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Enzymes catalyze key reactions within Earth’s life-sustaining biogeochemical cycles.
Here, we use metaproteomics to examine the enzymatic capabilities of the microbial
community (0.2 to 3 μm) along a 5,000-km-long, 1-km-deep transect in the central
Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin,
with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups
were identified, yet only 25 KO groups contributed over half of the protein abundance,
simultaneously indicating abundant key functions and a long tail of diverse functions.
Vertical attenuation of individual proteins displayed stratification of nutrient transport,
carbon utilization, and environmental stress. The microbial community also varied
along horizontal scales, shaped by environmental features specific to the oligotrophic
North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific,
and nutrient-rich equatorial upwelling. Some of the most abundant proteins were asso-
ciated with nitrification and C1 metabolisms, with observed interactions between these
pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase
(NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate
dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM)
displayed distributions indicative of biogeochemical status such as oxidative or nutri-
tional stress, with the potential to be more sensitive than chemical sensors. Enzymes
that mediate transformations of atmospheric gases like CO, CO2, NO, methanethiol,
and methylamines were most abundant in the upwelling region. We identified hot spots
of biochemical transformation in the central Pacific Ocean, highlighted previously
understudied metabolic pathways in the environment, and provided rich empirical data
for biogeochemical models critical for forecasting ecosystem response to climate change.

marine microbial ecology j metaproteomics j mesopelagic j nitrification j methylotrophy

Earth’s elemental cycles are heavily influenced by biological systems, where enzymatic
catalysts contribute to large-scale biochemical transformations of carbon, nitrogen, sul-
fur, and trace metals. Proteins are necessary for life through their role in key cellular
functions including transporting essential molecules into and out of the cell, forming
cellular structures, storing key micronutrients, regulating cellular responses to environ-
mental perturbations, and catalyzing biochemical transformations. The latter of these
functions, enzymatic catalysts, are not only essential in cellular metabolism within
organisms but can also directly influence global biogeochemical cycles and ecosystems (1).
The recently developed ability to directly measure proteins in the ocean (2–10) has
enabled the study of biogeochemically active proteins and their physiochemical drivers.
Scaling measurements of adaptive response proteins over large geographic regions provides
the opportunity to use microbes as geochemical sensors of environmental conditions (7,
11). Together, the direct analysis of proteins on an oceanic scale provides a rich empirical
dataset to constrain models of biochemical transformations in the ocean (12–15), includ-
ing those that impact major elemental cycles like carbon, nitrogen, oxygen, and sulfur.
Here, we applied high-resolution sampling and metaproteomic analyses to determine

how geophysical forcings and microbial community dynamics shape spatial distributions
of pelagic marine microorganisms and the biogeochemical cycles they mediate across
biomes in the central Pacific Ocean. Ninety-eight microbial community protein samples
(0.2 to 3 μm) and geochemical samples were collected at 11 locations through the eupho-
tic and mesopelagic zones (depth range of 20 to 1,250 m) along a 5,000-km transect from
Hawai’i to Tahiti (Fig. 1A) aboard the research vessel (R/V) Falkor in January–February of
2016, during a strong El Ni~no period. Metaproteomic samples were analyzed by high-
resolution two-dimensional active modulation nanospray mass spectrometry (16) and
mapped to a corresponding metagenome dataset yielding 107,579 unique peptides and
56,543 protein groups (88,251 unique proteins). Protein abundance data are represented
as corrected spectral counts per liter of seawater (sccorr/Lsw) by scaling spectral counts to
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the abundance of protein sampled from a volume of seawater
while correcting for instrument technical ionization bias (Materials
and Methods). This study paper focuses on only some proteins
across this transect, but all of the proteins in this large dataset are
available for exploration and visualization in the Ocean Protein
Portal (17).
The central Pacific Ocean is a region of strong physicochemical

gradients due to upwelling of nutrient-rich waters on the equator
surrounded by regions of depleted nutrients in the subtropical
gyres to the north and south (Fig. 1A) with low-oxygen interior
waters throughout (Fig. 1C). Patterns of microbial vertical stratifi-
cation and regional variability within the metaproteomic data
were consistent with varying physical and geochemical contexts
(Fig. 1 B–E, G, and H and SI Appendix, Fig. S1) (18–20). We
studied the vertical stratification of pelagic free-living microbial
communities (not particle-associated) as they transitioned from
the euphotic zone—a region of photosynthetic carbon fixa-
tion—to the mesopelagic with subsequent removal of labile dis-
solved organic carbon with depth (21). Protein distributions were
not only analyzed in relation to these geochemical and physical
features but were also investigated as they related to one another
revealing complex interdependencies between various actors in the
microbial communities across this transect.

Results and Discussion

To interrogate this large dataset, we utilized multiple statistical
and modeling approaches to identify the major patterns in

protein distributions (Materials and Methods). Machine learning
clustering analyses of hydrographic and geochemical data
resulted in partitioning of microbial communities along the
transect into cohesive depth bins along a broad regional scale
(Fig. 1G). Four major depth groups resulted from k-means
clustering: surface, cline, twilight, and deep depth groups (SI
Appendix, Fig. S2). Hierarchical clustering also divided stations
into two regions: North Pacific (stations 4 to 10) and South
Pacific regions (stations 11 to 14; SI Appendix, Fig. S3). These
two clusters corresponded to multiple biogeochemical provin-
ces: North Pacific stations captured the low-nutrient surface
waters of the North Pacific Subtropical Gyre (NPSG; stations
4 and 5) and the western flank of the Eastern Tropical North
Pacific (ETNP) oxygen deficient zone (ODZ) within the cline
and twilight depths. In contrast, South Pacific stations captured
the highly productive and relatively nutrient-replete area of
equatorial upwelling, with corresponding enhanced particulate
organic carbon (POC), NO2

