
Lawrence Berkeley National Laboratory
LBL Publications

Title

Dynamics of critical fluctuations: Theory – phenomenology – heavy-ion collisions

Permalink

https://escholarship.org/uc/item/1967v17d

Authors

Bluhm, Marcus
Kalweit, Alexander
Nahrgang, Marlene
et al.

Publication Date

2020-11-01

DOI

10.1016/j.nuclphysa.2020.122016
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1967v17d
https://escholarship.org/uc/item/1967v17d#author
https://escholarship.org
http://www.cdlib.org/


Dynamics of critical fluctuations:

Theory – phenomenology – heavy-ion collisions

Marcus Bluhm (organiser, editor)1,2, Marlene Nahrgang (organiser,
editor)1,2, Alexander Kalweit (organiser, editor)3a, Mesut

Arslandok4a, Peter Braun-Munzinger2,4a,5, Stefan Floerchinger
(editor)4b, Eduardo S. Fraga6, Marek Gazdzicki7a,8, Christoph

Hartnack1, Christoph Herold9, Romain Holzmann5, Iurii
Karpenko1,10, Masakiyo Kitazawa11,12, Volker Koch (editor)13,

Stefan Leupold14, Aleksas Mazeliauskas (editor)3b,4b, Bedangadas
Mohanty3a,15, Alice Ohlson (editor)4a,16a, Dmytro Oliinychenko13,
Jan M. Pawlowski2,4b, Christopher Plumberg16b, Gregory W.
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Abstract

This report summarizes the presentations and discussions during the
Rapid Reaction Task Force ”Dynamics of critical fluctuations: Theory
– phenomenology – heavy-ion collisions”, which was organized by the
ExtreMe Matter Institute EMMI and held at GSI, Darmstadt, Germany
in April 2019. We address the current understanding of the dynamics of
critical fluctuations in QCD and their measurement in heavy-ion collision
experiments. In addition, we outline what might be learned from studying
correlations in other physical systems, such as cold atomic gases.
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1 Introduction

Ultra-relativistic heavy-ion collisions create small droplets of deconfined QCD
matter – the Quark Gluon Plasma (QGP). As the system expands, it cools
and eventually hadronizes. As a function of beam energy, system size, and
rapidity the collision explores different regions of temperature T and baryo-
chemical potential µB in the QCD phase diagram [1, 2, 3, 4], possibly including
a conjectured QCD critical point [5]. This critical point is the endpoint of a line
of first order QCD phase transitions, analogous to the critical endpoint in the
phase diagram of water.

The main tool that connects the evolution of the matter produced in a rela-
tivistic heavy-ion collision to bulk properties of QCD is viscous relativistic fluid
dynamics [6, 7, 8, 9]. Fluid dynamics can be understood as the effective the-
ory of the long-time and long-wavelength behavior of a classical or quantum
many-body system. In this limit the system approaches approximate local ther-
mal equilibrium, and the dynamics is governed by the evolution of conserved
charges. The system produced in relativistic heavy-ion collisions is not truly
macroscopic – the number of produced hadrons ranges from about a hundred
to several tens of thousands – and the question just how far the hydrodynamic
paradigm can be pushed towards smaller systems, lower energies, and more rare
probes is an active area of study [10, 11].

Researchers are also investigating why the fluid dynamic description is so
effective, even in systems that are very small and very rapidly evolving [12,
13]. While no complete consensus has been achieved, a number of important
factors have been identified. The first is the fact that the QGP behaves as
a nearly perfect fluid [14, 15]. In particular, the mean free path is short and
transport coefficients such as the shear viscosity to entropy density ratio η/s, are
small. The second is rapid ”hydrodynamization” [16, 17]. There are indications,
based on weak coupling kinetic models as well as strong coupling holographic
approaches, that the fluid dynamic description is valid even in a regime where
the system is still far from local thermal equilibrium.

The main observables that helped to establish the hydrodynamic paradigm
are the spectra of identified particles, flow observables, and the spectra of cer-
tain rare probes, such as photons and dileptons [18, 19]. In this report we will
focus on fluctuation observables. There are several sources of fluctuations in
relativistic heavy-ion collisions. The first is quantum fluctuations, in particu-
lar fluctuations in the initial multiplicity or energy deposition. The second is
thermal fluctuations. In heavy-ion collisions the volume that is locally equili-
brated is quite small, and fluctuations due to the finite size of the system are
sizeable. These fluctuations are controlled by susceptibilities and related to the
equation of state of the system. It is this connection that motivates a program
of using fluctuation observables to investigate the phase structure of QCD. In
particular, fluctuation observables may reflect the nature of the quasi-particles
– quarks or hadrons – that carry the conserved charges, baryon number, electric
charge, and flavor [20, 21]. Furthermore, fluctuations probe the critical scaling
of susceptibilities near a possible endpoint of a first order phase transition line
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in the QCD phase diagram [5].
A quantitative effort motivated by these ideas has to incorporate all sources

of fluctuations in a heavy-ion collision. The central theme of this report is that
such an analysis also requires a fully dynamical framework for the evolution
of fluctuations. On a purely theoretical level, fluctuation-dissipation relations
require that any dissipative theory of the evolution of a QGP has to include
fluctuations, and any theory of fluctuations must incorporate dissipative effects.
In thermal equilibrium, both effects balance, and a thermal spectrum of fluc-
tuations emerges. Both dissipative effects as well as fluctuations are relatively
more important in small systems.

At a practical level, the relative size of different sources of fluctuations de-
pends on the evolution of the system, and a careful modeling of fluctuations in
relativistic heavy-ion collisions requires a framework for the dynamical evolu-
tion:

• Initial state fluctuations: Fluctuations of the initial state are related to
quantum mechanical fluctuations in the distribution of initial sources in
the transverse plane (“wounded nucleons”), and to large multiplicity fluc-
tuations in individual proton-proton collisions. The presence of large ini-
tial state fluctuations is experimentally well established, based on the ob-
servation of odd Fourier moments of azimuthal flow [22].

Initial fluctuations have to be propagated through the event using viscous
fluid dynamics, combined with kinetic theory for the final stages. The rate
at which the amplitude of a fluctuation is damped, as well as the rate at
which fluctuations diffuse, depends on the value of transport coefficients
and on the precise spatial structure of the initial state. In order to analyze
data from the beam energy scan we also need to understand how initial
state fluctuations depend on beam energy and rapidity.

• Thermal fluctuations: As discussed above, local thermal fluctuations arise
from the finite size of the volume that thermodynamic variables are coarse
grained over, and their magnitude is governed by equilibrium susceptibil-
ities, which are derivatives of the equation of state. At RHIC fluctuations
of the net-proton number and charge have been observed [23, 24, 25, 26],
and in principle they can be related to lattice QCD calculations of the
susceptibilities [27, 28] provided one corrects for baryon-number conserva-
tion [29, 30, 31] as well as for the fact that the experiment only measures
protons [32, 33].

In an expanding system the growth, decay, and diffusion of fluctuations
depends on the history of the system, the length scale of the fluctuation
and the transport coefficients. This is of particular importance for criti-
cal fluctuations, because dynamical scaling implies that long-wavelength
fluctuations evolve very slowly near a critical point. Furthermore, differ-
ent moments of fluctuation observables evolve at different rates [34, 35],
making a naive comparison between a dynamical transit of a critical point
and an equilibrium estimate at the freeze-out surface impossible. In this
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report we will discuss several implementations of the dynamical theory
of fluctuations, based either on stochastic equations, or on deterministic
equations for higher order correlation functions. We will also discuss the
problem of backreaction, the degree to which large fluctuations may affect
the equation of state or the transport properties of the QGP.

• Hadronization: The formation of hadrons from a QGP is an intrinsically
quantum mechanical process and involves fluctuations. This is evident
from measurements of hadron production in pp collisions, which clearly
show non-thermal tails in multiplicity and momentum distributions. This
feature is also present in most models of hadronization, which involve
stochastic processes such as string fragmentation or coalescence. In fluid
dynamics hadronization is typically implemented using the Cooper-Frye
formula [36]. This particlization method is based on matching the con-
served quantum numbers between fluid dynamical densities and kinetic
distribution functions across the freeze-out surface. If the kinetic frame-
work is based on particles, as in molecular dynamics, then this process
also involves a stochastic element, because we have to sample particles
from a distribution function [37].

Any dynamical scheme for the evolution of fluctuation observables has to
include not only a hadronization mechanism, but also a kinetic scheme for
propagating fluctuations in the hadronic phase. Given that hadronization
is a stochastic process, there is a question to what degree hadronization
may wash out existing fluctuations, or create additional sources of fluctu-
ations and correlations.

• Detection: Detectors have finite acceptance and imperfect detection effi-
ciency. Finite acceptance, coupled with global charge conservation leads
to corrections to the measured fluctuation observables. Imperfect effi-
ciency also leads to additional sources of fluctuations not present in the
underlying event [38, 39, 40].

Quantifying the magnitude of these corrections not only requires a de-
tailed understanding of the detector, but also detailed modeling of the
evolution of initial state or dynamically created fluctuations in rapidity
and transverse momentum.

This report provides a summary of the discussions and presentations at the
Rapid Reaction Task Force (RRTF) ”Dynamics of critical fluctuations: Theory
– phenomenology – heavy-ion collisions” organized by the ExtreMe Matter In-
stitute EMMI. It describes ideas in an active and ongoing research effort, and
the discussions at the workshop represented many different points of view. As
a result, not all statements in this report necessarily reflect the opinion of every
single author.

The document is organized as follows: In Section 2 we discuss dynamical
approaches to fluctuations in fluid dynamics. There are two main frameworks,
based on either stochastic equations for fluid dynamical variables (stochastic
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fluid dynamics), or on deterministic equations for correlation functions (hydro-
kinetics). We also discuss the problem of hadronization and the issue of backre-
action of fluctuations on the fluid dynamical evolution. In Section 3 we discuss
experimental challenges. In Section 4 we discuss intersections and experimen-
tal opportunities related to fluctuation probes in other systems, in particular
ultra-cold atomic gases. Additional details regarding a number of dynamical
approaches are provided in an Appendix.
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2 Theory of dynamical fluctuations

The study of physical effects arising from the presence of fluid dynamical fluc-
tuations in the context of relativistic heavy-ion collisions was for a long time
restricted to idealised systems with a large number of symmetries [41, 42]. How-
ever, in recent years significant theoretical and phenomenological effort has been
made to bring the simulations of fluctuating fluid dynamics closer to realistic
scenarios. To this end two main avenues of simulating fluid dynamics with noise
have emerged: stochastic fluid dynamics and hydro-kinetics, which are addressed
in Sections 2.1 and 2.21. Stochastic fluid dynamics refers to numerical imple-
mentations of viscous relativistic fluid dynamics with a stochastic conservation
law [46, 47]

∂µT
µν = 0, Tµν = Tµνideal + Tµνviscous + Sµνnoise , (1)

∂µJ
µ = 0, Jµ = Jµideal + Jµviscous + Iµnoise . (2)

In this approach discretized noise is sampled event-by-event and the final ob-
servables are calculated after statistical averaging. The other approach, called
hydro-kinetics, corresponds to a set of deterministic kinetic equations for the
two-point functions of fluid dynamical fields, which are derived from the lineari-
sation of stochastic fluid dynamics around a background flow. In this approach
the statistical average of noise is performed analytically in the derivation of the
deterministic equations.

We note that for the study of critical fluctuations, notably in form of higher-
order cumulants, the inclusion of non-linearities is essential. In such studies,
fluctuating fluid dynamics needs to be supplemented by a model containing crit-
ical fluctuations, which may be done by using existing fluid dynamical fields, as
done in Sections 2.3 and 2.6, or by introducing new, non-fluid dynamical degrees
of freedom (see Sections 2.4 and 2.5) depending on which quantity one consid-
ers to be the critical slow mode. Similarly, one can choose to solve stochastic
or deterministic equations of motion. Finally, the experimental observables are
given in terms of correlations of produced particles, therefore the conversion
from fluid fields to particle degrees of freedom, i.e. particlization, is a necessary
step, which we discuss in Section 2.7. During the RRTF meeting the current
status, advantages and challenges of these approaches were discussed.

Before discussing the details of possible implementations, it is important to
recognize the multiple scales in the problem. In one limiting case, the largest
wavelength perturbations will be dominated by the initial conditions. These
perturbations of size lhydro ∼ Rnucleus are not completely damped by dissipative
processes and will survive until the end of the expansion. However the evolution
of such modes can be affected by the influence of smaller scale lnoise fluctuations,
e.g., by the renormalization of effective transport coefficients and the equation
of state. In the other limit, the smaller scale structure of initial conditions will
be damped or mixed with the stochastic noise produced during the evolution.

1There is also a top-down approach of formulating the effective action for stochastic fluid
dynamics [43, 44, 45], which we will not discuss here.
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Although these two scales are often well separated at each point τ, x

lnoise(τ, x)� lhydro(τ, x), (3)

in an expanding system propagating perturbations can move from one domain
to another, e.g., even small thermal fluctuations at initial time can be stretched
to long wavelengths at later times. Similarly, the divergence of the correlation
length close to the critical point, will be capped by the dynamics of the sys-
tem. Therefore both spatial and temporal evolutions of fluctuations have to be
understood to identify the relevant physical observables to be measured in the
experiments. In the following subsections we discuss different implementations
of dynamical fluctuations and the relevant scales in the problem.

2.1 Implementation of stochastic fluid dynamics

The modeling of viscous relativistic fluid dynamics for heavy-ion collisions has
made significant conceptional and technological advances [13], which goes be-
yond the relativistic Navier-Stokes equations [48]. Numerical implementations
of 3 + 1 dimensional fluid dynamics using relaxation type equations exist and
are publicly available (e.g. vHLLE [49], MUSIC [9], ECHO-QGP [50]). How-
ever stochastic fluid dynamics, although rather advanced in non-relativistic set-
tings [51, 52, 53], has been a challenge to implement for the modeling of heavy-
ion collisions. The stochastic energy-momentum tensor includes a thermal noise
term, whose correlator is given by [46, 47, 54, 55]

〈Sµν(x1)Sαβ(x2)〉 = 2T

 η
(
∆µα∆νβ + ∆µβ∆να

)
+

(
ζ − 2

3
η

)
∆µν∆αβ

 δ(4)(x1 − x2). (4)

Similarly, the stochastic current contains a noise term which satisfies

〈Iµ(x1)Iν(x2)〉 = 2Tσ∆µνδ(4)(x1 − x2) . (5)

Here, η, ζ and σ denote the relevant transport coefficients shear viscosity, bulk
viscosity and charge conductivity for the conserved charge, respectively. The
local approximation of white noise, given by the Dirac δ-function is an approx-
imation of more complicated noise kernels, that can be obtained from micro-
scopic calculations [56, 57] or causality arguments [58]. The discretization of
this Dirac-δ function leads to stochastic terms, which diverge δ ∼ 1

∆t∆V with
decreasing grid spacing. There are several issues connected to it:

1. Stochastic noise introduces a lattice spacing dependence,

2. Correction terms due to renormalization become large for small lattice
spacings,

3. Large noise contributions can locally lead to negative densities,
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4. Large gradients introduced by the uncorrelated noise is a problem for
partial differential equation (PDE) solvers.

The currently available implementations of fluctuating fluid dynamics have
shown that for more than one spatial dimension one is forced to limit the reso-
lution scale of the stochastic terms, i.e. only attempt to simulate noise down to
a particular filter length scale, which is larger than the numerical grid spacing
applied for the discretization of the deterministic fluid dynamical fields

lgrid < lfilter . lnoise � lhydro . (6)

This can be justified physically, since at the shortest scale fluctuations decay
almost instantaneously to equilibrium and from the point of view of measurable
observables, there is no need to simulate them dynamically. A similar issue has
been observed in nonequilibrium chiral fluid dynamics discussed in Section 2.4,
where the noise field was effectively coarse-grained over the spatial extension
of the equilibrium correlation length. Here, we discuss the various possibilities
applied in stochastic hydrodynamical approaches.

Murase et al.: In [59, 60] the noise term is smeared by a Gauss distribution
in rapidity and transverse direction. The widths of these Gaussians are chosen
to be ση = σ⊥/fm = 1− 1.5. The dependence on this choice is not discussed. A
large enhancement of the flow coefficients vn is observed when noise is included.

Nahrgang et al.: In [61, 62] the noise term is either propagated on a second
grid with larger spacings ∆x = 1 fm than typically used for the deterministic
hydrodynamical fields or coarse-grained over the same scale. Both the energy
density and the variance of the energy density fluctuations show a strong linear
dependence on 1/∆V . It is therefore mandatory to introduce correction terms
on the level of the equation of state and the transport coefficients.

Singh et al.: In [63] a high-mode filter is applied. Locally a cut-off of
pcut = 0.6/τπ is determined in each fluid cell. Then the noise field is Fourier
transformed and all modes with k > pcut are set to zero. After an inverse Fourier
transform the noise field is smoothed. It is reported that energy conservation
is verified and that the vn(2) are within statistical errors independent of pcut.
In addition, it is shown that charged hadron multiplicities are little affected by
the inclusion of fluctuations at this cut-off scale. One sees, however, that the
coarse-graining scale that is introduced is quite large > 1 fm in the transverse
plane.

The renormalization of the equation of state and the transport coefficients in
stochastic fluid dynamics codes in the presence of fluctuations is a challenging
task. The nonlinearities which are introduced by the full fluid dynamical equa-
tions lead to corrections [64, 65], as one can for example observe in the retarded
shear-shear correlator

GxyxyR,shear−shear(ω,0) = − 7T

90π2
Λ3 − iω 7T

60π2

Λ

γη
+ (i+ 1)ω3/2 7T

90π2

1

γ
3/2
η

. (7)

One can identify the first term in Eq. (7) as a cutoff-dependent contribution to
the equilibrium pressure, while the second term is a cutoff-dependent contribu-
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tion to the shear viscosity η. How this renormalization can be performed on the
level of the numerical implementations represents an ongoing effort.

In summary, the clear advantage to implement the full 3 + 1 dimensional
event-by-event stochastic fluid dynamics is obvious: it allows us to evaluate all
the relevant observables like the n-point correlation functions within the existing
frameworks for simulations of heavy-ion collisions. It is therefore straightforward
to include the kinematic cuts as applied in the experiment as well as taking initial
and final state fluctuations into account. In return, stochastic fluid dynamics can
easily incorporate the study of e.g. heavy and hard probes in order to investigate
the impact of fluctuations on other observables in heavy-ion collisions beyond
criticality.

However, the numerical challenges of implementing stochastic noise, vali-
dation of the effective equation of state and the statistical averaging over a
sufficient number of events is a significant computational task requiring large
ressources.

