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MULTIPARENTAL POPULATIONS

The Beavis Effect in Next-Generation Mapping
Panels in Drosophila melanogaster
Elizabeth G. King*,1 and Anthony D. Long†

*Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 and †Department of Ecology and
Evolutionary Biology, University of California Irvine, California 92697

ORCID ID: 0000-0002-9393-4720 (E.G.K.)

ABSTRACT A major goal in the analysis of complex traits is to partition the observed genetic variation in a
trait into components due to individual loci and perhaps variants within those loci. However, in both QTL
mapping and genetic association studies, the estimated percent variation attributable to a QTL is upwardly
biased conditional on it being discovered. This bias was first described in two-way QTL mapping
experiments by William Beavis, and has been referred to extensively as “the Beavis effect.” The Beavis
effect is likely to occur in multiparent population (MPP) panels as well as collections of sequenced lines used
for genome-wide association studies (GWAS). However, the strength of the Beavis effect is unknown—and
often implicitly assumed to be negligible—when “hits” are obtained from an association panel consisting of
hundreds of inbred lines tested across millions of SNPs, or in multiparent mapping populations where
mapping involves fitting a complex statistical model with several d.f. at thousands of genetic intervals.
To estimate the size of the effect in more complex panels, we performed simulations of both biallelic
and multiallelic QTL in two major Drosophila melanogaster mapping panels, the GWAS-based Drosophila
Genetic Reference Panel (DGRP), and the MPP the Drosophila Synthetic Population Resource (DSPR). Our
results show that overestimation is determined most strongly by sample size and is only minimally impacted
by the mapping design. When , 100, 200, 500, and 1000 lines are employed, the variance attributable to
hits is inflated by factors of 6, 3, 1.5, and 1.1, respectively, for a QTL that truly contributes 5% to the variation
in the trait. This overestimation indicates that QTL could be difficult to validate in follow-up replication
experiments where additional individuals are examined. Further, QTL could be difficult to cross-validate
between the two Drosophila resources. We provide guidelines for: (1) the sample sizes necessary to accu-
rately estimate the percent variance to an identified QTL, (2) the conditions under which one is likely to
replicate a mapped QTL in a second study using the same mapping population, and (3) the conditions
under which a QTL mapped in one mapping panel is likely to replicate in the other (DGRP and DSPR).
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One of the most fundamental questions about the genetic basis of
complex traits is: how much does each individual locus contribute to
the total genetic variance that exists for a phenotype (Falconer and

Mackay 1996; Roff 1997; Lynch and Walsh 1998)? Are there few loci
contributing substantial amounts or many small loci, each with mar-
ginal contributions? Obviously, answering these questions requires the
ability to estimate the magnitude of the contribution of a locus (i.e.,
QTL) to a phenotype. However, this straightforward goal is compli-
cated by the Beavis effect [first described in Beavis et al. (1991) and
Beavis (1994)], the well-known phenomenon that when the percentage
of variance explained (hereafter PVE) by a locus is estimated only for
statistically significant loci, the PVE will be overestimated on average,
and in some cases severely so. Both Utz and Melchinger (1994) and
Beavis (1998) performed simulations demonstrating this bias for classic
two-line cross designs. They demonstrated that the severity of the bias
increases with decreasing power, thus the bias is expected to be greatest
when sample size is low and/or when the true contribution of a locus is
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small. Xu (2003) analytically derived an equation predicting the sever-
ity of the bias for a backcross QTL mapping design, which agreed with
the original simulation results of Beavis (1998). Thus, the statistical
properties of the Beavis effect have been well characterized for tradi-
tional two-line QTL mapping designs; however, it is not known how
precisely these results apply to modern mapping approaches.

Modern, “next-generation” mapping panels differ in several key
ways that could influence the statistical properties of the Beavis effect
in those panels. Here, we focus on GWAS panels and MPPs. GWAS
perform singlemarker association tests from sets of individuals or lines,
associating the genotype at a locus with the phenotype. The bias associ-
ated with GWAS has been noted previously (Göring et al. 2001;
Hirschhorn and Daly 2005) in human studies. In model system GWAS,
tests for association can be carried out at millions of SNPs in panels of a
fewhundred inbred lines (e.g., Flint-Garcia et al. 2005;Mackay et al. 2012;
Alonso-Blanco et al. 2016). MPPs are more similar to traditional QTL
mapping designs, but involve a multi-way initial cross between founder
strains followed by multiple generations of intercrossing (Kover et al.
2009; Aylor et al. 2011; King et al. 2012a,b; Cubillos et al. 2013; Long
et al. 2014). In these populations, mapping involves associating the hap-
lotype at a locus with the phenotype of interest. The number of possible
haplotypes at a locus is equal to the number of contributing parents in the
MPP, leading to more complex models with more d.f. than the single
degree of freedom test typically carried out in a genetic association study.
One major difference in modern panels is the frequency distribution of
alleles in these panels. The frequency of the alleles at a causative locus is
known to affect the power to detect it, with maximal power when alleles
are at 0.5 and reduced power as one allele becomes rare (Slager et al. 2000).
In traditional two-line intercross designs, allele frequencies rarely deviate
much from a frequency of 0.5. However, the expected frequency distri-
butions for GWAS panels and MPP panels are quite different (e.g., Kover
et al. 2009; Aylor et al. 2011; King et al. 2012a). In GWAS-based panels,
alleles are at their natural allele frequencies and thus, there aremany alleles
at low frequency. InMPPs, alleles are expected to be at a frequency of 1/n,
where n equals the number of parents.However, particularlywhen there is
a longer crossing period, drift and selection will cause true frequencies to
deviate, in some cases substantially, from expectation (King et al. 2012a;
Chesler et al. 2016). In addition, modern mapping panels have higher
marker density, and thus lessmissing genotype information. In both types
of panels, genome information is increasingly approaching complete ge-
nome information, with full resequencing of all lines inGWAS panels and
full resequencing of parent lines coupled with dense genotyping of
recombinant inbred lines (RILs) in MPPs. All of the above factors have
the potential to influence the degree of bias in estimating the contribution
of individual QTL to the genetic variance.