�, and NH4
+ in the surface and

cline (Fig. 1 E, F, and I). To better understand vertical stratifi-
cation of proteins, we performed a community attenuation
analysis by fitting a power law model to protein abundance
through the water column. Microbial protein attenuation (c) is
an indicator of the importance of specific proteins to microbial
communities with increasing depth through the water column
(Figs. 1 E and H and 2A and SI Appendix, Fig. S4). For exam-
ple, the average c for all proteins is �1.25. Very negative values
of c indicate proteins that are predominantly found in the
surface relative to communities at depth. Less negative values
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Fig. 1. Station locations, geochemical features, and sample groupings along vertical and horizontal scales. (A) Cruise track for the ProteOMZ research expedition
across the central Pacific Ocean aboard the R/V Falkor in early 2016 overlaid on a composite image of estimated chlorophyll-a from the moderate resolution
imaging spectroradiometer (MODIS) Aqua satellite data during the expedition with an additional month bounded on both sides. The more productive waters
associated with equatorial upwelling are visible in a band centered on station 12 ranging from stations 11 to 13. Dark blue represents lack of satellite data due to
dense cloud cover. (B) Depth profiles of nitrous oxide concentrations from stations 7 and 12. (C) Oxygen concentrations across the transect as observed from a
conductivity, temperature, and depth instrument with reduced oxygen regions associated with the extremities of the Eastern Tropical North and South Pacific
ODZs evident near stations 7 and 13, respectively. (D, F, and I) Concentrations of nitrate, nitrite, and ammonium, respectively, as determined from water samples
collected by Niskin bottle. (E) POC per volume of seawater sampled determined from GF/F filters attached to McLane in situ pumps collected concurrently with
proteomics samples, peaking in abundance near the region of equatorial upwelling in the south. (G) Samples, represented by individual dots, grouped by region
(north and south) as well as by depth (surface, cline, twilight, and deep) as identified by machine learning clustering analyses of geochemical and hydrographic
data. While station 11 is in the Northern Hemisphere and station 12 is at the equator, based upon environmental data they clustered together with the southern-
most stations. (H) Total protein extracted per volume of seawater sampled from the 0.2- to 3.0-μm filters.
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of c indicate proteins that are more important to microbial
communities in deeper depths as they have a less pronounced
decline in abundance with depth through the water column,
with positive values indicating the few proteins that increase in
abundance with depth even though total biomass dramatically
decreases through the water column. Finally, an artificial neural
network analysis provided insight across these biogeochemical
provinces by highlighting protein distributions characteristic
to specific samples, generating sample-specific “fingerprints,”
while simultaneously providing an exploration of microbial
consortia interactions among proteins of varying functions and
taxonomic origin.

The contribution of different taxa to the microbial commu-
nity proteome varied along both vertical and regional dimen-
sions. A least common ancestor (LCA) analysis of individual
peptide constituents was conducted, with the relative contribu-
tions from each taxonomic group reported along depth groups
(Fig. 2A) (22). The overall microbial proteome was dominated
by marine Bacteria, with 85.1% of peptides assigned to bacte-
rial groups in the surface, twilight, and deep depth groups.
Bacteria had the lowest relative contribution in the cline at
81.7%. Cyanobacteria were the primary source of peptides in
the surface (36.1%) with Prochlorococcus as the dominant taxon
(25.8%). Pelagibacter was the primary contributor among the
Alphaproteobacteria, the second-largest source of peptides in
the surface (20.8%). Both the Cyanobacteria and Alphaproteo-
bacteria peaked in abundance in the South Pacific near the
region of equatorial upwelling. This coincided with the peak
in POC (Pearson correlation coefficient r ≥ 0.94; Fig. 1 E
and H). The dominance of these two groups inferred from
metaproteomics is consistent with taxonomic distributions
from metagenomic data collected from similar pelagic regions
(23–27). Integrating over all depth groups, Proteobacteria were
the single largest source of peptides, contributing 32.6% over-
all. Eukaryotes, and Nitrospinae bacteria were the next largest
groups, contributing 3.8 and 2.1% of the total peptides, respec-
tively. Eukaryotic peptides were primarily found within the
euphotic zone and were associated with the picoeukaryotic phy-
toplankton Pelagamonas and diatoms because the size fraction
analyzed here (0.2 to 3.0 μm) precluded most eukaryotes and
large particle-associated organisms (9). Archaeal peptides were
most abundant below the surface depth group, ranging from
3.0 to 3.2%. About 2/3 of archaeal peptides were from
Euryarchaeota in which the dominant peptides were associated
with L-amino acid transport and metabolism, and 1/3 from
Thermoproteota (Thaumarchaeota, Aigarchaeota, Crenarch-
aeota, and Korarchaeota), in which the bulk of the peptides
were associated with the uptake and metabolism of nitrogenous
compounds, in line with prior findings from studies of Archaea
(28). Interestingly, Archaea are known to be highly abundant
by cell number in the mesopelagic (29, 30), but their small cell
size and slow metabolism appeared to result in a small contribu-
tion to overall microbial protein abundance. The same pattern
was also recently observed in global marine metatranscriptomes
(31). A relatively small contribution to the overall proteome was

A

B
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Fig. 2. Taxonomic and functional diversity within the ProteOMZ metapro-
teome. (A) The large concentric circles represent the relative abundance of
peptides attributed to taxonomic groups according to an LCA analysis of
peptides per depth group. The legend for each depth group also displays
the percentage contribution of each major domain to the taxonomic profile
with LUCA assigned to peptides which are highly conserved and thus found
in multiple domains. Unknown indicates peptides which have no taxonomic

homology to known organisms. The size of blue circles under the depth
group names represents the relative contribution of peptides from that
depth group to the overall metaproteome. (Inset) The swamp plot displays
the abundance of peptides in sccorr/Lsw per depth group, colored by region.
(B) A cumulative summation plot categorically displaying KO groups in rank
order of abundance along the x axis and the relative contribution of each
KO group to the total peptides in the KO-identifiable metaproteome along
the y axis. (C) The relative abundance of peptides assigned to the major
Enzyme Commission categories according to depth group.
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made by peptides that lacked association with any known taxo-
nomic group (0.6%) demonstrating the capacity for dark environ-
mental DNA to be translated into “dark protein.”
The functional capabilities of the metaproteome were inves-

tigated by assigning traits using KEGG Orthology (KO) and
Enzyme Commission (E.C.) identifiers. Seventy percent of the
normalized spectral counts were assigned functional traits with
KOs. Notably, out of 2,037 functional KO groups identified
(Movie S1), over 51.6% of the peptide abundance was associ-
ated with only 25 KO groups (Fig. 2B and SI Appendix,
Fig. S5). The chaperone protein GroEL was the single most
abundant functionally characterized protein across the dataset
(Fig. 3 and SI Appendix, Fig. S6), accounting for 6.4% of the
KO-identifiable normalized spectral counts. The sheer abun-
dance of the GroEL protein has not been previously observed
using metagenomic or metatranscriptomic approaches highlighting
the differences between transcription and protein abundance and
the universal importance of protein folding in marine microbes.
A photosynthesis-centered taxonomic community character-

ized the surface depth group, while a more diverse community
was present at depth responding to more variable and diffuse
sources of energy (Fig. 2A). The functional focus of the micro-
bial community also changed in the cline, twilight, and deep
depth groups. E.C. numbers classify the chemical reactions
carried out by enzymes into seven broad categories (Fig. 2C).
Evaluation of these broad reaction categories revealed that the
microbial catalytic focus shifted from that associated with rapid
growth and reproduction in the surface, characterized by abun-
dant transferases (E.C. class 2), to a focus on energy harvesting
dominated by oxidoreductases (E.C. class 1) at depth (Fig. 2C).
The transferase DNA-directed RNA polymerase (2.7.7.6) was
the most abundant enzyme in the surface and throughout the
entire dataset, consistent with microbial growth and associated
transcription (32). In accordance with the biomass production
and growth in the surface, peptides from lyase class (E.C. class
4) including ribulose-1,5-bisphosphate carboxylase/oxygenase
(RubisCO, RbcLS), the major CO2 fixation enzyme, and the
HCO3