2.2 Implementation of deterministic hydro-kinetics

As we have just discussed, solving stochastic fluid dynamics brings multiple new
challenges compared to ordinary fluid dynamics. The Dirac δ-function corre-
lation of the noise in Eqs. (4) and (5) has to be regularized in any numerical
implementation and the stochastic terms make it difficult to apply standard
PDE solvers. More subtly, the non-linearities of fluid dynamical equations lead
to noise induced corrections to the effective equation of state and transport
coefficients with divergent terms depending on the noise regularization cut-off.
Therefore to simulate the cut-off independent physics the properties of fluid dy-
namical models have to be chosen in a non-trivial cut-off dependent way. Repro-
ducing and understanding these subtle effects on a discrete grid is a considerable
challenge and an alternative way of solving stochastic fluid dynamical equations,
known as the hydro-kinetic approach, was developed recently [66, 67], although
similar ideas in the non-relativistic setting have been discussed earlier [68, 69].
The advantage of this approach is that the divergent cut-off dependent terms are
absorbed in the renormalization of background fields and the evolution equations
for the two-point correlation functions can be formulated in terms of determin-
istic kinetic equations. In applications for heavy-ion collisions this approach
was studied in the case of Bjorken boost-invariant expansion [66, 70, 71] and
recently generalized to arbitrary backgrounds in Ref. [67].

Hydro-kinetics depends on the separation of scales between long-wavelength
fluid dynamical modes and short wavelength fluctuations, which stay in equilib-
rium despite the expansion (see discussions in [66, 67] and also Appendix A.1).
Denoting the characteristic length-scale lnoise marking the boundary between
the expansion and dissipation dominated fluctuations we have

lmicro � lnoise � lhydro , (8)

where lmicro is the microscopic scale, e.g. the mean free path or inverse temper-
ature 1/T . The length scale at which the diffusive processes begin to over-come
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the macroscopic gradients driving the system out of equilibrium is given by

lnoise ∼ (γlhydro/cs)
1/2, (9)

where γ is the corresponding diffusion constant, e.g. γη ∼ η/(e + p) for shear
dissipation. Then the equal time correlation function of fluid dynamical fields
φA(t,x) represented by

GAB(t,x,y) = 〈φA(t,x), φB(t,y)〉 (10)

will satisfy the equilibrium fluctuation-dissipation relation at length scales |x−
y| � lnoise, but will be driven away from equilibrium by long wavelength gradi-
ents over distances |x− y| & lnoise. The deviation of GAB(t,x,y) from equilib-
rium gives the non-trivial corrections to the constitutive equations, which can
be estimated to be of characteristic size ∼ (cs/(γlhydro))3/2 and are known in
the literature as “long time tails” of fluid dynamical response [41, 64, 68, 69].
It is important to note that such corrections are non-analytic indicating their
non-local nature. In addition, in the fluid dynamical gradient expansion of con-
stituent equations they come formally before the second order gradient terms,
which are often included in relativistic fluid dynamical codes for stability and
causality [72].

It is convenient to study the Wigner transform of the correlation function

WAB(t,x,q) =

∫
d3y GAB(t,x + y/2,x− y/2)e−iqy, (11)

as the separation of scales allows us to write hydro-kinetic equations local in x
for the relaxation of WAB(t,x,q) to equilibrium. For the non-trivial relativistic
case the notion of equal time correlation functions has to be revised, which
was recently accomplished in ref. [67]. Linearizing the equations of motion,
Eq. (1), one derives the evolution equations for the perturbation fields φA =
(csδe, wδu

µ), which in turn can be used to calculate the time dependence of the
two-point correlation functions. After lengthy calculations [66, 67] one arrives at
hydro-kinetic equations for two propagating sound modes (±) and three diffusive
modes for a fluid with no conserved charges. For example, for a sound mode
one has [

(u+ v) · ∇̄+ f · ∂
∂q

]
W+ = −γLq2(W+ −W (0)) +K ′′W+ , (12)

where the left hand side is equivalent to the Liouville operator for a phonon with
space-time dependent dispersion relation. On the right hand side one gets the
relaxation term to equilibrium and the forcing term K ′′ proportional to fluid
gradients. Once the WAB(x, q) is determined, the contribution to the energy
momentum tensor at a point is given by the momentum integral of the Wigner
distribution. The analysis of such contributions reveals the divergent universal
corrections to the background equation of state and transport coefficients, which
can be absorbed or renormalized. The remaining finite term (long-time tails) is
particular to the given background expansion and has to be evolved dynamically.
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The outstanding challenge of deterministic hydro-kinetics is the applica-
tion to a realistic QGP expansion in nuclear collisions. Formally the hydro-
kinetic equation, Eq. (12), requires solving 3+3+1 dimensional equations, i.e.
3-dimensional momentum space equations for each space-time point, to find out
the equal-time correlation functions of the fluid dynamical fields. This is ob-
viously numerically demanding in general, but the hydro-kinetic equations are
linear and smooth, therefore one does not need fine momentum-space discretiza-
tion to accurately solve the equations. In addition, hydro-kinetic equations could
be solved using fictitious test particles which move on top of a fluid dynamical
background solved using traditional approaches. One should note here that de-
terministic fluid dynamical simulations do not need to be repeated to obtain the
statistical averages over thermal fluctuations. However, the currently derived
hydro-kinetic equations are limited to two-point functions. Interesting higher
order correlation functions therefore require the generalization of this scheme,
which is currently not done even for simple backgrounds.

2.3 Implementation of stochastic diffusion

Numerical simulations of the dynamics of fluctuations in the conserved net-
baryon number NB both on the crossover and first-order phase transition sides
near the conjectured QCD critical point have recently been performed for one
spatial dimension without [73, 74, 75] and with non-linearities [76]. Considering
the net-baryon density nB as the slow critical mode [77, 78, 79], the dynamics of
critical fluctuations may be studied by means of a stochastic diffusion equation
in the form

∂tnB = Γ∇2

(
δF [nB ]

δnB

)
+ ~∇ · ~J . (13)

This equation describes the non-relativistic evolution of the current JµB in Eqs. (2)
with (5), which is decoupled from the evolution of energy and momentum den-
sities, under the assumption of a spatially homogeneous temperature and a
space-time independent fluid velocity field. The fluctuation dynamics is gov-
erned by the minimization of the free energy F in the system. The particular
form of the free energy studied in the numerical simulations together with a
discussion of the parameters and how criticality is embedded can be found in
Appendix A.2. For a stochastic current ~J of the form

~J =
√

2TΓ~ζ (14)

and mobility coefficient Γ = Dnc/T Eq. (13) becomes

∂tnB(x, t) =
D

nc

(
m2∇2

xnB −K∇4
xnB

)
+
√

2Dnc/A∇xζx(x, t)

+D∇2
x

(
λ3

n2
c

(∆nB)2 +
λ4

n3
c

(∆nB)3 +
λ6

n5
c

(∆nB)5

)
. (15)

Here, D is the diffusion coefficient and ζx is the white noise x-component with
zero mean and covariance 〈ζx(x, t), ζx(x′, t′)〉 = δ(x− x′)δ(t− t′). This ensures
that the fluctuation-dissipation balance is guaranteed.
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Figure 1: Left panel: scaling behavior of the relaxation time τ∗ (circles) with
ξ for modes with k∗ = 1/ξ as a function of T/Tc. The filled band shows
the scaling ∝ ξz with z = 4 ± 0.1. In comparison, z = 3 (dashed line) and
z = 5 (dotted line) can be excluded. Figure taken from [76]. Middle and right
panels: dynamical evolution (full circles) of volume-integrated skewness (Sσ)V
and kurtosis (κσ2)V for a system in which T varies as a function of time τ−τ0 in
comparison with corresponding equilibrium results (open circles). Tc is reached
at τ − τ0 = 2.3 fm/c. Figures modified from [76].

The stochastic diffusion equation is solved numerically with a semi-implicit
predictor-corrector scheme in which the non-linear terms in ∆nB are treated
explicitly. Equation (15) is valid for the propagation of fluctuations in one spa-
tial dimension where the physics in the transverse area A has been scaled out.
A static box of finite length L is considered with a resolution ∆x = L/Nx for
Nx lattice sites. Charge conservation is exactly realized by imposing periodic
boundary conditions. The numerical framework has been tested extensively in
both limits of a Gaussian (K = λi = 0) and Gauss+surface (λi = 0) model as
discussed in [74] and [75], respectively. For these models analytic results both
for the continuum and discretized space-time are available that the numerics
can be confronted with. One notes that for a meaningful comparison charge
conservation in a finite-size system must be included in the analytic results. It
is found that the numerics can accurately reproduce the analytic expectations
for the static and dynamic structure factor, the correlation function and the
local variance for a given ∆x. This implies that the lattice spacing dependence
of physical observables is well under control. Moreover, the continuum expec-
tations are approached with ∆x→ 0 which highlights that there is neither the
need for renormalization nor a coarse-graining or filtering of the noise and the
algorithm can well handle white noise on a finite grid of ∆x and ∆t.

In Fig. 1 some highlight results of this framework are shown. The employed
parameters read nc = 1/(3 fm3), Tc = 0.15 GeV, ξ0 = 0.479 fm, K̃ = 1, λ̃3 = 1,
λ̃4 = 10 and λ̃6 = 3, see Appendix A.2. In the left panel of Fig. 1 the re-
laxation time τ∗ (circles) of the critical mode with k∗ = 1/ξ for a given fixed
T is contrasted with a scaling function proportional to ξz. It is found that
the numerics is best described with z ' 4 (filled band) which shows that the
expected dynamic critical scaling of model B is realized numerically. For this
plot the correlation length ξ is deduced from the behavior of the equal-time
correlation function 〈∆nB(r)∆nB(0)〉. Moreover, the relaxation time τk is ob-
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tained from the exponential decay ∝ e−t/τk of the dynamic structure factor
〈∆nB(k, t0 + t)∆nB(−k, t0)〉 with time. For fixed wave-number, τk is larger for
temperatures near Tc than further away, and it decreases with increasing k for
fixed T . In the middle and right panels of Fig. 1 the volume-integrated skewness
(Sσ)V and kurtosis (κσ2)V are shown. These are obtained for a subregion of
observation V ' 2 fm smaller than L for a dynamically evolving system (full
circles) and compared to the static equilibrium limit (open circles). The evolu-
tion takes place in form of a time dependence of the background temperature
via T (τ) = T0(τ0/τ) starting in equilibrium at τ0 = 1 fm with T0 = 0.5 GeV
and D(τ0) = 1 fm which then decreases as D(τ) = D(τ0)T (τ)/T0. The non-
linear terms in Eq. (15) are essential for skewness and kurtosis to develop from
purely white noise. One observes that the non-Gaussian fluctuations behave
non-monotonically, and that in particular (κσ2)V increases significantly near
Tc compared to its value at T0 or τ0. Nonetheless, even in equilibrium (open
circles) finite-size effects can modify the infinite-volume expectations [80] of the
scaling behavior with ξ dramatically [81]. This can, in particular, be seen in
the structure of (Sσ)V which is a consequence of the competition of different
scalings, see [76]. The evolution of T (full circles) results in dynamical, non-
equilibrium effects notably a reduction of the fluctuation signals. Moreover, as
a consequence of the finite relaxation times, the observables in the dynamical
setting lag behind their equilibrium values. Both effects, which can also be seen
in the variance [74, 76, 75], become more pronounced with decreasing D(τ0).

For a realistic modeling of the physics in a heavy-ion collision the current
framework still needs to be extended. In particular, a realistic spatio-temporal
evolution of the fireball must be embedded. A first step into this direction is to
consider a sytem undergoing a Bjorken-type expansion. Corresponding works
are currently underway. With this the coupling of the dynamics of critical fluc-
tuations to the evolution of other fluctuating fluid dynamical fields becomes
feasible. This will allow one to quantify, for example, the impact of the critical
fluctuations on the medium and vice versa or to study the role of advection.
Eventually, the framework must be extended to three spatial dimensions. Only
then one may study to what extent the dynamics of the fluctuations in the lon-
gitudinal direction is decoupled from the dynamics in the transverse direction
as was assumed so far. This will necessitate, however, a careful analysis and
understanding of renormalization effects. Nonetheless, the coupling to the evo-
lution of the transverse velocity field will allow one for the first time to study
numerically the physics of model H as the assumed dynamical universality class
of QCD. Further future developments range from including realistic fluctuating
initial conditions, to study the interplay and competition of different fluctuation
sources, to embedding the conversion to measurable particles at chemical freeze-
out by explicit charge conservation on an event-by-event basis, see section 2.7.
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2.4 Implementation of nonequilibrium chiral fluid dynam-
ics (NχFD)

In order to study the dynamics of critical fluctuations properly we need to
include their evolution equations coupled to a fluid dynamical evolution. Within
the framework of nonequilibrium chiral fluid dynamics, the chiral condensate
σ = 〈q̄q〉, which is considered as the critical mode, is propagated via a relaxation
equation of the following form,

∂µ∂
µσ + η∂tσ +

δΩ

δσ
= ξ . (16)

The damping coefficient η, the noise ξ, and the potential terms Ω can be obtained
from an effective model of QCD, like the quark-meson (QM) or Polyakov-quark-
meson (PQM) model. In the works [82, 83, 84, 85, 86, 87, 88, 89, 90] the mean-
field approximation of the (P)QM model was applied. In a recent QCD assisted
transport model [91] the equilibrium input is provided by FRG calculations.

It is assumed that the fluid consisting of the fermionic degrees of freedom
and the fast modes of the sigma field are the heat bath in which the chiral order
parameter σ evolves. Due to the mutual coupling the fluid equilibrates locally
under the condition of the actual value of σ. The fluid dynamical pressure is
therefore not determined at the mean-field value of σ but includes the backre-
action of σ on the fluid. It depends explicitly on the fluctuations of the order
parameter

p(T, µ;σ) = −Ωqq̄(T, µ;σ) . (17)

Contrary to standard Langevin-simulations the heat bath is not static, but
evolves according to the equations of fluid dynamics, and describes the bulk evo-
lution of a heavy-ion collision. Therefore, the total energy and momentum of the
coupled system of the fluid and the order parameter need to be conserved. This
is achieved by adding a source term to the standard fluid dynamical equations,

∂µT
µν = −∂µTµνσ , (18)

∂µN
µ = 0 . (19)

The stochastic nature of the source term on the right hand side of Eq. (18)
leads to a stochastic evolution for the fluid dynamical fields. Eqs. (16) - (19)
are coupled and as a result of Eq. (17), the evolution of the fluid and the order
parameter feed back on each of the other. More details on NχFD can be found
in the Appendix A.3. It has been applied to calculating various observables in
heavy-ion collisions, notably the critical enhancement of net-proton fluctuations
[88].

In order to avoid an unphysical dependence on the lattice spacing, we model
a spatial correlation of the noise field over a correlation length of 1/mσ, where
mσ is the local equilibrium screening mass. This procedure is a regularization
method of the otherwise white noise correlator, as discussed previously. The
full solution of Eqs. (16), (18), (19) is obtained in 3 + 1 dimensions. It can be
expected that the input equation of state is modified due to the cutoff (either ∆x
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Figure 2: Comparison of susceptibilities obtained from nonequilibrium chiral
fluid dynamics in a box compared to the thermodynamical expectation (left
figure taken from [92]).

or the spatial correlation of the noise field). This could explain the quantitative
differences of the susceptibilities, which are obtained in static box simulations,
compared to the thermodynamic expectations, see Fig. 2. One should therefore
check the equation of state in these box simulations to see if modifications to
the original P0(T, µB) can be observed. This is rather complicated as many
calculations need to be performed at various temperatures and baryo-chemical
potentials all over the phase diagram. It is assumed to be easier to derive an
analytic formula for the correction (see Section A.1) and fix the coefficients
with a couple of test calculations. The boundary conditions must be fixed
coherently and the finite piece of the correction needs to be treated separately.
The corresponding calculations and tests are currently ongoing.

To perform calculations in the entire phase diagram it is important to have a
reliable equation of state, which correctly describes the hadronic phase at high
baryon densities but also retains the non-equilibrium fluctuations of the order
parameter. First calculations have been performed for the equation of state of
a hadronic SU(3) non-linear sigma model with quarks [93, 94].

In QCD-assisted transport [91] a similar equation of motion for the chiral
condensate as in Eq. (16) is solved. It contains a kinetic term related to the real

part of the effective action Γ
(2)
σσ , a diffusion term sensitive to the imaginary part

of Γ
(2)
σσ , and an effective potential, which can be obtained in FRG calculations.

This description provides a systematic approach to the dynamics of the chiral
order parameter, which is valid beyond mean field and beyond the scaling region
around the critical point, which might be very small. A detailed description can
be found in the Appendix A.4.

As an example result of QCD assisted transport we show in Figure 3 (left
panel) the time-evolution of the kurtosis scaled by its late-time equilibrium
limit for the quench from high temperatures to two different points in the QCD
phase diagram. Far away from the critical endpoint the scaled kurtosis exhibits
a rather quick equilibration while close to it the corresponding time scale is
clearly increased. For the quench through the phase boundary one furthermore
observes that the equilibrium value is approached from above as the equilibrium
kurtosis is larger near the phase boundary than in the low-temperature phase.

Based on these results for the scaled kurtosis in the quench scenario, one
may estimate the equilibration time of the critical fluctuations within the QCD
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Figure 3: Left: Scaled kurtosis as a function of time for a quench from high
T to two different points in the phase diagram. Within statistical deviations,
the equilibration time is found to be significantly increased near the critical
endpoint (red, dashed curve) compared to a quench far away from it (blue, solid
curve). Right: Equilibration time t in units of τ0 ' 0.4 fm/c in the QCD phase
diagram based on the analysis of the scaled kurtosis in the quench scenario (see
left panel). Figures taken from [91].

phase diagram. This is shown in Figure 3 (right panel). One can clearly identify
both the phase boundary and the region near the critical endpoint and observe
the expected increase of the equilibration time in that region. Nevertheless,
this increase is found to be rather moderate suggesting that phenomena asso-
ciated with critical slowing down are only moderately pronounced. This hints
towards equilibrium dominated measurements and, thus, to the feasibility of
studying the QCD phase diagram by means of heavy-ion collisions. For quanti-
tative statements, however, the dynamical modeling of the fluctuations remains
necessary.

2.5 Implementation of Hydro+

In the spirit of hydro-kinetics, the recently developed Hydro+ formalism al-
lows for a consistent, deterministic description of both the dynamics of a fluid
– which are described by the standard fluid dynamical variables ε (the energy
density), uµ (the fluid four-velocity) and nB (the baryon number density) – and
the out-of-equilibrium critical fluctuations induced by a critical point, includ-
ing the feedback between the fluid dynamical variables and critical fluctuations.
The formulation of Hydro+ can be found in Ref. [95] and its numerical imple-
mentation for a heavy-ion motivated model can be found in Ref. [96]. Many
details omitted in this section can be found in these two references.

