detection suffers with depth; not a surprising outcome. 

 
Figure 9.18. EM GMM response to Test Case 3 style model; Tx/Rx 5 meters above ground; 
8 sheets shown. 
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   (a)             (b) 
Figure 9.19. EM GMM response to Test Case 3 style model with (a) Tx/Rx 10 meters above 
ground; 8 sheets shown. (b) Tx/Rx 20 meters above ground; barley 8 sheets are shown. 
 

 
Figure 9.20. EM GMM signal traces response to Test Case 3 style model; Tx/Rx 40 meters 
above ground; 8 sheets shown but no edge detection. 
 
 

The above analysis shows that the EM GMM process is capable and can determine buried 

objects from various heights in uniform or non-uniform media.  More work needs to be 

performed to establish success or not with targets other than perfect electrical conductors, but 

the basic result determined here is promising and headed in a positive direction.  A smaller 

grid space in the x direction just might improve edge detection.  The target depths are the 
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same as the EM processed results after accounting for the TWTT added for the additional 

height above ground in free space.  Add slightly more than 30ns for every 5 meters in height 

above ground in free space per the Snell-Descartes law of refraction. 
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Chapter 10 

Chirp Excitation Signal Methods 

To further understand the capabilities or limitations of the EM GMM method, other 

excitation functions with similar characteristics to the Ricker pulse used for all previous 

analyses were in need of study.  To reduce the use of compositing multiple frequencies, we 

explored using a chirp excitation function to replace the multiple frequency scans, comparing 

the results to the EM GMM processed scans. 

10.1 Background 

A signal in which the frequency increases or decreases with time is called a chirp or sweep 

signal after the sound often made by birds.  In the literature, chirp waveforms are prominently 

mentioned in reference to synthetic aperture radar (SAR) [61][62][63] pulses and a ground-

based method called the vibroseis (seismic vibrator) technique [64][65][66][67].  Chirp 

waveforms were popular in SAR systems because the amount of power needed by the 

transmitter was reduced.  Reduced power meant smaller transmitters and smaller, lighter 

airborne radar systems.  Pulse or signal compression techniques employed to improve the 

signal to noise ratio provided the benefit of increased range resolution, enhancing object 

detection capability through the correlation of the received and transmitted signals.  When 

airborne, the transmitted radar signal angle and received radar signal angle were not always 

the same, causing phase shifts.  Stolt [60], Gazdag [59] or FK(ω-k) migration methods were 

introduced to adjust for the phase shift changes. 
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Vibroseis [64][65][66][67] is a method consisting of low frequency vibrations generated by a 

shaker or piston driven mass, creating a low-frequency chirp signal; often used in oil 

exploration.  The method was developed by Continental Oil Company (Conoco).  Chirp 

signals from SAR or seismic vibration devices are processed in the same manner using cross-

correlation of the reflections with the source signal, determining wavelets representing target 

reflections. 

10.2 Chirp Excitation Function Based Radar Signal 

Creating a chirp excitation function-based radar signal required deciding among several 

attributes when computing a nominal chirp signal.  A few of the attributes requiring definition 

were: increasing or decreasing chirp, exponential or linear, length of time the chirp signal is 

applied, the start time of the chirp signal and the magnitude.  For this investigation, we chose 

an increasing linear chirp with a maximum amplitude of 1.  Linear in that the change from 

one frequency to the next increases in a linear fashion. 

For use in the GprMax [9] software program, the signal must be sampled to match each time 

step for the delta area (∆x and ∆y) of a 2-D analysis.  The length of time the chirp signal 

would be applied was arbitrarily chosen (view_width) as   of the total scan time (tmax).  

This length of time was commensurate with the amount of time a Ricker pulse is applied 

during a computer generated GPR scan with GprMax [9].  The chirp start time was arbitrarily 

defined as 10 time samples.  An added feature was to include using a Hanning window to 

soften the initial start and end of the created chirp radar pulse. 

These defined choices were implemented in MATLAB code.  Figure 10.1 displays the code 

used and Figure 10.2 depicts the labeled result.  The increasing linear chirp signal was 

designed to encompass the frequencies used in the EM GMM analysis (20, 30, 50, 100, 500 
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and 900 MHz); accordingly, the start and end frequencies of the increasing chirp were 

defined as 20 MHz and 900 MHz respectively.  The frequency time step is not explicitly 

shown in the code of Figure 10.1, but it can be calculated using the following equation based 

on variables defined in Figure 10.2. 

 

frequency step = 	
	

∗ 	                     (10.1) 

where: 

f1 – Chirp start frequency 

f2 – Chirp end frequency 

sweep time = tmax/view_width 

view_width – length of time signal will be applied. 

tmax – total scan time of a trace. 

time step = dt =  
∗	

∆
	
∆

       (GprMax [9] magic time step)                   (10.2) 

c = speed of light 3	 10 	 /   

(∆x, ∆y) - 2-D analysis defined delta area 
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Figure 10.1. Chirp Signal MATLAB Code 

 

For the parameters defined in Figure 10.2, the frequency step is 0.234 MHz.  This value will 

vary with the model area definition.  The computer code is designed to use the MATLAB 

standard routine “Chirp” to generate the basic chirp signal and the MATLAB routine 

“Hanning” to generate a Hanning window. 
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Figure 10.2. Computed Chirp Signal 
 

10.3 Analysis Discussion 

To examine the capabilities of a chirp excitation radar signal to replace the multiple 

frequency scans combined by the EM GMM method, the examples created to judge the EM 

GMM effectiveness were resurrected for use in analyses by a chirp radar signal.  The result 

was then compared to the EM GMM results in 1-D and 2-D.  The program, GprMax [9] is 

capable of 3-D analysis, but the previous work did very little exploration in that area.  

Previous constructed examples or modeling spaces included heights above ground in free 

space of 5, 10, 20 and 40 meters.  Two target types were implemented but both were modeled 

as perfect electrical conductors for maximum effectiveness when scanning.  One target type 

was a rectangular block, the other was a series of roofing sheets buried at various depths in a 

staircase fashion.  Each Tx and Receiver were positioned at equal heights above ground but 

Pwv = view_width=4 

dx=0.2m; dy=0.01m 
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spaced apart from each other.  The direct arrival and ground bounce signals were removed by 

subtraction, to allow for the analysis to focus on reflections from a target or targets. 