� consuming phosphoenolpyruvate carboxylase (PEPC),
which participates in the anaplerotic synthesis of oxaloacetate
in Cyanobacteria (33, 34), were most abundant in the surface
(Fig. 3). The transferases were the most abundant enzyme
group in the photosynthesis-dominated surface layer where the
majority of proteinaceous biomass occurred. The relative con-
tribution of oxidoreductase enzymes increased with depth
through the mesopelagic where the microbial focus shifted to
maintaining life-sustaining energetic demands and were the
most abundant enzyme class throughout the entire water col-
umn, composing 30% of total enzyme abundance.
Transport proteins were abundant, contributing at least 28%

of the total proteome, similar to the findings of microbial meta-
proteomes from the pelagic Atlantic Ocean (2, 5). Transport
protein distributions in the surface ocean corroborated prior
findings of nitrogen stress in Cyanobacteria from the oligotro-
phic NPSG (7) while expanding upon the biomarker catalog
(Fig. 3). Proteobacterial iron transporters were vertically strati-
fied, with the iron(III) transport system substrate-binding pro-
tein (AfuA) significantly more abundant in the surface and the
TonB-dependent siderophore receptor protein (TC.FEV.OM)
deeper in the euphotic zone. The community attenuation coeffi-
cients (c) of �4.13 and �1.28 for AfuA and the TonB-dependent
transporter, respectively, indicated the greater importance of the
TonB-dependent iron transporter at depth because it attenuated
more slowly through the water column than AfuA at a level more
similar to the attenuation for all proteins (c = �1.25; Fig. 3).

This stratification hints at the differing microbial strategies for
uptake of limiting nutrients, suggesting ligand-bound mecha-
nisms are preferentially utilized by free-living microbes deeper in
the water column. Some organic carbon transport proteins also
displayed vertical and regional-scale variations. The simple sugar
transport substrate-binding protein (ABC.SS.S: c = �4.36)
attenuated more quickly than the multiple sugar transport
substrate-binding protein (ABC.MS.S: c = �1.17), suggesting a
shift in the DOC pool with depth (Fig. 3). Notably, the
inositol-phosphate transport substrate-binding protein of Proteo-
bacteria increased in abundance in the deep, indicative of the
importance of this protein to community success in the mesope-
lagic (InoE: c = +0.26; Figs. 3 and 4A). Some transport proteins
displayed variation across regional scales, suggestive of variation
in DOC utilization along horizontal gradients; for example, the
fructose transport substrate-binding protein (FcrB), primarily
produced by Alphaproteobacteria, was significantly more abun-
dant in the surface of the North Pacific (Fig. 3). Variations in
transport protein abundance can act as biological indicators (or bio-
markers) of scarce nutrient distributions and stress in microbial
communities (5, 7, 35).

The patterns in the distribution and abundances of oxidore-
ductase enzymes indicated carbon stress, oxidative stress, and use
of alternative respiratory pathways. The oxidoreductase class of
enzymes catalyze redox reactions and often utilize transition met-
als at their catalytic sites, most often using Fe cofactors, as well as
Mo, Cu, and W, among others (36). Oxidoreductases are critical
components of respiration and include the CO2-evolving
enzymes pyruvate dehydrogenase (PdhA) and isocitrate dehydro-
genase (IDH), both enriched in the surface (Fig. 3) in conjunc-
tion with POC and O2 (Fig. 1 C and E). Many biogeochemically
relevant oxidases support chemolithoautotrophy by mediating the
oxidation of reduced substrates. Distributions of oxidoreductase
enzymes associated with nitrification were linked with major
biogeochemical features along this transect, specifically within
the ETNP ODZ and equatorial upwelling. The Mo- and Fe-
containing enzyme nitrite oxidoreductase (NxrAB) is responsible
for the final step in nitrification through the oxidation of NO2

�

to NO3
� (SI Appendix, Fig. 10). NxrAB was the most abundant

oxidoreductase protein along this transect (Figs. 3 and 4B) and
in the mesopelagic central Pacific Ocean, in general, at over 60
billion molecules per liter (8). While NxrAB was extraordi-
narily abundant in the mesopelagic with low attenuation
coefficients (c = �0.38 and �0.55 for NxrA and NxrB, respec-
tively), it peaked in abundance in the oxygenated surface
region of equatorial upwelling at station 12 (Fig. 4B). The
abundance of NxrAB here may be supported through elevated
production of NO2

� via remineralization of photosynthetically
derived organic matter and aerobic ammonia oxidation.

The Cu-containing archaeal ammonia monooxygenase (includ-
ing subunits AmoABC) is responsible for the first step of nitrifi-
cation through the oxidation of NH4

+ (SI Appendix, Figs.
S11–S13). AmoABC peptides were associated with Thermopro-
teota and peaked in abundance at the interface of the surface and
cline depth groups (Figs. 3 and 4C). The Cu-utilizing nitrite
reductase (NirK), which reduces NO2

� to NO, displayed vari-
able distribution patterns related to taxonomic origin. Bacterial
NirK was primarily found in low-oxygen waters (Figs. 1B, 4D,
and 5) with the explicit functional role of NirK in these free-
living communities still uncertain. Similarly, the function of
archaeal NirK is also uncertain but has been suggested as a source
of NO, an essential intermediate of ammonia oxidation (37, 38).
Archaeal NirK occurred at the top of the ETNP ODZ at an
abundance roughly similar to that of bacterial NirK; however,
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Fig. 3. Summary table of protein abundance and attenuation across the transect. Data in the table include the gene name, Kegg Ontology identifier (KO),
specific taxonomic group determined by LCA analysis of peptides (blank taxa indicate all taxa for that protein presented), total abundance (sccorr/Lsw:
spectral counts per liter of seawater), community attenuation (c) through the water column (dash indicates lack of data for calculating; Materials and
Methods). The heat map represents an aggregate of the individual depths (surface, cline, twilight, and deep) across the regions (north and south). The colors
in the heat map represent the log2 fold change of the average abundance for each depth/region combination compared to the overall average abundance
for all samples. Lines around groups represent where a protein in a particular location is significantly more abundant than other locations, with a dashed
line indicating P ≤ 0.05 and a thick solid line indicating P ≤ 0.01. Lines around an entire region indicate where a protein is significantly more abundant than
the other region as assessed by a Mann–Whitney u test. Lines around individual depths indicate where a protein is significantly more abundant in one or
more depths when compared to the other depths as assessed by a Kruskal–Wallis H test with post hoc Dunn’s tests. Asterisk indicates KO groups that
contain multiple different functional proteins, such as K00370, which contains both NarG and NxrA proteins (Materials and Methods and SI Appendix, Figs.
S10–S15). Caret indicates peptides identified through parsimony analysis from protein group inference in the software package Scaffold as opposed to LCA
analysis which was utilized elsewhere due to the high conservation of the peptides among taxonomic groups (Materials and Methods). Section profiles of the
distribution of these proteins can be found in Fig. 4 or SI Appendix, Figs. S6–S9.
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archaeal NirK was significantly more abundant in the South
Pacific near the equatorial upwelling region of station 12 (Fig.
4E). Archaeal NirK is located near NxrAB from Nitrospina in the
neural net (39) (Fig. 5C) and is closely correlated (r = 0.78 for
NxrA and archaeal NirK) showing that these enzymes have simi-
lar distribution patterns indicative of related geochemical niches
linked to NO2