In Hydro+, the critical fluctuations are encoded in the Wigner transform of
the equal-time two-point function of the fluctuation of an order parameter field
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M(t,x):

φQ (t,x) ≡
∫
d3y 〈δM (t,x− y/2) δM (t,x + y/2)〉 e−iy·Q , (20)

where δM (t,x) ≡ M (t,x) − 〈M (t,x)〉, with 〈. . .〉 denoting the ensemble av-
erage. If we consider the dynamics of a cooling droplet of QGP with µB = 0,
namely undoped QGP with zero net baryon number, allowing us to drop baryon
density nB , and if we set the bulk viscosity to zero (although the relaxation of
φQ still leads to an effective bulk viscosity), the Hydro+ equations become

Dε = −
(
ε+ p(+)

)
θ +

1

2
Πµν σνµ , (21a)(

ε+ p(+)

)
Duµ = ∇µp(+) −∆µ

ν∇σΠνσ + ΠµνDuν , (21b)

τΠ ∆µ
α ∆ν

β DΠαβ = −Πµν + η(+) σ
µν − τΠ (Παµ ωνα + Παν ωµα) (21c)

DφQ(t, x) = −ΓQ

(
φQ − φQ

)
, (21d)

where we have followed the Muller-Israel-Stewart formalism and have introduced
terms involving the shear tensor Πµν to maintain causality of our equations. We
have defined D = uµ∂µ and φQ as the equilibrium value of φQ, with all other
quantities defined in Ref. [96]. These equations are very similar to standard
fluid dynamical equations [97], except now φQ (t, x) is treated as a dynamical
variable in Eqn. (21d) and obeys a relaxation equation, and standard fluid dy-
namical variables like pressure p, shear viscosity η, and bulk viscosity ζ have
been replaced by generalized fluid dynamical variables p(+), η(+), and ζ(+).
These generalized fluid dynamical variables are dependent on φQ and are differ-
ent than their standard counterparts when the φQ modes are out of equilibrium.
For example, the difference between the generalized entropy, which determines
p(+), and the entropy is given by

s(+) − s =
1

2

∫
d3Q

[
log

(
φQ

φQ

)
− φQ

φQ
+ 1

]
, (22)

which vanishes when φQ = φQ. It is through these generalized variables that
the evolution of the standard fluid dynamical variables experience feedback from
the out-of-equilibrium dynamics of critical fluctuations, an effect we call “back-
reaction,” and it’s through the explicit factor of uµ and the implicit dependence
of φQ on ε in Eqn. (21d) that the evolution of the critical fluctuations depends
on the bulk evolution of the fluid. In Fig. 4 we show a numerical solution of
Eqns. 21 for a highly simplified, though heavy-ion collision inspired model, which
includes a critical point [96]. These plots demonstrate key non-equilibrium ef-
fects coming from the Hydro+ equations, namely the finite relaxation rate of the
critical fluctuations, which causes φQ to lag behind its equilibrium value, the
advection of the fluctuations, which causes φ(Q) to flow outward as the QGP
droplet expands, and the existence of memory effects, resulting in the radially
outflowing peaks in the right two plots of the figure.
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Figure 4: The magnitude of the critical fluctuations, φ(Q), plotted as a function
of radius r at two values of the wave vector, Q = 1.5 fm−1 (left plot) and the
longer wavelength Q = 0.4 fm−1 (right two plots), obtained from Ref. [96]. This
simulation assumed azimuthal symmetry perpendicular to the collision (ẑ) axis
and boost invariance along the collision axis, allowing all quantities to be plotted
as a function of r and τ . In all plots, solid and dashed curves show φ(Q) and
φ(Q) respectively and the red, blue and green curves show results at τ = 2, 3.5,
and 5.5 fm, respectively. The fluid dynamical simulation started at τ = 1fm with
the initial condition that φ(Q) started in equilibrium, φ(Q, τ = 1fm) = φ(Q).
These results were obtained by solving Eqns. 21 with two different values of
Γ0, an unknown parameter determined by microscopic physics that controls the
rate at which φ(Q) relaxes to its equilibrium value, which was set either to
Γ0 = 1 fm−1 (left two plots) or a slower relaxation rate Γ0 = 0.25 fm−1 (right
plot). These plots demonstrate key features of the Hydro+ equations. φ(Q)
lags behind its equilibrium value φ(Q) because its relaxation rate ΓQ is finite.
Due to critical slowing down, with all else fixed, larger wavelength modes relax
slower than smaller wavelength modes do. Additionally, due to the bulk radial
outflow of the fluid, φ(Q) is advectively carried radially outward. For sufficiently
small relaxation rates, this advection leads to memory effects, demonstrated in
the right two plots by the radially outflowing peak. The peak originated in
the initial condition for φ(Q) that was chosen in this simulation. Figures taken
from [96].
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One fortunate practical aspect of Eqns. 21 is that the addition of Eqn. (21d)
and the (+) substitutions do not add much more computational complexity
to the fluid dynamical simulation. Naively, Eqn. (21d) constitutes an addition
of infinitely more variables to keep track of, one for each Q. To solve these
equations on a computer, one must discretize momentum space and keep track
of only a finite number of modes, say N modes. The continuous Q variable is
then replaced by a finite list of momenta, Qi. Since the time derivative of φQi
only depends on φQj if i = j, each of these N modes can be evolved forward in
time independently of one another at each time step. If the derivative of φQi
depended on φQj for i 6= j, then one would have found that Aij∂τφQi = φQj
for some matrix Aij , meaning that each time step of an Euler method would
require the inversion of an N × N matrix, following the method described in
[97]. The fact that Aij is diagonal seems to be a result of the fact that Hydro+
is currently only formulated up to two-point functions [95]. We then ask: to
what extent will this simplification remain true when higher-point functions are
incorporated into Hydro+, and is there an argument why the off-diagonal terms
in Aij are negligible?

Additionally, when simulating Eqns. 21 in a heavy-ion inspired, though very
simplified and phenomenologically inapplicable model, the authors of Ref. [96]
found that the deviations caused by the feedback of the out-of-equilibrium φQ
modes on ε and uµ, which are due to the (+) subscripts in Eqns. 21, were at the
percent level or below. Those authors argued that while the critical fluctuations
from a single order parameter degree of freedom are enhanced near a critical
point, the thermodynamics of the bulk of the QGP comes from a strongly cou-
pled liquid built from 16 bosonic degrees of freedom and 36 fermionic degrees of
freedom. Therefore, unless the QGP passes exactly through the critical point,
the thermodynamics are dominated by the more numerous non-critical degrees
of freedom, and the effects of the out-of-equilibrium φQ modes on the bulk evo-
lution of the fluid are small. If it remains true that the effects of backreaction
are small for more realistic heavy-ion simulations, then the implementation of
Hydro+ in these simulations will be greatly simplified. One could first per-
form a standard fluid dynamical simulation, and then, with its outputs, solve
Eqn. (21d) independently to determine the evolution of the φQ modes. Our next
question is therefore: are the effects of backreaction negligible for phenomeno-
logically relevant heavy-ion fluid dynamical simulations?

Other open questions in the Hydro+ formalism involve higher-point func-
tions, initial conditions, and freeze-out. How can we generalize Hydro+ to
incorporate 3-point and higher-point functions? Were we to naively generalize
Eq. (20) we would introduce another insertion of δM , and with it another mo-
mentum and spacetime dimension, leading to a proliferation of φ modes that
need to be followed during the course of a simulation. How many modes must
be tracked in order to accurately describe a heavy-ion simulation? Also, what
are the initial conditions of these modes? Finally, what is the proper way to
implement freeze-out for these modes?
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2.6 Relevant scales for transits of the critical point

The deterministic method described in Section 2.2 can be used to obtain esti-
mates of the length and time scales involved in transits of the critical region
in a heavy-ion collision. The basic issue is that in a collision of heavy nuclei
the trajectory of the system in the phase diagram is likely to miss the critical
point by some amount, and to only spend a finite amount of time in the critical
region. Combined with the expansion of the system, and the effects of critical
slowing down this implies that the correlation length cannot become very large.
The effects of critical slowing manifest themselves differently depending on the
spatial and momentum scales at which correlations are being studied. In this
section we will present simple estimates of these effects, following the work of
[98].

We consider the two-point function of the entropy per particle ŝ = s/n, which
serves as an order parameter near the critical endpoint. Following Section 2.2
we can derive a relaxation equation for the two-point function Wŝŝ(t, x, k). For
simplicity we will focus on a fluid undergoing locally homogeneous isotropic
expansion so that Wŝŝ(t, k) does not depend on x. The evolution equation for
Wŝŝ has the form

∂tWŝŝ(t, k) = −2Γŝ(t, k)
[
Wŝŝ(t, k)−W 0

ŝŝ(t, k)
]
, (23)

where Γŝ is a relaxation rate, and W 0
ŝŝ(t, k) is the equilibrium correlation func-

tion. In a non-critical fluid the correlation length is small and W 0
ŝŝ(t, k) is ap-

proximately independent of k. Indeed, thermodynamic identities predict that
W 0
ŝŝ(t, k) = Cp(t), where Cp is the specific heat at constant pressure.
The relaxation rate is related to the diffusion constant, Γŝ = Dk2. The dif-

fusion constant can be written as D = l2micro/τ0, where lmicro is the microscopic
length scale introduced above, and τ0 is the non-critical relaxation time. The
maximum wavelength of a fluctuation that can be equilibrated in a fluid that is
expanding at a rate 1/τQ is

lmax = lmicro

√
τQ
τ0
≡ lmicro√

ε
, (24)

where we have introduced a small parameter ε ≡ τ0/τQ, i.e. the product of the
microscopic relaxation time τ0 and the macroscopic expansion rate 1/τQ.

In the vicinity of the critical point the correlation length and the specific
heat diverge. We can take the effect of the correlation length into account by
taking the equilibrium correlation function to be of the form

W 0
ŝŝ(t, k) =

Cp(t)

(1 + (kξ)2−η)
, (25)

where η is the correlation length exponent in the 3-dimensional Ising model.
We can also incorporate the effect of critical slowing down by modifying the
relaxation rate as

Γŝ(t, k) =
λT
Cpξ2

(kξ)2(1 + (kξ)2−η), (26)
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where λT is the thermal conductivity. Eq. (26) is a simple model that corre-
sponds to the model B dynamics discussed in Section 2.3.

Consider now the time evolution in the vicinity of a critical point. We will
define t = 0 to be the time at which the system reaches the critical value
of the baryon density. Near t = 0 the equilibrium correlator evolves rapidly,
(∂tCp)/Cp ∼ 1/t. However, because of critical slowing down, the equilibration
rate of long wavelength fluctuations cannot keep up with this rapid evolution,
and these modes necessarily fall out of equilibrium. Equating the rate of change
of Cp and the relaxation rate

∂tCp(t)

Cp(t)
∼ 1

t
∼ Γŝ(t, k) (27)

determines a characteristic time, known as the Kibble-Zurek time tKZ . The cor-
relation length ξ at this time is the Kibble-Zurek length, l KZ = ξ(t KZ). We can
estimate the Kibble-Zurek length using the scaling form of the relaxation rate,
and the critical scaling of the specific heat. We find l KZ ∼ l microε

1/(aνz+1) ∼
l microε

−0.19, where we have used the model B value for the dynamical exponent
z, and Ising critical exponents for a = 1/(1 − α) and ν. This establishes a
hierarchy

l micro �
(
l KZ ∼ l microε

−0.19
)
�
(
l max ∼ l microε

−0.5
)
. (28)

Reference [98] provides numerical estimates for l micro and ε under conditions
relevant to a possible critical endpoint, T ' 155 MeV and n/s ' 1/25. The
authors find l micro ' 1.2 fm and ε ' 0.2. This corresponds to a hierarchy of
scales

1.2 fm� 1.6 fm� 2.7 fm. (29)

These results indicate that the correlation length does not become very large,
and that the enhancement in the two-particle correlation function in the critical
regime remains modest, on the order of a factor of 2.

The methods discussed in Section A.1 can also be used to study the rapid-
ity structure of fluctuations in a QGP undergoing longitudinal expansion. For
simplicity we consider Bjorken expansion. From the Green function of the dif-
fusion equation in a Bjorken background we find that the width of a momentum
fluctuation localized in rapidity at time τ0 will increase to [42, 55, 66]

ση '
√

6η

sT (τ0)τ0
, (30)

where we have assumed that the shear viscosity to entropy density ratio is
approximately constant. A similar formula can be derived for baryon number
diffusion. Eq. (30) shows that in the regime in which fluid dynamics is a good
approximation the rapidity width of an initial state fluctuation is small, ση . 1.
We can also obtain a very rough estimate of the rapidity width of a critical
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fluctuation. Using the expansion rate to convert longitudinal distance to space
time rapidity Eq. (29) gives(

ση(KZ) ∼ ε0.81
)
�
(
ση(max) ∼ ε0.5

)
. (31)

The estimates discussed in this section indicate that in heavy-ion collisions the
correlation length remains modest, even if the system passes close to a critical
point in the QCD phase diagram, and that critical fluctuations are localized
in specific regions in momentum space. Quantifying these statements requires
the results of fluid dynamical simulations to be converted to particle spectra in
momentum space, which will be addressed in the following section.

2.7 Implementation of fluid to particle conversion

After performing either stochastic fluid dynamics or hydro-kinetics the ques-
tion arises how to compare the fluid dynamical and order parameter fields and
their fluctuations to experimentally observed quantities, which are constructed
from measured particle spectra in a given, experiment specific, kinematics, and
not from the fluid dynamical fields directly. Therefore, direct model to data
comparisons require conversion of correlations in fluid fields to finite statistics
particle correlations. For non-relativistic fluids this problem has been addressed
in several ways [99]. One of them is to exactly match the fluxes at the interface,
which in the relativistic case corresponds to local event-by-event conservation
laws, or in other words, micro-canonical sampling. The Cooper-Frye (CF) par-
ticlization used in relativistic models (see e.g. [100]), on the other hand, is based
on a grand-canonical local phase-space distribution. It combines the Cooper-
Frye formula for the momentum distribution in a hypersurface cell [36] with
Poissonian sampling of the multiplicity distributions. As discussed in [101] this
procedure adds additional fluctuations to those obtained from stochastic fluid
dynamics. (This method and thus the subsequent discussion are relevant only
for stochastic fluid dynamics. At the moment it remains unclear how to freeze-
out after hydro-kinetics.)

In order to see this let us consider for simplicity the correlations of the
baryon number for the case where we can ignore anti-baryons, i.e. for colli-
sions at low energies. Stochastic fluid dynamics provides an ensemble of hydro
events or configurations which reflect the fluctuations of the system. In addi-
tion particlization of a given event typically provides an ensemble of particle
configurations. Therefore, for a given cell i and a given fluid dynamical (FD)
event we have the following

BH(i) = baryon number from FD in cell i

BS(i) = baryon number after CF sampling in cell i

δB(i) = fluctuation of B in cell i due to CF sampling

The final baryon number (in terms of particles) in cell i is then obtained by
averaging over all fluid dynamical events as well as by averaging over the particle

25



configurations for a given fluid dynamical event. Let us denote these averages
as follows:

〈. . .〉 = average over many CF particle configs

. . . = average over FD configs

〈〈. . .〉〉 = average over CF sampling AND over FD configs

Thus, if for a given fluid dynamical event we average over the particle samples
we get

〈BS(i)〉 = 〈BH(i) + δB(i)〉 = BH(i) . (32)

Further averaging over the fluid dynamical ensemble results in

〈〈BS(i)〉〉 = BH(i). (33)

Since the Cooper-Frye sampling preserves the mean everything works out. How-
ever this is not the case if we look at correlations. For a given fluid dynamical
event upon averaging over the particle configurations we get

〈BS(i)BS(j)〉 = BH(i)BH(j) + 〈δB(i)δB(j)〉
= BH(i)BH(j) + δi,j

〈
δB(i)2

〉
= BH(i)BH(j) + δi,jBH(i) , (34)

where in the last line we used the fact that for Poisson sampling we have〈
δB(i)2

〉
= 〈Bi〉 = BH(i). Thus we get for the correlation function

CS(i, j) = 〈〈BS(i)BS(j)〉〉 − 〈〈BS(i)〉〉 〈〈BS(j)〉〉
= BH(i)BH(j)−BH(i)BH(j) + δi,jBH(i)

= CH(i, j) + δi,jBH(i) . (35)

Therefore, for all non-identical cells the correlations are reproduced correctly,
but we get spurious contributions from identical cells. If correlations could be
measured in configuration space one could simply ignore the problem for iden-
tical cells, which is due to correlations of particles with themselves. However,
in experiment, we look at correlations in momentum space and it is not clear
how to remove this spurious contribution in this case. The problem gets even
more apparent if one looks at cumulants. Given the above expression for the
correlation function the second order cumulant, K2, is given by

K2,S =
∑
i,j

CS(i, j) = K2,H +
∑
i

BH(i) , (36)

where we sum over a certain subset of cells of the freeze-out hypersurface. In
addition to the true second order cumulant which reflects the fluctuation of
the stochastic fluid dynamical simulation we have an extra, spurious term ∼
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∑
iBH(i) which arises from the Poisson sampling of the standard Cooper-Frye

particlization. For example, in the case where we use stochastic fluid dynamics
to simulate an ideal gas, where the fluctuations follow a Poisson distribution,
we would simply double count the fluctuations so that in this case the resulting
second order cumulant would be K2 = 2 〈B〉.

From this simple example it should be clear that particlization of stochastic
fluid dynamics has to ensure that the conserved quantum numbers are conserved
locally and event by event. This can be achieved by sampling the particles from
a micro-canonical ensemble instead of a grand-canonical ensemble as it is done
in the standard Cooper-Frye procedure. Such an algorithm has been developed
and implemented in [37]. As discussed in some detail in this paper, in case
of the systems created in heavy-ion collisions the micro-canonical sampling re-
quires some extra considerations, because contrary to typical non-relativistic
fluids, one deals with a rather small number of particles of the order of 104 or
so. At the same time, the computational grid is made of rather small cells in
order to minimize numerical viscosity. As a consequence, the typical number of
particles in a cell of the computational grid is much smaller than one. Micro-
canonical sampling, however, requires integer quantum numbers and, preferably,
that the number of particles is large compared to one. To address this issues the
authors of [37] introduced so-called “patches”. These patches are larger than
the computational cells and their size should be such that each patch has a suffi-
cient number of particles for the micro-canonical sampling to be sensible. Thus
the patch size introduces another scale, lpatch. Since the conserved quantum
numbers are not resolved within a patch, one can determine the correlation of
conserved charges only for distances d > lpatch.

The obvious question is how the new scale lpatch compares with the other
scales in the problem such as lnoise or lfilter and lhydro. The condition for the
patch size is that one has a sufficiently large number of particles in the patch,
Npatch = l3patchρ � 1, where ρ is the particle density. Since after particlization
one typically evolves the system with Boltzmann transport, the mean free path
lmfp should be larger than the inter-particle distance, i.e. lmfp > 1/ρ1/3. Since
fluid dynamics should be still valid at the point of particlization, the patch
size should also be larger than the mean free path, lpatch � lmfp. This will
automatically ensure that we have sufficiently many particles in the patch since
Npatch = l3patchρ � l3mfpρ � 1. Finally, of course the patch size needs to be
smaller than the fluid dynamical scale, lpatch � lhydro and larger than the cutoff
or filter scale required to regularize stochastic fluid dynamics. Thus we have

lgrid, lmfp < lfilter � lpatch � lhydro. (37)

Note that lgrid is the size of the discretized fluid cell, which is not really a
physical scale. In order to resolve the correlations we should have lpatch � lKZ,
where lpatch is limited by the inter-particle spacing and therefore this condition
is only marginally fulfilled in model estimates, see Eq. (29).

