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Dendritic Spikes Amplify the Synaptic Signal to
Enhance Detection of Motion in a Simulation of the
Direction-Selective Ganglion Cell
Michael J. Schachter1, Nicholas Oesch2, Robert G. Smith1*, W. Rowland Taylor2

1 Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 2 Casey Eye Institute, Department of Ophthalmology,

Oregon Health & Science University, Portland, Oregon, United States of America

Abstract

The On-Off direction-selective ganglion cell (DSGC) in mammalian retinas responds most strongly to a stimulus moving in a
specific direction. The DSGC initiates spikes in its dendritic tree, which are thought to propagate to the soma with high
probability. Both dendritic and somatic spikes in the DSGC display strong directional tuning, whereas somatic PSPs
(postsynaptic potentials) are only weakly directional, indicating that spike generation includes marked enhancement of the
directional signal. We used a realistic computational model based on anatomical and physiological measurements to
determine the source of the enhancement. Our results indicate that the DSGC dendritic tree is partitioned into separate
electrotonic regions, each summing its local excitatory and inhibitory synaptic inputs to initiate spikes. Within each local
region the local spike threshold nonlinearly amplifies the preferred response over the null response on the basis of PSP
amplitude. Using inhibitory conductances previously measured in DSGCs, the simulation results showed that inhibition is
only sufficient to prevent spike initiation and cannot affect spike propagation. Therefore, inhibition will only act locally
within the dendritic arbor. We identified the role of three mechanisms that generate directional selectivity (DS) in the local
dendritic regions. First, a mechanism for DS intrinsic to the dendritic structure of the DSGC enhances DS on the null side of
the cell’s dendritic tree and weakens it on the preferred side. Second, spatially offset postsynaptic inhibition generates
robust DS in the isolated dendritic tips but weak DS near the soma. Third, presynaptic DS is apparently necessary because it
is more robust across the dendritic tree. The pre- and postsynaptic mechanisms together can overcome the local intrinsic
DS. These local dendritic mechanisms can perform independent nonlinear computations to make a decision, and there
could be analogous mechanisms within cortical circuitry.
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Introduction

The On-Off direction-selective ganglion cell (DSGC) of the

mammalian retina spikes vigorously to moving stimuli, but only

weakly to stationary light spots. It responds most strongly over a

limited range of stimulus directions, and the direction producing

the maximal response is called the ‘‘preferred’’ direction, while a

stimulus moving in the opposite direction, called the ‘‘null’’

direction, produces little or no response [1]. We refer to such

directionally-tuned spike responses as ‘‘direction-selective’’. On-

Off DSGCs are sharply bistratified neurons that respond with a

transient depolarization and burst of spikes at both the onset

(‘‘On’’ response) and termination (‘‘Off’’ response) of a bright

stimulus within the receptive field. Similarly the leading edge of a

bright bar crossing the receptive field will produce a transient On-

response, and, if the bar is wide relative to the dendritic extent and

the speed low enough, the trailing-edge will produce a distinct,

temporally separate Off-response. In their original description of

the DSGC, Barlow and Levick [2] noted that direction-selective

spike output was produced for stimuli that covered only a small

fraction of the dendritic arbor. They proposed that the synaptic

mechanism comprised ‘‘subunits’’ that were repeated in an array

across the receptive field. In contrast to most ganglion cells, which

initiate spikes in the axon initial segment, the DSGC initiates

spikes in the dendritic tree [3]. The dendritic spikes are thought to

propagate to the soma and initiate a somatic spike, similar to

neurons in other regions of the brain where dendritic spiking is

important for signal processing [4]. These observations suggest

that some type of local dendritic processing could provide the basis

for the proposed subunits.

Evidence for dendritic spiking in the DSGC was observed in low

amplitude ‘‘spikelets’’, which appear when somatic spiking is

suppressed by local application of tetrodotoxin (TTX) to the soma,

or by hyperpolarizing the soma [3]. Dendritic spikes are

hypothesized to initiate somatic spikes with high probability

because they are rarely seen under normal conditions. Further,

both somatic and dendritic spiking responses are strongly tuned to

preferred-direction stimuli, whereas the somatic graded potential

shows relatively weak directional tuning (Figure 1a) [1–3]. This

implies that the DSGC does not employ the mechanism used by

most other ganglion cells for synaptic integration, where spikes

initiated at the soma reflect the summation of synaptic inputs over
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the dendritic tree [5]. Instead it suggests that DSGC dendrites sum

synaptic inputs and generate local spikes which then propagate to

the soma, in the process amplifying the responses’ directional

selectivity.

In addition to dendritic spiking in the DSGC, other mechanisms

are also important for generating its direction-selective response.

GABAergic inhibition is essential, and presynaptic mechanisms

render both excitatory and inhibitory synaptic inputs to the DSGC

directionally-tuned [6,7]. Both excitatory and inhibitory inputs

vary in amplitude and relative timing as a function of direction.

Further, postsynaptic integration of excitatory and inhibitory

inputs has been hypothesized to contribute to DS signals [8–12].

Postsynaptic inhibition resulting from null direction movement

could produce DS signals in two ways: it could block the

propagation of dendritic spikes or it could block their initiation

[2–4,13] (Figure 1b).

However, the relative contributions of presynaptic and

postsynaptic mechanisms to the DS spiking of the DSGC remains

unclear. Initial theoretical studies suggested that postsynaptic

mechanisms might suffice [14] and this received some experimen-

tal support [15]. However, more recently, presynaptic mechanisms

have appeared to be the most significant [6,7,16,17]. We wanted

to revisit this issue to delineate the relative contributions of

presynaptic and postsynaptic mechanisms in a calibrated model.

To investigate how dendritic processing of synaptic PSPs

(postsynaptic potentials) could amplify DS, we constructed multi-

compartment biophysical models of DSGCs, digitized from tracer-

injected morphologies calibrated to physiological data obtained

prior to tracer injection. We stimulated the models with moving

Figure 1. Direction-selective responses of the DSGC raise the question of how spikes are modulated by stimulus direction. (a)
Direction-selective spike responses do not correlate with somatic PSP amplitudes. Current clamp responses from a DSGC soma during stimulation by
a moving bright bar that advanced over its receptive field in the preferred (gray) and null (black) directions. The first burst of spikes occurred when
the leading edge of the bar crossed the receptive field (On-response), and the second burst of spikes was produced by the trailing edge (Off-
response). The solid horizontal line shows the peak somatic depolarization during the null-direction trailing edge response. The dashed line shows
the threshold membrane potential for the first spike generated by the leading edge response, which was 5.2 mV more hyperpolarized than the peak
of the null-direction PSP. Such responses preclude a single, common spike initiation zone in the soma or initial axon segment [3]. (b) Postulated
mechanisms for modulation of spikes recorded in DSGC. Excitation from bipolar cells (BP) initiates a dendritic spike, which propagates to the soma
and generates a somatic spike. Cholinergic excitation, from starburst amacrine cells (SBACs), is not shown here for simplicity. During Null motion,
activation at position 1 generates inhibition that precedes the excitation activated at position 2. This GABAergic inhibition arises from asymmetrically
connected SBACs and is critical for generating directional responses. Three possible mechanisms, not mutually exclusive, could produce direction-
selective dendritic spikes: Postsynaptic inhibition on-the-path to the soma (‘‘prop’’) blocks propagation of spikes; Postsynaptic inhibition from
SBACs (‘‘init’’) within a local dendritic region blocks spike initiation; Presynaptic inhibition of excitatory synaptic inputs (‘‘pre’’) to a local dendritic
region suppresses spike initiation. A fourth mechanism not illustrated here is termed ‘‘intrinsic’’ and arises due to the asymmetry of each synaptic
locus within the dendritic arbor, with respect to the whole dendritic arbor. This intrinsic morphological asymmetry produces local directional
asymmetries in the PSP amplitude that may influence the size of local directional signals, as outlined below in the text.
doi:10.1371/journal.pcbi.1000899.g001

Author Summary

The On-Off direction-selective ganglion cell (DSGC) found
in mammalian retinas generates a directional signal,
responding most strongly to a stimulus moving in a
specific direction. The DSGC initiates spikes in its dendritic
tree which are thought to propagate to the soma and
brain with high probability. Both dendritic and somatic
spikes in the DSGC display strong directional tuning,
whereas postsynaptic potentials (PSPs) recorded in the
soma are only weakly directional, indicating that postsyn-
aptic spike generation markedly enhances the directional
signal. We constructed a realistic computational model to
determine the source of the enhancement. Our results
indicate that the DSGC dendritic tree is partitioned into
separate computational regions. Within each region, the
local spike threshold produces nonlinear amplification of
the preferred response over the null response on the basis
of PSP amplitude. The simulation results showed that
inhibition acts locally within the dendritic arbor and will
not stop dendritic spikes from propagating. We identified
the role of three mechanisms that generate direction
selectivity in the local dendritic regions, which suggests
the origin of the previously described ‘‘non-direction-
selective region,’’ and also suggests that the known DS in
the synaptic inputs is apparently necessary for robust DS
across the dendritic tree.

Dendritic Spikes Amplify the Synaptic Signal

PLoS Computational Biology | www.ploscompbiol.org 2 August 2010 | Volume 6 | Issue 8 | e1000899



light bars that activated synaptic inputs. The goal was to explore

how morphology, voltage-gated channels, and synaptic inhibition

affect the initiation and propagation of dendritic spikes, and to

compare these with the known physiological properties. Our

simulations show that sub-threshold PSPs from the distal dendritic

regions of the On-Off DSGC are heavily attenuated by

propagation to the soma, but that spikes initiated within local

dendritic regions can propagate with high probability to the soma

and back-propagate to the remainder of the dendritic tree.

Therefore active amplification of DS appears to take place during

spike initiation in the dendrites.

Results

The responses of DSGCs are characterized by strong spiking in

response to motion in the preferred direction, and little if any

response to motion in the null direction (Figure 1). However, the

responses in Figure 1 suggest that the slowly rising somatic

membrane potential is not the main determinant of spike

generation, because the peak of the trailing-edge PSP in the

null-direction is ,5 mV more depolarized than the apparent spike

threshold for leading-edge motion in the preferred direction. In

these bistratified neurons, the leading edge On-response and the

trailing edge Off-response are mediated through inputs to the On-

dendritic arbor and Off-dendritic arbor respectively. These two

arbors are physically distinct, and directional signals are generated

independently within each arbor [3,18]. Figure 1 shows, consistent

with previous data [3], that the spike-threshold depends on the

dendritic source of the input. For the response illustrated, inputs to

the On-dendritic arbor appear to have a lower threshold than for

the Off-arbor. This is inconsistent with a simple integrate-and-fire

model, and suggests initiation of spikes within the dendritic arbors

of DSGCs [3].

Such striking results raised several questions and hypotheses: a)

does the DSGC dendritic tree comprise local computational

subunits that can support independent mechanisms for spike

initiation or propagation; b) how do the propagation of dendritic

PSPs and spikes differ; c) is directional tuning, reflected in somatic

spiking, produced by selective spike initiation, or by selective

dendritic spike propagation; d) can known inhibitory conductances

in the DSGC support such putative selective tuning mechanisms;

e) how accurate are voltage-clamp estimates of conductances in

the DSGC? f) are the directional-differences in excitatory and

inhibitory synaptic conductances the only determinant of spike

directional selectivity, or are other mechanisms involved; g) do

known or postulated presynaptic and postsynaptic mechanisms

suffice to modulate spike directional selectivity, and what are their

relative contributions; h) can dendritic computational subunits

explain the lack of correlation between somatic PSPs and spikes?

Distal dendrites comprise independent high-gain regions
To explore whether the morphology of the DSGCs would

provide for local dendritic processing, we measured the electro-

tonic properties. DSGC dendrites branch extensively, with higher-

order dendrites tending to loop back towards the soma and many

dendritic tips throughout the dendritic field [19,20]. Dendritic

diameter decreases with branching, ranging from 2–3mm for

proximal dendrites to less than 0.5mm at terminal branches [21].