�. The high abundance of NO2
� utilizing

enzymes in conjunction with the typically lower standing NO2
�

concentrations in the surface ocean above the primary nitrite
maximum suggests active chemical cycling where the available

NO2
� was consumed as quickly as it was produced in these

regions (Figs. 1E and 4 B and E). Notably, higher concentrations
of N2O were observed at the top of the ETNP ODZ at station 7
(Fig. 1B), where archaeal NirK and AmoABC peaked in the
North Pacific. This cooccurrence of N2O and archaeal ammonia
oxidation proteins in the ETNP ODZ may be due to the activity
of archaeal ammonia oxidizers, whose N2O yield from ammonia
oxidation increases at low oxygen concentrations (40). Purified
archaeal NirK has been shown to catalyze both the formation of
N2O from hydroxylamine under aerobic conditions, and the

A B C

D E F

G H I

J K L

Fig. 4. Attenuation profiles and distributions of the most abundant oxidoreductases in the mesopelagic. (A) Attenuation lines calculated by fitting a power
law through abundance data of total extracted protein (c = �1.15), POC (c = �0.7), PON (c = �1.05), transport, and oxidoreductase enzymes that dominate
the mesopelagic. The attenuation for all proteins combined was c = �1.25; more negative attenuations mean that proteins are more abundant in the sur-
face and are reduced more quickly from communities at depth. Proteins with relatively slow attenuation rates, like the low-oxygen formate dehydrogenase
(FdoG; c = �0.46), which oxidizes the C1 compound formic acid to CO2, and carbon monoxide dehydrogenase (CoxL; c = �0.31), which oxidizes carbon
monoxide to CO2, are shown. Also presented is the aerobic formate dehydrogenase (FDH; c = �19.56), which is associated with methylotrophy and attenu-
ates rapidly as it is far more abundant in the surface than in the mesopelagic. The inositol-phosphate transport system substrate-binding protein (InoE;
c = +0.26), which increases in abundance with depth, is also shown. (B) Abundance of the most abundant oxidoreductase enzyme, nitrite oxidoreductase
(NxrA), across the transect. This enzyme is abundant in the mesopelagic as well as in the surface waters near the equatorial upwelling region in the south.
(C) Ammonium monooxygenase alpha subunit (AmoA) of Thermoproteota is most abundant at the interface of the surface and cline and is also more abun-
dant in the south. (D) Bacterial nitrite reductase (NirK) peaks in abundance in the low-oxygen waters above the ETNP ODZ. (E) Archaeal nitrite reductase
(NirK) is present in the waters above the ETNP ODZ but peaks in abundance in the surface waters associated with equatorial upwelling. (F) The oxidizing
form of dissimilatory sulfite reductase (DsrA) is found within the mesopelagic waters. (G) The copper monooxygenase from Nitrospinae, putatively a Mn
oxidase (MnxG), is most abundant at the top of the ETNP ODZ and is also found at similar depths in more oxygenated waters in the South Pacific. (H) MnxG
shows a similar distribution pattern in the South Pacific to the bacterial catalase (KatG), which is indicative of a region characterized by oxidative stress.
(I) The third most abundant oxidoreductase protein in the mesopelagic, formate dehydrogenase (FdoG), is most abundant along oxic transitional regions.
(J) The abundant protein carbon monoxide oxidoreductase (CoxL) is also found throughout the mesopelagic, peaking in abundance in the South Pacific.
(K) The formate dehydrogenase (FDH), however, is most abundant in the South Pacific surface near high POC. (L) The distribution of multiple ammonifying
catabolic enzymes like alanine dehydrogenase (Ald) is tightly correlated with ammonia monooxygenase.
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reduction of NO2
� with hydroxylamine to form N2O under

anaerobic conditions (41). Further, production of labeled N2O
from NH4

+ has been demonstrated over a range of oceanic
oxygen concentrations where archaea are the only ammonia oxi-
dizers (42, 43). However, we cannot conclusively rule out that
this N2O was instead advected from a remote zone of production
further east in the ETNP and not locally produced.
The three nitrification enzymes (NxrAB, Archaeal NirK, and

AmoABC) also cooccurred within the low-oxygen transition
into the ETNP ODZ in the North Pacific (Fig. 1C), where
anaerobic respiratory pathways can occur in free-living commu-
nities within the pelagic water column (44). The high oxygen
affinities of archaeal ammonia oxidation and Nitrospina-mediated
nitrite oxidation support these metabolic processes in the ETNP
ODZ (45) and the Eastern Tropical South Pacific (ETSP) ODZ
(46). The first step of heterotrophic denitrification is the dissimi-
latory reduction of nitrate. While particles can be hot spots of
denitrification (44), the size fraction analyzed here precludes
most particle-associated microorganisms. However, some pepti-
des from nitrate reductase were identified (NarG and NapA)
within the ODZs but only in samples from locations with oxy-
gen concentrations less than 5 μmol kg�1 (Figs. 3 and 5A). Aside
from bacterial NirK, other signatures of bacterial denitrification
such as nitrite reductase (NirS), nitrous oxide reductase (NosZ)