10.4 Test Case 1 results 

An increasing chirp excitation function was applied to Test Case 1 model.  As a review, Test 

Case 1 model (section 6.2) consisted of Txs and Rxs positioned 5 meters above the ground in 

air or free space.  The target was a perfect electrical conductor buried 10 meters below the 

surface in a moist sand medium.  The target was 2 meters in length and 0.5 meters in depth.  

The model area was 10 meters in width and 25 meters in depth (Figure 6.6).  Repeated here 

are the medium particulars, scan length, grid space and Tx/Rx start and stop positions.  Free 

space or air has a relative permittivity ( ) of 1.0, considered “lossless” with an electrical 

conductivity of 0 with a velocity through the media of 0.3 m/ns.  Moist sand has a relative 

permittivity ( ) of 9.0, an electrical conductivity of 0.5 mS/m and a velocity through the 

media of 0.1 m/ns.  Txs and Rxs are at the same height separated by 0.25 meters.  A Tx starts 

at 0.5 meters and is stepped every 0.25 meters for each scan, ending at 9.5 meters for a total 

of 36 scans.  An Rx starts at 0.75 meters ending at 9.75 meters.  Each scan is 425 ns in length, 

long enough to receive a signal from 24 meters below a Tx/Rx pair.  The grid space is 200 

points in the x direction (∆x – 0.05 meters) and 500 points in the y direction (∆y – 0.05 

meters). 

Figure 10.3 depicts the Chirp Excitation function response side-by-side with the EM GMM 

result (repeated here).  The target is correctly shown at approximately 15 meters below the 

Tx/Rx pair (240 ns); 10 meters below ground.  The increased TWTT is due to ray refraction 

caused by dissimilar media, free space to moist sand, resolvable using Snell-Descartes law of 

refraction.  Figure 10.3b shows the result due to the chirp excitation function signal, in a 2-D 
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plot.  The chirp result is more uncertain than Figure 10.3a with the same not well-defined 

edge detection.  “Ghost” echoes appear above and below the chirp response in Figure 10.3b.  

As before, because the area is twice as deep as it is in width (bore hole) the usual hyperbola 

that forms is not that clear in either plot.  A wider area would fix this problem for the EM 

process (Figure 8.16). 

  
         (a)              (b) 
Figure 10.3. (a) EM sum of frequency signals with the direct arrival and ground bounce 
signals removed (Figure 6.16, repeated here). (b) Chirp excitation signal response with direct 
arrival and ground bounce removed. 
 

Figure 10.4 depicts a 1-D plot comparison of the EM GMM result and the chirp excitation 

response.  Trace 18, which is directly over the target, depicts the signal response for each 

GPR processing method.  Figure 10.4a shows the EM GMM method and Figure 10.4b shows 

the chirp excitation method.  The chirp trace 18 is extended in time which accounts for the 

uncertainty or “ghosting” in the 2-D plot.  Of note is that the direct arrival and ground bounce 

signals are shown removed in the 1-D plot. 
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           (a)            (b) 
Figure 10.4. (a) Trace 18 of 36 traces in total; roughly 5 m out of 10 m in total distance in the 
x direction; 1-D plot of EM EMM analysis method. (b) Trace 18 of 36 traces in total; roughly 
5 m out of 10 m in total distance in the x direction; 1-D plot of Chirp Excitation analysis 
method. 
 

Figure 10.5 depicts traces at approximately 0.3 meters (trace 1), 5 meters (trace 18) and 8.3 

meters (trace 30) in the x direction.  The 1-D plots show the EM GMM method produces a 

much tighter trace spread over the width of the scanned area, Figure 10.5a.  The chirp 

excitation response is noticeably broader, Figure 10.5b.  Both, however, depict a 240 ns 

TWTT time, corresponding to a target 15 meters below the Tx/Rx pair. 

  
Figure 10.5. (a) Traces 1, 18 and 30; plots of EM GMM analysis. (b) Traces 1, 18 and 30; 
plots of Chirp Excitation analysis. 
 

240 ns 
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10.5 Test Case 1 Style results 

Modifying Test Case 1 to include an added 5 meter section of free space between the Tx/Rx 

pair and ground created a model in the style of Test Case 1 with a 10 meter total free space 

section.  The updated model area, shown in Figure 9.1, section 9.1, has an area of 10 meters 

wide by 30 meters in depth.  The target is now 20 meters below the Tx/Rx pair with 10 

meters of free space above ground.  Figure 10.6a shows 2-D plot of the output of the EM 

GMM analysis compared with the Chirp Excitation response (Figure 10.6b), side-by-side.  

The Chirp Excitation response, again, is not well defined in depth with “ghosting” and the 

width suffers from the “bore hole” effect discussed earlier. 

  
           (a)            (b) 
Figure 10.6. (a) Output response of EM GMM method with direct arrival and ground bounce 
signals removed (Figure 9.4, repeated here). (b) Chirp Excitation function response with the 
direct arrival and ground bounce signals removed. 
 

Figure 10.7 shows the 1-D response at 10 meters for the EM GMM method and the Chirp 

Excitation analysis.  The only change is the TWTT of the target; 270 ns indicating a target 

depth of 20 meters from Tx/Rx pair.  Not shown is the signal degradation that occurs with 

increased scanning depth.  This is due to the scaling of all final output signals to values 

between ±1; the signal degradation is hidden in the scaling method.  Of note is the artifact at 
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approximately 470 ns, this represents the reflection at the bottom (30 meters) of the model 

area.  This occurs because the scan length is 550 ns well above what is needed to reach the 

end of the model area for the media used.  The Chirp response represents the same point 

differently.  A back of the envelope calculation is as follows: 

Reflection time to bottom of model area = TWTT through media 1 + TWTT through media 2. 

medium 1 – free space, velocity 0.3 m/ns, distance to ground from Tx/Rx is 10 m. 

TWTT(1) = ( 2 * 10 m)/0.3 m/ns ≈ 70 ns. 

medium 2 – moist sand, velocity 0.1 m/ns, distance from ground to model boundary is 20 m. 

TWTT(2) = (2 * 20 m)/ 0.1 m/ns ≈ 400 ns. 

Total time ≈ TWTT(1) + TWTT(2) ≈ 70 ns + 400 ns ≈ 470 ns. 

  
            (a)            (b) 
Figure 10.7. (a) EM GMM output analysis; Trace 18 of 36 at 5 m in the x direction. (b) Chirp 
Excitation analysis response; Trace 18 of 36 at 5 m in the x direction. 
 