These morphological properties are typical of many neurons,

especially retinal ganglion cells, and result in higher local input

resistance and shorter electronic lengths as one moves away from

the soma [22–25]. We mapped the input resistance for DSGCs in

models that included all the voltage-gated channel types, and

found, as in classical studies [22], that dendritic Rin increased with

distance from soma, ranging in proximal dendrites from 150–

200MV, to greater than 1GV for distal dendrites (Figure 2d). This

implied that for a given excitatory synaptic conductance the distal

dendrites generated larger PSPs than proximal dendrites.

Next we explored how dendritic morphology influenced the

passive spread of PSPs within DSGC dendrites. The PSP from a

single excitatory synapse (red spot, Figure 2a–c) produced strong

local depolarization (magenta branches) that declined steeply with

distance from the current-injection point [22–26]. We measured

the degree of attenuation as a function of synaptic location by

comparing the PSP amplitude in the dendrite with that at the

soma (see Methods). Measurements of PSPs at single synapses at

many points across the dendritic tree showed that dendritic PSP

amplitude increased sharply with distance from soma, in line with

the local input resistance values (Figure 2d). The corresponding

somatic PSP amplitude was weakly dependent on synapse

location, and declined gradually as the input was moved away

from the soma (Figure 2f). This weak spatial dependence arises

because the soma is centrally located, and, as evident from the

relatively slow time-to-peak and decay time of the somatic PSPs,

tends to reflect the overall depolarization reached after the charge

injected into the dendrite has spread through the cell. Thus, under

physiological conditions, at each point within the dendritic arbor,

the synaptic depolarization will comprise a slower, spatially

averaged component, generated by the total input to the cell,

and a faster, higher-amplitude component generated by local

inputs in the electrotonically isolated regions [23,24].

We further quantified the electrotonic isolation by estimating

the local space constant across the dendritic tree (see Methods),

and found that the space constant of most dendritic loci was less

than the distance to soma (Figure 2e), consistent with spatially

localized PSPs. Overall the simulations suggest that the dendritic

tree of the DSGC is composed of high-gain electrical subunits that

can independently integrate synaptic input. This is true for both

passive models and our calibrated active models, even when

channel densities are perturbed from their ‘‘standard’’ values (see

Methods). These high-gain subunits are proposed to generate the

directional signals that drive the direction-selective dendritic

spikes, which in turn enhance the directional tuning, as reported

previously [3].

Distal dendritic regions are highly excitable
To measure the excitability of dendritic regions, we simulated

dendritic spiking in models with uniformly high (gNa1.6 = 40 mS/

cm2) dendritic Na+ channel densities. We activated a single synapse

and measured Gthresh, the ‘‘conductance threshold’’ for spiking, at

locations sampled evenly and independently across the dendritic

tree (see Methods, Figure 3). The locus of spike initiation was not

always at the point of input but typically nearby, usually over an

entire subregion (50–100 mm dia) within 1ms. Spikes did not

initiate at the soma except for very proximal synaptic locations.

Our first expectation was that Rin would be the predominant

determinant of Gthresh, i.e. Gthresh would be inversely proportional

to Rin, however the scatter of the points in Figs. 2d–f show that Rin

is not the overriding factor. A small number of locations at

intermediate distances from the soma had higher thresholds than

would be predicted from Rin alone (asterisks in Figure 3a–c). These

regions had few nearby distal branches with high Rin that could be

charged up to produce a spike, and experienced significant axial

current flow through a high-conductance pathway to the soma

[24]. This reduced the current available to charge the local

capacitance, causing a rate-of-rise insufficient to produce a spike,

but a PSP amplitude high enough to inactivate Na+ channels (more

depolarized than 250mV). We also found that the threshold was

Dendritic Spikes Amplify the Synaptic Signal
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higher at some of the extreme dendritic tips, due to their higher

axial resistance, which reduced their ability to excite more

proximal dendrites. However, the majority of locations had bi-

directional current paths with proximity to highly excitable

terminal dendrites, and therefore had a low spike threshold. These

effects implied that the spike threshold of a single dendritic location

was dependent on the properties of the local dendritic region.

Overall, the distal dendrites of the DSGC, which cover most of the

dendritic field [19,21], comprise electrotonically isolated local

regions with high gain and low spike threshold, and these regions

are capable of independently integrating synaptic input to generate

a dendritic spike.

In models with dendritic initiation of spiking, we observed that

when a dendritic spike reached the soma it invariably spread

throughout the entire cell and obliterated any simultaneous

dendritic spikes. In these models, when a dendritic region received

excitatory input, the dendrites within the local region of 50–

100 mm in extent depolarized toward spike threshold. When

several such regions received simultaneous excitatory input, the

one that reached spike threshold first generated a full-blown spike

that propagated to the soma within 1–2 ms, and then back-

propagated into the other dendrites within 1–2 ms rendering them

refractory (see Video S1).

Spike propagation fails for models with low Na-channel
density

In other systems, impedance mismatches due to morphology

can cause spike propagation to fail when dendritic Na-channel

density is low [24–26]. Live recordings have shown that most

ganglion cells initiate spikes in the axon/soma and actively

propagate spikes into the dendrites, which do not initiate spikes

[27,28]. Thus the dendritic Na-channel densities of most retinal

ganglion cells must be high enough to actively propagate spikes

but not high enough to initiate them [28–30]. However, the

DSGC initiates dendritic spikes, so starting from a Na-channel

density considered normal for most ganglion cells, 25 ms/cm2, we

set the Na-channel density high enough so that each dendritic

spike successfully propagated to the soma and initiated a somatic

spike (see Methods - Calibration, Figure 4a; [3]). To explore the

requirements for successful dendritic spike propagation, we

examined models with dendritic Na-channel densities lower than

our calibrated models. In these low-dendritic-Na-channel models,

synaptically-evoked spike propagation efficiency was low

(Figure 4b, see Methods), because most spikes failed at a thick

proximal dendrite branch-point, where they were attenuated by

shunting from the large capacitance and low axial resistance. A

linear density gradient with a higher proximal density of Na+

channels improved propagation (Figure 4c). Another consequence

of this gradient was a smaller difference in spike threshold between

proximal and distal dendritic regions (not illustrated). The F/I

curve (see Methods) for somatic current injection was primarily

affected by proximal dendritic Na+ density, and had a slightly

lower slope for the gradient model, but still fit within the observed

variability of physiological data.

We considered the conditions under which a sub-threshold

depolarization could facilitate spike initiation. In the real DSGC,

light stimulation by moving bars often produced a 5–10mV

somatic depolarization 50–100ms prior to spiking. We found that

propagation in models with low Na- channel density was also

Figure 2. Dendrites of the DSGC are electrotonically isolated. (a, b, c) In a passive model without voltage-gated channels, a weak synaptic
input (50pS, 100ms) excited a point in the dendritic tree, and the amplitude of the PSP spreading across the dendritic tree is shown in color, 50 ms
after the onset of the stimulus. (d) Plot of input resistance (Rin) vs. distance from soma for the morphologies shown above (green triangle = a, black
square = b, blue circle = c). (e) Estimated local average space constant (see Methods) lambdaest versus distance from soma for the three morphologies.
Symbols and colors same as in (d). The black line is unity (soma distance = lambda est). (f) Amplitude of subthreshold PSPs from single synapses across
an active dendritic tree for the morphology shown in (c) at the soma (black circles) and in the dendrites (gray circles). Dendritic membrane and axial
resistivities were uniform, with Rm = 40,000V?cm2 and Ri = 200V?cm (see Methods). For reference, these values produce lambda = 500 mm in a passive
infinite cable of diameter 0.5mm. Lamba est was smaller than this reference value because many dendrites in our model had a diameter less than
0.5um, and impedance mismatches and branch points between cables further contributed to substantial attenuation of voltage spread.
doi:10.1371/journal.pcbi.1000899.g002

Dendritic Spikes Amplify the Synaptic Signal
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facilitated when somatic and proximal regions were depolarized

either by injecting current at the soma or stimulating proximal

regions with synaptic input. Transiently depolarizing proximal

areas compensated for loss of current due to proximal high

membrane conductance by bringing Na-channels closer to

activation threshold. This suggested that a combination of

proximal depolarization and high proximal Na-channel density

could promote the successful propagation of dendritic spikes in the

real DSGC.

Dendritic regions differ in their spiking properties
A previous study [3] indicated that dendritic spiking is

responsible for the small spikelets seen in somatic recordings, but

did not determine whether the spikelets represented full-blown

dendritic spikes, or what parameters affected the distribution of

spikelet amplitude. To explore these issues we ran a series of

simulations in which a subregion of the dendritic tree was

stimulated with a spot of light, and recordings made under normal

conditions or with the Na-channels in the soma removed, thus

simulating TTX application to the soma, which blocked somatic

spiking as in the previous study (Figure 5). We found that each

region had a characteristic excitability and ability to transmit

spikelets of a certain amplitude to the soma, and that these

properties varied across the dendritic tree (Figure 5a–f). Some

regions were more sensitive than others and would spike more

readily with a weak stimulus, and some regions were relatively

insensitive to spiking. To test the effect of these differing

excitabilities on a typical response, we ran a simulation of a bar

passing over the DSGC, and recorded the somatic spiking and

dendritic spiking in 2 locations (Figure 5g,h). The somatic spike

train showed vigorous spiking separated by ,20 ms where the bar

passed between 2 regions of high excitability separated by a non-

spiking region. As the stimulus passed across each region of high

excitability, it initiated full-blown dendritic spikes that propagated

to the soma and back-propagated throughout the dendritic tree

(see Video S1). The previous study had shown that somatic PSPs

during null direction stimulation, which were devoid of superim-

posed spikes, were often as large or larger than PSPs during

preferred direction stimulation that produced vigorous spiking (see

also Figure 1). We hypothesized that this directional difference was

due to local inhibition that suppressed dendritic spike initiation in

the null direction without reducing somatic PSP amplitude.

Overlapping inhibition prevents spike initiation but not
spike propagation

We next tested the question whether inhibition functions in the

DSGC dendritic tree mainly to prevent propagation of spikes, or

whether it serves to prevent spike initiation. To explore the ability

of inhibition to modulate the spiking properties of the DSGC, we

ran simulations with different spatial arrangements of inhibitory

synapses. Initially we wanted to evaluate how much ‘‘on-the-path’’

inhibition was required to suppress dendritic spike propagation.

For these simulations we applied a 75mm ‘‘spot’’ of shunting

inhibition (,30 synapses, ,300–3000 pS/synapse, reversal po-

tential ,Vrest) over an area that covered the soma and proximal

dendrites, while stimulating a distal region with a spot of excitatory

input (,30 synapses, ,100 pS/synapse, reversal potential = 0mV,)

(Figure 6a). Previous work has shown that the total peak inhibitory

input to DSGCs is around ,10nS [7,31], however, given the

limited visibility of synaptic currents for a somatic recording

electrode, the actual inhibitory input to the dendrites will be

somewhat larger (see Methods; [32]). We performed simulations in

which we adjusted the magnitude of inhibition and excitation in

the dendrites so that the conductance measured at the soma

Figure 3. Peripheral dendritic tips are more excitable than proximal dendrites. (a–c) The minimum conductance (color) necessary for a
single synapse to elicit a dendritic spike at points throughout each dendritic tree with uniform Na-channel density (‘‘conductance threshold’’,
Gthresh, see Methods). Asterisks mark regions with medium Rin but high Gthresh (see Results). (d–f) Each morphology shows an inverse relationship
between the conductance threshold and input resistance. Same symbols and colors as in Figure 2.
doi:10.1371/journal.pcbi.1000899.g003

Dendritic Spikes Amplify the Synaptic Signal
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matched that recorded previously [7]. These results indicated that

the actual synaptic conductance was likely to be about a factor of

two larger than recorded at the soma (see Methods). Nonetheless

we found that applying on-path inhibition of up to 5 times the

observed values (50nS), even within a relatively small dendritic

region, as suggested by prior theoretical work on non-spiking input

[15], was insufficient to prevent dendritic spike propagation and

produced only a modest attenuation in the spike amplitude

(Figure 6b, black trace). Increasing the inhibition to 85nS did

attenuate the dendritic spikes and prevent activation of a somatic

spike. In this case, the dendritic spikes appeared at the soma as low

amplitude ‘‘spikelets’’ (Figure 6c, black trace). We performed these

simulations for excitation and on-path inhibition in several regions

in the dendritic tree on several different cell morphologies, and all

gave similar results showing that to be effective, the inhibition

would have to be unrealistically strong. The reason, we found, was

that to attenuate an actively propagating spike, the inhibitory

conductance locally within the region of propagation must be

larger than the peak activated Na-channel conductance. Further,

we found that the precise timing of the spikes relative to inhibitory

input over 50 ms was not important for blocking propagation, as

long as there was substantial overlap [15], because the key factor

was amplitude of the inhibitory conductance relative to the Na-

channel conductance. The on-path inhibition also attenuated the

dendritic PSP produced by excitatory input (Figure 6b,c gray

traces). Given that dendritic spikelets are rarely observed at the

soma of the DSGC during light stimulation [3], and that an

unrealistically-high inhibitory conductance was needed to shunt

propagating dendritic spikes, our conclusion from this set of

experiments was that in the real cell, null-direction inhibition is

much more likely to block spike initiation rather than spike

propagation.