which reduces N2O to N2, or nitric oxide reductase (NorBC)
which reduces NO to N2O were not found in the free-living
community using our two-dimensional (2D) metaproteomic
analysis (16), although representative sequences were present in
the metagenome, indicating the proteins either were not pre-
sent or were rare and below detection. Additionally, the marker
protein for anammox, hydrazine dehydrogenase (Hdh/Hzo),
was not identified in the metaproteome or the metagenome.
These proteins may have been primarily associated with par-
ticles and thus were not identified in the free-living pelagic
community, or an exact representative may not have been avail-
able in the corresponding environmental metagenome used for
peptide identification (47). Additional anaerobic respiratory
enzymes were identified in association with the ETNP ODZ.
The distribution of heterotrophic dissimilatory iodate reductase
(IdrA, formerly called AioA-Like; SI Appendix, Fig. S14) (48)
followed the pattern of oxygen depletion (Figs. 1C, 3, and 5A).
IdrA was identified in similar abundance to the oxidizing form
of dissimilatory sulfite reductase, DsrA (SI Appendix, Fig. S15),
similar to prior observations of transcripts in Pacific ODZs
(49), implying a reliance on iodate metabolism comparable to
that of sulfur oxidation in ODZs. Within the ETNP ODZ
samples, these two proteins had similar abundances (sum from
stations 6 to 8, 29.7 and 37.0 sccorr/Lsw for IdrA and DsrA,

A

B C

Fig. 5. Distribution of select oxidoreductases across the transect, according to oxygen concentrations, and all proteins as analyzed by an artificial neural
network. (A) Distributions of proteins binned by oxygen concentrations (10 μmol/kg) and normalized by the number of samples per bin. Gray outlines of pro-
tein distributions show the shape of the distribution for each individual enzyme. The colored interiors of AmoA, Archaeal and Bacterial NirK, DsrA, SoxA,
MnxG, and KatG are distributions scaled to the relative abundance of Archaeal NirK, the most abundant of these proteins. NxrA is presented separately as it
is significantly more abundant than the other proteins (20× more than Archaeal NirK). NarG and IdrA are presented together as they both have the same
distribution pattern and only occur in the lowest oxygen bin. The samples column displays the discrete number of samples in each oxygen bin by depth
illustrating the variability in sampling across oxygen concentrations. (B) Neural network feature maps of individual samples showing the unique fingerprints
of each sample, highlighting the major underlying protein distributions associated with each sample. Note how the fingerprints change with depth as well
as along regional scales. The neural net is composed of 900 individual nodes (a 30 × 30 matrix) using periodic boundary conditions. (C) The integrated differ-
ences of weights across all samples in the neural net are displayed in the background. Overlaid on top are points which represent the location of individual
proteins according to nodes in the neural net (best matching unit). Individual points within a single node are offset slightly to show density of points. Nodes
closer to each other with lower weight differences between them are more similar to each other.
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respectively). Proteins associated with sulfur oxidation (SoxA
and the oxidizing form of DsrA) were significantly more abun-
dant below the surface group but did not display a clear rela-
tionship with the ODZ regions (Figs. 3 and 4F), although they
were negatively correlated with O2 concentrations (r = �0.32
and �0.53 for SoxA and DsrA, respectively; Fig. 5A).
Some nonrespiratory enzymes also displayed noteworthy

relationships with oxygen concentrations across regional scales.
The second most abundant oxidoreductase from Nitrospinae,
manganese oxidase (MnxG), peaked in abundance in the cline
of the ETNP ODZ (Figs. 4G and 5A) and was negatively
correlated with O2 concentrations (r = �0.47). While the
Mn-oxidizing function of this specific multicopper oxidase
in Nitrospinae has not been experimentally confirmed, the
homology of this sequence with known Mn-oxidizing proteins
suggests this as a likely function (50), warranting further inves-
tigation of this environmentally important enzyme. In the
oxygen-depleted north region, Nitrospinae MnxG cooccurred
with Nitrospina NxrA (r = 0.64); however, in the oxygenated
south, MnxG peptides did not correlate with NxrA but instead
correlated with catalase (KatG; r = 0.64). The abundance of
KatG in these samples (Fig. 4H) was indicative of a region of
high oxidative stress, likely driven by the generation of reactive
oxygen species as by-products of ammonia oxidation (51). In
keeping with this, archaeal Fe-Mn superoxide dismutase (SOD2)
that converts superoxide radicals into H2O2, AmoAB, and
archaeal NirK all peaked in abundance at station 12, 100 m.
While no catalase or peroxiredoxin associated with Thermopro-
teota were identified, KatG displayed a similar distribution to
other ammonia oxidation proteins in the south (r = 0.73 with
AmoA; Fig. 5A). Aerobic ammonium oxidation may be enhanc-
ing oxidative stress in the South Pacific which is then moderated
by catalases produced by Bacteria, a commensal process previ-
ously demonstrated in laboratory cocultures of Thermoproteota
and heterotrophic bacteria (51). Additionally, the abundance of
MnxG suggests a coupling of N and Mn cycles catalyzed by
Nitrospinae. This coupling may manage oxidative stress (50) by
oxidizing reduced Mn and removing it from the water column
through Mn-oxide particle formation (52).
Across the entire transect, the most abundant oxidoreductases

in the dark mesopelagic—in the twilight and deep groups—
were the Fe- and Mo-containing formate dehydrogenase, FdoGH
(Figs. 3A and 4I), and Cu- and Mo-containing carbon monoxide
oxidoreductase CoxLM (Figs. 3 and 4J). Both FdoGH and
CoxLM help sustain microbial energy demands during periods of
nutritional or oxidative stress (53, 54). The large Mo-containing
subunits FdoG and CoxL were the third and fourth most abun-
dant oxidoreductase proteins in the mesopelagic. The impor-
tance of these enzymes to microbial communities at depth was
evidenced by their slow attenuations through the water column
(c = �0.46 and �0.31, for FdoG and CoxL, respectively; Fig.
4A). CoxLM likely supports mixotrophic growth under organic
carbon stress at depth: the vast majority of CoxLM-harboring
environmental microorganisms are carboxydovores capable of
scavenging CO at subatmospheric levels for electrons to support
aerobic respiration producing CO2 when organic carbon is limit-
ing (53). CoxLM proteins, primarily from Bacteria—including
from Bacteroidetes, Actinobacteria, Chloroflexi, Alpha- and
Gammaproteobacteria, among others—were found throughout
the dark mesopelagic and were significantly more abundant in
deeper depths compared to the surface (Fig. 3). The importance
of CoxLM to mesopelagic communities is consistent with a high
genomic capacity for CO oxidation in free-living microbial
communities in the bathypelagic (55). Regional variations in

the abundance of CoxLM was observed, where CoxLM was sig-
nificantly more abundant in the South Pacific (Figs. 3 and 4G).
Formate dehydrogenases oxidize another C1 compound, formic
acid, to CO2. Formate dehydrogenases are classified into two
families, both of which were observed in the proteome: one uses
FeS catalytic subunits, such as FdoGH, and the other, FDH, uti-
lizes NAD(P)+ as electron acceptors (56). FdoGH, primarily
associated with Bacteria—including from Alpha- and Gammap-
roteobacteria, candidate division NC10, Candidatus Tectomicro-
bia, and Actinobacteira among others—peaks in abundance in
the cline; however, it does not show a significant regional bias
overall. Laboratory studies have shown that FdoGH assists in
oxic/anoxic transitions, supporting substrate-level bioenergetic
conservation in anaerobic chemoorganotrophic microbial respira-
tion with NO3