When the Beavis effect is substantial, there is not an expectation of
high concordance among different mapping studies. One would not
necessarily expect tomap the sameQTL in replicated experiments or in
different mapping panels. Further, for successfully mapped QTL, one
might expect estimated effect sizes todiffer, perhaps considerably. In the
past, a failuretoappreciate this realityhas led toresults that areconsistent
with one another being incorrectly described as contradictory (e.g.,
Altshuler et al. 2000). In addition, in some cases, complex hypoth-
eses are invoked to explain inconsistent results for the same loci that
could also be explained by the Beavis effect (e.g., Huang et al. 2012).
Therefore, it is valuable to clarify the expectations for the validation
of mapped QTL within the same mapping populations and between
different mapping populations.

In this paper, we focus on two next-generationmapping panels used
widely in the Drosophila melanogaster community, the GWAS-based
DGRP and theMPPDSPR.We simulateQTL that account for different

true PVE andmap these simulatedQTL for different sample sizes in both
panels.We then quantify the resulting bias in the estimates of the PVE by
significant QTL. Finally, we discuss the factors that influence the likeli-
hood of replicating a QTL in a secondmapping study of the same design,
as well as the ability to replicate mapped factors between resources.

METHODS

Mapping populations
We used two major community resources for genetic mapping in the
D. melanogaster system, the DGRP (http://dgrp2.gnets.ncsu.edu/
data.html; Mackay et al. 2012; Huang et al. 2014) and the DSPR
(http://FlyRILs.org; King et al. 2012a,b), to perform simulations.
All simulations and analyses described below were performed in R
(version 3.3.1; R Core Team 2016) and all code is publicly available
via GitHub (https://github.com/egking/QTLbiasSIM). The same set
of code with nearly all raw and intermediate data files is available at
Zenodo: http://doi.org/10.5281/zenodo.438140.

For the DGRP, we used the DGRP Freeze 2.0 release, consisting of
205 inbred lines (http://dgrp2.gnets.ncsu.edu/data.html) created from
wild-caught females in Raleigh, NC. All lines have been resequenced,
and genetic variants have been called. Details about the formation and
sequencing of this mapping population are available in Mackay et al.
(2012) and Huang et al. (2014). Briefly, the DGRP lines were created
by collecting over 1000 mated females and establishing isofemale lines,
which were then subjected to 20 generations of full-sib mating. To quan-
tify genetic similarity between lines, we used the A.mat function in the
rrBLUP package to obtain a global kinship matrix (Endelman 2011;
Poland et al. 2012). We included only positions with a call in 80% of
lines and a minor allele frequency. 5%. Subsequently, we dropped one
member of each set of lines whose coefficient of coancestry exceeded 0.25.
A total of 20 lines were dropped, giving a final set of 185 lines.

For theDSPR,weusedthedata fromtheDSPRrelease4(http://FlyRILs.
org/Data), which consists of two populations (pA and pB) of RILs, each
created from an eight-way, 50 generation cross. Following the crossing
phase, lines were subjected to 20–25 generations of full-sib mating. The
two populations of RILs are essentially replicates; each was created from a
different set of eight founder lines with the exception of a single founder
line that is shared between the two populations. The founder lines have
been fully resequenced and all RILs have been genotyped using RAD
markers. These data inform a hidden Markov model (HMM) that infers
the probability that each segment in eachRIL is derived fromeach founder
line, producing near complete genome information for all RILs (King et al.
2012b). All data associated with the DSPR lines are available here: http://
FlyRILs.org/Data. Complete details about the formation and genetic char-
acterization of the DSPR are available in King et al. (2012a,b). For our
simulations below, we used only the pA RILs and expect that the results
would apply equally to pB RILs.

Simulated phenotypes
For the DSPR, we used the set of HMMprobabilities (King et al. 2012b)
and founder genotype calls to impute full genotype data for each RIL
corresponding to the probability of a given SNP flavor at each location
for each RIL. For a given RIL at a given position, the probability it
harbors the reference allele is given by:

ProbðREFÞ ¼
X8

i¼1

Fi � Pi;

where Fi is the genotype for the ith founder (0 = alternative allele, 1 =
reference allele) and Pi is the probability the RIL harbors the ith
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founder genotype at the position. We then dropped any positions
with a minor allele frequency , 2.5%. We also excluded positions
that were outside the set of genotyped positions in the RILs, where we
therefore do not have a haplotype assignment from our HMM. At
each position where we simulated a QTL, we used the binomial dis-
tribution to assign either the reference or alternative allele to each RIL
using the probabilities calculated above. Since founder allelic states
are inferred with near 100% accuracy for most loci (i.e., the Fi’s), and
similarly at most positions in the genome in any given RIL the foun-
der state is also highly certain (i.e., the Pi’s), for any given RIL at any
given position the Prob(REF) is close to zero or one. In fact, over all
RILs and SNPs only 4% of Prob(REF) inferences are between 2.5 and
97.5%. We simulated sample sizes of 100, 185 (to match the DGRP),
500, and 878 (the size of the full pA panel).