Comparison results for Tx/Rx heights were computed at 20 and 40 meters but were not 

included because no further conclusions were realized beyond the normal signal degradation 

270 ns 470 ns
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as depth increases.  The 1-D EM GMM and Chirp plots do not reflect the degradation 

because the results are normalized to a magnitude of 1. 

10.6 Compensate for Geometric Distortion of Chirp GPR Scanning 

When reading about SAR methods, the topic of phase shift errors was often included.  Two 

methods to compensate for the negative effects of phase shifts were mentioned, the phase 

shift migration method of Gazdag [59] and signal compression (correlation of the received 

signal with the transmitted signal).  We added a third method, filtering the received signal 

into six separate frequencies (the frequencies used in the earlier EM GMM analysis) then 

combining them with EM GMM. 

The Gazdag method [59], like the Stolt [60] and FK(ω-k) techniques, attempts to account for 

phase shifts by using migration algorithms developed and implemented in the frequency 

domain then translated back to the time domain.  The details of the processes are not 

discussed here but the results of the implementation are presented.  A GPR analysis was 

performed producing a 2-D output, then the Gazdag [59] algorithm was applied to translate 

the data to its final form, phase shifted 2-D output.  Results are shown in Figure 10.8 and 10.9 

for 2 heights of above ground examples.  Correlation of a received signal was the next 

method implemented and those results are illustrated in Figures 10.10 and 10.11.  The last 

method, filtered the Chirp Excitation response with six different filters, 20 MHz low pass 

filter, 30 MHz bandpass filter, 50 MHz bandpass filter, 100 MHz bandpass filter, 500 MHz 

bandpass filter and a 900 MHz high pass filter to represent the six frequencies used in the EM 

GMM process.  Each section was scaled to unit amplitude then combined using the EM 

GMM process.  Figures 10.12 and 10.13 depict those results. 
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The result for each method shown in the 2-D plots (Figures 10.8, 10.10 and 10.12) was not 

impressive nor did they assist in improving the edge detection capability.  A multi-band 

reflection remained in all plots.  The 1-D plots for each method, Figures 10.9, 10.11 and 

10.13, are interesting but create more questions than answers.  Much was not expected 

because the angles for 2-D analysis contain no azimuth corrections to be made.  These 

methods, for the most part, assume a 3-D environment where the moving Tx/Rx pair angles 

are often not the same from transmitted pulse to received pulse. 

Figure 10.8 illustrates the Gazdag translated Chirp Excitation function response to the Test 

Case 1 model (5 meters above ground; Figure 10.8a) and to Test Case 1 style model (10 

meters above ground; Figure 10.8b).  The change from an unprocessed Chirp Excitation 

response to a Gazdag [59] processed response is minimal but important.  The signal echoes 

above each reflected signal appear reduced.  Since our analysis was in 2-D, there was no 

azimuth correction to make therefore, minimal change was expected. 

  
           (a)           (b) 
Figure 10.8. (a) Gazdag [59] translated output response for Test Case 1 model (5 m above 
ground). (b) Gazdag [59] translated output response for Test Case 1 style model (10 m above 
ground). 
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Figure 10.9 illustrates the translated output change from nominal chirp response to Gazdag 

[59] processed chirp, for trace 18 (directly over the target) in 1-D.  The shift in the mean of 

the Gazdag [59] processed signal verses the original chirp processed signal is clear.  Of note 

is that the front end of the Gazdag [59] processed signal is sparse compared to the original 

chirp, accounting for what appears as a reduction of reflection echoes above the main target 

reflection in the 2-D plot.  Figure 10.9a is the comparison of normal and Gazdag [59] chirp 

responses at 5 meters above ground.  Figure 10.9b is the result at 10 meters above ground. 

  
          (a)           (b) 
Figure 10.9. (a) 1-D plot of trace 18 of 36 at 5 m in the x -direction for a nominal chirp signal 
response and a Gazdag [59] response; for Test Case 1 model (5 m above ground). (b) 1-D 
plot of trace 18 of 36 at 5 m in the x direction for a nominal chirp signal response and a 
Gazdag [59] response, for Test Case 1 style model (10 m above ground). 
 

Figure 10.10 illustrates the results from cross correlation of the transmitted signal with the 

received signal plotted in 2-D.  Signal noise enhancement appears to have occurred.  There 

are less multiple lines or reflections above and below target position, closer to the EM GMM 

response.  Edge detection improvement is nonexistent.  The target position has moved 

approximately 5 ns closer to 0 ns, however.  For both the 5 meter above ground case (Figure 

10.10a) and the 10 meter above ground case (Figure 10.10b) the movement occurs with no 

explanation at this time. 
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           (a)           (b) 
Figure 10.10. (a) Cross correlation of Chirp Excitation response for Test Case 1 model (5 m 
height above ground). (b) Cross correlation Chirp Excitation response for Test Case 1 style 
model (10 m height above ground). 
 

Figure 10.11 shows the 1-D response comparison of the nominal chirp response with the 

cross correlation processed response.  Here the change in target reflection time is clearly 

noted.  The excursions above and below the zero magnitude value are symmetrical.  Initially, 

the time distance between excursions is less which may account for what appears to be noise 

reduction.  Figures 10.11a and 10.11b depict 5 and 10 meter above ground results. 

  
            (a)            (b) 
Figure 10.11. (a)1-D plot of Cross correlation of Chirp Excitation response for Test Case 1 
model (5 m height above ground). (b) 1-D plot of Cross correlation Chirp Excitation response 
for Test Case 1 style model (10 m height above ground). 
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Figure 10.12 illustrates the result of filtering the Chirp Excitation function response with six 

different frequency filters.  The resulting signals were composited with the EM GMM 

method.  The resulting 2-D plots are far from being impressive.  Overall the result is worse.  

The multiple lines above and below are more and farther apart.  The result is like the process 

of just adding the six frequencies together without special weighting noted in Figure 6.15.  

Figures 10.12a and 10.12b illustrate 5 and 10 meter above ground results, respectively. 

 

  
           (a)           (b) 
Figure 10.12. (a) Test Case 1 model Chirp response, Tx/Rx at 5 m, filtered into 6 
frequencies, 20, 30, 50 ,100, 500 & 900 MHz then processed with the EM GMM algorithm. 
(b) Test Case 1 style model Chirp response, Tx/Rx at 10 meters, filtered into 6 frequencies, 
20 30, 50, 100, 500 & 900 MHz then processed with the EM GMM algorithm. 
 