� or NO2
� (54). In culture, the nitrifier Nitro-

spira was also shown to increase FdoGH protein in response to
the onset of oxygen limitation to support cellular energetic
requirements (57). In contrast, the NAD+ dependent formate
dehydrogenase, FDH, functions optimally in aerobic conditions
and has a very different distribution than FdoGH across this
dataset as this protein is primarily found in the more produc-
tive South Pacific surface group, correlating with total extracted
protein (r = 0.78; Figs. 1 E and H, 3, and 4I). FDH supports
methylotrophy as the final catabolic step in conversion of
C1 compounds to CO2 and can account for 10 to 15% of
cellular protein content in methylotrophs (56). Given that the
methylotrophy-related FDH is significantly more abundant in
the surface upwelling region (Figs. 3 and 4K), the variability in
the distributions of FDH and CoxLM demonstrates the use
of metaproteomics for constraining microbial production and
consumption of gases such as CO that are generally sparsely
sampled at depth (58).

Other oxidoreductase enzymes that can support methylotro-
phic growth also showed a similar regional distribution to
FDH. Peptides from the Cu-containing methanethiol oxidase
(MtoX), primarily produced by Proteobacteria, were signifi-
cantly more abundant in the surface and cline of the South
Pacific (Fig. 3). The gas methanethiol can be generated through
the degradation of sulfur-containing amino acids (59) and is
also an intermediate in the biotic degradation of the phyto-
plankton metabolite dimethylsulfoniopropionate (DMSP) and
the volatile dimethylsulfide (DMS), a source of sulfur to the
atmosphere and hypothesized contributor to cloud formation
(Fig. 3) (60–62). Notably, MtoX peptides were found to posi-
tively correlate with eukaryotic RbcL (r = 0.75), suggesting a
tight relationship between MtoX, which can be used by meth-
ylotrophs, and the likely source of the enzyme’s substrate:
picoeukaryotic phytoplankton. Trimethylamine monooxyge-
nase (Tmm), which catalyzes the oxidation of trimethylamine
(TMA) to trimethylamine N-oxide (TMAO), can also support
methylotrophy (Fig. 3) (63, 64). The Tmm peptides predomi-
nantly originated from Pelagibacter and were also significantly
more abundant within the surface of the South Pacific. Peptides
of the methylamine–glutamate N-methyltransferase enzyme
associated with methylamine oxidation (MgsBC) also peaked in
abundance in the South Pacific; however, these were found
deeper in the water column (c = �0.23 and �0.53 for MgsB
and MgsC, respectively) and were also abundant above the
ETNP ODZ. Methylamines make up a significant portion of
both the volatile and dissolved C and N pools with oxidation
of these compounds able to provide an exogenous source of
ammonia (65) that can cross feed to other organisms (64).

Nitrification and C1 metabolisms described above are depen-
dent on the activities of other enzymes and members of the
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microbial consortium, including enzymes involved in the catabo-
lism of organic matter. Numerous catabolic hydrolases (E.C.
class 3) that participate in ammonification had distribution pat-
terns linked to major biogeochemical features and showed dis-
tribution patterns where these degradative enzymes incidentally
support other members of the microbial consortia, namely,
Thermoproteota. The hydrolase formamidase (FmdA), which
produces formate and ammonia as by-products, displayed a
similar distribution pattern to the formate dehydrogenase FdoGH
(r = 0.71 with FdoG). Other bacterial ammonia-producing
hydrolases like beta-ureidopropionase (PydC) primarily from
Actinobacteria and Proteobacteria, amidase (AmiE) primarily
from Alphaproteobacteria, and N,N-dimethylformamidase (DmfA)
from Alpha- and Gammaproteobacteria were significantly more
abundant in the South Pacific near equatorial upwelling. These
enzymes were positively correlated with archaeal AmoA (r = 0.78,
0.60, and 0.62) and were located close to AmoABC in the neural
net (Fig. 5C). Additionally, the ammonifying catabolic enzyme
alanine dehydrogenase (Ald; Fig. 4L) from Proteobacteria was one
of the most tightly correlated with AmoA (r = 0.87). The cooc-
currence of these ammonifying enzymes with AmoABC suggests
a consortial syntrophic relationship between exogenous ammonia
production and archaeal ammonia oxidation (Fig. 5C). Ammoni-
fying hydrogenases also can support ammonia oxidation within
the organism that produces them. For example, the hydrolytic
Ni-containing urease enzyme (UreC) that releases ammonia from
urea produced by Thermoproteota was significantly more abun-
dant in the South Pacific and peaked in abundance in the twilight
depth here (Fig. 3). This enzyme supports ammonia oxidation in
Thermoproteota and displayed noteworthy taxonomic variability
as the UreC of Cyanobacteria, used when Cyanobacteria are
nutrient stressed, was significantly more abundant in the surface
of the North Pacific associated with the oligotrophic waters of
the NPSG. Notably, the Thermoproteotal UreC, which was
colocated with the urea symporter (DUR3) in the neural net
(Fig. 5C), did not have as strong of a correlation with AmoA
(r = 0.28 and 0.20 for UreC and DUR3, respectively) as the
ammonium transporter AMT (r = 0.66), suggesting archaeal use
of urea when free ammonia is scarce. Ammonifying hydrolases, in
addition to methylamine oxidation, likely contribute to the signif-
icant abundance of nitrification enzymes in the surface upwelling
region of the South Pacific.