In the DGRP, we dropped any positions with a minor allele
frequency , 2.5% in the resource or that was missing from . 20%
of lines. We then used the kinship-based EMmethod implemented in
the A.mat function in the rrBLUP package to impute any missing
genotypes. In addition, when selecting sites to simulate QTL, we
excluded positions that were near major inversions (Release five
coordinates = 2L: 0.4–14.9 Mb, 2R: 9–18 Mb, and 3R: 6–27 Mb).
We considered sample sizes of 100 and 185 (the size of the full
DGRP panel).

We then simulated both biallelic and multiallelic QTL for differ-
ent values of the PVE by the QTL (5, 10, and 20%) in both mapping
populations. In the biallelic case, we simulated a QTL at a given
position by randomly choosing a SNP and adding environmen-
tal variance to correspond to the given PVE by the QTL to gener-
ate a phenotype. We generated a set of random normal deviates
Nfm ¼ 0;s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð12 zÞ=z� � s2

G

p g to correspond to environmental
variance for each effect size where z = the percent of the phenotypic
variance explained by the QTL and s2

G is the genetic variance at the
QTL. We also simulated a gene-based multiallelic case (c.f. Thornton
et al. 2013; Long et al. 2014). For each gene, we chose three random
SNPs within the interval of that gene 6 1 kb on either side. We then
assigned a multiallelic additive genotype for each line by summing
across the three SNPs (e.g., 000 = 0, 001 = 1, 011 = 2, 010 = 1. . .
0.111 = 3). We then added environmental variance as above to create

phenotypes. In most cases, we performed 1000 independent simula-
tions, simulating a single QTL in each at randomly chosen loci. How-
ever, when power is low, few QTL are detected, producing a small
sample size to estimate the average PVE. Therefore, to ensure a reason-
able estimate of the PVE by detected QTL, we performed additional
simulations whenever the number detected was , 30 (the number of
simulations is given in Table 1).

In both the DSPR and DGRP, the fact that all individuals of a given
line are genetically identical allows for multiple measures per line to
reduce environmental error, effectively increasing the PVE by the QTL.
All our simulations only considered a single QTL, thus Ve should be
thought of as ameasure of the true random environmental noise plus the
genetic variance due to all QTL in gametic phase linkage equilibrium
with the focus locus. In both the DSPR and DGRP, linkage disequilib-
rium in the ILs/RILs only extends over small genetic intervals, so for
major QTL this is a reasonable assumption. In the DGRP, linkage dis-
equilibrium decays rapidly, reaching background levels within hundreds
of base pairs (Mackay et al. 2012). In the DSPR, linkage extends further
but decays to background within �2 Mb (Figure S2 in File S1).

Mapping simulated QTL
When performing genetic mapping, it is necessary to account for re-
latedness between lines, particularly when genetic similarity varies sub-
stantially between different sets of lines. However, including the causative
marker in the calculationof the kinshipmatrix is known toproduceoverly
conservativemapping results (Yang et al.2014),whichwe confirmedwith
our simulations (Figure S1 in File S1). To avoid this effect, we used the
leave-one-chromosome-out (LOCO) method and computed sepa-
rate kinship matrices leaving one chromosome arm out at a time
(Yang et al. 2014). When testing a given marker, we used the cor-
responding kinship matrix that does not include that chromosome
arm. Other approaches to mapping that could be implemented to
avoid overly conservative results are the NAM-R (Xavier et al. 2015)
R package or the BayesCpi function in the gdmp (Abdel-Azim 2016)
R package. For the DGRP, we used the A.mat function in the rrBLUP
package to obtain these kinship matrices (Endelman 2011; Poland et al.
2012). For the DSPR, we estimated the kinshipmatrix using the haplotype
inferences stemming from the HMM as the proportion of the genome

n Table 1 Power (% QTL identified) and % validated in the DGRP and DSPR for different sample sizes and true PVE by the simulated QTL

DGRP DSPR

Biallelic Multiallelic Biallelic Multiallelic

True
PVE

Sample
Size Na Mappedb

%
Validatedc Na Mappedb

%
Validatedc Na

Mapped
(%)b

%
Validatedc Na

Mapped
(%)b

%
Validatedc

5 100 6000 38 (0.6%) 13.1% 6000 35 (0.6%) 2.9% 2000 25 (1.3) 16.0 2000 24 (1.2) 8.3
5 185 3000 49 (1.6%) 4.1% 5000 51 (1.0%) 5.9% 1000 69 (6.9) 17.4 1000 26 (4.6) 45.6

10 100 3000 50 (1.6%) 6.0% 3000 38 (1.3%) 5.3% 1000 80 (8.0) 33.7 1000 62 (6.2) 33.9
10 185 1000 149 (14.9%) 31.0% 1000 56 (5.6%) 33.9% 1000 304 (30.4) 73.0 1000 309 (30.9) 63.0
20 100 1000 216 (21.6%) 46.0% 1000 87 (8.7%) 34.5% 1000 388 (38.8) 74.0 1000 373 (37.3) 68.0
20 185 1000 852 (85.2%) 93.0% 1000 456 (45.6%) 75.0% 1000 876 (87.6) 97.0 1000 872 (87.2) 98.0
5 500 — — — — — — 1000 482 (48.2) 90.0 1000 539 (53.9) 83.0
5 878 — — — — — — 1000 928 (92.8) 99.0 1000 929 (92.9) 97.0