Figure 10.13 1-D plots confirm the increased spacing and “ghosting” that occurs in the 2-D 

plots.  The excursions above and below the zero magnitude line are spread out much more 

than the nominal chirp response.  Again, edge detection is nonexistent, but the filtered 

response is symmetrical about the zero magnitude line, unlike the chirp response.  Figures 

10.13a and 10.13b depict the 5 and 10 meter comparison results, respectively. 
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            (a)            (b) 
Figure 10.13. (a) 1-D plot of Test Case 1 model Chirp response, Tx/Rx at 5 m, filtered into 6 
frequencies, 20, 30, 50 ,100, 500 & 900 MHz then processed with the EM GMM algorithm. 
(b) 1-D plot of Test Case 1 style model Chirp response, Tx/Rx at 10 m, filtered into 6 
frequencies, 20 30, 50, 100, 500 & 900 MHz then processed with the EM GMM algorithm. 
 

The results from the study of compensation methods for geometric distortion of Chirp 

waveform failed to improve the 2-D analyses performed for the case of chirp generated 

waveforms at various heights above ground.  There was minor improvement in a few cases 

and a poorer outcome in other cases, but overall no improvement was realized. 

10.7 Test Case 2 and Test Case 2 style results 

The Chirp Excitation function was tested on two more complex models, Test Case 2 model, 

which did not have a free space medium section, and Test Case 2 style model which had a 5 

meter free space section between ground and the Tx/Rx pair.  The Test Case 2 model 

definition, repeated here briefly from Chapter 6, section 6.3, consisted of 8 corrugated 

aluminum sheets modeled as perfect electrical conductors, buried at eight different levels.  

Each of these sheets was 2 meters in length and 0.1 meter in depth buried in dry sand from 

4.565 meters to 18.065 meters.  The model space was 30 meters wide and 25 meters in depth.   
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For analysis, the grid space was 150 points in the x direction (∆x – 0.2 meters) and 2500 

points in the y direction (∆y – 0.01 meters).  The spacing between the Tx and Rx in the x 

direction was 0.25 meters.  The scan length for each trace was 425 ns.  For the Test Case 2 

style model, a 5 meter free space section was placed between ground and the Tx/Rx pair, 

making the model space 30 meters wide by 30 meters in depth.  Each scan length for a trace 

increased to 500 ns.  Figure 10.14 illustrates both models. 

  
            (a)           (a) 
Figure 10.14. (a) Test Case 2 model (repeat of Figure 6.18), (8) 2 meter long plates, 0.1 
meter thick. (b) Test Case 2 Style model (repeat of Figure 9.17), (8) 2 meter long plates, 0.1 
meter thick with Tx/Rx pair 5 meters above ground. 
 

Figure 10.15a illustrates the EM GMM response to the Test Case 2 model.  Figure 10.15(b), 

shows the Chirp Excitation function response.  Figure10.15a shows better depth delineation 

whereas Figure 15b shows better edge detection coupled with the not desired “ghost” 

reflections under each target plate.  In both 2-D plots, the direct arrival and ground bounce 

signals are removed by subtraction before analysis was begun.  All 8 sheets are clearly visible 

at the correct depths (50, 70, 100, 116, 148, 160, 190 and 208 ns). 

 

Free-Space ( 1  

Dry sand ( 3  Dry sand ( 3  
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   (a)            (b) 
Figure 10.15. (a) EM processed results (Figure 6.19, repeated here); (8) sheets shown. (b) 
Chirp Excitation function response to Test Case 2 model with direct arrival and ground 
bounce removed; (8) sheets shown. 

Figure 10.16 repeats the analysis for a Test Case 2 style model with each Tx/Rx pair 5 meters 

above ground.  Again, Figure 10.16b shows better edge detection than Figure 10.16a, the EM 

GMM processed result.  The depth indications are increased by roughly 30 ns for the TWTT 

added due to the 5 meter free space added section.  The 8th sheet in Figure 10.16b is barely 

visible.  This is an indication of normal signal degradation as the distance from a Tx/Rx pair 

increases. 

  
   (a)           (b) 
Figure 10.16. (a) EM result for Test Case 2 style model; Tx/Rx 5 meters above ground; (8) 
sheets shown (Figure 9.11 repeated here). (b) Chirp Excitation function response to Test Case 
2 style model with Tx/Rx 5 meters above ground; (7 barely 8) sheets shown. 
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Though the experience with geometric distortion compensation was less than positive, we 

took another look at the processes with the more complicated model parameters of Test Case 

2 and Test Case 2 style models.  Figure 10.17 illustrates the output for Gazdag [59] migration 

methods for 0 and 5 meters above ground.  Figure 10.17a is less clear than the result without 

a migration method applied but 8 sheets are still shown at the proper depths.  Figure 10.17b is 

much less clear than the results without a migration method applied.  Not all sheets are 

shown; up to sheet 5 and a guess for sheets 6, 7 and 8. 

  
           (a)          (b) 
Figure 10.17. (a) Gazdag [59] migration response for Test Case 2 model using Chirp 
Excitation function; (8) sheets shown. (b) Gazdag [59] migration response for Test Case 2 
style model using Chirp Excitation function with Tx/Rx 5 meters above ground; (8) sheets 
shown. 
 

Figure 10.18 displays the results of the cross correlation geometric compensation method at 0 

and 5 meters above ground.  Again, the response shown in the 2-D plots are not useful and 

provide no improvement at either depth. 
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           (a)          (b) 
Figure 10.18. (a) Cross correlation of Chirp Excitation response for Test Case 2 model. (b) 
Cross correlation of Chirp Excitation response for Test Case 2 style model with Tx/Rx 5 
meters above ground. 
 

The last geometric compensation method for comparison with EM processed data, (filtering 

then combining filtered signals with the EM GMM method) is shown in Figure 10.19.  Some 

improvement is depicted in the reduction of the “ghosting” that occurs below the Targets 

from the non-compensated response of Figure 10.15b.  The depth timing indications are 

accurate also.  Overall, the improvement does not appear enough to routinely apply. 