Contrary to stochastic fluid dynamics, which provides an ensemble of fluid
dynamical events encoding the fluctuations and correlation of conserved charges,
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in deterministic hydro-kinetics one calculates the time evolution of the means
and n-particle correlation functions. Therefore, in this case particlization will
involve sampling particles such that these correlation functions are faithfully
reproduced in terms of particles. At present there is no algorithm available to
address this problem.
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3 Experimental challenges

The experimental measurement of fluctuation observables is currently of high
interest to the heavy-ion physics community. Naturally, one of the main topics
of the discussions during the RRTF meeting was the search for a QCD critical
point in the SPS energy range as well as in the RHIC beam energy scan (BES)
program. However, an even larger fraction of the discussions was focused on
the comparison of ALICE data with lattice QCD calculations. While the QCD
critical point is not accessible via measurements at LHC energies, pseudo-critical
fluctuations at higher orders are measurable. In addition, also the lower order
fluctuation observables are of interest as they provide the unique opportunity
to test lattice QCD results against experimental data.

Nevertheless, one should be cautious when making direct comparisons to
results from lattice QCD calculations. On the one hand, actual systems in
high-energy heavy-ion experiments are dynamical, finite, come in different sizes,
and the plasma formed is very noisy, fluctuates considerably and is indirectly
measured within a given acceptance. On the other hand, lattice QCD simu-
lations are probing equilibrium in the thermodynamic limit, and are still very
constrained by the sign problem. Still, several statistical mechanics techniques
successfully applied in lattice simulations can be useful in analyzing the exper-
imental data [102, 103, 104]. Near the critical region, one can systematically
incorporate spurious contributions (resonances, acceptance limitations, finite
size, finite lifetime and critical slowing down) expected to affect the fluctuations
in the BES in a way that can be systematically improved or adapted [105, 106].

3.1 Matching between experimental observables and the-
oretical quantities

The physics program of fluctuation studies in heavy-ion collisions is charac-
terised by a plethora of existing observables with different sensitivities to the
underlying physics phenomena. From the theory side, only some quantities are
directly accessible by ab-initio lattice QCD calculations. In any case, all ob-
servables must be properly matched between theory and experiment in order to
allow for an apples-to-apples comparison.

The thermodynamic susceptibilities χBSQlmn of order l + m + n for baryon
number B, strangeness S, and electric charge Q, are given by the derivatives of
the pressure P with respect to the corresponding chemical potentials µ [107]:

χBSQlmn =
∂l+m+n(P/T 4)

∂(µB/T )l ∂(µS/T )m ∂(µQ/T )n
. (38)

They can be calculated in lattice QCD from first principles using imaginary time
(for details see e.g. [108]). The pressure in a system of volume V is connected
with the partition function via [109]

P

T 4
=

lnZ
V T 3

. (39)
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From the experimental side, the susceptibilities of the conserved quantities are
accessible via the measurement of event-by-event fluctuations in the particle
production. For a quantitative comparison, the cumulants Ki of order i of
the measured particle multiplicity distributions are analysed. They can be cal-
culated from the central moments µi = 〈(δN)i〉 with δN = N − 〈N〉. In a
traditional nomenclature, statistical distributions are often described with the
mean M , the variance σ, the skewness S, and the kurtosis κ which corresponds
to an equivalent parameter set of the first four central moments or cumulants,
respectively. With respect to the thermodynamic susceptibilities χ, the follow-
ing relations are found [110]:

M = K1 = µ = 〈N〉 = V T 3 · χ1 ,
σ2 = K2 = µ2 = 〈(δN)2〉 = V T 3 · χ2 ,

S = K3

σ3 = µ3/σ
3 = 〈(δN)3〉/σ3 = V T 3·χ3

(V T 3·χ2)3/2
,

κ = K4

σ4 = (µ4 − 3µ2
2)/µ2

2 = 〈(δN)4〉/σ4 − 3 = (V T 3·χ4)
(V T 3·χ2)2 .

There are several significant effects, however, which must be carefully con-
sidered in the comparison of the theoretically calculated susceptibilities and the
experimentally measured cumulants of identified particle multiplicity distribu-
tions, which will be discussed in more detail in the following sections:

1. The susceptibilities of the conserved quantities in QCD are calculable on
the lattice while experimentally only net-charge, net-pion, net-kaon, net-
proton, and net-Λ distributions are accessible. The correspondence be-
tween, for example, the cumulants of the net-proton distribution and the
susceptibilities χBn is discussed in Sec. 3.2.

2. While the susceptibilities are calculated on the lattice in a fixed volume at
a fixed temperature, which enter into the equations above as V T 3 terms,
in heavy-ion collisions these quantities are unmeasurable. Therefore a
common approach is to form combinations of the cumulants in order to
cancel these unknown factors and compare them to ratios of the suscep-
tibilities, such as Sσ = χ3/χ2 and κσ2 = χ4/χ2. However, as detailed in
Sec. 3.3, the volume and temperature in heavy-ion collisions are related to
the number and positions of the participating nucleons and therefore are
not only unknown but fluctuate event-by-event. These additional fluctu-
ations mean that the V T 3 terms do not cancel precisely.

3. While the lattice QCD calculations are performed for a fixed volume in
the infinite limit, and the correspondence to multiplicity fluctuations of
conserved charges is done within the grand-canonical ensemble picture,
heavy-ion collisions occur within a finite volume over which local and
global conservation laws must hold. The effects of conservation laws can be
experimentally probed by investigating the dependence of the multiplicity
cumulants on the kinematic acceptance of the measurement, as described
in Sec. 3.4.
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4. Another major topic of discussion at the RRTF was the influence of res-
onance decays on fluctuation observables. For example, the feeddown
of Λ and Λ baryons into the proton and anti-proton multiplicities (e.g.
Λ → pπ−, Λ → pπ+) and the influence of rho meson decays in the net-
pion measurement (ρ→ π+π−) are of particular concern (see Sec. 3.5).

Several authors argue in addition that the study of factorial cumulants pro-
vides a cleaner way to access possible non-trivial dynamics in heavy-ion colli-
sions [111].

3.1.1 Additional experimental observables

1. νdyn

In addition to cumulants of net-charge distributions, many experiments
also measure fluctuations via the observable νdyn. The fluctuations be-
tween two particle types A and B, which may represent particles and
anti-particles or different particle species, can be quantified by

ν =

〈(
NA
〈NA〉

− NB
〈NB〉

)2
〉

(40)

=
〈N2

A〉
〈NA〉2

+
〈N2

B〉
〈NB〉2

− 2
〈NANB〉
〈NA〉〈NB〉

. (41)

The independent statistical fluctuations of NA and NB are then subtracted
to obtain a measure of the dynamical fluctuations,

νdyn = ν −
(

1

〈NA〉
+

1

〈NB〉

)
(42)

=
〈NA (NA − 1)〉
〈NA〉2

+
〈NB (NB − 1)〉
〈NB〉2

− 2
〈NANB〉
〈NA〉〈NB〉

. (43)

If NA and NB have Poisson distributions and are uncorrelated, then
νdyn = 0. An important feature of νdyn is that it is robust against particle
detection efficiency losses in the case that the detector response can be
described by a binomial distribution.

At LHC energies, where particles and anti-particles are produced in equal
amounts, νdyn[A,A] is related to the second order moments via the relation

νdyn[A,A] =
K2(NA −NA)

〈N〉2 − 2

〈N〉 , (44)

where 〈NA〉 ≈ 〈NA〉 ≈ 〈N〉.
One should note that the νdyn measure, by definition, has an intrinsic
multiplicity dependence which has to be taken into account. Several scal-
ing prescriptions are investigated in the literature such as charged-particle
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multiplicity density at mid-rapidity, number of participants [112, 113] and
mean multiplicities of accepted particles [114].

2. Balance functions

One of the additional elements which surfaced in the discussions was the
possibility to experimentally measure the balance function B(∆η,∆ϕ),
defined by the difference between the two-particle correlations of like- and
unlike-sign pairs of particles. The correlation function itself can be written
as the ratio of the particle pair density to the single particle densities,

Cαβ(η1, η2, ϕ1, ϕ2) =
ραβ(η1, η2, ϕ1, ϕ2)

ρα(η1, ϕ1)
, (45)

where ραβ is the distribution of pairs of particles of types α and β at angles
(η1, ϕ1) and (η2, ϕ2), respectively, and ρα is the single particle distribution
for particles of type α at the angle (η1, ϕ1). The correlation function can
be further condensed by considering only the relative angle between the
two particles in the pair

Cαβ(∆η,∆ϕ) =
ραβ(∆η,∆ϕ)

Nα
. (46)

When the correlation function is constructed for like-sign (C++ + C−−)
and unlike-sign (C+− + C−+) particle pairs, then the balance function is
defined as B(∆η,∆ϕ) = (C+− + C−+ − C++ − C−−)/2. The integral
of the balance function is directly related to νdyn and thus to the second
cumulant K2 of the net-particle distribution [115].

Measuring the balance function has several advantages in that it clearly
encodes the rapidity dependence of the measurement, which gives access
to the correlation length ξ and also allows one to see the influence of
other physical effects such as resonance decays, flow, and non-thermal
particle production due to jets, etc. However, a precise measurement
of balance functions naturally requires additional statistics, and while it
is more straightforward to correct correlation functions for experimental
efficiency it is unclear how to account for the effects of volume fluctuations,
which would need to be understood before they could be interpreted as a
measurement of second moments.

3. Intensive and strongly intensive quantities

Additional fluctuation observables were also discussed, such as the strongly
intensive quantities Σ and Ω [116, 117, 118], which are insensitive to both
the volume and volume fluctuations within models of independent particle
sources (e.g. the Wounded Nucleon Model [119] and the grand-canonical
ensemble of an ideal Boltzmann gas). The scaled variance, an intensive
quantity, can be written as

ω[N ] =
〈(N − 〈N〉)2〉

〈N〉 . (47)
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Within the Wounded Nucleon Model, the scaled variance can be calculated
as ω[N ] = ω[N ]W + 〈N〉/〈W 〉 · ω[W ], where ω[N ]W stands for the scaled
variance at any fixed number of wounded nucleons, and W = WP + WT

is the sum of the number of projectile and target nucleons. Here the
first term is considered to be the physically relevant quantity, whereas
the second one is unwanted. To isolate the first term of ω[N ], one can
furthermore construct the strongly intensive scaled variance,

Ω[N ] = ω[N ]− (〈N · EP 〉 − 〈N〉 · 〈EP 〉)/〈EP 〉, (48)

where EP = Ebeam−EF , the difference between the beam energy (Ebeam)
and the energy carried forward by spectators from the projectile (EF ).

In the search for critical behavior, it is most interesting to construct ob-
servables which are insensitive to both the volume and volume fluctua-
tions, called strongly intensive quantities [117, 118]. Some examples in-
clude

∆[PT , N ] =
1

〈N〉ω[pT ]
[〈N〉ω[PT ]− 〈PT 〉ω[N ]] (49)

and

Σ[PT , N ] =
1

〈N〉ω[pT ]
[〈N〉ω[PT ] + 〈PT 〉ω[N ]− 2(〈PTN〉 − 〈PT 〉〈N〉)] ,

(50)
where N is the number of particles of a given type and PT is the sum
of the absolute values of their transverse momenta pT . Another example
involves measuring fluctuations and correlations for numbers from two
non-overlapping sets of particles:

∆[N1, N2] =
1

〈N2〉 − 〈N1〉
[〈N1〉ω[N2]− 〈N2〉ω[N1]], (51)

Σ[N1, N2] =
1

〈N1〉+ 〈N2〉
[〈N1〉ω[N2] + 〈N2〉ω[N1]

− 2(〈N1N2〉 − 〈N1〉〈N2〉)] . (52)

One interesting observation is that Σ[N1, N2] in Eq. (52) reduces, in the
special case 〈N1〉 = 〈N2〉, to the ratio of the variance K2(N1 − N2) to
the Skellam baseline 〈N1〉+ 〈N2〉, which represents the limiting case of in-
dependent Poissonian particle and anti-particle multiplicity distributions.
The condition 〈N1〉 = 〈N2〉 is realized to a high precision for measure-
ments of particle and antiparticle distributions at the LHC. The variance-
over-Skellam baseline ratio for the difference of particle and antiparticle
numbers measured by ALICE (see Sec. 3.6.1) for various particle types be-
longs therefore to the class the strongly intensive quantities Σ. While the
strongly intensive quantities have been or are being measured by several
experimental collaborations, the question of how to relate them to lattice
QCD and other theoretical predictions remains open.
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4. Scaled factorial moments and intermittency

Finally, observables related to intermittency were discussed. In the grand-
canonical ensemble the correlation length ξ diverges at the critical point
(or second order phase transition line) and the system becomes scale in-
variant. This leads to large multiplicity fluctuations with special proper-
ties. They can be conveniently exposed using scaled factorial moments
Fr(M) [120] of rank (order) r:

Fr(M) =

〈 1

M

M∑
i=1

Ni(Ni − 1)...(Ni − r + 1)〉

〈 1

M

M∑
i=1

Ni〉r
, (53)

where M = ∆/δ is the number of the subdivision intervals of size δ of the
momentum phase space region ∆.

At the second order phase transition the matter properties strongly deviate
from the ideal gas. The system is a simple fractal and the Fr(M) possess
a power law dependence on M :

Fr(M) = Fr(1) ·M−φr . (54)

Moreover the exponent (intermittency index) φr satisfies the relation:

φr = (r − 1) · dr , (55)

with the anomalous fractal dimension dr being independent of r [121].

It should be noted that Fr(M) is sensitive to both volume fluctuations and
conservation laws. A formulation of a new method to study intermittency
using strongly intensive quantities is needed.

The question how well these assumptions are fulfilled in realistic heavy-ion
collisions was also discussed. The finite size of the created system limits
naturally the growth of the correlation length ξ. Therefore, finite-size cor-
rections modify the predictions made for an infinite system. In addition,
it was argued that due to dynamical effects the correlation length ξ is not
expected to exceed 2− 3 fm [122], which is small compared to the size of
the system. In this case, the analysis, which assumes scale invariance and
requires ξ to be as large as the system itself, would not be directly appli-
cable. Dynamical modeling of heavy-ion collisions is necessary to quantify
the magnitude of these effects.

5. Light nuclei production

Light nuclei production is also discussed as an observable related to spatial
density fluctuations. The latter are expected to be enhanced in the vicinity
of the critical point, but they are not measurable directly. It was suggested
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recently that they can be inferred from the light nuclei production [123,
124]. In a simple coalescence model the yields of deuterons and tritons
can be expressed as

Nd ≈ 3
21/2

(
2π
mT

)3/2 ∫
d3x ρp(x)ρn(x) ∼ 〈ρn〉Np(1 + Cnp) , (56)

Nt ≈ 31/2

4

(
2π
mT

)3 ∫
d3x ρp(x)ρ2

n(x) ∼ 〈ρn〉2Np(1 + 2Cnp + ∆ρn) , (57)

where proton and neutron densities are allowed to fluctuate in space:

ρn(x) = 〈ρn〉+ δρn(x) , (58)

ρp(x) = 〈ρp〉+ δρp(x) , (59)

and proton-neutron density correlations and neutron density fluctuations
are denoted as

Cnp ≡ 〈δρn(x)δρp(x)〉 /(〈ρn〉 〈ρp〉) , (60)

∆ρn ≡
〈
δρn(x)2

〉
/
〈
ρ2
n

〉
. (61)

Constructing the following ratio

NtNp
N2
d

=
1

2
√

3

1 + 2Cnp + ∆ρn
(1 + Cnp)2

(62)

one can see that the coalescence model predicts it to be independent of
collision system, energy or centrality, but sensitive to spatial density fluc-
tuations. In the vicinity of the critical point this ratio should exhibit a
peak. Combining the data from NA49 [125, 126, 127], STAR [128, 129],
and ALICE [130] one indeed can see two clearly pronounced peaks in the
dependence of (NtNp)/N

2
d on collision energy in central collisions. How-

ever, the interpretation of these peaks is currently not possible for two
reasons: (1) available models disagree on the (NtNp)/N

2
d ratio without

critical point, (2) there is currently no model that would include a critical
point, spatial density fluctuations emerging from it and light nuclei pro-
duction. It was argued that the structures in (NtNp)/N

2
d may be related to

decays of excited 4He states [131], and 4-particle correlations represented
by the enhanced K4/K2 ratio are originating from the same source. The
observable (and similar related ratios, such as (N3HeNt)/(NdNα)) seems
to be very promising, but requires further investigation, especially from
the theory side.

3.1.2 A new observable: χB2 /χ
Q
2 ?

The quantity χB2 /χ
Q
2 was proposed as a particularly interesting observable, since

lattice QCD calculations indicate that this ratio behaves almost linearly as a
function of T near the critical temperature contrary to the behaviors of χB4 /χ

B
2

and other similar ratios that approach a constant value and are insensitive to
T below Tc. This is shown in Fig. 5. Therefore a measurement of KB

2 /K
Q
2
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Figure 5: Susceptibility ratio χB2 /χ
Q
2 as a measure of net-baryon number to net-

electric charge fluctuations obtained in lattice QCD calculations. Figure taken
from [132].

would be more sensitive to the temperature and possible critical effects. A
further advantage is that it only requires measuring second cumulants, which
are more easily within the statistical reach of experiments. However, the net-
charge cumulants are the most difficult to measure for several reasons, including
the large mean multiplicities which increase the statistical uncertainties and the
very significant effects of resonance decays which must be carefully controlled.

3.2 Isospin and strangeness randomisation across collision
energies

In the hadronic phase, processes of the form p + π0 ↔ ∆+ ↔ n + π+ can
alter the isospin-identity of nucleons. After only two of these cycles the origi-
nal isospin distribution is completely randomised. This does not affect average
quantities but significantly influences higher-order fluctuations. The efficiency
for isospin randomisation depends strongly both on the density of pions and
the regeneration plus decay time of the intermediate resonance in comparison
to the duration of the hadronic stage. Isopsin randomisation might work effi-
ciently at LHC energies because of the pion bath. However, the pion bath is
not present at lower beam energies and the mechanism will break down at some
point. The importance of isospin randomisation for relating the measured net-
proton number cumulants to the theoretically interesting net-baryon number
fluctuations has been worked out in [32, 33]. In fact, using the isospin ran-
domisation it has been argued that the net-baryon number cumulants can be
constructed from the experimentally observed proton number distribution even
without the measurement of neutrons [32, 33]. In [133], the mechanism has
been studied quantitatively and it was found that the net-proton distribution
would be pushed strongly toward the Skellam limit if the distribution originally
deviated from it.

Similar questions should be investigated for the measurement of fluctua-
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tions in the net-strangeness. There are ongoing and existing measurements of
net-kaon and net-Λ fluctuations and the question is if such measurements are
sufficient to reconstruct the original net-strangeness fluctuations. Analogous to
isospin randomisation, future work in this direction can be based on reactions
of the type p+K ↔ Λ + π that might occur frequently enough in the hadronic
phase.