We next wanted to determine how much inhibition was

required to suppress dendritic spike initiation under the same

conditions. The receptive field of the DSGC has both spatial and

temporal components [2,8], which are widely believed to result

from spatially offset inhibition that trails excitation in the preferred

direction. Because the DSGC’s distal dendrites are electrotonically

isolated, we hypothesized that a response observed in a local

region could not represent electrotonic spread from synaptic

inputs outside that region. Therefore, responses evoked in a local

dendritic region would reflect the spatial localization of the

stimulus, and not a time-delayed signal spreading from adjacent

regions. To separate spatial from temporal effects within the local

dendritic region, we first isolated temporal effects with a

stationary, spatially distributed excitatory ‘‘spot’’ of synaptic input

(dia = 50mm), preceded or followed by (Dt = 250 to +50 ms) a

superimposed spot of inhibitory input (Figure 7a). Kinetic and

conductance parameters of the synapses were selected so that

excitatory and inhibitory conductances matched physiologically-

observed values [7]. The excitatory synapses (200pS/synapse) and

inhibitory synapses (275pS/synapse) both incorporated a transient

Figure 4. A gradient of Na-channels improves propagation in a model with low Na-channel density. (a) Propagation efficiency (number
of somatic spikes/number of dendritic spikes) for spikes initiated at different dendritic locations in the calibrated model (gNa1.6 = 40mS/cm2). Most
dendritic spikes propagated successfully to the soma. (b) Propagation efficiency of the low-Na model (gNa1.6 = 25mS/cm2) shows failure of
propagation for most points. (c) Propagation efficiency for model with dendritic Na-channel gradient (proximal gNa1.6 = 45mS/cm2, distal
gNa1.6 = 20mS/cm2) shows greatly improved propagation efficiency. (d, e, f) A ‘‘spot’’ of synaptic input 50mm in diameter stimulated a region in the
dendritic tree, while voltage at soma (black) and dendrite (gray) was recorded. (d) Baseline model, (e) low Na-channel density model. Failed dendritic
spikes appear as small ‘‘spikelets’’ at the soma. (f) Gradient model. This model required 17% fewer Na-channels than the uniform density model to
produce essentially the same propagation efficiency, but at the cost of lower excitability (fewer spikes). The modest steady increase in somatic spike
height was due to increasing intracellular [Ca] which caused progressively deeper AHPs, leading to more Na-channel availability and higher spike
amplitudes.
doi:10.1371/journal.pcbi.1000899.g004
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Figure 5. Dendritic regions differ in their spiking properties. A spot of light (60 mm dia) excited a small subregion of the On layer of the
DSGC, under control conditions and during simulated focal application of TTX to the soma, which blocked Na-channels in the soma, thin segment,
and proximal dendrites. Three local regions were examined in this figure. (a) Region 1 was selected for having high conductance thresholds.
Excitation with a small spot produced local dendritic spike propagation, but an impedance mismatch caused spike failure upon reaching the primary
dendrite. Recording that generated the color-map was taken at 80 ms, just before the first spikelet, to show the effect of the synaptic excitation. (b)
Recording at soma, showing that excitation of region 1 in the model under control conditions (gray trace) produced dendritric spikes attenuated by
propagation to the soma, seen as 10mV ‘‘spikelets’’. When the spikelets sufficiently depolarized the soma, it initiated a full-blown spike. With somatic
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temporal filter (t= 50ms, high pass). In order to assess the required

level of inhibition, we adjusted the amount of leading inhibition

(i.e. arriving prior to excitation) in time (Dt = 250ms) to just

prevent dendritic spike initiation (Figure 7b,d). When the temporal

order was reversed, and inhibition was delayed, excitation

depolarized the dendrites enough to generate spikes prior to the

inhibition’s onset (Figure 7c). Thus physiologically realistic levels of

inhibition (4–10nS) can interact locally with excitation to produce

a local directional difference in the PSP amplitude. A nonlinear

spike threshold dramatically amplified this difference to produce a

strongly direction-selective spike output (Figure 7a,b). We called

this type of temporal processing the ‘‘postsynaptic DS’’ mechanism

because it relied exclusively on interactions within the dendritic

tree to generate DS. We next wanted to determine how well the

model performed for a spatio-temporal stimulus, essentially

identical to one that is regularly used for studying these cells.

Directional differences are greater at dendritic tips
Previous work has shown that the excitatory and inhibitory

inputs to DSGCs are already directional [6,7,16,17], with

inhibition being larger in the null than the preferred direction,

and excitation being larger in the preferred than null direction. We

explored how the model could reproduce the responses of the

DSGCs under conditions where synaptic inputs were activated

throughout the dendritic arbor according to the motion of the

stimulus. For the ‘‘presynaptic’’ DS mechanism, the excitatory and

inhibitory conductances at a dendritic locus varied with direction

but were activated at the same time, and for the ‘‘postsynaptic’’ DS

mechanism, the conductances remained constant with direction

but were activated with an asymmetrical spatio-temporal offset.

For the postsynaptic mechanism, we set inhibition with a spatial

offset, to generate a temporal offset that was dependent on bar

direction (See Methods). Stimulation in the pref direction activated

Figure 6. Unrealistically-strong on-path inhibition does not prevent dendritic spike propagation. (a) The model was stimulated by a
spot of ,30 identical excitatory inputs located in the distal dendrites (red dots), producing a peak conductance of ,3nS. The strength of ,30
identical inhibitory inputs (Vrev = 268 mV) located within a spot of the same size and placed close to the soma (blue dots) was modulated to explore
the requirements for on-path shunting inhibition of dendritic spikes. Image was taken ,10 ms after stimulus onset with the same color-map as
Figure 2. None of the inhibitory synapses were located on the soma, and many activated by the spot (blue dots) were directly on the path for spikes
propagating to the soma. (b) Recording from soma (black) and dendrite (gray) near the locus for spike initiation. A simultaneous inhibitory input with
a peak total conductance of ,50nS distributed equally amongst the blue synapses did not prevent dendritic spike propagation. This conductance is
2–5-fold larger than predicted from previous physiological measurements (see text). (c) When the total peak inhibition was raised even further
(,85nS), dendritic spikes (gray trace) were severely attenuated and appeared as small ‘‘spikelets’’ at the soma (black trace). Such events are rarely
observed except during somatic TTX application [3].
doi:10.1371/journal.pcbi.1000899.g006

TTX application (black trace), no dendritic spikes were initiated because depolarization was insufficient. The reason was that somatic TTX application
hyperpolarized the soma and proximal dendrites. (c) Region 2 was selected for having low-conductance thresholds and high propagation efficiencies.
The recording was taken at 55 ms. (d) Excitation of region 2 produced large PSPs, dendritic spike initiation, and successful propagation to the soma,
which initiated full-blown spiking. (gray trace). During somatic TTX application (black trace), dendritic spikes were initiated and appeared at the soma
as small spikelets, attenuated in thick proximal dendrites that lacked active Na-channels. (e) Region 3 was selected for having slightly higher
conductance thresholds than region 2, which therefore were less excitable. The recording was taken at 55 ms. (f) When stimulated, region 3
produced the same number of spikes as region 2, however the spike trains differed slightly in impulse shape and amplitude, and ISIs (gray trace).
Simulated somatic TTX application (black trace) showed that dendritic spikes from region 3 were attenuated more than from region 2. The reason
was that region 3 is farther from and therefore more isolated from the soma. (g,h) In a separate simulation, moving a bar from left-to-right across the
dendritic arbor elicited spikes. Dendrites in region 2 were the first to spike, however when the leading edge of the bar crossed into region 3, the
location of dendritic spike initiation moved to region 3. (g) Voltage recorded at the soma for the bar stimulus. The lack of spiking between ,150ms
and ,170ms occurred when the leading edge of the bar was between region 2 and region 3, where not enough dendrites were depolarized
sufficiently in either region to initiate a dendritic spike. (h) Voltage traces from the soma (black) and two locations in the dendritic tree, marked with
asterisks in (a,c,e). The blue trace is from region 2, the red trace is from region 3. The relative timing of the spikes clearly shows that the region of
dendritic spike initiation moved from region 2 to region 3 as the bar moved across the dendritic field. For each region, the smaller spikes were
initiated first, and propagated to the other region as larger spikes which had a much faster rise from Vrest. The somatic spikes (black) arrived later
because the soma was further along the path from the initiation site. The supplementary material contains a movie that shows spike initiation at a
distal site, propagation to the soma, followed by backpropagation to the remainder of the dendritic tree (Video S1). Note that the cell is ‘‘winner-take-
all’’, i.e. whichever region has the strongest response will prevent other regions from spiking because each spike propagates to the entire cell,
resetting its membrane voltage.
doi:10.1371/journal.pcbi.1000899.g005
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excitatory synapses in advance of inhibitory synapses. As bar

direction approached null, inhibition was set to overlap more with

excitation, and completely overlapped excitation temporally and

spatially in the null direction. Our baseline spatial offset produced

inhibition that trailed excitation by ,50ms in the pref direction.

We also tested temporal offsets of 75ms, 150ms, and 200ms. When

calibrating the model, we adjusted the spatial offset of the

inhibition, and the magnitudes of the inhibitory and excitatory

conductances so that the waveshape of the somatic currents

measured with voltage clamp matched those recorded from a

typical cell (Figure 8a,b; see Methods). To fit the currents in the

preferred direction the total excitatory conductance was 6.5nS and

inhibitory conductance was ,2.5nS, while in the null direction

excitation was 3.5nS and inhibition was 6nS. These preferred/null

ratios of excitation and inhibition are within the ranges reported

previously for DSGCs [7].

Once calibrated, we measured the directional-difference in the

PSP amplitude for a model without Na-channels as a function of

the distance from the soma (Figure 9). The simulations included

either the presynaptic mechanism from Figure 8, where both

amplitude and waveshape of the PSPs depended on direction, the

postsynaptic mechanism, where only the temporal offset between

excitation and inhibition depended on direction and the

amplitudes did not vary, or both mechanisms. The results showed

that the directional-difference was largest in the peripheral

dendrites, which also corresponded to the areas of highest

excitability (Figure 3). The model reproduced the relatively small

directional-difference in the somatic PSP amplitude that is seen in

real recordings (compare Figure 3d and Figure 1). The magnitude

of the postsynaptic mechanism was largest for the peripheral

dendrites but dropped to almost zero near the soma (Figure 9).

The reason was that the magnitude of the postsynaptic mechanism

was directly related to the input resistance and the PSP amplitude

(Figure 2).