  
           (a)            (b) 
Figure 10.19. (a) Test Case 2 model Chirp Excitation response, filtered into 6 frequencies, 
20, 30, 50, 100, 500 and 900 MHz then processed with EM GMM algorithm; (8) sheets 
shown. (b) Test Case 2 style model Chirp Excitation response, filtered into 6 frequencies, 20, 
30, 50, 100, 500 and 900 MHz then processed with EM GMM algorithm; (8) Sheets shown. 
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As with the simpler models these compensation methods, (Gazdag, Cross correlation, 

separate by filtering then combine with EM GMM method), are not helpful for the type of 

model analyses we have conducted and presented in this work. 

As a remaining test of a Chirp Excitation function, an increasing chirp signal was applied to 

Test Case 2 style model with a 10 meter free space section above ground and examined for its 

response.  Figure 10.20 illustrates the model parameters while Figure 10.21 compares the 

result of the EM GMM method with the Chirp Excitation function scan. 

 

 
Figure 10.20. Test Case 2 style model with Tx/Rx 10 meters above ground. 

 

Figure 10.21a is the EM processed result for a 10 meter free space section above ground.  

Figure 10.21b is the Chirp Excitation function response.  Though all 8 targets (sheets) are 

shown in both plots, serious signal degradation is evident in each 2-D plot.  Figure 10.21b 

still shows superior edge detection. 

Free-Space ( 1  

Dry sand ( 3  
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           (a)            (b) 
Figure 10.21. (a) EM GMM response to Test Case 2 style model with Tx/Rx 10 meters 
above ground (Figure 9.12 repeated here). (b) Chirp Excitation response to Test case 2 style 
model with Tx/Rx 10 meters above ground; (8) sheets shown. 
 

The information shown here is that Chirp Excitation function scans on a more complicated 

model have better edge detection, suffer the same signal degradation with depth and 

geometric compensation methods do not add value to the overall results for these model 

types.  Model examples at 20 and 40 meters though calculated were not included because no 

further conclusions were realized beyond normal signal degradation as the target depth 

increased. 

10.8 Test Case 3 style results 

A third defined space model was developed to address the Chirp Excitation function response 

for targets buried in non-homogenous materials as compared to the EM GMM process 

response.  A Test Case 3 model (Figure 6.21) was extended to include a 5 meter section of 

free space above the first ground layer.  This model, named Test Case 3 style model, 

consisted of the following model areas, free space, dry sand, clay, concrete, granite and 

limestone with a relative permittivity ( ) of 1.0, 3.0, 5.0, 6.0, 4.0 and 7.0 respectively.  The 
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velocity through each medium is 0.3m/ns (free space), 0.1723 m/ns (dry sand), 0.1342 m/ns 

(clay), 0.1225 m/ns (concrete), 0.1500 m/ns (granite) and 0.1134 m/ns (limestone).  Eight 

corrugated aluminum sheets were buried at different depths as indicated by the Test Case 2 

definition (Figure 9.7) with an added 5 meter free space section.  Figure 10.22a depicts the 

Test Case 3 style model with a 5 meter free space section added and Figure 10.22b depicts 

the same type model with a 10 meter free space section added.  The scan length is 500 ns for 

Figure 10.22a model and 600 ns for the Figure 10.22b model. 

  
            (a)            (b) 
Figure 10.22. (a) Test Case 3 style model with Tx/Rx 5 meters above ground (repeated 
Figure 9.14). (b) Test case 3 style model with Tx/Rx 10 meters above ground (repeated 
Figure 9.15). 
 

Figure 10.23 compares the EM GMM response results to the Chirp Excitation function 

results.  In both 2-D plots, all 8 sheets are displayed.  Both have fair edge detection of each 

sheet, however, the Chirp Excitation response has far more “ghost” reflections below each 

noted target reflection; making it difficult to be certain of which reflections are actual sheets 

or just “ghost” targets.  Experience indicates the item closest to the surface is the real 

reflection from the target, indicating where the target exists. 

Free-Space ( 1  

Dry sand ( 3  

Granite 4  
Clay	 ε 5  

Concrete 6  
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           (a)           (b) 
Figure 10.23. (a) EM GMM response to Test Case 3 style model with Tx/Rx 5 meters above 
ground (repeated Figure 9.18); 8 sheets shown. (b) Chirp Excitation response to Test Case 3 
style model with Tx/Rx 5 meters above ground; 8 sheets shown. 
 

A GPR scan was repeated for a Test Case 3 style model with a 10 meter section between 

ground and Tx/Rx pair.  Results are the same as above except the EM GMM case (Figure 

10.24a) shows more signal degradation (harder to distinguish targets) than the Chirp 

Excitation function response (Figure 10.24b).  The ghost feature is still very prominent in 

Figure 10.24b but 8 sheets are still visible.  The Chirp Excitation function response appears to 

change less with signal degradation in non-homogenous materials. 

  
          (a)            (b) 
Figure 10.24. (a) EM GMM response to Test Case 3 style model with Tx/Rx 10 meters 
above ground (repeated Figure 9.19a); 8 sheets shown. (b) Chirp Excitation response to Test 
Case 3 style model with Tx/Rx 10 meters above ground; 8 sheets shown. 
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Though very little new information has been discovered with each increasing height above 

ground, a last check of the extent of the signal degradation that would appear at 20 meters 

above ground was analyzed.  The defined model appears in Figure 10.25. 

 

 
Figure 10.25. Test Case 3 style model with Tx/Rx 20 meters above ground (repeated Figure 
9.16). 
 

  
            (a)           (b) 
Figure 10.26. (a) EM GMM response to Test Case 3 style model with Tx/Rx 20 meters 
above ground (repeated Figure 9.19a); 8 sheets shown. (b) Chirp Excitation response to Test 
Case 3 style model with Tx/Rx 20 meters above ground; 8 sheets shown. 
 

Free-Space ( 1  

Dry sand ( 3  

Granite 4  Clay ε 5  

Concrete 6  

7  



128 
 

Figure 10.26 compares the EM GMM response with the Chirp Excitation function response 

with Tx/Rx pair at 20 meters above ground.  As expected, the signal degradation is severe in 

both cases, but the EM GMM response fared the worst.  Making out 8 sheets is challenging.  