3.3 Volume fluctuations

While factors of volume appear in the relations between cumulants and sus-
ceptibilities listed above, the “volume” of the medium produced in a heavy-ion
collision is not a very well defined quantity, although it is related to the number
of nucleons that participate in the collision and their geometrical orientation
and therefore to the collision centrality. Event-by-event fluctuations of the par-
ticipants, and therefore the volume, are inescapable and are an additional source
of fluctuations that must be assessed in experimental measurements.

Experimental measurements are performed in centrality classes, and the
method used for estimating the centrality significantly influences the magnitude
of the corresponding volume fluctuations. Depending on the detector setup, the
centrality may be estimated by energy deposited at forward pseudorapidity (for
example, in the V0 detector in ALICE), the number of charged particles recon-
structed at midrapidity (e.g. in the STAR TPC), or the spectators measured
at zero degrees (as is done e.g. in HADES). Each method has advantages and
disadvantages and several experiments utilise different methods for cross-checks
and cross-calibration. While decorrelation effects between different regions of
phase space cause the participant fluctuations to be larger for a given centrality
class, determining the centrality and measuring multiplicity fluctuations in the
same region of phase space leads to autocorrelations.

Within the experimental community, there are two approaches to account
for volume fluctuations in measurements of higher-order multiplicity cumulants.
One approach is to attempt to correct the data by removing volume fluctua-
tions. One method which is currently being developed is to use a data-driven
unfolding for this correction. Another method is the centrality bin width correc-
tion (CBWC) [134], in which the moments measured in narrow centrality bins
are combined to obtain the cumulants in a wide centrality bin. It should be
noted, however, that participant fluctuations will be present even in the limit of
very fine centrality bins, and therefore the CBWC is only a partial correction,
see Fig. 6. An alternative approach is to evaluate the impact of the volume
fluctuations on the measured cumulants and then fold them into the baseline
or model comparison. Such an approach was explored in Ref. [135], where the
ALICE centrality estimation procedure and mean (anti-)proton multiplicities
were used to evaluate the effects of the volume fluctuations on the second cu-
mulants within the Wounded Nucleon class of models. This approach means
that no experimental information is lost in a correction procedure, but may also
introduce a model-dependence into the interpretation of the results.

37



P. Braun-Munzinger et al. / Nuclear Physics A 960 (2017) 114–130 125

Fig. 8. Second (left panel) and third (right panel) cumulants of net-protons for Au+Au collisions at √sNN = 7.7 GeV. 
Red points correspond to keeping the number of wounded nucleons fixed, while for the blue and black points the fluc-
tuations of wounded nucleons are included. The centrality bin width is 2.5% for the blue points, while for the black 
points variable bin widths (see Fig. 1) are used. The lines (black and blue) are calculated using eqs. (22) and (23). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Left panel: Fourth cumulants of net-protons for Au+Au Collisions at √sNN = 7.7 GeV. Right panel: Ratio of 
fourth and second cumulants. Red points correspond to fixed number of wounded nucleons while, for the black points, 
the fluctuations of wounded nucleons are included. The centrality bin width is 2.5% for the blue points, while for the 
black points variable bin widths (see Fig. 1) are used. The lines (black and blue) are calculated using eqs. (22) and (24). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

We observe that the CBWC reduces the overall level of fluctuations significantly but cannot 
fully eliminate the participant fluctuations. This can also be seen in Fig. 1 from the 2-dimensional 
scatter plots there, where even for a fixed value of charged particles the number of wounded nu-
cleons still fluctuates. On the other hand, the incoherent addition of data from intervals with very 
small centrality bin width will likely distort the physics we are after since the correction also 
eliminates true dynamical fluctuations. The CBWC in particular reduces true dynamical correla-
tions. This is particularly relevant for searches for a critical endpoint in the phase diagram. One 
of the signatures of such a critical endpoint is that near it the dynamical correlation length will 
increase rapidly (see above). Since particle production is also likely to be affected, the sensitivity 
of a search for a critical endpoint will be diminished if too small centrality bins are used.

In Fig. 9 we show the results for participant fluctuations for the fourth cumulants of net-
protons and their ratio to the second cumulants. Even for very fine centrality bin widths we 
observe up to 40% deviations from the baseline. Furthermore, participant fluctuations are sup-
pressed less than shown in Figs. 8 and 9 if autocorrelations with the charged particles used for 
the centrality determination are not removed entirely. We note, in this context, that a significant 
contribution to net-proton fluctuations will originate from fluctuations of the number of net !
baryons. This will introduce strong pion–proton correlations into the sample implying that a part 

Figure 6: Left panel: Fourth cumulants of net-protons for Au+Au Collisions
at
√
sNN = 7.7 GeV. Right panel: Ratio of fourth and second cumulants. Red

points correspond to fixed number of wounded nucleons while, for the black
points, the fluctuations of wounded nucleons are included. The centrality bin
width is 2.5% for the blue points, while for the black points variable bin widths
are used. Figures taken from [135].

3.4 The rapidity window dependence

The acceptance dependence can provide information about the nature and ori-
gin of the correlations and fluctuations in heavy-ion collisions. For instance,
the effects of conservation laws on fluctuation observables can be assessed by
changing the kinematic acceptance, in particular the (pseudo-)rapidity range of
the measurement. When the acceptance of the measurement is small, then the
fluctuations are reduced to purely statistical (Poissonian) fluctuations. Mean-
while, when the acceptance of the measurement is large compared to the phase
space of produced particles, conservation of baryon number, strangeness, and
charge have an impact on the measured fluctuations. The effect of global and
local baryon number conservation laws was demonstrated in a model [135, 136]
to explain the rapidity window ∆η dependence of K2 for net-protons measured
by ALICE [25], see Fig. 7.

Furthermore, two other major sources of fluctuations have characteristically
distinct rapidity window dependences: fluctuations of initial conditions and
fluctuations due to thermal noise [55]. The contribution of thermal fluctua-
tions to intensive measures (such as ω[N ]) grow with the acceptance window
and saturate when the window width reaches the correlation rapidity range
(typically, one unit of rapidity). In contrast, the initial fluctuations lead to
long-range (up to several units) rapidity correlations and their growth continues
until the fireball boundary effects become important, e.g., due to conservation
laws [135, 136].

Since the fluctuations due to the QCD critical point are essentially thermal
fluctuations, their correlation range is of order one unit of rapidty [137]. It
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Figure 1. Left panel: the normalized values of 2(B�B̄), for di↵erent values of �ycorr, as a function

of accepted fraction of baryons. The red solid symbols, represented by �ycorr = 1, actually

correspond to �ycorr = 100, and are consistent with the global baryon number conservation.

(cf. Eq.(4) of [10]). Right panel: comparison of the results with the ALICE data. Within the

experimental uncertainties, the data are best described by global baryon number conservation

(�ycorr = 1) but are consistent with �ycorr � 5. Values of �ycorr smaller than 5 lead to results in

disagreement with the experimental measurements. Interestingly, the blue solid line, representing

the results of the HIJING generator, underestimates the experimental data and is described by the

local baryon number conservation with �ycorr = 2.

where IB denotes the modified Bessel function, �B,B̄ are fugacities and zB,B̄ stand for sin-

gle particle partition functions of baryons and anti-baryons respectively. The � function in

Eq. (3) guarantees that, in each event, the net number of baryons is fixed, i.e, net-baryons

do not fluctuate from event-to-event. In order to get finite fluctuations for net-baryons, dis-

tributions of baryons and anti-baryons have to be folded with the experimental acceptance.

III. LOCAL CONSERVATION LAWS

In [10–13] e↵ects of global conservation laws on fluctuations of conserved charges were

addressed. In our previous work the energy dependence of cumulants of net-protons, reported

by STAR for Au+Au collisions, is consistently described above
p

sNN = 11.5 GeV under

the assumption of global baryon number conservation and fluctuations in the number of

participating nucleons [10]. Here, using the same algorithm, we investigate contributions

4

Figure 7: Left panel: the normalized values of K2 for net-baryons, for different
values of ∆ycorr, as a function of accepted fraction of baryons, where ∆ycorr =
2|yB−yB̄ |. Right panel: comparison of the results with the ALICE data. Within
the experimental uncertainties, the data are best described by global baryon
number conservation (∆ycorr = ∞) but are consistent with ∆ycorr ≥ 5. The
blue solid line, representing the results of the HIJING generator, underestimates
the experimental data and is described by the local baryon number conservation
with ∆ycorr = 2. Figures taken from [136].

should be emphasized that the spatial correlation length, ξ, despite becoming
anomalously large at the critical point, has little effect on the range of the
kinematic rapidity correlations (see Fig. 8). The larger spatial correlation length
ξ translates into a larger number of particles being correlated and thus manifests
in a larger magnitude of the fluctuation measures [80, 138].

The rapidity window dependence of the cumulants (normalized by multi-
plicity to make them intensive) follows the pattern expected from thermal fluc-
tuations [137], as shown in Fig. 9. For small rapidity windows ∆y � 1 the
normalized cumulant, ωk/N , grows as a power ∆yk−1. Furthermore, since the

Figure 8: Schematic illustration of the relation between the spatial (Bjorken)
rapidity η and kinematic rapidity y via the effect of the thermal broadening
(freezeout smearing). The figure is from Ref. [137].
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Figure 9: Acceptance dependence of the critical contribution to the normalized
cumulants of proton number. Figures taken from [137].

critical fluctuations correlate particles with different transverse momenta pT ,
the magnitudes of the fluctuation measures increase with the pT acceptance, as
also illustrated in Fig. 9.

Other effects which are sensitive to the width of the rapidity window were
also discussed in detail, particularly resonance decays and the influence of diffu-
sion. At the intermediate range of ∆η, the dependence of higher-order cumulants
on ∆η is determined by the correlations between observed particles, and thus
can be sensitive to the diffusion process and particle production mechanisms.
Various estimates on the ∆η dependence have been made in the literature based
on models for the diffusion and particle production [34, 139, 137, 140].

3.5 Influence of resonance decays on fluctuation observ-
ables

Resonance decays play an important role in particle production. For example,
thermal model estimates show that – integrated over all transverse momenta –
about 60% of all pions originate from the decays of heavier hadronic states [141].
On an event-by-event basis this can vary considerably and, thus, resonance
decays may influence fluctuation observables significantly. In general, the decay
of resonances follows a multinomial probability distribution [142] from which the
impact of the decays on the cumulants of a particle multiplicity distribution can
be derived. This has been done up to the fourth order cumulant in [143]. Based
on those results, the influence of resonance decays on the fluctuations in the net-
proton number has been estimated in [133]. It was found that the higher-order
cumulants are stronger influenced by the decays. Moreover, a proper inclusion
of the probabilistic character of the decay process turned out to be essential:
for net-protons this can be an up to 20% effect on the cumulant ratios and is
expected to be even stronger for pions [133].

An important question concerns the connection between resonance decay
contributions and the rapidity window dependence. For the thermal model in-
terpretation of the yields (first moments), this does not play a role: if a charged
pion from a ρ decay leaves the acceptance window, it is quite likely that in
another event a pion from a neighboring rapidity window enters the acceptance
window, leaving the number of pions in the acceptance window unchanged on
average. Higher-order fluctuations, however, are sensitive to resonance decays
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particularly if the acceptance window is smaller or of the same order as the
average rapidity difference between the decay daughters. Therefore, decays of
the type ρ → π+π− strongly influence the measurement of net-charge fluc-
tuations. As a matter of fact, it was previously suggested to constrain the
number of produced ρ and ω mesons via a measurement of net-charge fluctu-
ations [144]. Similarly, the decay φ → K+K− influences the measurement of
net-strangeness measurements. Detailed studies are needed for the understand-
ing of net-charge and net-strangeness observables. These effects are best studied
using event generators which are either QCD inspired such as HIJING or based
on statistical-thermal particle yields coupled to hydrodynamic expansion. Early
estimates [144] based on a Monte Carlo study for Pb-Pb collisions at SPS en-
ergies indicated a modification of only 1% in the resonance decay contributions
to the fluctuations in the π+/π− ratio if the acceptance in rapidity is limited
to ∆η = 1. In any case, a proper particle decay model needs to be an integral
part of the code.

Decays of the type ∆++ → pπ+ and Λ → pπ− are rather different be-
cause they do not change the baryon number in a correlated way. However,
the effects of feed-down in the net-proton measurements should be experimen-
tally addressed. In principle, including primary and secondary protons from all
sources would come the closest to a measurement of the baryon multiplicity.
In practice, though, it must be noted that in every experiment the detection
efficiency is different for primary particles and particles of secondary origin,
and branching ratios have to be taken into account. Therefore, it would be
necessary to measure the multiplicity fluctuations for each particle species in-
dividually. Experimentally, protons from weak decays are characterized by a
larger distance-of-closest-approach (DCA) to the primary vertex and this infor-
mation could be used to assign probabilities for each proton if it is of primary or
secondary origin (analogous to the Identity Method for particle identification).
From the theoretical side, such measurements could be accompanied by the si-
multaneous determination of χB , χBS , and χS since for instance Λ, Ξ, and Ω
decays contribute to all three of these fluctuation observables simultaneously.
Setting up such a detailed experimental and theoretical framework should be
one of the main goals of the future research activity in this field.

Additional complications in these studies might arise from re-generation and
re-scattering processes which are likely to occur in the hadronic phase of the
collision. Two primordially produced pions might pseudo-elastically re-scatter
via the large cross-section process π+π− → ρ→ π+π− and thus again leave the
acceptance window. Re-generation effects are not modeled by event generators
like HIJING and a correct treatment implies the usage of afterburners based on
UrQMD.

3.6 Overview of the current experimental techniques

The experimental techniques and methodologies across experiments are cur-
rently not fully harmonised. As a matter of fact, one of the goals of the RRTF
was to contribute to the community-wide efforts to establish a common approach
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in the measurement of fluctuation observables. In order to obtain an overview
of the current status of fluctuation measurements in the various experiments,
each experiment was asked to provide answers to the following set of questions:

1. Which fluctuation observables are measured?

2. Which results are already available and what are the plans for the future?

3. What are the applied acceptance cuts?

4. What are the available statistics, at which energies and systems, now and
in the future?

5. Are unphysical sources removed (e.g. spallation protons) and how?

6. How are secondaries from weak decays treated (e.g. Λ → p + π−)?

7. How is the efficiency correction performed?

8. How are potential event-by-event fluctuations in the efficiency treated or
modeled?

The responses are summarized below.

3.6.1 Fluctuation measurements in ALICE

ALICE has shown preliminary results on the first and second central moments
of net-pion, net-kaon, net-proton, and net-Λ distributions [25, 145] measured
using the Identity Method [146, 147, 148], as well as the third- and fourth-
order cumulants of the net-proton distribution [149] analysed with traditional
cut-based particle identification. Furthermore, the ALICE collaboration has
published measurements of particle ratio fluctuations [113] and net-charge fluc-
tuations [150], quantified with the observable νdyn, as well as balance func-
tions [151, 152].

1. Second cumulants of net-proton, net-kaon, and net-pion distributions

The analysis of the second moments of the net-pion, net-kaon, and net-
proton distributions was performed with data from Pb-Pb collisions at√
sNN = 2.76 TeV collected in 2010 by the ALICE detector. The kine-

matic acceptance of the measurement is |η| < 0.8 and 0.6 < pT <
1.5 GeV/c. In this momentum range, the tracking efficiency for protons
(anti-protons) in the Time Projection Chamber (TPC) is roughly con-
stant at approximately 78% (70%), which confers a technical advantage
of allowing the analysis to be performed in a single inclusive momentum
bin. In this analysis, the efficiency correction was performed at the level of
the first and second moments using simulated Monte Carlo events passed
through a GEANT model of the ALICE detector. Two Monte Carlo gen-
erators, AMPT and HIJING, were used for the efficiency correction; the
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small difference between the generators was used to estimate the corre-
sponding systematic uncertainty. The procedure was also cross-checked
by assuming binomial track loss [153]. The accuracy of the correction
procedure was estimated to be on the percent level and was included in
the systematic uncertainties. Secondary protons, mainly from the decay of
Λ baryons, were not explicitly removed from the measurement, but their
influence on the final results was evaluated by varying the selection on the
DCA between the tracks and the primary vertex, and the observed small
deviations were included in the systematic uncertainties.

2. Second cumulants of net-Λ distributions

The analysis of the second cumulants of the net-Λ distribution was per-
formed for

√
sNN = 5.02 TeV Pb-Pb collisions, using the data set col-

lected in 2015. Λ and Λ baryons were reconstructed via their decay to
(anti-)protons and charged pions. To account for the background of com-
binatoric proton-pion pairs, the Identity Method was applied along the
invariant mass (mpπ) axis by evaluating the probability at each value of
mpπ that a proton-pair corresponds to a true Λ baryon decay or a com-
binatoric pair. Since the Λ reconstruction efficiency depends strongly on
pT throughout the kinematic range, from a minimum of 10% at pT = 1
GeV/c to a maximum of roughly 30% at pT = 4 GeV/c, the pT -dependent
efficiency correction was performed assuming binomial efficiency loss ac-
cording to the prescription in Ref. [154]. The secondary contamination of
Λ and Λ baryons originating from the decay of Ξ baryons is also incorpo-
rated into the efficiency correction procedure.

3. Third and fourth cumulants of net-proton distributions

The analysis of the third and fourth moments of the net-proton multi-
plicity distributions was performed in Pb-Pb collisions at

√
sNN = 2.76

and 5.02 TeV; the results at both energies are consistent within statistical
and systematic uncertainties. Protons in the kinematic range |η| < 0.8
and 0.4 < pT < 1 GeV/c are identified according to tight selection cuts
on specific energy loss in the TPC. Due to the stricter particle identifi-
cation cuts used in this analysis, the reconstruction efficiency for protons
(anti-protons) is approximately 65% (60%). The moments are corrected
for efficiency according to Ref. [153]; the centrality bin width correction is
also applied.

Each of the cumulant measurements described above is compared to the Skellam
baseline. Small deviations from the Skellam baseline are observed for the net-
proton and net-Λ second cumulants; within the precision of the measurement
these deviations can be fully described by a model which includes the effects of
baryon number conservation [135, 136]. The effects of baryon number conserva-
tion were further tested by performing these measurements differentially with
respect to the pseudorapidity acceptance (∆η). It was observed that Poisso-
nian/Skellam behavior is recovered for small ∆η, and the measured cumulants
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√
sNN (GeV) Available statistics Expected statistics in BES-II

(millions of events) (millions of events)
7.7 4 100
9.1 – 160
11.5 12 230
14.5 20 300
19.6 36 400
27 70 500
39 130 –

54.4 1200 –
62.4 67 –
200 > 850 –

Table 1: The collected statistics in the 0-80% centrality range from BES Phase
I and the expected statistics from BES Phase II, listed in millions of events.

decrease with respect to the Skellam limit as ∆η increases, consistent with ex-
pectations. In the most central Pb-Pb collisions the higher-order cumulants are
consistent with a Skellam distribution; the significant statistical and systematic
uncertainties do not yet make it possible to observe any deviations.