Dendritic structure produces an intrinsic DS signal that is
strongest in distal regions

To determine the contribution of the DSGC’s morphology to its

direction-selective response, we ran simulations with a moving bar

in a simplified model without Na-channels that included only

excitatory synaptic input to the DSGC that did not vary according

to bar direction, while recording responses at the soma and

throughout the dendritic tree. We measured the DS index

(0 = non-directional, 1 = fully directional; see Methods) and vector

angle of the dendritic PSPs evoked by a bar stimulus that moved

alternately in eight directions, and found that the distal dendrites

Figure 7. Prior inhibition can prevent spiking in co-extensive regions. Model with spot stimulus and temporally-offset inhibition. (a) Spot of
activated synaptic input 75um in diameter at the On layer of DS060825 (red dots = excitation, blue dots = inhibition, time = ,60ms). The spread of
depolarization in the dendrites is shown in color, 5 ms after onset of excitation and 45 ms before inhibition, stimulus timing shown in inset of (d).
Total peak excitatory conductance ranged from ,1–4nS, inhibitory conductance ranged from 4–10nS. (b) Voltage recording from soma when
inhibition followed (black) or preceded (gray) excitation. Preceding inhibition prevented the cell from spiking. (c) In a model lacking Na-channels,
plots show voltage at several dendritic loci with inhibition 50ms before, or (d) after excitation. A comparison of the plots shows that delayed
inhibition (d) allowed the dendritic PSPs to depolarize more than 5mV compared with leading inhibition (c). In the model with sodium channels (b),
this difference was dramatically amplified by a nonlinear spike threshold. (c,d) Synapses were transient (decay time constant = 50ms). Overlapping
filled red (excitatory) and blue (inhibitory) curves above PSPs show the time courses. The same simulation with a temporal offset of 25ms produced
similar results. The small, initial rise in membrane potential following the onset of inhibition in (b) and (d) is due to the inhibitory reversal potential
(268 mV) being slightly more depolarized than the resting membrane potential. Each dendritic locus showed a different voltage response from its
local excitation, the shunting inhibition, and the local input resistance.
doi:10.1371/journal.pcbi.1000899.g007

Dendritic Spikes Amplify the Synaptic Signal

PLoS Computational Biology | www.ploscompbiol.org 9 August 2010 | Volume 6 | Issue 8 | e1000899



had a weak ‘‘intrinsic DS’’, with preferred directions that pointed

radially outward from the approximate geometric center of the

dendritic arbor (Figure 10a,c). This intrinsic DS resulted from

spatial summation in dendrites similar to that described in models

of starburst amacrine cells [33–36]. The directional asymmetry

results from partial isolation between a dendritic compartment and

the soma, which delays summation of the somatic PSP with the

dendritic PSP during centripetal motion [34]. Because the somatic

response represents the summation of PSPs from all the dendrites,

the effects of the intrinsic DS tend to cancel out resulting in little

intrinsic DS measured at the soma. However, the responses in

most of the distal dendrites were clearly direction-selective, tuned

to the centrifugal direction.

Interaction between presynaptic and intrinsic DS
mechanisms

To explore the interaction between presynaptic DS and intrinsic

DS, we configured the bar stimulus with the above-described

‘‘presynaptic DS’’ mechanism, where excitation was strong in one

direction (0u) and weaker in the opposite direction (180u).
Inhibition for this input was set to be the opposite, weakest when

the bar moved at 0u and strongest at 180u. We then ran a series of

simulations as before, one for each dendritic location, measuring

the DS index and vector angle. On the null side of the dendritic

tree (closest to an advancing null stimulus) where the intrinsic DS

of the distal dendrite agreed with the presynaptic DS, the

directional difference of the PSPs was 2-fold or more that observed

without presynaptic DS (Figure 10a,c,c,g), On the pref side of the

dendritic tree (the side from which a preferred stimulus originates),

the results showed that the presynaptic mechanism can override

the intrinsic DS, producing a directional difference in the evoked

PSPs opposite to the local intrinsic DS signal (Figure 10b,f,d,h).

This analysis demonstrates that the intrinsic DS at each

dendritic location can be large enough to enhance or reduce the

local directional difference in the PSP amplitude produced by

addition of the postsynaptic and presynaptic DS mechanisms

(Figures 9, 10). The intrinsic DS mechanism enhanced the DS

responses on the null side of the dendritic arbor, and conversely,

weakened DS signals on the preferred side of the arbor (Figure 10).

It is interesting to note that there is a well documented ‘‘non-DS’’

zone located on the preferred side of the DSGC [2,37], within

which directional responses are much weaker or even absent.

These results suggested that the effects of intrinsic dendritic DS

may account for the non-DS zone.

Dendritic spikes amplify the DS index of PSPs
When Na-channels were included, the model reproduced the

DS spiking response of the cell. The Na-channels amplified the

preferred PSPs more than null PSPs within a local region because

the preferred PSPs were more depolarized (Figure 11). We tested

the effect of different Na-channel densities, and found that this

Figure 9. Presynaptic and postsynaptic DS mechanisms vary
with dendritic locus but are more robust when combined. For 2
morphologies, (a) DS060825, (b) ds1e, Na channels were removed from
the model to simulate bath TTX application, and a bar stimulus moved
from left-to-right (Pref) and then right-to-left (Null). During bar
movement dendritic PSPs were recorded from points across the
dendritic tree. The directional difference (DD) for a given dendritic
location was the difference in PSP amplitude between a Pref and Null
bar stimulus. For both morphologies, the presynaptic mechanism
(orange) produced a robust increase in dendritic PSP. The postsynaptic
mechanism (blue) also successfully overrode the intrinsic DS of each
distal dendrite. When the mechanisms were combined (green), they
cooperated to produce greater DDs. Although this modulated the DD
amplitude and gave a greater temporal difference between excitation
and inhibition, it did not increase the overall DD much because the
presynaptic mechanism was stronger. Distal regions had a higher
directional difference than proximal, and the greatest directional
differences occurred for rightmost dendritic tips (on the Null side)
where the intrinsic DS matched the preferred direction.
doi:10.1371/journal.pcbi.1000899.g009

Figure 8. Calibration of model with direction-selective currents from a real DSGC. We simulated a bar stimulus moving in the preferred
and null direction across the dendritic field, and adjusted the model parameters to reproduce the voltage clamp currents for the On-responses (cell
DS060825). The shape of the responses derived from the dendritic morphology. (a) Real synaptic currents (black) measured by voltage clamp at the
soma during preferred direction stimulation and recorded at holding potentials of 275mV (lower traces) and 0 mV (upper traces). The gray lines
show the model predictions using a total excitatory conductance of ,6.5nS and an inhibitory conductance of ,2.5nS. Individual model inhibitory
and excitatory synaptic inputs had the same time course (see Methods). (b) Same as (a) but for null direction stimuli. The outward current peaks
,50 ms ahead of the inward current. This was accounted for by including a spatial offset of 50mm between inhibition and excitation, thus delaying
inhibition in the pref direction (see text). The larger outward current and smaller inward current was accounted for by increasing the peak total
inhibitory conductance to ,6nS and reducing the peak total excitatory conductance to ,3.5nS.
doi:10.1371/journal.pcbi.1000899.g008
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selective amplification effect occurred in both sub-threshold mode

and when spikes were initiated (Figure 11). The spike threshold

within local dendritic regions effectively amplified the directional

difference of the PSPs to produce strongly direction-selective

somatic spikes. To determine the role of dendritic spiking relative

to the other DS mechanisms identified above (presynaptic,

postsynaptic, and intrinsic), we simulated a bar passing over the

DSGC in different directions, and measured the magnitude of the

spike and PSP responses and their DS index (Figure 12a). We

adjusted the excitatory and inhibitory inputs so that the DS index

of the PSPs was ,0.2 (Figure 12b, similar to that recorded from

real cells), and found that the DS index of the resulting spikes was

,0.8, about 4-fold higher than for the PSPs (Figure 12c). We

measured the DS index with different Na-channel densities and in

addition compared them to a uniform density with a gradient.

Higher Na-channel densities, although they tended to generate

more spikes, did not increase the DS index. Instead, the lower

densities and the gradient gave a higher DS index, because they

gave a greater difference in spiking between preferred and null

directions. We simulated local TTX application to the soma, as

was done experimentally [3], by turning off somatic Na-channels.

The DS index of the resulting spikelets was 0.5, which was higher

than PSPs alone but lower than for full-blown somatic spikes

(Figure 12d). This implied that, besides carrying dendritic signals

to the soma, the role of spikes is to amplify the directional

difference of the PSPs received by the DSGC, and that direction-

selective spiking is generated at least in part by postsynaptic non-

linearities. We next considered the interactions between the

presynaptic and postsynaptic mechanisms.

Presynaptic and postsynaptic mechanisms cooperate to
increase overall DS index

We simulated the presynaptic and postsynaptic mechanisms

independently and then combined them to explore how each one

contributes to produce directional-differences in dendritic PSPs

and to direction-selective spiking (Figure 13). The strength of the

synapses was set to produce peak excitatory and inhibitory

conductances within physiologically-observed ranges [7]. As

above, we simulated the presynaptic DS mechanism by modulat-

ing the time-course of the synaptic conductances, and the

postsynaptic mechanism with spatially offset inhibition. For

simulations with active Na-channels and either presynaptic or

postsynaptic mechanisms alone, spiking was strong in the

preferred and weak in the null direction (Figure 13a,b), but the

presynaptic mechanism produced a stronger DS index than the

postsynaptic mechanism (Figure 13a,b). When both mechanisms

were combined, the DSGC again spiked in the preferred direction

but not the null, and the DS index was the greatest. Thus, pre- and

postsynaptic mechanisms cooperated to produce directional

differences in the dendrites (Figure 12), which were then non-

linearly amplified with a spike threshold to produce the DSGC’s

spiking response (Figure 13).

Figure 11. Na-channels amplify the directional difference in
PSPs. Dendritic PSPs were examined in models with a high dendritic
Na-channel density (gray, gNa1.6 = 40mS/cm2), low density (dashed,
gNa1.6 = 10mS/cm2) and no Na-channels (black, TTX). (a) PSPs recorded
at a typical point in the distal dendritic tree. The Na-channels at in the
medium density model amplified the PSPs in subthreshold mode,
producing a larger PSP than for the TTX model (,1–2mV). With a higher
Na-channel density the stimulus elicited dendritic spiking. KCa channel
activation from spiking resulted in a lower voltage on the falling edge
of the response. (b) Traces from the same three models for a bar during
null-direction stimulation showing weaker amplification. Maximum
difference in peak PSP between TTX and medium, 0.5mV, and between
medium and high, 1.2mV. Peak total excitatory conductance was ,3nS,
peak total inhibitory conductance was ,5nS.
doi:10.1371/journal.pcbi.1000899.g011

Figure 10. The presynaptic DS mechanism overrides intrinsic DS in preferred-side distal dendrites. In models with Na-channels blocked,
PSPs were recorded (black arrows) in response to a bar swept in 8 directions (0u–315u, increments of 45u) across the dendritic field. Two synaptic
input configurations are shown; one with equal excitation in each direction and no inhibition (left column, ‘‘No presynaptic DS’’), and another where
excitation was maximal at 0u and minimal at 180u, and inhibition varied in the opposite manner (right column, ‘‘Strong presynaptic DS’’). (a) The DS
index and angle for the PSP at each dendritic point were computed for bar sweeps with symmetric synaptic input (see Methods). This unmasked an
‘‘intrinsic DS’’ for distal dendrites that pointed radially outward, with DS indices ranging from 0.01 to 0.07. (b) The voltage recorded from the dendritic
point (on the preferred side) marked with a red asterisk. The PSP evoked by movement in the direction of the intrinsic DS was higher than in the
opposite direction. (e,f) DS index and angle for each dendritic point were measured in the same way, except with the addition of presynaptic DS. (e)
The presynaptic input overrode the intrinsic DS for all points. (f) The voltage at the same point as in (b), showing that presynaptic DS effectively
masks the ‘‘intrinsic DS’’ of the dendritic point. (c,d,g,h) The same simulations performed for another DS morphology.
doi:10.1371/journal.pcbi.1000899.g010
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DS is robust with changes in space constant
Finally, our morphological models inevitably contain uncer-

tainties as to the dendritic diameter and the surface membrane

resistivity that could affect the dendritic space constants, which in

turn can influence the degree of dendritic isolation. Because the

findings presented here predict that dendritic isolation within the

DSGC is an important biophysical factor for generating its

directional selectivity, we explored how the DS response was

affected by changes in the space constant of the dendritic tree. We

ran simulations in 8 different directions with different values of the

dendritic axial resistance (Ri). A high value of axial resistance

diminished the spread of axial current through the dendrites,

which decreased the space constant (Figure 2) and amplified the

presynaptic DS mechanism without changing the relative

responses in different directions (Figure 14a). A high value of

axial resistance also diminished the effect of shunting by the

leading inhibition of the postsynaptic mechanism, increasing the

number of spikes in both preferred and null directions (Figure 14b).