Conclusions

The distribution of microbial proteins across large transects span-
ning major ecosystems enables comparisons of microbial pro-
cesses in various biogeochemical provinces, providing a holistic
view to investigate microbial function across large geospatial
scales. We identified how protein diversity of the microbial com-
munity, from both taxonomic and functional capacities, was
dominated by a few major protein groups and a multiplicity of
lower-abundance groups, while highlighting the interconnected-
ness among microbial consortia and the biogeochemical cycles of
nitrogen, carbon, oxygen, and sulfur. Notably, many of the criti-
cal oxidoreductase enzymes are metalloenzymes or utilize metals
as substrates (like MnxG), thus also impacting global trace metal
cycling. Community and enzyme shifts along vertical scales attest
to the rapid growth and reproduction in the euphotic zone and
the need to meet energetic demands at depth. Community shifts
were also observed along regional horizontal scales associated
with varying oxygen concentrations and nutrient availability.
The array of detected and quantified enzymes reflects carbon uti-
lization and nitrification pathways including the production and

consumption of volatiles like CO, CO2, NO, methanethiol, and
methylamines. Chemical interactions between members of the
microbial consortia were also observed in the neural net, for
example, between the nitrite-oxidizing Nitrospina and ammonia-
oxidizing Thermoproteota, connections between photosynthetic
production by Cyanobacteria and methyltrophy, and the catabo-
lism of organics by heterotrophs supporting chemoautotrophic
ammonia oxidation by Thermoproteota. Direct measurements of
these critical microbial enzymes as the engines of biochemical
transformations can provide high-resolution empirical data to
refine complex global biogeochemical models (12, 58) and
improve our understanding of the ocean in response to a changing
climate.

Materials and Methods

Sample Collection. The ProteOMZ research expedition through the central
Pacific Ocean occurred in January–February of 2016 aboard the R/V Falkor
(FK160115; chief scientist M. Saito). Dissolved macronutrient data were collected
by discrete water sampling using Niskin bottles on a trace metal rosette at all pro-
teomic sampling stations (Fig. 1G) roughly every 20 m in the surface and cline
depth groups and every 100 m from the twilight and deep depth groups. Samples
were passed through 0.2-μm filters and then frozen and analyzed as previously
described (66) at the Oregon State University Nutrient Autoanalysis Facility (20).
Nitrous oxide (N2O) concentrations were measured at sea by headspace equilibra-
tion followed by analysis with a greenhouse gas monitoring gas chromatograph
(SRI Instruments) equipped with an electron capture detector, dual HayeSep
D packed columns, and a 1-mL sample loop, as previously described (19, 67).
Nutrient and hydrographic data are available at the Biological and Chemical Data
Management Office (BCO-DMO) repository (https://www.bco-dmo.org/; project no.
685696, datasets 730912 and 775849). POC and particulate organic nitrogen
(PON) were collected onto borosilicate glass microfiber filters (Whatman grade
GF/F) and processed at the Woods Hole Oceanographic Institution Nutrient Cost
Center. Particulate organic matter on filters was combusted between 900 and
1,000 °C, with carbon converted to CO2 and nitrogen into N2 gases which column
separated and measured on an Elemental Microanalysis Flash EA 1112 in a man-
ner as described in ref. 68. Protein biomass was collected on 142-mm 0.2-μm
Supor filters (Pall Corporation) after prefiltration through a 3.0-μm filter. The vol-
ume of seawater that passed through the filters was measured via a flow gauge
integrated into the pump.

Hydrographic Clustering. Nutrient data did not always line up with protein
sampling depths due to sampling circumstances and the McLane pumps being
deployed by hanging at discrete depths from a line. Values for parameters at
missing depths were extrapolated by conducting 10-m linear interpolations of
nutrient data through the water column at each station (Dataset S1). Hydro-
graphic and nutrient parameters (temperature, salinity, oxygen, nitrate, POC,
PON, silicate, nitrite, and ammonium) were transformed using a min-max scal-
ing function so that no feature was weighted greater than another. K-means clus-
tering analysis of depth groups was conducted in R. While the major partitioning
of depths was among two clusters—euphotic vs. aphotic zones, a well-established
pattern in oceanographic domains—in order to gain an understanding of the
finer-scale community shifts through a water column, we selected for the next
best explanatory cluster number of four depth groups (SI Appendix, Fig. S2). Sta-
tions were clustered using a hierarchical clustering analysis in python using
SciPy hierarchical clustering (69) with a Euclidian distance matrix and Ward vari-
ance minimization (SI Appendix, Fig. S3).

Proteomics: Extraction and Mass Spectrometry. Proteins were extracted
from quarter sections of the 142-mm 0.2-μm filters using a modified SP3 mag-
netic bead method (70) following extraction, purification, and digestion method-
ology described in ref. 8. Briefly, this method involved use of filters stored at
�80 °C, placed into an SDS detergent buffer, and heated at 95 °C for 10 min to
lyse cells and solubilize proteinaceous material. Magnetic beads (SpeedBeads,
GE Healthcare) were used to purify away detergent and after alkylation and
reduction. Purified protein extract was then digested with trypsin (Promega).
Protein was quantified after the extraction step and again after the purification
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step. An aliquot of 2 μL was used for protein quantification steps, in duplicate,
using the bicinchoninic acid method (Thermo Scientific Micro BCA protein assay
kit). Absorbance was measured on a Nanodrop ND-1000 spectrophotometer
(Thermo Scientific) and compared against a standard curve generated with an
albumin standard (Thermo Scientific). An aliquot of 5 μL, at a concentration of
1 μg μL�1, of purified and digested protein extract was injected into an online
nanoflow 2D active modulation (2D-AM) liquid chromatography separation follow-
ing the methods described in ref. 16. Briefly, this method involved a first column
separation used a PLRP-S column (200 μm × 159 mm, 3-μm bead size, 300-Å
pore size; NanoLCMS Solutions) with a nonlinear 8-h (pH = 10) gradient
(10 mM ammonium formate in water and 10 mM ammonium formate in
90% acetonitrile). The eluent then flowed inline onto dual alternative
(30 min) column traps (100 μm × 150 mm, 3-μm bead size, 120-Å pore size,
C18 Reprosil Gold, Dr. Maisch, packed in a New Objective PicoFrit column), with
nonlinear 30-min gradients (0.1% formic acid in water and 0.1% formic acid in
99.9% acetonitrile). Eluent flowed inline into a Thermo Flex ion source attached
to the Thermo Fusion quadrupole-Orbitrap mass spectrometer (Thermo Scientific).
Scans were set to 240,000 resolution and a 380 to 1,580 mass-to-charge ratio
(m/z) window for MS1 scans in the Orbitrap. MS2 scans used a 1.6-m/z window
with 50-ms maximum injection times using higher-energy C trap dissociation acti-
vation and 5-s dynamic exclusion in the ion trap. Each 2D-AM run took 8 h and
resulted in 98 files (1 file per sample) of mass spectra (71).