An ongoing analysis of the third- and fourth-order cumulants of net-proton
distributions using the Identity Method will allow the kinematic range and pre-
cision of the measurement to be extended. A phenomenological evaluation of
the effects of volume fluctuations and baryon number conservation on the higher
moments is also underway, which will make a precise and quantitative test of lat-
tice QCD possible. Furthermore, the data collected by the ALICE experiment
in Runs 3 and 4 at the LHC will make it possible to measure the fourth moments
of identified particles with unprecedented precision, and the sixth moments are
also foreseen to come within experimental reach.

3.6.2 Fluctuation measurements in STAR

The STAR experiment at RHIC has measured a range of fluctuation observables,
including the higher moments of net-charge [24, 155], net-proton [23, 26, 156],
and net-kaon [157] multiplicity distributions, as well as event-by-event fluctua-
tions of identified particle ratios [158], mean pT fluctuations [159], and balance
functions [160]. As part of the RHIC beam energy scan (BES) program, these
measurements have been performed in Au+Au collisions across a wide range of
collision energies, from

√
sNN = 7.7 GeV to 200 GeV. The available statistics

from the BES Phase I and the top RHIC energies are listed in Table 1, as well
as the projected statistics which will be collected in BES Phase II, to take place
between 2018 and 2021.

Of particular interest are the higher moments of the net-charge, net-kaon,
and net-proton multiplicity distributions measured across the full range of BES
energies. The measurements are performed in the (pseudo)rapidity windows
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|η| < 0.5 and |y| < 0.5 for unidentified and identified particles, respectively,
and in the following transverse momentum ranges: 0.2 < pT < 2 GeV/c (net-
charge), 0.2 < pT < 1.6 GeV/c (net-kaon), 0.4 < pT < 0.8 GeV/c (net-proton);
since publication the net-proton kinematic range has been extended to 0.4 <
pT < 2 GeV/c [161].

Particle identification is performed using the specific energy loss in the TPC
and time of flight from the TOF detector. The finite tracking efficiency is cor-
rected under the assumption of binomial track loss, which has been extensively
tested in Monte Carlo simulations [157]. Efforts to apply an unfolding pro-
cedure in the efficiency correction are underway. The CBWC is also applied.
Decay products from weak decays and spallation protons are rejected with ex-
perimental cuts on the transverse momentum and distance of closest approach
to the primary vertex, although there is no explicit correction for the residual
contamination.

The centrality of each event is determined from the charged-particle multi-
plicity at mid-rapidity, not including the particle under study (i.e. in the net-
proton measurement, protons are excluded from the centrality determination).
While this avoids maximally correlating the observable with the centrality, re-
maining autocorrelations may still be present.

Future work will include the analysis of fluctuation observables in BES Phase
II, where a massive increase in available statistics is anticipated (see Table 1).
Furthermore, the beam energy scan program will be extended by inserting a
gold target into the STAR detector, such that fixed-target collision events can be
recorded. For example, when the collider energy is

√
sNN = 62.4 GeV, the fixed-

target energy is
√
sNN = 7.7 GeV. Similarly, for a collider energy of

√
sNN = 7.7

GeV, the corresponding fixed-target center-of-mass energy is
√
sNN = 3 GeV.

By utilizing the flexibility and performance of the STAR detector and RHIC
beams, fluctuation studies will be able to be performed across a wide range of
the phase diagram in T − µB space.

3.6.3 Fluctuation measurements in HADES

With the HADES detector, located at the SIS18 at GSI, the proton number
fluctuations have been investigated in Au+Au collisions at

√
sNN = 2.41 GeV.

HADES operates at low energies where there is no anti-proton production, hence
net-proton fluctuations are measured as proton number fluctuations. However,
approximately 1/3 of the protons are bound in light nuclear clusters produced
either thermally or via coalescence. While so far only the fluctuations in the
number of free protons have been analyzed, future work will also include the
protons bound in deuterons, tritons, and He nuclei into the fluctuation signals.

Protons are selected within the HADES geometrical acceptance with 0.4 <
pT < 1.6 GeV/c and y = y0 ± 0.5, where y0 = 0.74 is the center-of-mass rapid-
ity. For the analysis, the Au+Au data is subdivided into four centrality classes:
0-10%, 10-20%, 20-30%, and 30-40%; the resulting volume fluctuations also pro-
duce a fluctuation signal and must therefore be investigated carefully [135, 162].
The effects of detector (in)efficiency have been extensively investigated in simu-
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lations. Corrections are applied on a bin-by-bin and event-by-event basis in 240
phase-space bins to account for the dependence of the reconstruction efficiency
on rapidity, transverse momentum, and detector load, assuming binomial effi-
ciency loss [38, 153, 163]. Event-by-event fluctuations of the detector efficiency
are of order 10-15% in HADES and must be taken into account. A linear model,
adjusted phase-space bin by bin to simulated events, is used to recalculate the
efficiency in each event and for each bin. These event-by-event efficiencies are
incorporated into Kitazawa’s efficient scheme [153]. Unfolding techniques based
on a simulated 2d detector response matrix using regularization or singular
value decomposition (SVD) schemes have also been investigated. Furthermore,
the newly proposed moment-expansion scheme [40] has been implemented and
tested. Both, in simulations and in data, the three methods agree well for the
first (mean), second (variance), and third order (skewness) moments, and still
reasonably well in the fourth order (kurtosis).

The analyzed data set consists of 2·108 Au+Au events at
√
sNN = 2.41 GeV.

Protons from weak decays are not fully subtracted, but partially suppressed
by track vertex cuts. However, since strangeness production is subthreshold
at SIS energies, these protons contribute on the < 10−3 level. Contributions
from spallation protons are being investigated in GEANT3 simulations, but are
expected to be weak due to the fixed target setup and the low beam energies
used. Event pile-up is at a < 2 · 10−4 level.

In addition to proton number fluctuations, HADES can measure net-charge
fluctuations by considering the free and bound protons as well as the charged
pions. (Strangeness production is subthreshold and does not contribute much to
the charge.) In the future, fluctuation observables will be analyzed in the high-
statistic data sets recently recorded from 5 · 108 Ag+Ag collisions at

√
sNN =

2.41 GeV and 6.5 · 109 events at
√
sNN = 2.55 GeV. Within the FAIR phase-0

stage HADES may also request a more complete energy scan at SIS18 with
Au beams of 0.2 - 1.0 GeV/u to probe the liquid-gas phase transition region.
Finally, beyond 2027, HADES is expected to extend the excitation function of
fluctuation signals at SIS100 using various heavy-ion beams of 3.5 GeV/u.

3.6.4 Fluctuation measurements in NA61/SHINE

The NA61/SHINE experimental program encompasses a diverse set of colliding
beams (p+p, p+Pb, Be+Be, Ar+Sc, Xe+La, Pb+Pb) over a wide range of beam
momenta from 13A to 150A GeV/c. The detector offers a unique opportunity to
study a wide range of fluctuation observables due to its high tracking efficiency
(> 90% down to pT = 0 GeV/c) and particle identification capabilities.

The impact of volume fluctuations on fluctuation observables is reduced by
analyzing only the most central collisions, where few spectators are detected
in the Projectile Spectator Detector, thus maximizing the number of wounded
nucleons participating in the collisions and limiting fluctuations. Furthermore,
the use of strongly-intensive quantities [116, 117, 118] is preferred which are
independent of the volume and volume fluctuations within models of indepen-
dent particle sources, for example the Wounded Nucleon Model [119] and the
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grand-canonical ensemble of an ideal gas of Boltzmann particles.
The intensive quantity ω as well as the strongly intensive Ω, ∆, and Σ observ-

ables have been measured across a wide range of collision systems and energies.
Additionally, a systematic study of intermittency has also been performed. For
a summary of recent results, see [164].

1. Intensive observables

The scaled variance, ω, has been measured in p+p, Be+Be and Ar+Sc
across a range of energies [165, 166, 167]. In p+p interactions, and also
in Be+Be collisions, multiplicity fluctuations are larger than predicted by
statistical models. However, they are close to statistical model predictions
for large volume systems in central Ar+Sc and Pb+Pb collisions [168].
The observed rapid change of hadron production properties that start
when moving from Be+Be to Ar+Sc collisions may be interpreted as the
beginning of the creation of large clusters of interacting matter, or the
onset of the fireball [169].

2. Strongly intensive observables

The observable Σ[PT , N ] has been measured for both positively and neg-
atively charged hadrons in p+p, Be+Be, and Ar+Sc collisions at beam
momenta of 20A, 31A, 40A, 80A, and 158A GeV/c [170]. In this scan of
the phase diagram, no ”fluctuation hill”, or increase of fluctuations which
would indicate the presence of a critical point, has been observed.

3. Intermittency

The intermittency F2(M) has been measured by NA61/SHINE [171, 172]
and NA49 [173] in Be+Be (NA61/SHINE), C+C (NA49), Si+Si (NA49),
Ar+Sc (NA61/SHINE), and Pb+Pb (NA49) collisions with beam mo-
menta in the range 150A-158A GeV/c. NA49 reported an indication for
critical fluctuations in Si+Si collisions (a power-law enhancement with re-
spect to the mixed events baseline). The NA61/SHINE results on Ar+Sc
show no convincing indication of critical fluctuations so far. The results for
Be+Be, C+C and Pb+Pb collisions are consistent with the mixed events
baseline. Analysis of data for all reactions recorded by NA61/SHINE is
ongoing.

3.6.5 Future common standards to be followed by experiments

As the experimental measurements of higher-order moments are extremely chal-
lenging and sensitive, and high precision is needed for informative comparisons
to theoretical calculations, it is important to establish a set of basic quality
checks that can be performed in order to give confidence in the results. As a
starting point, some suggestions are listed here:

1. Since the correction for detector (in)efficiency is a critical part of a higher-
moments analysis, it is important to verify the underlying assumptions
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implicit in the correction procedure. In particular, if the correction pro-
cedure relies on the assumption that particle loss occurs according to a
binomial distribution (as in Refs. [38, 163]), then it should be demon-
strated that the detector response is, in fact, binomial. If it is not, the
effect of deviations from a binomial track loss should be investigated in,
for example, a Monte Carlo closure test (see below).

2. At the LHC and at top RHIC energies, where stopped baryons lie at far
forward rapidities and not within the experimental acceptance, the odd
net-particle moments (K1, K3, K5, ...) should be zero. Experimental ver-
ification of this is critical to determine if the detector efficiency correction
procedure is under control.

3. A “Monte Carlo closure test” is an extremely useful tool for validating the
accuracy of an analysis procedure. To check for closure, the observable of
interest is calculated in a Monte Carlo model using generator-level parti-
cles. Then the generated events are passed through a simulated model of
the detector and subsequent data reconstruction chain. The analysis can
then be run on the reconstruction-level particles (in the form of tracks,
etc), just as it is in real data. If the full analysis chain and all correction
procedures are working well, then the corrected reconstruction-level re-
sults should match that obtained from the generator-level particles. Note
that, to first order, it does not matter whether the Monte Carlo repro-
duces the physics seen in the real data – the Monte Carlo closure test is
only a test of the analysis method, not a physics result. As such, however,
it is a necessary but not sufficient proof of the robustness of an analysis.
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4 Fluctuations in atomic gases and other related
systems

Fluctuations and correlations play an important role in many other systems,
ranging from the microscale as in ultra-cold atomic gases and condensed mat-
ter systems, to the largest structures in the universe, galaxies and clusters of
galaxies. Indeed, the idea that fluctuations can serve as a signal of critical be-
havior goes back to the explanation of critical opalescence near the endpoint
of the liquid-gas phase transition in water in terms of large fluctuations by
Smoluchowski and Einstein. Since then, fluid mixtures and condensed matter
systems have served as important testing grounds for ideas about dynamical
critical phenomena and critical transport. During the RRTF meeting, connec-
tions between fluctuation studies in heavy-ion collisions and in other physical
systems were discussed. In this section we will address possible avenues for
testing the ideas presented in the previous sections in more controlled, table-
top experiment, settings. We will also discuss how ideas about critical behavior
in heavy-ion collisions may motivate new experiments in atomic or condensed
matter physics.

An important model system is given by ultra-cold atomic quantum gases.
Atomic gases allow for a great amount of control, both in terms of the ability
to select the initial state, as well as the ability to tune the strength of the
interaction between the atoms. Atomic systems can be exposed to a variety of
external probes and monitored in real time. Experiments can be performed in
equilibrium and in conditions that are far away from thermal equilibrium.

Within atomic gases the BCS/BEC crossover in dilute atomic Fermi gases
has received particular attention. Because the systems are dilute, details of
the atomic structure are not important, and we can describe the gas as being
composed of non-relativistic, point-like, spin 1/2 fermions that interact via zero-
range forces. This force can be tuned using Feshbach resonances to cover the
range between weakly attractive (the Bardeen-Cooper-Schrieffer, BCS, regime)
to very strongly attractive (the Bose-Einstein condensation, BEC, limit). In the
BEC limit the system forms tightly bound pairs with weak residual interactions.
As a result the dilute Fermi gas is most strongly correlated at the BCS/BEC
crossover. A special case arises when a bound state first appears in the two-
body spectrum. In that case the s-wave scattering length is infinite, and the
system exhibits non-relativistic scale invariance. This is known as the unitary
limit, because the s-wave scattering length saturates the unitarity bound.

4.1 Equilibrium fluctuations and correlations

The unitary Fermi gas has played an important role in our understanding of
nearly perfect fluidity because, like relativistic heavy-ion collisions, it exhibits
strong elliptic flow when released from a spatially imhomogeneous initial state
[15, 174, 175]. Indeed, this phenomenon can be analyzed in much the same way
that flow is analyzed in heavy-ion collisions, using the known equation of state
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and viscous fluid dynamics.
More detailed information is provided by two-point correlation functions.

The simplest correlator is the dynamic structure factor

1

2
〈δn(t1,x1)δn(t2,x2) + δn(t2,x2)δn(t1,x1)〉

=

∫
dωd3k

(2π)4
e−iω(t1−t2)+ik(x1−x2)∆S

nn(ω,k).
(63)

Here, δn(t,x) = n(t,x) − n̄ with n̄ = 〈n(t,x)〉 is a fluctation in the particle
density. The zero frequency limit of ∆S

nn(ω,k) is known as the static structure
factor. A closely related quantity is the retarded response function ∆R

nn(ω,k),

iθ(t1 − t2)〈δn(t1,x1)δn(t2,x2)− δn(t2,x2)δn(t1,x1)〉

=

∫
dωd3k

(2π)4
e−iω(t1−t2)+ik(x1−x2)∆R

nn(ω,k).
(64)

In thermal equilibrium the symmetric correlation function and the retarded
response function are related through a fluctuation-dissipation relation,

∆S
nn(ω,k) =

[
1

2
+

1

eω/T − 1

]
2 Im ∆R

nn(ω,k). (65)

The response function of ultra-cold gases has been measured using Bragg scat-
tering [176]. In these experiments one uses two crossed laser beams, where the
differences in frequency and wave number between the two beams determine
the (ω,k) at which the response is measured. The two laser beams drive two-
photon transitions where one photon is absorbed from the first beam, and the
second photon is emitted into the second beam. The rate is proportional to
the response function. Early measurements focused on the tail of the struc-
ture factor, which is a measure of the short range structure of the many-body
wave function. In the unitary Fermi gas, the short range correlations can be
characterized in terms of a quantity known as the contact density [177].

First generation measurements suffered from the fact that the average den-
sity of the cloud was not constant, so that Bragg spectroscopy measures an
average of the structure factor over the density profile of the atomic gas. More
recently experimentalists have succeeded in generating confining box potentials
in which the equilibrium density is approximately constant and the response of
a homogeneous gas can be studied. Recent experiments have also investigated
the dynamic structure factor in the hydrodynamic regime, where we expect
the response to be dominated by the Rayleigh (diffusive) and Brillouin (sound)
peaks. For this purpose a homogeneous gas is perturbed by a time and space-
dependent external potential, and the density response is measured by taking
images of the cloud. Experiments by groups at North Carolina State University
and MIT [178, 179] have demonstrated that this method can be used to extract
the sound attenuation constant of the gas from the width of the Brillouin peak
in the response function.
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Static fluctuations of atomic gases can be measured more directly, by study-
ing intensity fluctuations in absorption images of the cloud. This method was
explored by a group at MIT [180], which demonstrated that Poissonian fluctu-
ations in the density are suppressed in the quantum degenerate regime.

4.2 Fluctuations and transport phenomena in critical sys-
tems

The phase diagram of the dilute Fermi gas has a second order superfluid phase
transition in the whole BCS/BEC regime. In the BCS limit this phase transition
occurs at an exponentially small temperature, and is difficult to observe. In the
strong coupling regime the critical temperature is of the same order as the
degeneracy temperature TF , and the phase transition has been studied in some
detail. In particular, experiments have observed the predicted critical behavior
in the specific heat [181].

It would be interesting to extend the fluctuation measurements discussed in
the previous section to the critical regime. In a harmonically trapped gas the
temperature is constant but the density varies as a function of position, so that
only a small part of the cloud is critical. This means that we do not expect to
see a strong enhancement of fluctuation probes. However, as discussed above,
recent experiments have employed box potentials. In connection with the heavy-
ion program it would be particularly interesting to see if non-Gaussian density
fluctuations are observable.

Note that the order parameter for the superfluid transition is not the den-
sity but the phase of the condensate. Gradients of the phase correspond to
the superfluid velocity, which is difficult to measure. However, the density is
a conserved quantity and the coupling to the critical equation of state is de-
termined by thermodynamic relations. In liquid helium density fluctuations
are small compared to temperature fluctuations [182]. This issue has not been
carefully studied in cold gases, but the measured compressibility does show an
enhancement near the critical temperature [181].

In cold gases it is also possible to measure the momentum distribution, which
is defined as the spatial Fourier transform of the density matrix

nk(x, t) =

∫
d3y eik·y〈ψ†(x + y/2, t)ψ(x− y/2, t)〉 . (66)

This quantity can be determined using radio-frequency (RF) spectroscopy or
time-of-flight analysis [183]. In RF spectroscopy an external RF source drives a
transition from one of the trapped spin states to a non-interacting state (a state
that can be thought of as a third spin component). The total absorption rate
is proportional to the off-diagonal density matrix of the interacting state. In
time-of-flight analysis the gas is rapidly swept to a non-interacting gas, in which
the momentum distribution can be measured by simple expansion experiments.
These methods have been used to study the large momentum tail of the mo-
mentum distribution, but they have not been used to study critical fluctuations
with |k| ∼ ξ−1, where ξ is the correlation length.
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The dynamical theory of critical behavior predicts that transport coefficients
exhibit critical scaling in the vicinity of a phase transition [77]. There are some
differences between the quark gluon plasma and ultra-cold gases. The critical
endpoint in the QCD phase diagram is expected to be governed by model H
in the classification of Hohenberg and Halperin [78], whereas the superfluid
transition in ultra-cold gases is expected to be in the same universality class
as the λ-transition in liquid helium (model F). However, both models predict a
very weak singularity in the shear viscosity, and stronger effects in the thermal
conductivity. QCD may also exhibit a strong divergence in the bulk viscosity
[184], whereas the unitary Fermi gas is scale invariant, and the bulk viscosity
vanishes.