A reduced value of Ri had opposite effects. When both

mechanisms were combined, the resulting directional selectivity

was intermediate between that for the presynaptic or postsynaptic

mechanisms alone (Figure 14c).

Somatic PSPs lack directional correlation with spikes
Once we had developed intuition about how the dendritic tree

attenuates PSPs but not spikes, the apparent paradox of Figure 1

was straightforward to understand. A simulation of a somatic

recording duplicated the lack of correlation between the PSP

amplitude and spiking (Figure 15). From the previous simulations,

we learned that spikes propagate from the dendrites and

depolarize the somatic voltage quickly enough to initiate somatic

spikes, even from a membrane potential hyperpolarized below

spike threshold by 5–10 mV (Figures 4–7). The dendritic spike is

not visible because the somatic spike overlays it precisely [3]

(Figure 4). The recordings shown in Figures 1 and 15 show the

result of somatic spiking summed with a compound PSP generated

Figure 12. Dendritic spikes amplify DSI recorded from spikes and PSPs at the soma. Responses to moving bars were simulated as for
Figure 10 with the same preferred direction (0 deg). Excitatory and inhibitory synapses were distributed throughout the dendritic arbor. Presynaptic
DS excitation was generated by setting the peak conductances (excitation 9nS pref, 2nS null; inhibition 4nS pref, 14nS null). We then measured the
amplitude of the response and the DS index for the spikes and the underlying PSPs (see Methods; [3]). (a) Polar plots of the number of spikes (black)
and peak PSP amplitude (red) as a function of stimulus direction, fit to von Mises functions (circular Gaussians). The surrounding traces show the
spikes (black), and the PSPs (red). (b) The time courses for the simulated excitatory (red) and inhibitory (blue) synaptic conductances (see Methods).
(c) The DS indices calculated for spikes (black), and PSPs (gray) were measured in models having different dendritic Na-channel densities. One type of
simulation included a spatially uniform dendritic Na density (solid lines) in the range of 10–35mS/cm2, and another included a spatial gradient
(dashed lines), where the proximal density was fixed at 35mS/cm2, while the distal density ranged from 10–35mS/cm2. The DS index for spikes was
higher than for PSPs in simulations with the Na-channel gradient, and for most with a uniform density. As dendritic Na-channel density was reduced,
less spikes occurred in the null direction, which increased the DS index. The gradient model provided a high DS with a slightly lower number of
dendritic Na-channels. (d) Simulated TTX application to the soma that blocked Na-channels at the soma and proximal dendrites. The response
included PSPs with superimposed dendritic spikelets which propagated from the distal dendrites to the soma. The measured DS index was 0.50,
significantly higher than the DS index for PSPs at any dendritic Na density.
doi:10.1371/journal.pcbi.1000899.g012
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Figure 13. Presynaptic and postsynaptic mechanisms cooperate to increase overall DS index. (a,b) Directionality of the spike response
for two morphologies, DS060825 (a) and ds1e (b), which were given the same synaptic input configurations, fitted to von Mises functions. For each
simulation, gbase

e ~80pS=synapse and gbase
i ~95pS=synapse. We recorded the spike response in each direction for four different synaptic

configurations. (c,d) For the strong presynaptic (a,b, red) Dgmax
e ~Dgmax

i ~75pS=synapse, for the weak presynaptic (a,b, blue)
Dgmax

e ~Dgmax
i ~25pS=synapse. (e) For the postsynaptic mechanism (a,b, green) inhibition was coincident with excitation in the Null direction,

and trailed excitation by ,150mm in the Pref direction, while the strength of excitation and inhibition were held constant in each direction. (f) In the
presynaptic+post configuration (a,b, orange), the strong presynaptic mechanism was combined with the postsynaptic mechanism (Figure 4 in [7]).
Overall, the presynaptic mechanism was more effective than the postsynaptic mechanism for preventing spikes in the Null direction, but the
postsynaptic mechanism produced a higher overall number of spikes. The combined mechanisms produced less spikes in the Null direction and more
in the Pref, and a higher overall DS index. The ds1e morphology (b) also produced a higher overall number of spikes due to a higher dendritic density.
doi:10.1371/journal.pcbi.1000899.g013

Figure 14. Direction selectivity is robust despite changes in space constant for both presynaptic and postsynaptic mechanisms. We
varied the axial resistance (Baseline Ri = 200 V-cm, High Ri = 275 V -cm, Low Ri = 125 V-cm) and recorded spike responses for bar movement in 8
directions. Responses are shown here as polar plots for the strong presynaptic (a) and postsynaptic (b) mechanisms, for the DS060825 morphology.
(a) A high axial resistance (green) caused less axial leak of current, and therefore greater amplification of the synaptic input and a higher overall spike
rate, while low axial resistance (pink) had the opposite effect. The overall shape of the polar plot was not altered. (b) For the postsynaptic mechanism,
a high axial resistance increased the overall number of spikes, as in the presynaptic mechanism, but also altered the shape of the polar plot, and
produced relatively more spikes in the Null direction. (c) When both mechanisms were included, the result showed more spikes in the Pref direction
and greater direction selectivity than the postsynaptic mechanism alone. A high axial resistance diminished the ability of leading inhibition to shunt
sub-threshold voltage changes, and therefore more spikes were produced. Decreasing axial resistance had the effect of diminishing spikes in the Null
direction and sharpening DS, because it enhanced the shunting ability of leading inhibition.
doi:10.1371/journal.pcbi.1000899.g014
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by synaptic conductances across the dendritic tree. From

inspection of the spikes in the preferred direction (gray trace),

the after-hyperpolarization (bottom envelope, Figure 1, 15a) of the

spikes progressively depolarizes by a few mV through each spike

burst. The explanation is that the origin of the PSPs and thus their

relative amplitude changes depending on the position of the

moving bar. The first spikes start when the bar passes over the

distal tips of the dendrites. The corresponding somatic PSPs are

attenuated by a few mV (Figure 2f). Later spikes in the burst

initiate from more proximal dendritic regions, and the corre-

sponding PSPs are less attenuated at the soma. Note, however,

that this somatic recording does not reflect the amplitude of the

distal PSPs – they are unattenuated by electrotonic decay and thus

have a large directional difference to initiate robust spiking.

The recordings from the null direction of Figures 1 and 15

(black trace) show a compound PSP with greater amplitude but

without initial spiking. These recordings reflect PSPs from a more

proximal dendritic location that are less attenuated than from a

more peripheral dendritic location. The PSPs from this more

proximal region are insufficient to cause local spiking because they

are shunted by the proximity to the soma. Although the null

direction PSPs initiate hardly any spiking, they propagate without

much attenuation to the soma and so appear larger than the

preferred direction PSPs. Further, because the soma is hyperpo-

larized 5–10 mV below spike threshold, any dendritic PSP that

propagates toward the soma also tends to be attenuated and

hyperpolarized, reducing the probability that it will reach spike

threshold after back- propagating distally.

Discussion

Our results provide a strong rationale for the role of several

mechanisms in processing of direction-selective signals by the

direction-selective ganglion cell (DSGC). They imply that the

electrotonic properties of DSGC dendrites partition the cell into

separate computational regions, each of which sums its local

excitatory and inhibitory synaptic inputs, and initiates spikes when

the local spike threshold is exceeded (Figures 2–6). They further

imply that the role of dendritic spiking in the DSGC is several-fold.

First, the nonlinear spike threshold effectively amplifies the

directional difference in the PSP response amplitude within local

dendritic regions, thereby enhancing the directional tuning of the

cell’s response (Figure 13) [38]. Second, dendritic spikes are

necessary to propagate the DS signal from the separate

computational sub-regions to the soma and axon (Figure 2).

Third, during a propagating dendritic spike, the aggregate Na-

channel conductance along a dendrite is large enough to give each

spike a high probability of reaching the soma and axon, thereby

preserving the direction-selective signal in the presence of ongoing

synaptic activity in other regions of the dendritic arbor (Figure 6).

In their original description of the DSGC, Barlow and Levick

[2] noted that direction-selective spike output was produced for

stimuli that activated only a small fraction (,20%) of the total

synaptic input to the cell. They proposed that the synaptic

mechanism comprised ‘‘subunits’’ that could compute DS locally,

and were repeated numerous times across the dendritic arbor.

Later workers showed that these subunits might be even smaller

[39]. An obvious problem with the existence of such subunits is

that stimulation of a small fraction of the total inputs will produce

concomitantly small somatic PSPs, and thus it is difficult to

envisage how a somatic spike threshold could produce directional

selectivity across a broad range of stimulus configurations.

The modeling and theoretical analysis presented here provides

an explanation for the ‘‘subunits’’, by showing that DS subunits

are an inevitable result of the electrotonic properties of the DSGC

dendritic arbor. The predicted attenuation of PSPs between the

dendrites and the soma renders direction-selective spike initiation

at the soma untenable, and in real neurons this will be exacerbated

for small movements over the distal dendrites. The data in Figure 1

neatly illustrates the phenomenon, and shows that somatic

membrane potential does not drive the spiking output [3]. Local

dendritic spike initiation overcomes this problem, and allows for

greatly enhanced direction sensitivity. Although a stimulus with

limited motion over a distal dendrite will produce a weak

directional difference in somatic PSPs due to attenuation from

dendrite to soma, it will produce strong DS in local dendritic

spiking , in part due to the high local input resistance, and thus

strong DS spiking at the soma. Moreover, sensitivity will be

Figure 15. Somatic PSPs and spikes are uncorrelated because PSPs are attenuated by dendritic tree (compare with Figure 1a). (a)
Simulation of a bar moving across the dendritic tree with a weak presynaptic+post synaptic mechanism, where the preferred direction was set to be 0
degrees (see Figure 14). Peak somatic depolarization is greater for Null (black) than Pref (gray). In the Pref direction, distal dendrites were depolarized
enough to spike, and the dendritic spike propagated to the soma and initiated a somatic spike, despite the somatic PSP being below spike threshold.
In the Null direction, distal dendritic PSPs were insufficient to elicit a dendritic spike, and the somatic PSP did not reach spike threshold, so no spikes
were generated. (b) The same simulation, but with the preferred direction changed to 180 degrees, showing the effect of the asymmetrical dendritic
tree on the PSP rise time, shape and spiking. The apparent difference in initial spike threshold between (a) and (b) reflects the underlying PSPs, i.e. in
(a) the preferred direction the underlying PSP rose more quickly. The simulation was run on the same morphology as Figure 2c (DS060825), with bar
velocity 1000 um/s, excitatory conductance 75pS/synapse, inhibitory conductance 95 pS/synapse, presynaptic mechanism (difference in
conductances) reduced to 25% of the mechanism from Figure 8.
doi:10.1371/journal.pcbi.1000899.g015
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enhanced for full-field stimulation, because as an edge moves

across the entire dendritic arbor, DS spikes will be initiated at

numerous points within the dendrites. If DSGCs had thicker

dendrites and the somatic PSP reflected a less attenuated

summation of inputs across dendritic arbor, then it would

inevitably lose sensitivity for small objects and small motions. An

unexpected outcome of the model was the explanation for the

presence of a non-DS zone within the dendritic arbor of the

DSGCs [2,37], a phenomenon that has not previously been

adequately accounted for. Our results show that the non-DS zone

is a consequence of local dendritic processing superimposed upon

an inherent asymmetry that is predicted to be present within the

dendritic arbor of every neuron [34].