“Ghost” reflections still are a big part of the Chirp Excitation response; very poor depth 

detection. 
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Chapter 11 

Conclusion 

In this dissertation, we have studied methods to combine multiple frequency Ground 

Penetrating Radar signals in a manner to increase the resolution of images as the depth of 

buried objects increase.  The idea came from noticing that square waves and triangle waves 

are the sum of frequencies; odd harmonic frequencies.  Harmonic, defined as whole number 

multiples of the fundamental frequency.  The challenge was to create a set of weights to apply 

to each frequency so that the resultant sum better delineates the object attempting to be 

located.  It became clear that just summing each signal was not the solution after a few 

attempts to achieve a better outcome.  For square waves and triangle waves, each frequency 

in the sum is weighted.  Determining how to weight each frequency signal to be combined for 

an optimal result, posed as an optimization problem to solve.  To develop optimal weights, 

we chose to investigate using the data mixture feature of the Expectation and Maximization 

Algorithm  

First, we explained GPR basics to orient the reader in the terminology used and definitions of 

the elements that make up GPR analysis.  Explaining how GPR pulses are structured arriving 

from common scanning devices; the arrival types, how speed through a medium is measured 

and calculated; defining the parameters ground bounce, direct arrival and target reflection, all 

among the parameters we defined.  We elaborated on the available computer modeling 

techniques for modeling GPR analysis signals, Transmission-Line matrix (TLM) and Finite 

Difference Time Domain (FDTD) methods, briefly discussing the differences in the two 

methods.  Next, we described the Expectation-Maximization Gaussian Mixture Model (EM 

GMM) and its features.  The use of the Gaussian distribution because it was often used when 
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the real-valued distribution was unknown.  Pointing out that the EM GMM process has two 

steps, the expectation step (E-step) and the maximization step (M-step).  The E-step develops 

initial component values (estimated parameters) for a defined finite mixture of Gaussian 

functions with mixture weights.  The M-step maximizes the estimated parameters.  The E-

step and M-step processes are repeated until a defined stopping criterion is reached.  A 

common stopping point was signaled by the log-likelihood of ; , a finite mixture of 

Gaussian functions, minimally changing from one iteration to the next; E-step to M-step; 

repeating.  The mixture weights, defined by this process, were used as gain values for the 

frequency data to be combined creating a summed mixture. 

The follow-on discussion highlighted the Maximum-Likelihood Estimation (MLE) process 

comparing it to the EM process.  We noted that the ML process easily solved problems where 

all the given set of observations of statistical models (probability density functions – PDFs) 

were known.  The process was defined as developing a joint probability density function, 

then creating a likelihood equation of multiplied PDFs.  The likelihood equation is solved by 

taking the log of the equation then taking the derivative with respect to the parameter to be 

solved for.  Then setting the result to zero and solving for that variable. 

The EM process was found to be similar to the MLE process except not all observations were 

known, one or more were hidden making the derivative hard to calculate due to the creation 

of a log of sums.  The weight values had to be guessed at each iteration making arriving at a 

global maximum unlikely in short order.  The structure of the EM process, routinely solved 

these observation data sets by first creating a set of weight values, (training set), representing 

the probabilities of all possible outcomes of the unknown parameters, using this training set 

to compute new parameter values, (maximizing them), then invoking a previously developed 
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stopping criteria, always proceeding towards a global maximum.  The EM method created a 

sequence of MLE sub-problems, simpler and guaranteed to converge.  We presented 2 

examples that re-emphasized this point.  The examples were coin tossing problems where all 

variables were known then secondly, making one variable unknown or hidden in each 

example.  Both known variables and unknown variables examples were solved by the 

appropriate method, (MLE or EM).  The power of EM was clearly demonstrated. 

Because we had limited access to real GPR scanning devices and areas to scan with well-

defined buried objects, we searched for software to create a reasonable GPR scan.  We were 

able to validate real data with simulated data by taking advantage of the one occasion we had 

to get real data from GPR scanning devices using multiple transmitters and receivers.  We 

were able to verify 3-D field results with computer generated results using GprMax [9].  

Having been successful in demonstrating that computer generated GPR scans could substitute 

for real GPR, we now had the tools to study illuminating deeply buried targets; up to 10 

meters below ground in known media. 

We tested the EM GMM method on sine wave harmonic frequencies that summed to a square 

wave followed by a triangle wave attempt, with good success.  Both results are documented 

in this dissertation.  We reported the limitations found, were due to how constraints were 

defined for the weights in the E-step calculation.  Additional testing of different constraint 

definitions was not pursued, because our task was to check the response of the current 

definitions on creating a reasonable outcome with a combination of simulated GPR scans. 

Three test cases were set up.  One with just one object buried below the surface, in a 

homogenous medium (case 1); One with a series of objects buried in a homogenous medium 

(case 2) and One with several objects buried in several non-homogenous media (case 3).  
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Results using EM GMM were successful in recognizing the objects clearly.  Using cases 1 

and 2, We compared our EM GMM method to the state of the art methods of the day.  A 

method by Dougherty [8], a method by Booth [5] and a method by Bancroft [3], were the 

state-of-the-art methods found in the literature.  Each were related because Booth [5] studied 

Dougherty [8] and suggested improvements; Bancroft [3] studied Dougherty [8] and Booth 

[5], suggesting improvements. 

Dougherty [8] aligned each trace by the direct arrival signal, equalized the signal by 

removing DC shifts and low frequency wow, then created an estimate of the direct arrival 

signal, removing it by subtraction.  Dougherty [8] instituted these operations because he 

found that the combination of traces was overwhelmed by the much larger direct arrival and 

ground bounce signals.  Dougherty applied a gain recovery function to enhance lower 

magnitude signals then applied equal weighting to each signal and added them together.  

Dougherty’s results were good but not as good as the EM GMM process.  The depth was not 

as clear for case 1 (thicker target reflection response) and not all the buried aluminum sheets 

were visible for case 2.  1-D plots of case 1 response verified the thicker presentation of the 

case 1 target; edge detection was about the same as EM GMM.  However, when we used an 

exponential gain function we were able to get closer to the EM GMM result (all 8 roofing 

sheets visible) but thicker (uncertain in depth); edge detection was a bit better though.  The 

drawback was that we had to guess at what gain to use in the exponential gain function to 

best illustrate the compositing outcome. 