Critical behavior in the sound attenuation constant has been observed in
liquid helium [182], but recent measurements in the unitary Fermi gas performed
by the MIT group do not show any non-analytic behavior [179]. It would be
interesting to understand why this is the case. The experiment was performed
in a box potential, with N ∼ O(105) atoms. If this number is too small to
observe critical transport, then this observation would clearly hold important
lessons for heavy-ion collisions.

The dynamical theory of critical phenomena also predicts enhanced long-
time tails and critical slowing down. These phenomena should be visible in the
long-time response of the density to an applied external potential, similar to
what was done in the experiments of the North Carolina State University group
[178]. However, so far no dedicated experiment of this type has been performed.
This is an interesting problem beyond its relevance to the heavy-ion program,
because aside from checks of the scaling behavior of the attenuation rate [77]
there are no direct measurements of long-time tails in the literature.

4.3 Dynamical evolution in critical systems

Ultimately, one may envision using cold atomic gases as a testbed for dynamical
theories of the time evolution of a near-critical system. As mentioned above,
experiments have studied the time evolution of elliptic flow in a unitary gas
released from a deformed harmonic trap [174]. These experiments can be an-
alyzed using Navier-Stokes hydrodynamics, although care has to be taken in
order to take into account effects of the dilute corona, which does not behave
fluid dynamically [185].

Existing experiments cover the critical regime, but if the gas is released from
a harmonic trap then the fraction of the gas that is critical at any point in time
is always small. One might try to address this issue by releasing the cloud
from a trap with a flat bottom, or by seeding fluctuations in the initial state.
This would also correspond to an initial state that more closely resembles the
Glauber initial conditions in a heavy-ion collision.

The superfluid transition is a second order phase transition in the entire
BCS/BEC crossover regime. First order transitions appear in spin imbalanced
gases or Bose/Fermi mixtures. A typical example is a spin imbalanced cloud in
the unitary limit. At sufficiently low temperature the center of the cloud is a
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fully paired (spin balanced) superfluid state, separated by a first order transition
from a polarized corona in the normal fluid state. There are some studies of
collective oscillations in a spin imbalanced cloud [186], but the expansion after
release from a harmonic trap has not been studied. The expectation is that the
cloud would remain fluid dynamical, and the first order discontinuity expands
with the gas. In order to study spinodal decomposition one might consider
quenching the gas, for example by sweeping the scattering length across the
first order transition.

4.4 Other physical systems

A classic nuclear system in which fluctuations have been investigated is the
nuclear liquid-gas phase transition. Multi-fragmentation experiments indicate
that the endpoint of the liquid-gas phase transition occurs at a temperature
Tc = 17.9 ± 0.4 MeV and a baryon density nc = 0.06 ± 0.01 fm−3 [187]. These
numbers come from model fits to the fragment distribution for different system
sizes and energies that explore the spinodal region. Model analyses suggest
significant equilibrium fluctuations of the nucleon number close to the end-
point [188], which may have an influence on the higher-order cumulants of the
net-proton number distribution in relativistic heavy-ion collisions [189]. It re-
mains somewhat unclear what the correct dynamical theory of this transition is,
and whether dynamical fluctuations of the type discussed in this report play an
important role. It would appear that the criteria for the applicability of stochas-
tic fluid dynamics or related theories are not met, because the mean free path is
too long and the system size and life time too small. However, researchers have
investigated kinetic theories that include mean field potentials and stochastic
forces [190].

Neutron star mergers explore even higher temperatures in the baryon rich
regime. Temperatures as high as T ∼ 100 MeV and chemical potentials of
µQ ∼ 400 MeV might be reached [191, 192] and could potentially provide an
astrophysical test for the existence of a first-order phase transition in the QCD
phase diagram [193, 194] and, thus, an indirect proof of a critical point. The first
order region may also be accessible in future heavy-ion collision experiments such
as HADES and CBM at FAIR or the STAR at RHIC BES fixed target plans.
For a discussion of the chemical freeze-out conditions in the low-energy region
see e.g. [195].
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5 Summary and outlook

In this report we summarize the presentations and discussions at the EMMI
Rapid Reaction Task Force ”Dynamics of critical fluctuations: Theory – phe-
nomenology – heavy-ion collisions” held at GSI, Darmstadt, Germany in April
2019. Both theoretically and experimentally this field is actively developing
and many discussions still have exploratory character. This is reflected in the
diversity of the approaches and models that are presented in this report.

Efforts to study the QCD phase diagram using fluctuation observables have
to go hand in hand with developing a fully dynamical treatment of the fluctua-
tions, both critical and non-critical. Non-critical fluctuations provide a crucial
baseline, and without understanding this part of the dynamics we cannot reli-
ably address critical behavior. Only after a reliable framework for treating the
dynamics of fluctuations has been developed can we hope to constrain critical
behavior in the thermodynamics of QCD based on experimental observables.

On the theory side, two main avenues emerged in the discussions, both rely-
ing on the success of fluid dynamical simulations of heavy-ion collisions: Stochas-
tic fluid dynamics and hydro-kinetics. The first propagates fluid dynamical
fluctuations explicitly in an event-by-event setup, while the second propagates
correlation functions, which are already averages over thermal fluctuations, cou-
pled to fluid dynamics.

Understanding the dynamics of thermal fluctuations is important even if
one is not specifically interested in the vicinity of a critical point. Indeed,
fluctuation-dissipation relations imply that a consistent treatment of dissipative
fluid dynamics always has to include fluctuations. The critical point can then
be included in the framework via an appropriate equation of state.

During the discussions we identified the following three aspects which deserve
major theoretical attention:

• Are the relevant scale relations, which separate the thermal noise, non-
equilibrium fluctuations and the fluid dynamical evolution, fulfilled in a
heavy-ion collision? This question is especially important when it comes
to technical length scales, like the numerical regulator lfilter or the patch
size for particlization lpatch.

• How can stochastic fluid dynamics be properly regulated such that the
averages and the fluctuation observables are independent of the length
scale lfilter but the essential critical physics is preserved?

• How do we interface stochastic fluid dynamics with hadronic afterburners,
in particular, how can we particlize fluctuations of conserved charges? Are
there schemes that can be applied to both stochastic fluid dynamics as well
as hydro-kinetics? What is the shortest length-scale that can be resolved
in such a procedure?

The key experimental challenges which were discussed are:
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• What are the underlying physical phenomena that affect the dependence
on the rapidity window? Experiments only resolve the rapidity structure
of fluctuations at freezeout. How do correlations in rapidity evolve over
the course of the collision?

• What is the influence of hadronic resonance decays on the final observable?
Experiments cannot directly measure fluctuations of certain observables,
such as net-baryon number, and standard proxies, like net-proton number
are affected by resonance decays and hadronic rescatterings.

• What are the observables that are the most sensitive to criticality? What
are their advantages and disadvantages in terms of experimental feasi-
bility and of theoretical accessibility from first-priniciple calculations and
dynamical models?

Intersections with other physical systems, notably ultra-cold atomic gases,
provide opportunities for fluctuation studies. Here, ideas could be tested in
more controlled settings or motivate new experiments in atomic and condensed
matter physics, which could help validate dynamical theories describing the
dynamics of fluctuations in heavy-ion collisions.
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A Approaches to the theoretical description of
the dynamics of fluctuations

A.1 Effective kinetic theory of hydrodynamic fluctations

The Quark-Gluon Plasma (QGP) created in heavy-ion collisions can be well
modeled by relativistic viscous hydrodynamics2. As required by the fluctuation-
dissipation theorem such models should consistently include thermal fluctua-
tions. In equilibrium, the resulting two-point correlation functions of hydrody-
namic fields, e.g. momentum or energy density, obtain the well known equilib-
rium values. In evolving systems, the expansion can drive these two-point cor-
relation functions away from the equilibrium values and the out-of-equilibrium
evolution of noise correlators must be calculated. Although the present model
does not include the effects of the QCD critical point directly, the relaxation dy-
namics of near-equilibrium fluctuations tells us how fast the fluctuations would
respond to the presence of criticality.

In this model we consider the effective kinetic description of hydrodynamic
fluctuations [66, 70, 196], which is based on the separation of scales (see Fig. 10)
of small wave-number hydrodynamic modes (which are never in thermal equi-
librium and are determined by initial conditions), and large wave-numbers
k > k∗ = 1/csτ

√
ε, which are damped and excited at the comparable rate

to the background expansion ∂µu
µ = 1/τ . Here ε stands for the hydrodynamic

expansion parameter ε = lmfp/(cτ)� 1. The equation of motion in relativistic
hydrodynamics with noise is given by the conservation of the energy-momentum
tensor and stochastic constitutive equations. For linear perturbations in energy
and momentum φa(τ,~k) ≡ (csδe,~g) around a homogenenous Bjorken expanding
background one can derive the Langevin type equation [66, 70]

− φ̇a(τ,~k) = iLabφb︸ ︷︷ ︸
ideal

+Dabφb︸ ︷︷ ︸
viscous

+ ξa︸︷︷︸
noise

+Pab(τ)φb︸ ︷︷ ︸
expansion

. (67)

Fluctuations can be decomposed into two propagating sound modes and two
transverse diffusive modes. The two-point correlation functions NAB for these
eigenmodes, defined as 〈φA(t,~k)φB(t,−~k′)〉 ≡ NAB(t,~k)(2π)3δ(~k − ~k′), then
satisfy the relaxation type kinetic equations, e.g.

∂τN++ = −4

3
γηK

2 [NAA −Neq]︸ ︷︷ ︸
equilibration

− 1

τ

[
2 + c2s + cos2 θK

]
N++︸ ︷︷ ︸

expansion

, (68)

where γη = η/(e0 + p0) and ~K ≡ (kx, ky, kη/τ) . The two-point correlations are
relaxing to the instantaneous thermal equilibrium value with the rate ∼ γηK

2

and driven away from the equilibrium by the expansion term ∼ 1
τ .

In the presence of hydrodynamic noise, the effective long wavelength energy
momentum tensor is modified by the contributions coming from the two-point

2Based on the proceeding for the talk given at Critical Point and Onset of Deconfinement
2017 [196].

57



Figure 10: The separation of long-wavelength hydrodynamic modes 1/(csτ),
the dominant out-of-equilibrium hydrodynamic modes k∗ ∼ 1/(csτ

√
ε) and the

microscopic modes 1/lmfp ∼ 1/(csτε), where lmfp is the mean free path in the
system, 1/τ the Bjorken expansion rate and ε = lmfp/(csτ)� 1 is the hydrody-
namic gradient expansion parameter. Figure taken from [196].

correlators of out-of-equilibrium noise at scale k ∼ k∗. Specifically, the en-
ergy and longitudinal pressure are increased by the non-linear contributions of
momentum fluctuations ~g = (T τx, T τy, τT τη)

〈T ττ 〉 = e+
〈~g2〉
e+ p

, 〈T zz〉 = c2se−
4η

3τ
+
〈(gz)2〉
e+ p

. (69)

The non-linear noise expectation can be written as an integral over the phase
space of hydrodynamic modes, which is divergent due to the equilibrium ex-
pectation value of NAB and the leading large K2 expansion term [66]. Reg-
ulating the integral by a UV cutoff Λ, the universal divergent terms can be
computed explicitly and agree with previous computations using diagrammatic
approaches [64]. The divergent contributions reflect the fact that the initial bare
pressure and viscosity are also cut-off dependent, but their sum is independent
of Λ. After absorbing divergent terms in the physical pressure and viscosity, the
remaining finite term for longitudinal pressure is

〈T zz(τ)〉
e+ p

=
p

e+ p
− 4γη

3τ
+

1.08318

s (4πγητ)3/2
. (70)

The finite correction (also known as long time tail) comes with the characteristic
fractional power, which can be understood from the simple estimate of the phase
space of modes around the critical scale k∗ and the equipartition of energy:

〈T zz〉fluct. ∼ Tk3
∗ ∼ T

(
1
γητ

)3/2

In the presence of noise the evolution of the average energy density of the
system obeys

d〈〈T ττ 〉〉
dτ

= −〈〈T
ττ 〉〉+ 〈〈τ2T ηη〉〉

τ
, (71)

where the double brackets notate an average over (long range in rapidity) initial
conditions and thermal noise. To close the system of equations, the relationship
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between average energy density 〈〈T ττ 〉〉 and the average rest frame energy den-
sity e(τ) must be specified [66]. This relation receives contributions from the
two-point correlation functions of noise and therefore the simultaneous solution
of the background hydrodynamic and the hydro-kinetic equations is required
for the effective description of hydrodynamics with noise.

The presented framework of hydro-kinetic equations is a general and extend-
able way of calculating the physics of out-of-equilibrium noise in expanding sys-
tems. We successfully reproduce the universal renormalizations of bare energy,
pressure and shear viscosity η in agreement with previous diagrammatic calcu-
lations for conformal systems. We also calculate corrections to bulk viscosity ζ
in non-conformal systems due to hydrodynamic fluctuations. The hydro-kinetic
equations is an alternative way of studying hydrodynamics with noise and can
be profitably applied to a versatile range of hydrodynamic systems (see recent
work of [67, 71, 98]).

A.2 Stochastic diffusion of critical net-baryon density fluc-
tuations

The free energy functional near the QCD critical point studied in the numer-
ics [76], which discusses the dynamics of critical fluctuations in nB (see Sec-
tion 2.3), has the following polynomial form

F [nB ] = T

∫
d3x

(
m2

2n2
c

(∆nB)2 +
K

2n2
c

(∇nB)2+

λ3

3n3
c

(∆nB)3 +
λ4

4n4
c

(∆nB)4 +
λ6

6n6
c

(∆nB)6

)
, (72)

where ∆nB = nB −nc denotes the difference of nB from the critical density nc.
In general, this Ginzburg-Landau form of F still needs to be supplemented by
further regular contributions in line with the equation of state.

The coefficients in Eq. (72), i.e. their scaling with the correlation length
ξ, may be obtained by mapping the 3-dimensional Ising model to a universal
effective potential [197, 198]. In this way criticality is included in the approach
in line with the assumed underlying static universality class, which gives the
following dependencies

m2 =
m̃2

ξ3
0

, m̃ =
1

ξ/ξ0
, (73)

K = K̃/ξ0 , (74)

λ3 = nc λ̃3 (ξ/ξ0)−3/2 , (75)

λ4 = nc λ̃4 (ξ/ξ0)−1 , (76)

λ6 = nc λ̃6 , (77)

with ξ0 the correlation length far away from the transition temperature Tc.
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The inclusion of a term proportional to λ6 in Eq. (72) turns out to be
important for understanding Monte Carlo simulation results of the probability
distribution in the Ising model [197, 198]. Moreover, the term proportional to
K represents a surface tension contribution to F . Special limits of the free
energy functional represent the Gauss model form [74] with K = λi = 0 and
the Gauss+surface model form [75] with λi = 0.

In general, the dimensionless couplings λ̃i are universal. Their values in the
QCD phase diagram can be determined by translating the Ising model variables
to T and µB in QCD and comparing the cumulants of the critical mode as
explained in [199]. This translation of variables is, however, non-universal and
introduces uncertainties into the description. In the numerics [76], constant
values for the non-linear couplings λ̃i were used for simplicity, see section 2.3.
The free energy functional F still depends implicitly on the thermal variables
via the correlation length ξ. This dependence is obtained from comparing the
variance of the critical mode from the effective potential to the one obtained
from the parametric representation [200] of the scaling equation of state of the
Ising model as explained in [201]. In the numerics [76], ξ as a function of T for
a constant µB close to the critical point on the crossover side is considered.

A.3 Nonequilibrium chiral fluid dynamics (NχFD)

A.3.1 Quark-meson model

The Lagrangian of the quark-meson model is the foundation of the dynamical
nonequilibrium fluid dynamics model. It reads

L = q (iγµ∂µ − gqσ) q +
1

2
(∂µσ)

2 − U(σ) , (78)

U(σ) =
λ2

4

(
σ2 − f2

π

)2 − fπm2
πσ , (79)

with the light quark doublet q = (u, d) and the chiral condensate σ which
dynamically generates the mass of the constituent quarks. We can fix the quark-
meson coupling constant g from the vacuum nucleon masses m = 940 MeV to
g = 3.37. The additional parameters used here are the pion decay constant of
fπ = 93 MeV and the pion mass mπ = 138 MeV. The term proportional to σ
accounts for the small explicit symmetry breaking due to the finite current quark
masses. The self-coupling constant λ is related to the sigma massmσ = 600 MeV

through λ2 =
m2
π−m

2
σ

2f2
π

.

This model is well studied and we can immediately write down the mean-field
effective thermodynamic potential as

Ω(σ) =
T

V
Γ[σ] = U(σ)− Ωqq̄(T, µ;σ) , (80)

Ωqq̄(T, µ;σ) = dqT

∫
d3p

(2π)3

{
ln
[
1 + e−

Eq−µ
T

]
+ ln

[
1 + e−

Eq+µ

T

]}
, (81)
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with the degeneracy factor dq = 12 and the quasiparticle energy Eq =
√
p2 +m2

q.

In this notation, the quark chemical potential µ = µB/3 is used.

A.3.2 Nonequilibrium chiral fluid dynamics

From the quark-meson Lagrangian, Eq. (78), together with the thermodynamic
potential, Eq. (80), we are able to obtain the full nonequilibrium dynamics,
where we explicitly propagate the chiral order parameter with a Langevin equa-
tion of motion, derived from the 2PI effective action,

∂µ∂
µσ + η∂tσ +

δΩ

δσ
= ξ . (82)

The damping coefficient η arises from the σ ↔ qq̄ reaction and has been evalu-
ated as

η =
12g2

π

[
1− 2nF

(mσ

2

)] 1

m2
σ

(
m2
σ

4
−m2

q

)3/2

. (83)

The stochastic noise term ξ is assumed to be Gaussian and white, and its width
is determined by the dissipation-fluctuation relation

〈ξ(t, ~x)ξ(t′, ~x′)〉 = δ(~x− ~x′)δ(t− t′)mση coth
(mσ

2T

)
. (84)

To avoid unphysical dependences on the lattice spacing, we model a spatial
correlation of the noise field over a correlation length of 1/mσ. Hereby, the
mass of sigma can be determined as a function of temperature and chemical
potential equal to the curvature of the thermodynamic potential in equilibrium,

m2
σ =

∂2Ω

∂σ2

∣∣∣∣
σ=〈σ〉

. (85)

The locally equilibrated quark plasma acts as a heat bath in which the field
σ evolves. The local pressure of this heat bath is given by

p(T, µ;σ) = −Ωqq̄(T, µ;σ) , (86)

allowing us to calculate the local net-baryon and energy densities in the standard
fashion as

n =
∂p

∂µ
, e = T

∂p

∂T
− p+ µn . (87)

As the total energy and momentum of the coupled system of fluid and field
are conserved, we obtain the following expressions for the divergences of the
ideal energy-momentum tensor of the fluid Tµν = (e + p)uµuν − pgµν and the
net-baryon current Nµ = nuµ with the local four-velocity uµ,

∂µT
µν = −∂µTµνσ , (88)

∂µN
µ = 0 . (89)

It is worth pointing out that the stochastic nature of the source term on the right
hand side of Eq. (88) constitutes a stochastic evolution for the fluid dynamical
medium.
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A.3.3 Expanding medium

Modeling an expanding medium can be achieved by defining an initial profile
T (~x) and µ(~x) which determines the field in equilibrium and the hydrodynamic
quantities, i.e. σ, e, n, p at t = 0 at each point in space. Hereby, spherical or el-
lipsoidal shapes with a smoothed edge are possible but also more realistic initial
conditions which can be obtained e.g. from the UrQMD transport model. The
expansion and cooling is then described selfconsistently by solving the coupled
equations (82), (88), (89).