10 500 — — — — — — 1000 967 (96.7) 100 1000 967 (96.7) 99.0
10 878 — — — — — — 1000 996 (99.6) 100 1000 994 (99.4) 100
20 500 — — — — — — 1000 997 (99.7) 100 1000 993 (99.3) 100
20 878 — — — — — — 1000 997 (99.7) 100 1000 996 (99.6) 100

DGRP, Drosophila Genetic Reference Panel; DSRP, Drosophila Synthetic Population Resource; PVE, percentage of variance explained; QTL, quantitative trait loci.
a
The number of simulations performed. Note that we simulated an increased number when power was low to generate enough mapped QTL to estimate the
observed PVE accurately.

b
The number of simulations resulting in a significant, mapped QTL. The percentage (i.e., power) is in parentheses.

c
The percentage of the mapped QTL that were identified in a second set of simulated QTL within the population (see Methods for details).
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identical-by-descent between any pair of RILs, using �11,000 regularly
spaced positions on a genetic scale. For any givenpair of RILs (a and b), the
proportion of the genome identical by descent is given by,

Xn

j¼1

X8

i¼1

Fi;j;a � Fi;j;b

n

where Fi;j;a is the probability the ath RIL harbors the ith founder genotype
at the jth position, Fi;j;b is the probability the bth RIL harbors the ith
founder genotype at the jth position, and n is the number of positions.
The DGRP consists of lines derived from awild-caught population. Thus,
haplotype blocks are short and haplotype information is not estimated.
The typical model fit is a biallelic association test at each marker. We
adapted the assoc.map function in theDOQTLpackage (Gatti et al. 2014)
to the DGRP data to perform a linear mixed model. This function relies
on the methods developed for the QTLRel package (Cheng et al. 2011)
and the regress package (Clifford and McCullagh 2006) to account for
kinship (using LOCO kinship matrices) and the Matrix eQTL algorithm
for computational efficiency. The model at a given locus is as follows:

yi ¼ xibi þ gi þ ei;

where yi is the phenotype of the ith line, xi is the genotype of the ith
line (0 = aa, 2 = AA), bi is the vector of SNP effects, gi is the vector of
genetic effects to adjust for kinship, and ei is the vector of residuals.

For each simulated QTL, we fitted this model at each variant within a
10Mb (6 5Mb) region centered on the causative SNP.We performed
this localized mapping instead of genome-wide scans to reduce the
computational effort involved in performing the mapping. Because
we simulated a single QTL for each simulation and are only interested
in the estimated PVE and significance at that QTL, we can perform
mapping for only this small region.

In theDSPR, the test is forassociationbetween the founderhaplotype
at a given position and the phenotype (Broman and Sen 2009). We
adapted the fast.qtlrel function in the DOQTL package (Gatti et al.
2014) to the DSPR data to fit a linear mixed model, which relies on
the methods developed for the QTLRel package (Cheng et al. 2011) to
account for kinship (using LOCO kinship matrices). The model at a
given locus is as follows:

yi ¼
X7

j¼1

pijbij þ gi þ ei;

where yi is the phenotype of the ith individual, pij is the probability
the ith line has the jth haplotype at the locus, bij is the vector of
effects for the jth haplotype, gi is the vector of genetic effects to
adjust for kinship, and ei is the vector of residuals. For each simu-
lated QTL, we fitted this model at regularly spaced 10 kb intervals
[see King et al. (2012a,b)] for a 10 Mb region (6 5 Mb of the nearest
position to the causative SNP).

Figure 1 The percent variance explained by significant QTL in the DSPR (A–C) and the DGRP (D–F) for different sample sizes. The true percent
variance explained by the QTL is shown by the solid line [(A and D) = 0.05, (B and E) = 0.1, and (C and F) = 0.2]. Each point corresponds to a single
significant QTL. Note that different parameter combinations lead to different numbers of detected QTL and that lower powered conditions result
in fewer observations. Boxplots are overlayed with the central line corresponding to the median and the box encompassing the first and third
quartiles. DGRP, Drosophila Genetic Reference Panel; DSRP, Drosophila Synthetic Population Resource; QTL, quantitative trait loci.
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Performing thousands to millions of tests across the genome results
in a requirement to adjust the threshold for significance to correct for
performing multiple comparisons. Traditionally, QTL studies have
controlled the family-wise error rate (FWER), the probability of one
or more false positives occurring genome-wide, at 5%. The threshold
corresponding to a 5%FWER is calculated by performing permutations
and determining the maximum genome-wide LOD score for each
permuted dataset. The FWER corresponding to 5% is the threshold
at which there is only a 5% chance of observing at least one false positive
(Churchill and Doerge 1994). Controlling the false discovery rate
(FDR) (the number of false positives/the number of total positives) is
also a popular approach. However, several studies (Chen and Storey
2006; Siegmund et al. 2011; Brzyski et al. 2017) have demonstrated that
underlying linkage structure can make applying FDR to genome-wide
tests problematic. Linkage is expected to produce similar signals across
several positions, such that a single signal is expected to produce several
significant “hits” nearby for both true and false positives. This depen-
dency can alter the estimation of FDR. If positive signals can be char-
acterized into independent signals, permutations can inform the false
positive rate. We use the false positive rate here, not the FDR, as the
estimate of FDR is dependent on the number of positives detected in a
given genome scan. We performed 2000 genome scans for randomly
generated phenotypes with no simulated QTL for each sample size. We
used these scans to estimate both the threshold corresponding to a
FWER of 5% and the expected number of false positives for a range
of significance thresholds. To estimate the number of false positives, we
first identified all peak positions for a given genome scan. Then we

removed any peaks that were nearby a higher peak. We used different
distances for the DSPR and DGRP given the two populations have very
different linkage disequilibirum structure. For the DSPR, if a peak was
within 2 cM of a higher peak, it was eliminated. For the DGRP,
the same was true if a peak was within 0.5 cM. We then recalculated
the Beavis effect for different P-value thresholds to determine how the
Beavis effect relates to power and the expected false positive rate.