Proteomics: Informatics. Peptide to spectrum matching (PSM) was conducted
with SEQUESTHT within Thermo Proteome Discoverer v. 2.1 software (parent ion
tolerance of 10 ppm and fragment tolerance of 0.6 Da). Following best practices
in environmental metaproteomics (47, 72), PSM matching was conducted against
a database of predicted proteins assembled from a metagenome collected from
the ProteOMZ sampling region in 2011 aboard the METZYME expedition
(73, 74). Additional proteomics identifications and assignments were conducted
with Scaffold v. 4.8.7. Identification was conducted with decoy false discovery
rates (FDRs) with a threshold of 95% minimum for peptides (FDR = 0.1%) and a
threshold of 99% (1 peptide minimum) for proteins (FDR = 1.6%) (47). Protein
level inference for parsimony-based assignments of specific proteins was con-
ducted using experiment-wide grouping with binary peptide–protein weights
in Scaffold. The mass spectrometry proteomics data, including sequences of
identified proteins, have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the Proteomics Identification
Database (PRIDE) partner repository (75) with the dataset identifier PXD030684
and DOI: 10.6019/PXD030684 (71). Peptide and protein abundance data in spec-
tral counts (PSMs), scaled units (sccorr/Lsw), and annotations are available at the
BCO-DMO repository under project no. 685696, dataset no. 3868030 (18). Addi-
tionally, the complete protein dataset can be explored interactively through the
Ocean Protein Portal (https://www.oceanproteinportal.org/) under expedition
FK160115. All proteins in Fig. 3 were identified by ≥3 unique peptides
(SI Appendix, Table S1) with an example of identified peptides mapped onto a
multiple sequence alignment of open reading frames associated with IDH
(K00031; SI Appendix, Fig. S16). Metagenome quality analysis and annotations
were described in ref. 73, with assembly conducted using metaSPAdes (76).
Metagenome sequencing can be found at the Joint Genome Institute (JGI)’s Inte-
grated Microbial Genomes (IMG) database (https://img.jgi.doe.gov/) under JGI
Sequencing Project IDs Gp0055157, Gp0055156, Gp0055136, Gp0055135,
Gp0055134, and Gp0055133 (74). The metagenome assemblies are available in
the IMG database under the Analysis Project IDs Ga0209753, Ga0209752,
Ga0209433, Ga0209432, Ga0209228, and Ga0209019. Kegg Orthology classifi-
cations and Enzyme Commission numbers were annotated for sequences identi-
fied in the proteome using GhostKOALA (77). KOs K00370, K10944, K10945,
K10946, K11180, and K08356, which have proteins of multiple different func-
tions in one KO identification, were additionally checked for functional assignment
with phylogenetic analyses (SI Appendix, Figs. S10–S15).

LCA analysis of peptides was performed using METATRYP v. 2.0 (22). For LCA
analysis, each peptide was assessed separately to identify if the peptide could be
found in proteins from multiple taxonomic origins. Any peptides associated with
multiple KO functional assignments were also identified and annotated. Pepti-
des in the conserved regions of highly conserved proteins are often shared
among multiple taxonomic groups, and thus, a confident taxonomic assignment
cannot be made, but rather an LCA taxonomic assignment is provided to the

shared ancestral group for all the possible proteins from which the peptide may
have originated. For the most conserved of peptides, the LCA assignment of last
universal common ancestor (LUCA) was provided when a peptide was found in
protein sequences from multiple taxonomic domains.

Protein abundance data were presented in relative units across this dataset of
corrected spectral counts per liter of seawater (sccorr/Lsw). This unit was calculated
with the following equation:

Spectral Counts
μg proteininjected

× Scaling Factor ×
μg proteintotal

L seawater filtered
=
Spectral Counts

Lseawater
:

Spectral counts are the total number of exclusive PSMs identified for a peptide
sequence. Protein injected is the amount of purified digested protein extract
that was injected onto the inline LC setup. The scaling factor was used to reduce
the bias in peptide detection between samples (SI Appendix, Fig. S17). The scal-
ing factor is calculated by normalizing the total PSMs per sample in a manner
similar to a normalized spectral abundance factor calculation where the sum of
PSMs per sample are normalized relative to one another, making the assump-
tion that the same amount of purified protein will yield equivalent numbers of
PSMs across the samples. This was done by taking the inverse of the sum of PSMs
per sample over the maximum sum of PSMs per sample. The total amount of pro-
tein is the abundance of protein extracted from the Supor filter over the volume of
seawater that was filtered through the McLane pump head onto the filters.

Statistical analyses of protein abundance for proteins across regions (north vs.
south) were performed by conducting Mann–Whitney u tests with the SciPy pack-
age. Statistically significant distributions in protein abundance varying by depth
group were calculated with a Kruskal–Wallis H test followed by post hoc Dunn’s
tests, also using SciPy (69). Significance values depicted in Fig. 3 for depth groups
were according to the Dunn’s tests of comparisons of specific depth groups.

The protein attenuation model was inspired by the Martin curve for decay of
POC with depth (78); however, the data and interpretation differ as protein
abundance is from the in situ community sampled at discrete depths as opposed
to exported sinking material sampled via sediment traps in the Martin et al. (78)
method. Attenuation of protein abundance through the microbial communities
with depth was calculated by fitting a power law model to protein abundance
using the following equation with NumPy (79):

fproteinðzÞ = azc:

The abundance of a protein at a particular depth (z) is calculated as the product of
depth (z) and a protein-specific constant (a) to the power of the attenuation rate (c).
Only protein data from depths of 100 m or more were considered in the calcula-
tion, and proteins must have been identified in at least three separate depths. Posi-
tive values of c indicate where the abundance of a protein increases with depth.
The more negative the value of c, the faster that protein attenuates with depth.

The unsupervised neural net, a self-organizing map or Kohonen map (80),
was conducted by summing abundance of proteins as groups using the taxo-
nomic and KO annotations from the inferred protein group assigned by Scaffold.
This protein abundance data were then min-max scaled to evaluate the relative
distribution patterns of all proteins compared to one another without more
abundant proteins being weighted more heavily than low-abundance proteins.
All protein groups analyzed in the neural net were identified by a minimum of
20 PSM matches to remove stochastic noise from very low abundance proteins.
Proteins were separated by phylum level, except for Proteobacteria, where
Alphaproteobacteria and Gammaproteobacteria were separated as these groups
were abundant and display different distribution patterns. The neural net analy-
sis was conducted using the package SimpSOM v. 1.3.4 (81), using 30 × 30
node grid, periodic boundary conditions, PCA initialization of weights, and a
0.05 learning rate for 7,500 epochs (optimized epochs were selected by running
incrementally from 10 to 100,000 epochs by 10× and selecting for optimal sep-
aration and coherent clustering of proteins) (39) .

Data Availability. Mass spectrometry files have been deposited in ProteomeX-
change (PRIDE) (http://proteomecentral.proteomexchange.org, dataset ID
PXD030684) (71), and oceanographic nutrient and hydrographic data modeling
output have been deposited in BCO-DMO (https://www.bco-dmo.org/, project
no. 685696, datasets 730912, 775849, and 868030) (18–20). Results and code
for SOM analyses have been deposited in Zenodo (https://zenodo.org/, record
no. 7005414) (39).
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