Booth [5] had 3 methods we briefly looked at Method 3, Dominant amplitude frequency 

equalization (DFAE) and optimal spectral whitening (OSW).  Method 3 shifted the main 

peaks of the direct arrival pulses until they were aligned.  He then applied weights determined 

by equalizing the frequency spectra of each frequency trace, all noted as the scaled 
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summation technique.  The DFAE process shifted the first break to 0 ns, created an ensemble 

estimate by averaging the frequency spectra of each trace for one frequency.  Using these 

estimates, weights were determined to equalize the ensemble spectra for all frequencies.  The 

weights from this process were used to combine GPR scans.  For the OSW technique, an 

over-determined linear system was created with each row consisting of the magnitude of the 

spectra of each scanned frequency.  The desired spectral output was defined, usually, with a 

gain of 1.  The weights for each frequency were determined by performing the standard least 

squares solution on the OSW defined matrix equations, solving for the weights.  Booth’s 

results were not as good as the EM GMM method.  For case 1, the Booth method 3, DFAE 

and OSW methods had depth indications that were more uncertain than EM GMM.  Edge 

detection was questionable, also because of the thicker area that formed near to where the 

actual target existed, which contributed to the depth detection uncertainty.  The reflected 

signal still went across the whole scan area like EM GMM.  The 1-D traces verified a depth 

uncertainty much greater than the EM GMM method.  The number of roofing sheets detected 

in case 2 was minimal with Booth’s [5] methods. 

For case 1, we addressed the lack of a hyperbola that normally occurs where an object lies in 

the medium when scanning.  The width of the scan was poorly chosen and much shorter than 

would allow for the usual hyperbola to form.  When a wider definition was presented, the 

hyperbola was easily demonstrated. 

Bancroft’s [3] methods, double ramped summation and amplitude envelope equalization 

(AEE) were the final methods that were compared.  The double ramped technique comprised 

of summing frequencies such that higher frequency data is suppressed by the same amount 

the lower frequency data is enhanced over the TWTT of a GPR scan.  The ramp could be 

linear or created by a Butterworth function.  Ramp lengths were determined by the 
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wavelength period of a frequency multiplied by an arbitrary number.  Ramp start time was 

determined by examining the log of the averaged amplitude envelope created by the Hilbert 

transform of a single trace averaged over all Hilbert transformed traces for one frequency, 

looking for the minimum value; repeating the process for each frequency in the sum.  For the 

AEE method, weight multipliers were determined as the ratio of the average envelope value 

of the lowest frequency to the average envelope value of the other frequency data sets.  The 

AEE weights were then applied to the ramped summation technique.  Since the AEE method 

was a variation of the double ramped technique, we compared only this technique.  The AEE 

technique produced a much poorer image than the EM GMM method.  For case 1 the AEE 

response was more uncertain in depth depicted by the 1-D plots where the result was thicker 

in time, translating to thicker in depth.  The 2-D plot, however, was better than Booth [5] and 

Dougherty [8] for case 1.  For case 2, Bancroft [3] was worse than Booth [5], Dougherty [8] 

with exponential gain and EM GMM, in that fewer buried roofing sheets were shown.  

Bancroft [3] however, had better depth delineation than Booth [5] and Dougherty [8] with 

exponential gain. 

The message to take away is that except for the Dougherty [8] method with exponential gain, 

the EM GMM process performs the best of the state of the art methods.  The downside for the 

Dougherty [8] process is that one must manually choose the exponential gain factor for the 

best results.  The EM GMM method adjusts itself. 

Further investigations studying possible applications were conducted.   GPR scans at heights 

of 5, 10, 20 and 40 meters were conducted on case 1, 2 and 3 definitions.  Results were very 

positive.  The only downside was that as the height increased, regular signal degradation was 

a problem, but buried targets were visible.  That outcome was expected, however. 
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The last application we reviewed was the effect of using a different excitation function as a 

GPR scanning signal.  A chirp excitation was chosen because it is often used in radars above 

ground and in oil exploration (Vibroseis technique [64][65][66][67]).  Tests were conducted 

for all three test cases at various heights.  Methods were studied to address phase shifts and 

signal compression, otherwise known as geometric compensation.  Chirp responses, for the 

most part, were positive.  For case 1, the target was easily delineated but extreme “ghosting” 

appearing above and below the target depth, verified by 1-D plots.  The correlation geometric 

compensation technique helped here to reduce the ghosting above each target.  For case 2 and 

3, the chirp response showed better edge detection than the EM GMM method.  The number 

of targets shown were the same at any of the heights that were tested.  The geometric 

compensation methods like Gazdaq [59], correlation, filtering the response into separate 

frequencies then combining by EM GMM, all failed miserably.   In defense of the methods 

like Gazdag [59], they are meant for correcting phase shifts when the receiver had changed 

position in azimuth as well as distance from the target.  That set of conditions was not the 

case for our analyses.  Except for the comparison of computer scans to real scans all our 

analyses were in 2-D to allow for faster response from computer trials.  Response from a 

chirp excitation function was surprisingly accurate but not in depth; “ghosting” is a problem. 

Overall the EM GMM optimization problem solver performed the best in recognizing targets 

at depth.  The chirp excitation function is good when a cursory look is needed because several 

scans are not required for general buried target information.  For detail, the EM GMM 

method must be deployed.  The Dougherty [8] method with exponential gain enhancement 

comes the closest to matching the EM GMM approach.  Responses from the studies 

conducted at height indicate that scanning using air vehicles is possible with reasonable 

results. 
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Future Work 

There is much to do for future work.  Analysis in 3-D should be explored to see how well the 

2-D findings correspond.  Edge detection techniques need to be developed.  Developing a 

method to quantify the amount the displayed target is wider than the actual target, (edge 

detection overage), visible in 2-D plots for the various process methods (EM, Dougherty [8], 

Booth [5], Bancroft [3]), is needed.  Using the Chirp excitation response as an additional 

frequency scan to be composited with the current individual GPR frequency scans has some 

promise in improving edge detection in the compositing process.  A method to remove the 

direct arrival and ground bounce signals also needs improvement.  Dougherty’s [8] idea gave 

adequate results, but better is expected.  We subtracted scans with the target in place from 

runs without the target in place, in our EM GMM analyses.  Analyses with more complicated 

media and types of targets not just perfect electrical conductors should be explored.  