We considered a QTL successfully mapped if a LOD score within the
10 Mb interval surrounding the causative site exceeded the significance
threshold. We estimated the PVE by the QTL from the LOD score:
12102(2/n)�LOD (Broman and Sen 2009) at the peak position in this interval.

QTL validation
We performed additional simulations to consider the likelihood of
validating the significantQTLfor eachparametercombinationdescribed
above within mapping populations. For parameter combinations where
we initially identified significant QTL in over 100 simulations, we
randomly selected only 100 tomap again; for all others, we selected all
significant QTL. We generated a new set of phenotypes for the same
PVE and sample size, and performed mapping again as described
above within the same mapping population.

Wealsoperformedsimulationstoassess the likelihoodofvalidatingahit
in a secondmappingpopulation (i.e., validatingaDSPRhit in theDGRPor
vice versa). We limited these simulations to a set of our parameter com-
binations and only considered the biallelic case. For mapped QTL in the
DGRP, we considered a sample size of 185 and a PVE of 5 and 10%. All
significant QTL for those parameter combinations were then simulated in

Figure 2 The percent variance explained by all simulated QTL at the true location in the DSPR (A–C) and the DGRP (D–F) for different sample
sizes. The true percent variance explained by the QTL is shown by the solid line [(A and D) = 0.05, (B and E) = 0.1, and (C and F) = 0.2]. Each point
corresponds to a single QTL. Boxplots are overlayed with the central line corresponding to the median and the box encompassing the first and
third quartiles. DGRP, Drosophila Genetic Reference Panel; DSRP, Drosophila Synthetic Population Resource; QTL, quantitative trait loci.
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the DSPR for a sample size of 185 and 878. In the DSPR, we considered
mapped QTL at a sample size of 185 and 878 and a PVE of 5 and 10%.
These QTL were then simulated in the DGRP at a sample size of 185. We
simulated QTL as above but with the effect of the locus set by the initial
mapping population. Thus, at each SNP, we generated a set of random
normal deviates Nfm ¼ 0;s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½ð12 zÞ=z� � s2

G

p g to correspond to
environmental variance for each effect size where z = the percent of the
phenotypic variance explained by the QTL in the initial mapping popu-
lation and s2

G is the genetic variance at the QTL in the initial mapping
population. This method simulates QTL in the second mapping popula-
tion with a different PVE whenever the allele frequency is different. For
example, a QTL with a 5% PVE in the DGRP will be simulated in the
DSPRwith a higher PVE if theminor allele frequency at that SNP is higher
in the DSPR and vice versa.

WhenvalidatingQTL, the search space is localized insteadof genome-
wide. Therefore, we calculated the threshold corresponding to a FWERof
5% when mapping is done only for a small region. Using our randomly
generatedphenotypeswithnoQTL,wecalculated theFWERthresholdby
randomly choosing a position and considering only a 6 5 Mb region
surrounding that position. We then used this threshold to determine the
likelihood of validating a given QTL.

Data availability
All simulations and analyses described below were performed in R
(version 3.3.1; R Core Team 2016) and all code is publically available
via GitHub (https://github.com/egking/QTLbiasSIM). The same set
of code with nearly all raw and intermediate data files is available at
Zenodo: http://doi.org/10.5281/zenodo.438140.

RESULTS AND DISCUSSION

Estimating the percentage variance due to a QTL in the
DGRP and DSPR
As has been shown previously (Utz and Melchinger 1994; Beavis
1998; Xu 2003; Broman and Sen 2009), the PVE by significant QTL

is overestimated in all except the most highly powered cases and the
overestimation is most severe for the lowest sample sizes in both
the DGRP and the DSPR (Figure 1). Power is lower in the DGRP
compared to the DSPR (Table 1), resulting from a more stringent

Figure 4 (A) The mean expected false positive rate for different P-value
thresholds for the DSPR (red) and DGRP (black), with a sample size of
100 shown in light colors and the full panel size shown in dark (185 for
DGRP and 878 for DSPR). (B) The mean estimated PVEexplained for
different P-value thresholds for a true PVE of 10% and a sample size of
185. DSPR is in red and DGRP is in black. (C) Power for different P-value
thresholds for a QTL with a PVE of 10% and a sample size of 185. DSPR is
in red and DGRP is in black. DGRP, Drosophila Genetic Reference Panel;
DSRP, Drosophila Synthetic Population Resource; PVE, percentage of var-
iance explained; QTL, quantitative trait loci.