Rationale for presynaptic DS
Our simulations indicate that local dendritic processing follows

from the dendritic structure, and that a purely postsynaptic model

can produce strong directional signals (Figure 13). One might then

ask why presynaptic mechanisms have also evolved. Without

presynaptic computation of DS, the directional selectivity of the

DSGC would suffer because the postsynaptic mechanism decays to

almost zero near the soma (Figure 9) and is reduced on the

preferred side of the dendritic tree by the intrinsic DS within the

dendrites (Figure 10). Thus presynaptic mechanisms can overcome

limitations inherent in postsynaptic processing and produce a

more robust system. However, the presence of a non-DS zone in

many cells suggests that in many cases presynaptic mechanisms are

not strong enough to overcome the intrinsic dendritic bias. This is

consistent with a previous report showing that the strength of the

presynaptic DS signal is very variable across the population of cells

[7]. Clearly a relatively strong presynaptic mechanism would

produce a strong and consistent DS signal at the soma (Figure 9).

Our results predict that the variability in the strength of the

presynaptic DS signal will be correlated with the variability in the

strength of DS in the somatic PSP, with cells having a relatively

weak presynaptic DS component also displaying weak DS in

somatic PSPs, as illustrated in Figures 1 and 15. Further work will

be required to fully explore the interactions of presynaptic and

postsynaptic mechanisms in the DSGC. The circuitry that

generates the presynaptic DS is currently under intense scrutiny

and is beyond the scope of this study.

Dendritic winner-take-all
One of the consequences of dendritic initiation of spiking,

revealed by the simulations, is that when a dendritic spike reaches

the soma it will spread throughout the entire cell (see Video S1)

and obliterate any other simultaneous dendritic spikes [40]. The

result is that the dendritic region with the lowest spike threshold

will dominate the responses of the cell, because that region will

reach threshold first, and therefore will also recover from the

ensuing refractory period first, giving a role of ‘‘winner-take-all’’ to

the most excitable regions (Figure 3). The occurrence of dendritic

‘‘hot-spots’’ was predicted by models in which identical synaptic

inputs are distributed across the dendritic arbor (Figure 3d–f).

Such results raise the question whether the responses of DSGCs

are dominated by inputs from only a few dendritic regions, or

whether cellular mechanisms exist that even out sensitivity across

the dendritic arbor so that dendritic spike initiation is equally likely

from any point. Although the answer to this question is unknown,

the results of live recordings suggest that typical DSGCs initiate

spikes in only a few local regions [3]. Our tests of density gradients

in Na+ channels suggest that the excitability could be regulated by

a nonuniform density of Na- and K-channels (Figures 3,4).

Error in somatic measurements of dendritic conductance
One criticism of voltage-clamp recordings of neurons having

synaptic inputs on an extended dendritic tree, especially the

DSGC in which dendritic tips are isolated from the soma, is that

estimates of conductance are inaccurate because the cell is not

adequately space-clamped. To determine how accurate measure-

ments of conductance are in cells of this type, we simulated

voltage-clamping the soma and measured synaptic conductances

according to the established protocol [6,7]. These simulations

indicated that estimated conductances differed from the actual

ones by 50–100% (see Methods). The accuracy of the estimate of

excitatory conductance was greater than that of the inhibitory

estimate because voltage clamp errors were greater at depolarized

clamp potentials due to axial resistance and the relatively

hyperpolarized dendritic membrane, leading to a reversal

potential more positive than expected.

These simulation results emphasize that a major advantage of

computational models is the ability to look closely at mechanisms

that would be difficult to study in the real neural system. The

model allows the experimenter to estimate a range of errors, taking

into account the accuracy of the data provided, and to identify

what mechanisms in the neural system are responsible for the

errors. Thus, with the dendritic morphology and a few simple

assumptions and measurements, the actual conductances can be

determined with a greater accuracy.

Realism of the model
Because our results depend on a theoretical model, it is

reasonable to ask how relevant they are to the real neural circuit.

The simulations were sequentially calibrated, starting first with

spike shape and amplitude (see Methods), then excitability with

injected current (F/I plot), and finally proceeding to higher level

tests of the spikelet amplitude and behavior. Although the original

morphology was derived from careful measurements, in most cases

from confocal stacks, some imprecision in the diameters of the

reconstructed dendrites is inevitable. We took this into account by

bracketing the diameters using an additional multiplicative factor

in the models, then verifying that the overall dendritic surface area

and time constant were correct by matching the charging curve

with injected current. We verified that the results did not depend

on a unique combination of parameters, for example, the

particular morphology of the dendritic tree, or some unique

combination of channel types or their densities - all of our

conclusions are based on phenomena that emerged from the

simulations. For example, the intrinsic weak DS found in the

dendritic system, although derived from the morphology and

biophysical membrane parameters, was robust and did not depend

strongly upon a particular choice of model parameters (see

Methods).

Importance of local dendritic processing for the brain
The local initiation of dendritic spikes described here that

propagate with high probability to the soma represents a general

mechanism for performing independent nonlinear computations

leading to a decision [41]. For example, a complex cortical cell

sums signals nonlinearly from its presynaptic neurons [42]. The

synaptic signals originate from a large number of presynaptic

neurons, and the amplification performed in any local subregion

by nonlinear summation of PSPs in subthreshold mode can

independently amplify the signal, potentially leading to a spike

[39]. The spike generated by this process can override the

processing of other local regions along the propagation route.

When a dendritic spike propagates to the soma and axon it

provides the neuron with an all-or-none decision based on the

Dendritic Spikes Amplify the Synaptic Signal

PLoS Computational Biology | www.ploscompbiol.org 16 August 2010 | Volume 6 | Issue 8 | e1000899



nonlinear processing performed by any of the independent local

computational subunits [43].

Methods

Tissue preparation and maintenance
Experiments were conducted in accordance with protocols

approved by the Institutional Animal Care and Use Committee at

Oregon Health and Science University and NIH guidelines. Dark-

adapted, pigmented rabbits were surgically anesthetized with

sodium pentobarbital and the eyes removed under dim-red

illumination. The animals were then killed by anesthetic overdose.

All subsequent manipulations were performed under infrared

illumination (.900nm) or under dim red light (.620nm). The

anterior portion of the eye was removed and the eyecup was

transected immediately above the visual streak. The ventral piece

was used exclusively in all experiments. The retina was dissected

from the eye, and a 5 by 5 mm section of central retina was

adhered photoreceptor side down, to a circular glass cover-slip

coated with poly-L-lysine (Sigma) or Cell-Tak (BD Bioscience,

USA) and placed in the recording chamber (,0.5 ml volume).

The preparation was continuously perfused (,4 ml/min) with

oxygenated bicarbonate-buffered Ames medium [44], pH 7.4

maintained at 34–36uC. The major electrolytes in Ames medium

are: 120 mM NaCl, 23 mM NaHCO3, 3.1 mM KCl, 1.15 mM

CaCl2, and 1.24 mM MgCl2.

Electrophysiology and light stimulation
Patch electrodes were pulled from borosilicate glass to have a

final resistance of 4–8 MV. For extracellular loose-patch record-

ing, the electrodes were filled with Ames medium. For intracellular

recording the electrodes were filled with the following electrolytes:

110 mM K-methylsulfonate, 10 mM NaCl, 5 mM Na-HEPES,

1 mM K-EGTA, 1 mM Na-ATP, and 0.1 mM Na-GTP. For

multi-photon imaging experiments 50–100 mM of Alexa Fluor 488

hydrazide (Invitrogen Corporation, USA) was included in the

pipette solution. The liquid junction potential of 10 mV was

subtracted from all voltages during analysis. The retina was

visualized with infrared differential contrast optics, and ganglion

cells with a medium soma diameter and a crescent-shaped nucleus

were targeted as potential DSGCs [20]. An extracellular electrode

was applied to the soma under visual control through a hole in the

inner-limiting-membrane above the cell of interest, and a loose

patch recording was formed. After establishing that the ganglion

cell was a DSGC and determining its preferred direction (see

below), the extracellular recording electrode was removed and an

intracellular patch-electrode applied to the same cell for whole-cell

recording. During whole cell recordings voltage signals were

filtered at 2–4 kHz through the 4-pole Bessel filter of the EPC10

Double patch clamp amplifier (HEKA Electronics Incorporated),

and digitized at 20–50kHz. To minimize series resistance errors

during whole-cell current-clamp recordings, 10ms hyperpolarizing

current pulses were applied and the bridge was balanced to

eliminate any instantaneous voltage offsets. Bridge balance was

monitored periodically during the recordings.

Light stimuli, generated on a CRT computer monitor (refresh

rate, 60 Hz), were focused onto the photoreceptor outer segments

through a 406 (NA 0.8) Zeiss water-immersion objective. The

percent stimulus contrast was defined as C = 100 * (L-Lmean)/

Lmean, where L is the stimulus intensity and Lmean is the

background intensity. C was set between 30 and 100%. The

standard moving stimulus comprised a light or dark bar, moving

along its long axis at 800–1200 mm/s on the retina. All light

stimuli were centered with respect to the tip of the recording

electrode, and thus also with the soma of the ganglion cell. The

bar’s width was 250 mm, and its length was set to achieve a 1–

2 second separation of the leading- and trailing-edge responses.

The stimulus area was limited by the aperture of the microscope

objective, and covered a circular region 0.5 mm in diameter,

which reduced the antagonistic effect evoked by stimulating the

surround. The leading edge of the stimulus bar commenced at one

edge of the stimulus area and moved until the trailing edge

reached the opposite edge. Thus, both leading and trailing edges

of the stimulus traversed the whole receptive field of the recorded

cell, which evoked both the On- and Off-responses of the DSGC.

Multi-photon microscopy
A Zeiss Axioskop 2 FS mot equipped with a LSM 510 meta

NLO scanhead and a mode-locked Ti/Sapphire laser (Chame-

leon; Coherent, USA) was used to capture images of DSGC

morphology. After break-in, Alexa Fluor 488 hydrazide (Invitro-

gen Corporation, USA) included in the recording pipette diffused

rapidly into the dendritic tree. In some cases the recording

electrode was removed from the cell body after the cell had filled

with dye before imaging took place. The dye was excited using

mode-locked laser light from the chameleon laser tuned to 800–

920 nm, and emitted light was collected through the objective,

filtered through a BG 39 filter, and detected and digitized with the

Zeiss LSM 510 system.

Digitization and construction of compartmental model
To aid with digitizing stacks of images of tracer-injected cell

morphologies, we wrote additional software routines called from

the ‘‘Image-J’’ image processing software package. Using Image-J

the operator manually traced the cell’s dendritic segments and

branching pattern, measuring diameters with the caliper tool. Our

software saved the morphologies as a collection of nodes and

cables. The morphologies were then imported into the Neuron-C

simulator [45,46], and endowed with voltage-gated channels (see

‘‘Channel densities’’ below). Semi-random arrays of presynaptic

cells (see below) were constructed automatically by the simulator

with a regularity (mean/SD) of 6–10, and synapses were

connected between the presynaptic cells and the closest dendrite

of the DSGC if it was within a threshold distance (typically

10 um). We set the compartment size small enough (0.03 lambda

or less) so that each synapse from a presynaptic array of cells was

connected to a different compartment, preserving spatial accuracy.

Five morphologies were digitized from confocal stacks and studied

along with another more detailed morphology (‘‘ds1e’’), which had

been traced with a Neurolucida system (Microbrightfield, Inc).