Additionally, one might use EM to get the best gain factor for the exponential gain recovery 

function applied to Dougherty [8] processed signals.  Moreover, combining sound reflections 

from targets with GPR scans might open new threads of research, like determining the 

amount of compaction of the ground material near foundation piles. 
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Appendix A  Three Coin Problem Equations based on EM Algorithm 

The following equations were modified, from the two coin problem equations, to solve the 

hidden data problem posed by the three coin example.  These equations describe the EM 

algorithm process used.  The equations from the two coin example change in definition but 

not substantially.  New parameter estimates for coin 0, coin 1 and coin 2 are generated using 

the E-step and M-step equations defined below, with an initial guess of λ = 0.3, θA = 0.3, θB = 

0.6 as probabilities of coin 0, coin 1 and coin 2 showing heads when tossed. 

The distribution P(x,y | θ	 	is	defined	as	follows:								P(x, y | θ ) = P(y | θ ) P(x | y, θ ); 

Where: 

θ – {λ, θA, θB} 

x – 5 groups of 3 coin flips where any group is either all heads or all tails. 

y – {H, T};  coin 0:  

if y = H, coin 1 is flipped three times. 

if y = T, coin 2 is flipped three times. 

θA – the probability of heads for coin 1. 

θB – the probability of heads for coin 2. 

P(y | θ ) = 
1 	

									
	
	  

P(x | y, θ )  = 	
		 1 	
		 1 	

								 				 

h – number of heads; t – number of tails 
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The EM process is 2 steps, E-step and M-step.  The E-step for this case is defined as: 

 Start with some initial guess for the probability of heads for coin 0, coin 1 and coin 2. 

 Compute the probability of heads for each coin.  

 Compute the expected number of heads and tails for each coin. 

 Compute the expected number of tosses for each coin. 

Probability of observations coming from either coin 1 or coin 2 or both: 

P(x | θ ) = P(y | θ ) P(x | y, θ ) = ∑ ,   

	 	 	 1  + 1 	 	 1             (A.1) 

Probability of heads from coin 1: 

P(y = H | x, θ ) = 
, 	|	

	|	
 = P(y = H | θ ) P(x | y = H, θ ) =  

 
	 	

	 	 	 	 	 	
                            (A.2) 

  for x = HHH, P(y = H | x, θ ) = 
	 	

	 		 	 	 	
 

  for X = TTT, P(y = H | x, θ ) = 
	

	 	 	 	
 

Probability of heads from coin 2: 

P(y = T | x, θ ) = P(y = T | θ ) P(x | y = T, θ ) = 
	 	 	 	

	 	 	 	 	 	
           (A.3) 

  for x = HHH, P(y = T | x, θ ) = 
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  for x = TTT, P(y = T | x, θ ) = 
	

	 	 	 	
 

Expected number of heads for coin 0: 

∑ 	|	 	∑ 	| , 		 		∑ 	| ,          (A.4) 

∑ 	| ,  sum P() over a number of groups with heads in x 

for y = H     3*	 	| ,  

∑ 	| , 	sum P() over a number of groups with tails in x for 

y = H     2*	 	| ,  

Expected number of tosses for coin 0: 

defined as 5 in problem definition. 

Expected number of heads for coin 1: 

∑ 	|	 	∑∑ 	| , 	∑∑ 	| ,      (A.5) 

∑∑ 	| , 		sum P() over a number of groups with heads in x 

for y = H, sum P() over a number of heads of 1 group (x = HHH)  

 3*3*	 	| ,  

∑∑ 	| , 	= sum P() over a number of groups with tails in x for 

y = H, sum P() over a number of heads of 1 group (x = TTT)  

 3*0*	 	| ,  

Expected number of coin 1 tosses: 

∑ 	|	 	∑∑ 	| , 	∑∑ 	| ,      (A.6) 
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∑∑ 	| , 		sum P() over a number of groups with heads in x 

for y = H, sum P() over a number of heads of 1 group (x = HHH)  

 3*3*	 	| ,  

∑∑ 	| , 	= sum P() over a number of groups with tails in x for 

y = H, sum P() over a number of tails of 1 group (x =TTT)  

 2*3*	 	| ,  

Expected number of heads for coin 2: 

∑ 	|	 	∑∑ 	| , 	∑∑ 	| ,        (A.7) 

∑∑ 	| , 		sum P() over a number of groups with heads in x 

for y = T, sum P() over a number of heads for 1 group (x = HHH)  

 3*3*	 	| ,  

∑∑ 	| , 	sum P() over a number of groups with tails in x for 

y = T, sum P() over a number of heads for 1 group (x = TTT)  

 2*0*	 	| ,  

Expected number of coin 2 tosses: 

∑ 	|	 	∑∑ 	| , 	∑∑ 	| ,        (A.8) 

∑∑ 	| , 	sum P() over a number of groups with heads in x 

for y = T, sum P() over a number of heads for 1 group (x = HHH)  

 3*3*	 	| ,  
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∑∑ 	| , 	 sum P() over a number of groups with tails in x for 

y = T, sum P() over a number of tails for 1 group (TTT)  

 2*3*	 	| ,  

The M-step for this case is defined as: 

 Maximize the estimated parameters, computing new estimates 

λ = 
	 	 	 	 	 	

	 	
  =  

 
∗ 	| ,			 	 	 ∗	 	| ,			 	

          (A.9) 

where  – previous estimate of θ                      

θA = 
∑∑ 	 	 	|	 	 	 ,			 		 		∑∑ 	 	 	|	 	 	 ,			 	

∑∑ 	 	 	|	 	 	 ,			 		 		∑∑ 	 	 	| 	 	 ,			
  = 

  
∗ ∗ 	 	 	| 	 	 ,			 	 	 ∗ ∗	 	 	 	| 	 	 ,			 	

∗ ∗ 	 	 	| 	 	 ,			 	 	 ∗ ∗	 	 	 	| 	 	 ,			 	
                            (A.10) 

where  – previous estimate of θ                     

θB = 
∑∑ 	 	 	|	 	 	 ,			 		 		∑∑ 	 	 	|	 	 	 ,			 	

∑∑ 	 	 	|	 	 	 ,			 	 	∑∑ 	 	 	| 	 	 ,			
  =  

   
∗ ∗ 	 	 	| 	 	 ,			 	 	 ∗ ∗	 	 	 	| 	 	 ,			 	

∗ ∗ 	 	 	| 	 	 ,			 	 	 ∗ ∗	 	 	 	| 	 	 ,			 	
                          (A.11) 

where  – the previous estimate of θ                      
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Appendix B  Software Routine to Solve the Three Coin Problem 

Python routine that calculates the EM algorithm solution to the Three coin problem. [20] 
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