Figure 3 The average estimated percent variance explained by significant
QTL vs. the true percent variance explained by those QTL for different
sample sizes (colors) and mapping populations (symbols). Only simulated
biallelic cases are shown. The 1:1 line is plotted in gray and represents
where points should lie if estimated parameters match the true parameters.
DGRP, Drosophila Genetic Reference Panel; DSRP, Drosophila Synthetic
Population Resource; QTL, quantitative trait loci.
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P-value threshold due to the fact that many more tests are per-
formed in the DGRP, both in actual tests performed (�11,000
vs. �2.4 million) and in the functional number of independent tests
based on the size of haplotype blocks and the extent of linkage across
the genome. However, the thresholds corresponding to the PVE are
similar between the two populations, leading to similar overall magni-
tudes of the Beavis effect.

In the DSPR, where the haplotype encompasses the complete
multiallelic effect, there is little difference between the biallelic and
multiallelic cases. In contrast, in the DGRP, each marker is tested
separately. Therefore, the actual contribution of individual SNPs is
lower than the overall effect at the QTL. Thus, in the multiallelic case
in the DGRP, the overestimation, when it occurs, is even greater than
it appears. In the highest powered case, the multiallelic case under-
estimates the effect at theQTL as awhole, because it is estimated from
only a single contributing SNP. Association tests that attempt to
consider all SNPswithin a given gene, such as burden tests,maybetter
estimate the contribution ofmultiple SNPs; however, several possible
methods exist that vary in their power under different genetic archi-
tectures (Thornton et al. 2013).

There is a small, but consistent difference between the mapping
populations in the magnitude of the bias, with a larger bias in the
DSPR. We hypothesize that the difference is due to the additional
terms in the haplotype-based model and potential overfitting. The
Beavis effect stems from conditioning on only significant QTL to
estimate the PVE by QTL. If we instead estimated the PVE for all our
simulatedQTL at their true locations, regardless of whether theywere
found to be significant, the estimates are expected to be normally
distributed and centered on the true magnitude. At the smallest
sample sizes, both the DGRP and the DSPR deviate from this
expectation, but the DSPR deviates much more severely (Figure
2). The DSPR model estimates an effect separately for each haplo-
type, but our simulated QTL are produced from fewer groups. For
example, when the true effect is at a single SNP, just two groups are
necessary. In addition, as sample size decreases, it becomes more
likely that there will be little or in some cases no representation of
some founder haplotypes at a given position. These haplotypes are
nonetheless included in the model and this may contribute to an
overfitting effect. However, we also note that the additional bias in

the DSPR compared to the DGRP is quite small compared to the
overall bias (�2%; Figure 3).

Overall, the discovery of bias is not a new result, but it is worth
noting that direct estimates of thePVEbyQTL at low sample sizes are
nearly wholly uninformative of the true effect, i.e., the estimated
PVE bears no relation to the true PVE (Figure 3). Despite this fact,
the PVE by QTL are routinely reported for mapping studies with
small sample sizes (e.g., Aylor et al. 2011; Mackay et al. 2012; King
et al. 2014a; Liu et al. 2016), and there is not an associated indicator
of uncertainty such as a standard error to aid interpretation. Cross
validation, which uses one portion of the data to identify significant
QTL and the remaining data to estimate the PVE, has been shown to
be an effective strategy to avoid bias in the estimation of the PVE
attributable to QTL (Utz et al. 2000). However, this strategy is not
routinely employed given that the full data set cannot be used to
assess significance and there is a desire to maximize power. We
advise explicitly acknowledging the lowest PVE that could be de-
tected at a given sample size and the potential bias when cross
validation is not employed.

Significance thresholds and the Beavis effect
As described above, the Beavis effect results from choosing only the
factors identified as significant, and thus choosing PVE at the tail of
the overestimated side. Our results are thus dependent on the
stringency of the significance threshold used. The above results
controlled the family-wise error rate at 5%, which is a reliable but
conservative strategy. Usingmore liberal criteria for significance will
decrease the Beavis effect, but of course will also increase false
positives at the same time. This trade-off is similar to the trade-
off between the rate of false positives and false negatives. The Beavis
effect can be reduced and power can be increased but only at the cost
of increasing the false positive rate (Figure 4).

One of the major difficulties in assessing the potential true PVE
from the estimated PVE, and how the bias might change with the
significance threshold, is the lack of knowledge about the true
distribution of effect sizes. For example, the probability that a given
estimated PVE discovered in an experiment is mildly biased vs.
severely biased is highly dependent on the underlying distribution
of the true PVE of all causative variants. This distribution is typically

n Table 2 Power (% QTL identified) to validate QTL in the DGRP and DSPR for different sample sizes and true PVE by the simulated QTL

DGRP DSPR

Biallelic Multiallelic Biallelic Multiallelic

True PVE Sample Size Na Mappedb Na Mappedb Na Mapped (%)b Na Mapped (%)b

5 100 6000 356 (5.9%) 6000 299 (5.0%) 2000 248 (12.4) 2000 273 (13.7)
5 185 3000 252 (8.4%) 5000 338 (6.7%) 1000 247 (24.7) 1000 251 (25.1)

10 100 3000 282 (9.4%) 3000 216 (7.2%) 1000 299 (29.9) 1000 310 (31.0)
10 185 1000 319 (31.9%) 1000 163 (16.3%) 1000 617 (61.7) 1000 631 (63.1)
20 100 1000 424 (42.4%) 1000 218 (21.8%) 1000 69.5 (69.5) 1000 700 (70.0)
20 185 1000 940 (94.0%) 1000 638 (63.8%) 1000 972 (97.2) 1000 971 (97.1)
5 500 — — — — 1000 781 (78.1) 1000 810 (81.0)
5 878 — — — — 1000 984 (98.4) 1000 978 (97.8)