Two morphologies explored in detail here, ‘‘DS060825’’ and

‘‘ds1e’’ had ,750 and ,3000 compartments respectively. The

simulations were run on an array of 15 computers each with 2 or 4

AMD Opteron cores for a total of 48 CPUs, allowing simulations

with 50 parameter sets to be run in 24–48 hours.

We performed several types of simulations: calibration,

receptive field mapping, single flashed spot, and moving bar. In

calibration simulations, we injected various levels of current into

the soma and measured the spiking response. Each simulation took

,1 hour of computing time, and 20–50 simulations were typically

run in parallel. In the mapping simulations, we chose a set of

points (nodes) in the dendritic tree, and for each point , a protocol

measured the conductance threshold (see below). These simula-

tions took roughly 30 minutes per dendritic node, and a sample of

several hundred nodes was required for an accurate map of

dendritic properties. In single spot simulations, a small spot of

synaptic input was turned on over a portion of the dendritic tree

and the postsynaptic and soma voltages were recorded. The length
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of these simulations depended on the spot duration but typically

took less than 30 minutes. In the moving bar experiments (see

below), we ran 8 simulations in parallel for each of the 8 directions

of motion (360u/8 = 45u increments), each of which took

,45 minutes of computing time. We tested variations in many

parameters, including morphology, synaptic input parameters, and

channel density parameters, which multiplied the number of

necessary simulations, for a total of ,200,000 simulations to

produce the results in this paper.

Measurement of dendritic attenuation
We measured the attenuation from a dendritic point to the

soma by stimulating the point with a low-conductance synapse

(200 pS), and computing the voltage attenuation as the ratio of the

dendritic and somatic PSP amplitudes [25]. An attenuation less

than 1 indicated a dendritic PSP smaller than the somatic PSP. We

also computed ‘‘synaptic transfer’’, a measure of attenuation less

sensitive to dendritic Rin, as the ratio of the PSP amplitudes

independently evoked by a dendritic synapse and by a somatic

synapse. We performed this measurement over the extent of the

dendritic tree by testing many points in independent simulations,

producing maps of the dendritic attenuation and input resistance

properties (not illustrated).

Measurement of electrotonic isolation in model
dendrites

We computed an approximation to the steady-state space

constant (lest) for various points in the dendritic tree to estimate a

dendritic region’s capability of independently integrating synaptic

input. lest was computed between two points i and j in the

dendritic tree by re-arranging the formula for steady-state voltage

decay in a passive infinite cable to give:

lij
est~distij=ln

Vi

Vj

� �

where distij is the distance between points i and j. A single synapse

was turned on for 100ms to stimulate point i. The simulations were

performed using an active model that included Na, Kdr, KA, Ca,

KCa, and Ih channels, and with a synaptic conductance (50 pS)

which always produced a sub-threshold PSP. The quantity lij
est was

computed from the steady-state voltages of points within 20–

60 um of the site of stimulation and then averaged to give li
est.

This method thus estimated the space constant based on the local

dendritic structure under realistic conditions.

Measurement of dendritic conductance threshold for
spiking

While exploring the dendritic Na+ channel density necessary to

generate dendritic spikes in response to synaptic input, we found

that some regions were more excitable than others, i.e. they

produced more spikes. In order to quantify a region’s ‘‘excitabil-

ity’’, we measured the efficacy of a single synapse to elicit a

dendritic spike. The synapse had an exponential release function

with a time constant of decay that was longer than the extent of

the experiment, and remained ‘‘on’’ for 100ms unless a spike

occurred. For a given point in the dendritic tree, we determined

the ‘‘conductance threshold’’ (Gthresh) as the minimum synaptic

conductance necessary to elicit a dendritic spike, using an

automatic binary search algorithm. This algorithm was run

independently on a set of points selected uniformly from the

dendritic tree. For each point the algorithm started after the model

had equilibrated at a steady-state resting potential, and the model’s

equilibrated state (voltage of each compartment, synapse states,

and channel states) was saved for later use. The initial conductance

of the synapse was set halfway between the range of 100pS and

5nS (,2.5nS). If a spike occurred within a short interval (25–

100 ms), the conductance was set to the midpoint of the lower

conductance range (100pS to 2.5nS), but if no spike occurred, the

conductance was set to the midpoint of the higher conductance

range (2.5nS to 5nS). The model was then reset to its original

equilibrated state from the saved file and the process was repeated

with the new conductance value in the reduced conductance

range. The algorithm determined Gthresh with an accuracy of

100pS in 7–8 iterations, sufficient to discern the large relative

differences in Gthresh between distal and proximal regions. Because

the model was noiseless, there was no uncertainty in the

measurement of Gthresh.

Although almost all points tested initiated dendritic spikes, the

points differed in their ability to successfully propagate spikes to

the soma and initiate a somatic spike. To quantify the success of

dendritic spike propagation, we injected a synaptic input with the

threshold conductance at each dendritic location in independent

simulations, recorded dendritic and somatic voltages, and divided

the number of somatic spikes by the number dendritic spikes,

calling this ‘‘propagation efficiency’’. The value of propagation

efficiency ranged from 0 to 1, with 1 indicating that each dendritic

spike successfully propagated to the soma and initiated a somatic

spike.

Morphology of model cells
For the purpose of defining biophysical properties, the

morphology of each model was partitioned into 5 regions:

dendrites, soma, hillock, thin segment, and axon [28–30]. The

On-Off DSGC has a bistratified dendritic tree separated into On

and Off layers, and each morphology had 3–4 dendritic systems

which arose from primary dendrites at the soma. We found each

dendritic system was spatially separate, and some arborized in

both the On and the Off layers [19]. Dendrites in the Off layer

were on average more distant radially from the soma than those in

the On layer.

The exact diameter of each dendritic segment that results from

digitizing a tracer-injected image is difficult to establish, although

the relative diameters between segments can be established with

more certainty [21,47]. Because the diameter of a dendritic

segment determines its surface area, capacitance, and axial

resistance, we explored the effects of deviations from the digitized

morphology. The diameter of each dendritic segment was

bracketed by scaling by 0.5 and 1.5, which linearly scaled the

dendrites’ capacitance and quadratically scaled their axial

resistance, affecting the spatial spread of current from the soma

[28,29,48]. This in turn affected the electrotonic separation

between the soma and terminal dendrites, as well as the charging

curve, i.e. the voltage trajectory up to the first spike, and time-to-

first spike during current injection. Our results were qualitatively

similar for models with scaled dendritic diameters. It should also

be noted that control simulations where the synaptic inputs were

switched to obtain the opposite preferred direction, showed

qualitatively similar results, i.e. the synaptic mechanisms could

be configured to produce DS in any arbitrary direction for a given

morphology.

Channel kinetics and densities
We set the channel density for each morphological region with

fast inactivating Na, Kdr, transient KA, high-threshold CaL, Ih,

and KCa channels similar to previous models [28,30,48,49]

(Table 1). We set reversal potentials for Na+ at +65mV [50] and
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for K+ at 2100mV, which approximated Goldman-Hodgkin-Katz

(GHK) potentials calculated for the channel permeabilities

assumed in the simulation from the internal recording electrode

solution and the external Ames medium [44,51]. The somatic and

dendritic Na+ channel densities were encapsulated by two separate

parameters. We calibrated these parameters against phase plots

from physiological data from rabbit. In order to allow dendritic

spikes to initiate and propagate to the soma, the Na-channel

density on the dendrites was increased beyond that necessary to

produce somatic spike back-propagation into the dendrites [26–

30]. To generate realistic peak values of dV/dt during the rising

phase of a somatic spike we reduced the Na+ channel density in

the soma and hillock while preserving relatively high dendritic Na+

channel densities. To match the physiological data, we slightly

altered channel parameters such as the activation and inactivation

offsets, and rate multipliers (see below). The channel kinetics were

normalized in the simulator software to 22uC, and we took a Q10

value of 2.3 for Na+ channel activation as an overall temperature

coefficient to match channel kinetics at 35uC [48].

Sodium channel type: Nav1.2 vs. Nav1.6
Recent immunocytochemical evidence shows that Nav1.2

channels are initially expressed at the thin segment during early

development but later replaced by Nav1.6 channels [52]. Retinal

ganglion cells in Nav1.6-null mice exhibit impaired (lower) firing

rates, and apparently compensate for the missing channel type by

increasing the density of Nav1.2 channels [53]. These develop-

mental findings suggested that NaV1.6 channels play the dominant

role in spike generation. NaV1.6 channels are known to generate a

higher persistent current following a spike, leading to a faster

recovery from after-hyperpolarization (AHP), which might be

responsible for the shorter inter-spike interval observed in wild

type Nav1.6 mice [54]. Nav1.6 channels activate at more

hyperpolarized potentials than Nav1.2, which could affect spike

shape and rate [54,55]. We explored the differences between

Nav1.2 and Nav1.6 spike trains using preliminary single compart-

ment models containing either NaV1.2 and NaV1.6 sodium

channels. We found that spikes recorded in the DSGC in response

to somatic current injection exhibited a similar fast recovery from

AHP that we could only match in the model with the inclusion of

Nav1.6 channels.

To determine the best match using existing models of Na+

channel types for the spike shapes measured in the DSGC, we

approximated the kinetics of Nav1.2 and Nav1.6 channels with

Markov models [30,56,57]. We explored the differences between

Nav1.2 and Nav1.6 spike trains using preliminary single compart-

ment models containing either NaV1.2 or NaV1.6 sodium

channels.

Both models started with identical K channel densities and

kinetics, but one contained Nav1.2 channels, and the other Nav1.6

channels. To simplify initial calibration of the model, we started

with an existing Markov model of Nav1.2 Na-channel type and

developed it for an approximate match with the real cell’s spiking

properties, then set the NaV1.6 model with similar parameters. We

then applied a constant current input to the 2 models and adjusted

the densities and kinetics of the NaV1.6 channels to produce the

best match by eye for spike amplitude, after-hyperpolarization,

frequency, and phase plot. In this process we found that the

NaV1.6 type at any particular voltage was more activated and

therefore exhibited a larger open probability. To produce

comparable spike amplitude and frequency, we gave the NaV1.6

channel rate function an offset of 10mV depolarized from the

original Markov activation rate function [57], and to produce

comparable spike shapes, we set the NaV1.6 density 2–3 times

lower than the NaV1.2 density. We then took this set of parameters

as the initial basis for the spiking properties of our multi-

compartment model of the DSGC, and further modified them

during the process of Calibration.

Non-uniform channel densities
Because we found the distal regions of the DSGC to be more

excitable, we tested the effects of a higher proximal Na+ channel

density on dendritic spike propagation and the spatial distribution

of dendritic excitability. Recent evidence suggests that some retinal

ganglion cell dendrites have a high proximal Na+ channel density,

although it is not known whether these cells are DSGCs [58].

Previous modeling studies suggest that dendritic Na-channels are

necessary for normal spiking [28–30], so we set Na-channel

density as a gradient where Na+ channel density was high in the

proximal regions (gNa1.6 = 45mS/cm2) and declined linearly as a

function of integrated cable distance from the soma to a baseline

value (gNa1.6 = 20mS/cm2) for the most distal dendrites, and

explored the effect of this gradient on dendritic spiking. We

ensured that the minimum density of the most distal dendrites was

still high enough to allow initiation and propagation of dendritic

spikes (propagation efficiency ,1), as well as backpropagation of

somatic spikes [26].

In a series of initial simulations, we explored the electrotonic

properties of the dendritic tree. We found that as the distance from

the soma to a dendritic locus increased, the input resistance

increased, and the amplitude of a somatic PSP evoked from a

constant-strength synapse decreased [22,33,59]. This raised the

question of whether a compensatory mechanism could modulate

the PSP amplitude in the dendritic tips. Because there was

evidence for Ih currents in the recordings from the real DSGC, we

tested its effect in the dendrites. In other neural systems, an Ih

channel gradient with increasing density and decreasing activation

offset with distance from the soma can reduce such a tendency by

dampening excitability in distal dendrites [60]. To study the effects

of a non-uniform distribution of Ih on dendritic excitability, we ran

some simulations with dendritic Ih channel densities that started at

a baseline value close to the soma (gIh = 0.001mS/cm2) and

increased linearly with distance from soma to roughly 10 times the

Table 1. Values of the standard set of biophysical parameters
for regions of the DSGC.