If one is not interested in spatial fluctuations, then a more simple approach
can be used, reducing the dynamics to a Bjorken-type expansion along the beam
direction. Contracting Eq. (88) with the four-velocity uν gives the equation for
the evolution of the energy density,

ė = −e+ p

τ
+

[
δΩqq̄
δσ

+

(
D

τ
+ η

)
σ̇

]
σ̇ , (90)

with the constant D = 1 in the hubble term. The net-baryon density then
follows the equation

ṅ = −n
τ
. (91)

As a benchmark test, the equilibration in a box to specific values of T and µ
has been tested and shown to reproduce the proper behavior of the cumulants
in σ in comparison to the corresponding susceptibilities that are obtained from
functional derivatives.

Further observables that have been studied in the past are:

• Trajectories in the phase diagram

• Density fluctuations in single events, azimuthal distributions

• Net-proton fluctuations during a crossover at small µ (after a Cooper-Frye
particlization)

• Cumulants of the sigma field during a crossover at small µ

• Production of entropy as a function of the initial condition

A.4 QCD assisted transport

In order to understand the connection between experimental results obtained
in heavy-ion collisions and the underlying phase structure of QCD, we require
an approach that connects both at a fundamental level. This is a necessary
prerequisite to establish the existence of a critical endpoint (CEP) in the phase
diagram of QCD. Approaches working towards this direction have initially been
put forward in [76, 82, 83, 88, 91].

Within the approach outlined in this section, as put forward in [91], we
require an accurate description of the equilibrium phase structure of QCD. Since
correlation functions over the entire phase diagram are not obtainable from first
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principles yet, we resort to their calculation in low energy effective theories. In
particular the 2+1 flavour Quark-Meson (QM) model provides a quantitatively
reliable description at small chemical potentials. Additionally, it features a CEP
that is believed to be in the same universality class as the potential CEP of QCD.
The treatment of this effective theory within the framework of the Functional
Renormalization Group (FRG) allows for a systematic embedding within QCD,
cf. the discussion in [202]. Moreover, we are able to obtain correlation functions
not only in Euclidean space-time, but also in Minkowski space-time.

Based on the equilibrium linear response functions of the low energy effective
description, we use the associated transport equation to calculate the cumulants
of the critical mode. Therefore this section is split into two parts, the first part
describing the calculation of the required equilibrium correlation functions, and
the second one focusing on the time evolution of the critical mode around a
given set of equilibrium correlation functions.

The FRG is utilized to calculate all required equilibrium correlation func-
tions for the subsequent transport evolution. Being a versatile, first-principle
tool, the FRG has been applied successfully to QCD, see e.g. [203], and low-
energy effective versions thereof, see e.g. [204, 205]. Its advantage in the present
context is that it allows for the computation of the phase structure, i.e. the
effective potential, and momentum-dependent correlation functions in a unified
framework. The equilibrium part of our work, i.e. the equation of state and the
equilibrium correlation functions, are based on a 2+1 flavour study of a low-
energy effective description of QCD, where the dynamics of constituent quarks
as well as the lowest scalar and pseudoscalar meson nonets, including their wave
function renormalizations, are taken into account [205]. It captures, by design,
the relevant physical effects at small chemical potential µ and temperatures
T . Tc. Additionally, it features a critical endpoint which is in the same static
universality class as the one potentially present in QCD. Therefore this model
provides a well-suited base for studying how dynamical non-equilibrium effects
manifest themselves in observables.

In general, spectral functions can be obtained either via analytically contin-
uing numerical data, see e.g. [206], or via a direct computation from analytically
continued flow equations, see e.g. [207, 208]. If possible, the latter is preferred
and also the option utilized in this work. The spectral functions of the sigma
meson are calculated similarly to [209, 210] with suitable modifications in or-
der to take the non-trivial wave-function renormalizations into account. As
a result we have access to the two-point correlator Γ

(2)
σσ (ω, |~p|), depending on

an external frequency ω and an external momentum ~p, as well as momentum-

independent vertices Γ
(n)
σn which are extracted from the full effective potential

computed in [205]. An exemplary spectral function is shown in Figure 11. The
two main features that influence the behaviour of the dynamical evolution are
the transport peak and the mass peak. The transport peak, if present at small
frequencies ω < |~p|, dominates the long range behaviour of the sigma field. The
mass peak, instead, becomes the driving force for the evolution dynamics when
the transport peak is absent, e.g. in the vacuum.
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Figure 11: Spectral function of the sigma meson at T = 130 MeV, µ = 0 MeV
in the phase diagram. The transport peak and the mass peak are associated
with the diffusion in the transport equation. A detailed discussion of the seen
structures can be found in e.g. [210]. Figure taken from [91].

We are now in the position to study the time-evolution of the critical mode
and its event-by-event fluctuations. For this purpose, we solve the Langevin-
type transport equation

dΓ

dσ
= ξ . (92)

Above, the equation of motion contains a kinetic term related to the real part of

Γ
(2)
σσ , a diffusion term sensitive to the imaginary part of Γ

(2)
σσ , and the effective

potential mentioned above, while ξ represents the noise field chosen such that
the fluctuation-dissipation balance is guaranteed.

For the numerical results presented in Figure 3 in Section 2.4 we consider
the critical mode to be spatially isotropic, i.e. σ(~x, t) = σ(r, t), where we split
σ = σ0 + δσ. We study the time-evolution of the critical fluctuations for a
system subject to a sudden quench from high temperatures to a specific point
in the QCD phase diagram. Accordingly, the system is initialized such that
σ(r, t = 0) = 0 and ∂tσ(r, t = 0) = 0 which implies that the initial fluctuations
δσ(t = 0) are of the magnitude of the equilibrium value σ0 after the quench.
Moreover, we consider spatially constant Gaussian white noise, with zero mean
and a variance given as [82]

〈ξ(t)ξ(t′)〉 =
1

V
δ(t− t′)mση coth

(mσ

2T

)
, (93)

where the diffusion coefficient η is extracted from the imaginary part of Γ
(2)
σσ .
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A.5 Critical dynamics from small, noisy, fluctuating sys-
tems

A.5.1 Including spurious effects near criticality

We describe long-range fluctuations of the order parameter σ by a probability
distribution

P[σ] ∼ e−Ω[σ]/T ≈ e
∫
d3x [ 1

2 (∇σ)2+ 1
2m

2
σσ

2+ 1
3λ3σ

3+ 1
4λ4σ

4+ ... ]/T , (94)

assuming fluctuations of small amplitude, so that we can use a Gaussian approx-
imation by considering only the mass term, where mσ ∼ ξ−1. We also assume
fluctuations to be homogeneous and use σ0 =

∫
d3xσ(x)/V , and couple them

to observable particles via mass corrections, i.e.

Lint = −Gσ0 ~π · ~π − g σ0 ψ̄p ψp , (95)

where we illustrate the couplings to pions and protons [80, 138]. The pion-sigma
coupling can be roughly estimated to be around G ∼ 300 MeV [138].

Fluctuations of the order parameter are then coupled to observable particles
and will have an impact, for instance, in fluctuations of particle multiplicities.
The effects of these fluctuations can be calculated by looking at the modification
of the single-particle energy levels, due to fluctuations of the order parameter,
i.e.

ω =
√
p2 +m2

0 + δm2 ≈ ω0

[
1 +

1

2

δm2

ω2
0

− 1

8

(δm2)2

ω4
0

+ · · ·
]
, (96)

where we have used a Taylor expansion over the mass corrections δm from
fluctuations of the order parameter. Expanding quantities in powers of the shift
in the single-particle energies δω~p and taking averages over the fluctuations of

σ0, denoted by (· · · ), it is possible to calculate critical contributions to averages
and correlations. For instance,

〈Q〉 = 〈Q〉0 +
∑
~p

∂

∂ω~p
〈∆Q〉0 δω~p +

1

2

∑
~p,~p′

∂

∂ω~p

∂

∂ω~p′
〈Q1〉0 δω~p δω~p′ , (97)

where 〈· · · 〉0 denotes the usual equilibrium averages in a grand-canonical en-
semble and Q is a generic quantity [106].

Near criticality, the equilibration timescale of the system also diverges with
some power of ξ due to critical slowing-down, which limits the growth of ξ and,
hence, of possible signatures which scale with ξ to some power. It is implemented
in the ansatz equation [105, 122]

dξ

dt
= A

(
ξ

ξ0

)2−z (
ξ0
ξ
− ξ0
ξeq(t)

)
, (98)

where ξeq(t) = ξ0 |t/τ |−ν/βδ, ξ0 ∼ 1.6 fm fixes the initial correlation length
at proper time t = −τ and τ is the typical cooling time before reaching the

65



neighborhood of the critical point. The critical exponents are given by α = 0.11,
ν = 0.63, z = 2 + α/ν, β = 0.326, δ = 4.80, coming from universality class
arguments [77, 200]. The parameter A in Eq. (98) can be constrained by
imposing causality (i.e. dξ/dt ≤ 1), constraining ξ/ξ0 to below 1.3 for τ = 1 fm
and below 1.9 for τ = 5.5 fm and significantly restraining signatures of criticality
[106].

The statistics to be measured in collision experiments are contaminated by
spurious fluctuations, modified by acceptance and efficiency limitations and are
not calculated over direct particles only. These effects can be introduced into
our calculations in a simple fashion. Effects such as the dynamical expansion of
the system are, for now, neglected.

Effects from a limited acceptance window can be implemented in the cal-
culation of multiplicity fluctuations by considering an acceptance probability
factor F (p), such that each produced particle of momentum p (in modulus) has
a probability F (p) of being detected [106]. For instance, if np is the number of
particles with momentum p, these kinematic cuts modify 〈(∆np)2〉 according to
〈(∆np)2〉acc = F (p)2 〈(∆np)2〉+ F (p)

(
1− F (p)

)
〈np〉.

Resonance decays can be introduced in a similar fashion. For a decay into two
particles, we consider the probabilities that one (P1), both (P2) or neither (P0)
of the particles produced in a single decay are found in the acceptance window.
Results can be shown as a function of the momentum p of the resonance and
are calculated by using the phase-space volume as a measure of probability. A
branching ratio of less than 100% can be implemented by simply rescaling P1,
P2 and P0.

Finally, spurious fluctuations coming from the imperfect control of the freeze-
out thermodynamic variables, such as temperature, chemical potential and vol-
ume can also be included by shifting the one-particle energy levels ω~p. Consider-
ing spherically symmetric boundary conditions, for instance, momentum levels
are distributed as pi = αi/R, where R is the system radius. This means that a
geometric fluctuation of the radius of δR will affect the energy levels through

pi =
αi

R+ δR
≈ p0 i

[
1− δR

R
+

(
δR

R

)2

+ · · ·
]
. (99)

Fluctuations of temperature and chemical potential can likewise be included
by introducing the effective energy shift δωT,µ, such that ω + δωT,µ − µ/T =
ω − (µ+ δµ)/T + δT .

The results above are, then, used to calculate the average multiplicity of
charged pions, Mπch , and its variance, Vπch , as a function of ξ. Then, we can
compute the percentage by which the example-signature Vπch/Mπch grows with
ξ, with respect to its value at ξ = 0.4 fm, when only critical, background and
the decay of rho-meson contributions are taken into account. More details and
results can be found in [106], where caveats are also discussed. Future work will
extend these results to the more interesting signatures connected to protons and
higher-order moments of particle multiplicities.
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A.5.2 Finite-size effects

For the pseudo-critical chiral phase diagram within the linear sigma model with
constituent quarks [103], it has been shown that the amplitudes of the shifts due
to the finite volume are sizable for length scales probed at current experiments,
so that the position of the CEP probed experimentally may differ significantly
from the expected critical temperature and chemical potential in the thermo-
dynamic limit. On the other hand, the non-monotonic behavior of correlation
functions near criticality for systems of different sizes, tagged by different cen-
tralities in heavy-ion collisions, must obey finite-size scaling (FSS). In this vein,
the fact that heavy-ion collisions generate data from an ensemble of systems of
different sizes provides an alternative signature for the presence of a CEP.

In the FSS regime, any correlation function X(T, L) of the order parameter
does not depend independently on the external parameter T and on the size L of
the system, having the following scaling form [211]: X(T, L) = Lγx/νfx(tL1/ν) ,
where t = (T−Tc)/Tc represents a dimensionless measure of the distance, in the
external parameter domain, to the genuine CEP (in the thermodynamic limit),
γx is a dimension exponent and ν is the universal critical exponent defined
by the divergence of the correlation length. This scaling form implies (and is
implied by) the existence of a scaling plot in which all the curves for different
system sizes collapse into a single curve.

One can pragmatically map these quantities to experimental observables in
heavy-ion collisions: the correlation functions should be related to pion multi-
plicity fluctuations or transverse-momentum fluctuations; the distance t to the
CEP is given in terms of the center-of-mass energy (which is related to a (T, µ)
point in the freeze-out curve from thermal models); and the size L can be ob-
tained, e.g., via HBT analysis. To identify FSS in the data, it is then necessary
to have different measurements corresponding to the same value of the scaling
variable. Since the available system sizes in heavy-ion collisions are limited, the
range of energies that can be compared is also restricted. Nevertheless, one can
assume the presence of FSS and predict from one data set the amplitude of the
fluctuations at a different energy scale, in a thorough analysis of RHIC and SPS
data [104]. Finite size effects can also modify considerably the dynamics in the
first-order transition region [102].

A.6 Modeling of time correlations with hydrodynamic fluc-
tuations

The approach to modeling time correlations and their effect on net-baryon fluc-
tuations described here is based on the use of hydrodynamic fluctuations. The
approach comprises two separate studies: the first, which uses white noise to
model critical fluctuations of the baryon density [212]; and the second, which
uses both white noise and colored noise to model (non-critical) electric charge
fluctuations [58].

In Ref. [212], the authors consider the effects of a critical point on hydrody-
namic fluctuations in heavy-ion collisions. They apply mode-coupling theory,
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together with a model of the free energy (which includes 3-dimensional Ising
critical exponents and amplitudes) to model the behavior of the thermal con-
ductivity near the critical point. Mode-coupling theory permits a rough sepa-
ration of the critical and non-critical contributions to the thermal conductivity
near the critical point, and the exact behavior of these contributions can be
matched consistently onto an equation of state which exhibits the right critical
scaling. One special advantage of mode-coupling is that it can be readily ex-
tended outside the critical regime, and allows naturally for one to explore the
effects of critical fluctuations which come to dominate non-critical fluctuations
close to the critical point.

Within this formalism, the magnitude (i.e. the two-point function) of hy-
drodynamic fluctuations is proportional to the thermal conductivity, as a con-
sequence of the fluctuation-dissipation theorem. The divergence of the thermal
conductivity was thus found to lead to an enhancement in the magnitude of the
fluctuations close to the critical point, and to generate corresponding enhance-
ments in charge balance functions sensitive to net-baryon fluctuations (Ref. [212]
considered both ππ and pp balance functions). The same approach was later
applied to HBT fluctuations near the critical point [213], and yielded similar
conclusions regarding the magnitude of effects due to critical fluctuations.

In Ref. [58], the authors considered the effects of non-trivial time correlations
on electric charge fluctuations at top RHIC energies. The non-triviality was
taken to be a simple, decaying exponential in proper-time separation between
two correlated fluctuations in the system, containing a single free parameter τQ
which effectively fixes the rate at which fluctuations can propagate throughout
the system and become correlated with one another (the limit τQ → 0 corre-
sponds to the trivial white noise case discussed above).

The authors then explored the effects of these non-trivial correlations on
the (electric) charge balance functions discussed in Ref. [212], and found that
choosing τQ 6= 0 implied a reduction in the speed of propagation of wave fronts
in the system; in fact, setting τQ = 0 can be shown to lead to an infinite
speed of propagation which violates relativistic causality. The requirement that
τQ > 0 then restores relativistic causality and leads to a corresponding reduction
in the efficiency of conserved charge diffusion in heavy-ion collisions, and a
consequent narrowing of the charge balance functions in rapidity separation.
Similar effects should be expected near a critical point, where the phenomenon
of critical slowing down results from the divergence of the system’s relaxation
timescale.

The comparison of white noise and colored noise in Ref. [58] allows one to un-
derstand the consequences of non-trivial time correlations on physical quantities
such as electric charge and baryon densities. So far, non-trivial time correlations
(i.e. colored noise) have been considered only for non-critical, electric charge
fluctuations. Nevertheless, the same basic results would carry over to the case of
critical fluctuations, with just a few straightforward modifications in accordance
with the treatment of Ref. [212]. This would allow one to explore the effects of
non-trivial time correlations near the critical point in heavy-ion collisions.

A weakness of the approaches described here are their inability to account
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for long-time tails explicitly, since they are based on a linearized version of the
(fluctuating) hydrodynamic equations of motion with Bjorken expansion. In
particular, these approaches take all linear fluctuating contributions to thermo-
dynamic quantities to be vanishing on average: e.g. δ 〈Tµν〉 ≡ 0. This differs
from studies such as Ref. [66] where δ 〈Tµν〉 6= 0 as a result of the non-linear
constitutive relation Tµν = (e+ P )uµuν − Pgµν . Approaches such as Ref. [66]
thus yield non-linear equations in the hydrodynamic fluctuations which generate
“long-time tails” in thermodynamic time correlation functions, a standard sig-
nature of systems governed by fluctuating hydrodynamics which the approach
presented here is unable to reproduce.

This failure to produce long-time tails is compensated for somewhat by ex-
ploiting the mode-coupling approach described above, where the effects of long-
time tails are essentially absorbed into the critical enhancement of the thermal
conductivity, in a way which can be readily and smoothly extended away from
the critical regime. Moreover, the use of colored noise permits a natural regular-
ization of divergences associated to the standard white noise treatment; alterna-
tive approaches typically require a renormalized treatment of thermodynamic
quantities to eliminate divergences which result from white-noise correlations
[67].

Another key advantage of the approach described here is its ability to model
the subtraction of so-called self-correlations from physical observables based on
e.g. multi-particle correlations, where trivial correlations of a particle (or fluid
cell) with itself are generally neglected. One way to do this was considered
in [214] for the case of white noise, with the extension to colored noise being
considered in [58]. It would be interesting to consider how this same subtraction
could be performed in alternative approaches (or whether such a subtraction
would even need to be carried out).

A.7 Summary of approaches to critical dynamics

Specific features of the different numerical implementations studying the dy-
namics of critical fluctuations are summarized in the following table:
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