10 500 — — — — 1000 992 (99.2) 1000 987 (98.7)
10 878 — — — — 1000 997 (99.7) 1000 997 (99.7)
20 500 — — — — 1000 998 (99.8) 1000 995 (99.5)
20 878 — — — — 1000 999 (99.9) 1000 998 (99.8)

DGRP, Drosophila Genetic Reference Panel; DSRP, Drosophila Synthetic Population Resource; PVE, percentage of variance explained; QTL, quantitative trait loci.
a
The number of simulations performed. Note that we simulated an increased number when power was low to generate enough mapped QTL to estimate the
observed PVE accurately.

b
The number simulations resulting in a significant, mapped QTL at the local region FWER threshold. The percentage (i.e., power) is in parentheses.
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assumed to be exponentially or g distributed, with an abundance of
low PVE loci and very few high PVE loci. As we have shown, the
severity of the bias depends strongly on sample size, but it will also
depend on this distribution of true PVE. For example, even if sample
sizes are relatively high (e.g.,�1000), if the vast majority of causative
variants contribute 1% or less to the phenotype, the resulting bias
will generally still be quite severe, because power declines with de-
creasing PVE (Utz and Melchinger 1994; Beavis 1998; Xu 2003;
Broman and Sen 2009).

Prospects for validation of putative QTL
Within a mapping population, validation attempts typically involve
attempting tomap the same locus using a different experimental design,
such as crossingmany lines to create an outbred population, phenotyp-
ing thispopulation, andresequencinga setof individuals fromthe tailsof
the distribution. Another method is crossing the lines to a standard line
toperformphenotyping.Whenthesemethods are employedandthere is
little concordance between significant hits, a tempting conclusion is the
presence of genetic background effects. Here, we simulated a QTL with
identical parameters twice todetermine thedegree thatonewouldexpect
replication in ideal circumstances. In this case, the likelihood of vali-
datinga trueQTLcouldpotentiallybecalculatedbyassessingpowerwith
our local region FWER. However, given a significant QTL in one study,
the same genome-wide multiple testing criterion may not need to be
applied if mapping is done locally. The power to validate a given QTL
with our local region FWER threshold is shown in Table 2. It is also
possible that individual loci may be more or less likely to replicate
depending on other factors affecting power, such as frequency or the
location on the chromosome. To account for this, we explicitly simu-
lated new phenotypes for the loci deemed significant and performed
mapping again. The resulting probability of validating QTL within
populations is given in Table 1, though we note that in some parameter
combinations with low power this probability is based on few loci. In

most cases, the power to validate our previously identified loci is higher
than considering all our simulated loci at the lower threshold, indicat-
ing that factors such as allele frequencies also influence the likelihood of
validating a given locus. Inmany realistic parameter combinations (e.g.,
a PVE of 5% and a sample size of a few hundred), the likelihood of
validating a QTL is, 50% in bothmapping populations. Furthermore,
in many complex traits, the PVE of most causative loci are expected to
be , 5%. Therefore, the failure of validation attempts within popula-
tions should not be taken as evidence for epistasis in the absence of
additional evidence.

Between populations, several additional factors besides a lower
threshold will strongly influence the likelihood of validating a QTL in
a second mapping population (i.e., validating a DSPR hit in the DGRP
or vice versa). First, a causative allele that is not segregating in the
second population will obviously have no chance of being validated.
In the DGRP and DSPR, there are a total of �2.5 million SNPs that
passed our criteria, which excludes any SNP with a minor allele fre-
quency of , 2.5% (see Methods). Of these, 60% are unique to the
DGRP, 34% are shared between the two populations, and 7% are
unique to the DSPR (Figure 5a). Thus, for biallelic QTL in these pop-
ulations, only 34% of loci have a nonzero chance of being replicated.
However, in the case of multiallelic QTL, where there are several SNPs
within a causative QTL that affect the phenotype, the same precise
SNPs do not necessarily need to be present for a QTL to replicate.
There is a growing body of evidence in support of the hypothesis that
mapped QTL can be multiallelic. For example, in the DSPR, there is
evidence multiple alleles exist at causative QTL for large effect traits
such as the Adh locus (King et al. 2012a) and large effect cis eQTLs
(King et al. 2014b), a pattern that has also been found for human
diseases [reviewed in McClellan and King (2010)] and is supported
by theoretical models (Pritchard 2001; Thornton et al. 2013). Second,
for an allele with a given additive effect, the allele frequency of the
causative SNP will influence the PVE by the allele in the second

Figure 5 (A) Density plot of the frequencies of
SNPs in the DGRP and DSPR. Different colors
denote SNPs unique to each population and
shared in the two populations. (B) Histogram of
the differences in the MAF for the set of SNPs
shared between the DGRP and the DSPR. The
black vertical line denotes zero; to the left, the MAF
in the DSPR is higher than in the DGRP; and to the
right, the MAF is higher in the DGRP. DGRP, Dro-
sophila Genetic Reference Panel; DSRP, Drosophila
Synthetic Population Resource; MAF, minor allele
frequency; QTL, quantitative trait loci; SNP, single
nucleotide polymorphism.

n Table 3 Power (% QTL identified) to validate QTL between populations

Source = DGRP, Validation = DSPR Source = DSPR, Validation = DGRP

Source PVE
Validation
Sample Size

Hits Shared Between
Populations (%)a Validated (%)b

Hits Shared
Between Populationsa Validatedb

5 185 27 (55.1) 6 (22.2) 837 (84.0%) 143 (17.1%)
5 878 27 (55.1) 17 (63.0) — —

10 185 77 (51.7) 35 (45.5) 1098 (84.5%) 464 (42.2%)
10 878 77 (51.7) 55 (71.4) — —

DGRP, Drosophila Genetic Reference Panel; DSRP, Drosophila Synthetic Population Resource; PVE, percentage of variance explained; FWER, family-wise error rate.
a
The number of hits that also exist in the validation population with the percentage of hits that are shared in parentheses. These numbers vary according to the power
in the initial simulation and the parameter combinations considered (see Methods).

b
The number of shared hits also mapped in the validation population with the percentage (i.e., power) in parentheses.
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population. In other words, if an allele with a given effect in one pop-
ulation is lower in frequency in the second population, it will explain a
lower percentage of the variance. For the set of SNPs shared between
the DGRP and the DSPR, the minor allele frequencies are correlated,
but the relationship is not strong (r = 0.19, P , 0.001). Alleles are
equally likely to be at increased frequency in the DSPR as in the DGRP,
with an average difference of 14% (Figure 5b). Of course, this applies
only to the set of shared SNPs in the two populations; there is a higher
frequency of rare alleles in the DGRP but these alleles are unique to the
DGRP. Finally, not only will the frequency of the causative locus vary,
but the presence and frequency of all other causative variants will also
vary, influencing the heritability of the trait and relative contributions
of the loci. For a typical complex trait, the number of these variants is
expected to be high. For these reasons, the expected PVE for a given
locus in a secondmapping population is essentially an unknown quan-
tity. Thus, in the most general sense, the potential for validation is best
informed by the power at our lower local region FWER for various PVE
and sample sizes (Table 2).

However, for the set of shared SNPs in the DGRP and DSPR, it is
useful to estimate the likelihood of replicating a locus between pop-
ulations. For a subset of parameter combinations, we performed sim-
ulations to determine the power to identify a “hit” from theDGRP in the
DSPR and vice versa (Table 3). Note that these simulations assume that
the PVE of the locus is determined by the effect of the locus and its allele
frequency and is not influenced by changes in the allele frequencies of
other loci. For the same sample size, the power to validate between
populations is similar, given that the SNP exists in both populations.
The power to validate between populations for the full sample size in
the DSPR is lower than the power to validate within populations
(compare Table 2 and Table 3). Despite the fact that it is equally
likely for an allele to increase or decrease in frequency, power is
already high for the full sample size. Thus, SNPs at increased fre-
quency in the DSPR compared to the DGRP (increasing the PVE) do
not increase power substantially but SNPs at decreased frequency in
the DSPR compared to the DGRP (decreasing the PVE) do reduce
power, lowering overall power. Overall, as is generally the case in
mapping studies, QTL would be expected to validate between pop-
ulations when the SNP is common (increasing the likelihood it exists
in another population), the PVE is high, and/or the sample size in
the validation population is high.

Conclusions
Here, we have confirmed the behavior of the Beavis effect in two major
modern Drosophila mapping populations, the multiparent DSPR and
the GWAS-based DGRP. We have shown that the expected overesti-
mation of the PVE by QTL is similar in the two populations and is
strongly determined by sample size. Some of the severity of the Beavis
effect stems from the requirement of using a high significance thresh-
old that results from performing mapping at thousands to millions of
positions. At one extreme, the false positive rate can be tightly con-
trolled giving high confidence that a mapped QTL is a true positive;
however, the Beavis effect will be most severe in this circumstance.
Using relaxed significance thresholds may decrease the severity of the
Beavis effect but will also increase the likelihood that any givenQTL is a
false positive. Approaches that use the entire set of SNPs to estimate the
variance explained by all markers (e.g., Yang et al. 2010) avoid both of
these issues by not conditioning on specific loci as being significant.
However, these methods are therefore unable to pinpoint specific loci
as being potentially causative, instead describing the overall variance
attributable to all genetic factors. Finally, we have shown that the power
to validate a mapped QTL both within the same mapping population

and between mapping populations is not necessarily high, even given
the relaxed significance criteria that can be used for a focused scan. A
lack of validation is generally the more likely scenario and should
always be treated as an absence of evidence, not evidence of absence.

The core issues that we have discussed here—the PVE by QTL,
power to detect QTL, and the prospects for validation of QTL—are
relevant to any mapping population. One potential limitation to our
simulations is that they only consider a single causative locus for each
simulated phenotype. Our results are expected to be generalizable to
any given mapped QTL, but we are not able to address issues that arise
whenmapping multiple QTL in a given experiment, including estimat-
ing the overall PVE explained by all QTL and the potential bias asso-
ciated with this estimate. Qualitatively, our results in the DSPR should
provide a rough guide for otherMPPs (e.g., McMullen et al. 2009; Aylor
et al. 2011; Huang et al. 2011; Collaborative Cross Consortium 2012;
Cubillos et al. 2013) employing haplotype-based mapping. In addition,
while power is quite different in the DSPR and DGRP, the bias in PVE
in the two resources is quite similar for similar sample sizes. This result
suggests that our results, and those found previously (Utz and
Melchinger 1994; Beavis 1998; Xu 2003; Broman and Sen 2009),
for the bias in PVE may apply very broadly across mapping designs
as well, though this issue deserves a more thorough investigation of
additional mapping panels and designs in various species.
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