Parameter Dendrites Soma Hillock Thin Segment Axon

Nav1.2 0 0 0 0 50

Nav1.6 35 4 4 100 0

Kdr 15 15 15 20 10

KA 35 35 35 0 0

KIh 0 0.09 0 0 0

sKCa1 0.125 0.125 0.125 0 0

sKCa2 0.05 0.05 0.05 0 0

Ca 0.0140 0.0140 0.0140 0 0

Vrev 20.075 20.100 20.100 20.100 20.100

Rm 35000 10000 10000 10000 10000

The table shows the parameters for the DSGC models that produced matching
F/I and phase plots for 5 different morphologies. In the leftmost column, Nav1.2,
Nav1.6, Kdr, KA, sKCa1, sKCa2, Ca are channel densities, given in mS/cm2. Vrev is the
leak reversal potential (volts), and was treated as a constrained variable when
calibrating spike initiation. Rm is membrane (leak) resistance in Vcm2. For all
morphologies except where specified otherwise, Ri = 200 Vcm.
doi:10.1371/journal.pcbi.1000899.t001
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baseline value (gIh = 0.01mS/cm2). In those simulations, in order

to prevent over-excitability from increased Ih in the distal regions

of the dendrites, we ramped the activation voltage of Ih channels

down with distance to 10mV more hyperpolarized in the distal

regions than in proximal regions [60].

Synaptic input
In most simulations, we included synaptic inputs from bipolar

and small-field inhibitory amacrine cells. The presynaptic cells

were modeled as passive single compartments controlled by a

voltage clamp directly set by the stimulus. Each presynaptic cell

compartment provided one synapse onto a dendritic compart-

ment of the DSGC. The stimulus for the presynaptic inhibitory

amacrine cells was typically spatially offset to simulate the

amacrine cells’ spatially offset inhibition. The presynaptic

voltage passed through threshold and exponential release

functions, and the resulting neurotransmitter release was low-

pass filtered (tau = 2ms, [30,45,46]). To implement noisy vesicle

release, the level of released transmitter controlled a nonstation-

ary Poisson (random) release function. The filtered transmitter

then passed to a postsynaptic ligand-gated channel, modeled as a

Markov 7-state AMPA receptor [61], or a Markov 5-state

GABAA receptor [62]. Binding of transmitter to these receptors

produced a postsynaptic conductance, whose maximum value

was set for each simulation, and ranged from 50pS to 5nS. The

reversal potentials for excitatory and inhibitory channels were

0 mV and 268 mV, respectively. Although bipolar and

amacrine cells presynaptic to ganglion cells typically make

several synaptic contacts [63–65], we included only 1 synapse

per presynaptic cell for simplicity. This was equivalent to several

synapses each with a proportionately smaller conductance within

the local dendritic region.

To simulate light stimulation over a receptive field, while

avoiding the complications of photo-transduction, light responses

of each bipolar and amacrine cell were generated via a

‘‘transduction element’’ which transformed a light intensity in

space I(x, y) to a voltage-clamped potential. For example, for

DS060825, ,220 excitatory cells and 180 inhibitory cells were

randomly distributed across the On or Off layer and synapically

connected to the DSGC’s dendritic field. Each transduction

element that connected to a cell was assigned a location in space

that corresponded to the soma of that cell. Excitation and

inhibition were controlled by independently-modulated light

stimuli mapped to the same dendritic field. Standard conductance

values used except where noted otherwise were excitatory, 80 pS/

synapse, inhibitory, 95 pS/synapse. Spatially leading or trailing

inhibition was simulated by delaying the onset of the excitatory or

inhibitory light stimulus, respectively. For a stimulus moving at

velocity vbar, delaying the onset of excitatory or inhibitory stimuli

by a time Dt produced a spatial offset of Dx = vbar/Dt.

Calibration
The biophysical parameters provided for each morphology were

calibrated to match the F/I curve, spike shape (via phase plot), and

ISI curve produced by current injection recordings in the cell from

which it was digitized (Figure 16). This produced channel kinetics

and densities mentioned in the ‘‘Channels’’ subsection (see above)

similar to previously published models of retinal ganglion cells

[28–30,48,49]. In total, five morphologies were modeled. The

channel densities thus obtained were closely constrained, because

Figure 16. Calibration of the model. Comparison of the results in a real DSGC (DS060825, black) with those obtained from the model (gray). (a)
Morphology digitized from confocal images of the tracer injected DSGC. The simulation contained ,750 compartments. (b) Somatic voltage
recording with current injected at constant current steps of 2200pA, 0, and 200pA for DS060825, and (c) for the model. (d) Spike frequency versus
injected current for DS060825 (slope = 0.29Hz/pA, black), and the model (slope = 0.31 Hz/pA, gray). (e) Phase plot for somatic spikes elicited by a
300pA current step in DS060825 and the model. (f) Instantaneous frequency (inverse of inter-spike interval) plotted against time for real cell (black)
and model (gray).
doi:10.1371/journal.pcbi.1000899.g016
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the dendritic Na- and K-channel density is inversely related to the

slope of the firing rate vs. input current function [28,48]. The

reason is that if the dendritic channel densities are low, there can

be no local dendritic spike initiation, which causes the charge from

one spike to surge into the dendrites and return quickly to the

soma to initiate another spike too soon. With active back-

propagation of spikes into the dendritic tree, the membrane gets

charged by the spike and then discharged by K-channels, so any

extra charge is prevented from propagating to the soma [28].

Ion channel densities and kinetics were calibrated to electro-

physiological and pharmacological data. When Ih channels were

blocked by application of ZD7288, the DSGC hyperpolarized to

10–20mV below resting potential (data not shown). To simulate this

effect, we set the reversal potential of the leak conductance to

2100mV, distributed Ih channels across the soma and dendrites,

and configured them and the other channel types to produce a

steady-state resting potential ranging from 270 to 280 mV.

Dendritic leak reversal potential was set to assist in calibrating the

spike rate, which is particularly sensitive to dendritic channel

activation in ganglion cells because their Na and K channels are

relatively inactive during the inter-spike interval [28,48,66]. We

calibrated voltage offsets and densities for Nav1.6 and Kdr channels

by matching phase plots of spikes from physiological recordings

(Figure 16e). The Nav1.6 and Kdr channel activation curves were

offset depolarized by 4.5mV and 17mV, respectively. Offsets that

significantly varied from these produced mismatched phase plots

and a voltage threshold for spiking that differed from the real data.

Calcium channels of both high-voltage-activated (HVA) L-type,

and transient low-voltage-activated (LVA) T-type have been found

in the soma and dendrites of retinal ganglion cells [67–70]. We

included L-type Ca2+ channels, modeled as a discrete Markov

channel with m3-like kinetics [71], and we set the Ca2+ channel

density uniform across the soma and dendrites. We modeled

intracellular [Ca2+] dynamics in the soma with 10 diffusion shells,

each 0.1mm thick, with a Ca2+ pump set to give a decay constant of

,100ms [30]. In the simulations [Ca2+]i increased linearly with

spike rate, as has been directly observed in DSGC dendrites [3].

In many types of ganglion cells, Ca2+-activated K channels

(KCa) reduce the firing rate during a prolonged current injection

[72]. We included two types of KCa channels, a small

conductance, high [Ca2+] affinity, voltage-independent sKCa

channel with an activation time constant near 100ms [73], and

another sKCa channel with a higher [Ca2+] affinity and activation

time constant near 300ms [74]. KCa channel densities were

distributed uniformly across the soma and dendrites, set to match

the cell’s frequency-current and ISI curves produced by spike

trains at various levels of current injection (Figure 16d–f). The

calcium system (Ca2+ channels, pump, and KCa channels) was

configured such that [Ca2+]i never exceeded 1 mM during

repetitive spiking [30]. Both KCa channel types were active during

the inter-spike interval but did not significantly affect spike shape.

Pre- and postsynaptic DS mechanism
In some simulations, we added excitatory and inhibitory synaptic

input from a moving bar stimulus (vbar = 1000mm/s), calibrated to

evoke a response similar to physiological data (see above, and

Figures 6, 11a,b). We adjusted the spatial separation of the excitatory

and inhibitory stimulus components (see ‘‘Synaptic Input’’) and their

corresponding synaptic conductances to approximate the wave

shapes of currents (Vhold = 275 and 0 mV) recorded in a typical

DSGC. We set the rise time for postsynaptic potentials (PSPs) to

,1 ms and the time constant of decay for EPSCs and IPSCs to 50ms.

For simulations of bar sweeps in 8 directions, we modeled the

presynaptic mechanism with overlapping excitatory and inhibitory

synapses. The synaptic strength per synapse for excitation (ge) and

inhibition (gi) in each direction h was computed as:

ge~gbase
e z cos h{hpref

� �
Dgmax

e

gi~gbase
i z cos h{hpref

� �
Dgmax

i

The equations allowed for an arbitrary pref direction to be

assigned, typically hpref ~00. For postsynaptic inhibition, we used a

similar equation involving the onset of a temporally delayed

inhibition instead of conductance strength:

tinhibition~ cos
h{hpref

2

� �
Dtmax

where Dtmax is maximum separation in seconds between the onset

of excitation and the onset of inhibition. Given a velocity v, a

temporal offset of tinhibition produced a spatial offset of

Dx~vtinhibition.

Measurement of DS index and directional difference
At a given locus we quantified the direction selectivity of the

response by stimulating at evenly-spaced angles distributed over

360 degrees. At each angle the response comprised a vector with

length equal to the response amplitude and direction equal to the

stimulus direction:

DS~
D
D
D

P
~xxhP
xhD

DD

where ~xxh is the spike or peak PSP response vector for a bar swept

at angle h, and xh is the magnitude of the response. The vector

sum represented the directional response, and its length,

normalized by the sum of response amplitudes, represented the

‘‘DS index’’ or DSI, and ranged from 0 to 1 [3,7]. For comparing

PSP and spiking responses, the peak PSP was computed by first

digitally removing spikes (‘‘spike-blanking’’) [3]. For some tests, we

calculated the directional difference between PSPs as the peak

amplitude of the preferred direction PSP minus the peak

amplitude of the null direction PSP.

Accuracy of synaptic conductance recorded in DSGC
soma

In order to determine how postsynaptic inhibition suppresses

spikes in the DSGC during null-direction stimulation, we first

attempted to determine the magnitude of the inhibitory synaptic

conductances as measured from the soma. Excitatory and

inhibitory synaptic conductance components are often estimated

from the currents recorded at the excitatory and inhibitory

reversal potentials (e.g. [17]), or by measuring currents over a

range of holding potentials and calculating the excitatory and

inhibitory synaptic conductances from the synaptic current-voltage

relation [6,7]. With either approach, incomplete space-clamp

inevitably leads to errors in the magnitudes of the conductance

estimates [32]. To investigate how estimates of the synaptic

conductance derived from recordings at the soma deviate from

actual conductances, we simulated synaptic input to the DSGC

model and estimated the conductances during somatic voltage

clamp (Figure 17).

During a small voltage step, accurately fitting the capacitive

transient in the DSGC requires a sum of exponentials, implying
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that the cell is not isopotential [7]. We stimulated a distal area with

a spot of co-localized excitatory and inhibitory input, and verified

that the dendrites were not isopotential with the soma (Figure 2a).

When the soma was voltage clamped at holding potentials above

or below resting potential, current leaked out through the

dendrites and distal current flow was impeded by axial resistance,

causing a voltage difference in the distal dendrites. At more

depolarized holding potentials the model was less isopotential, and

the postsynaptic current produced by the spot, computed by

summing all individual synaptic currents, was larger than the

synaptic currents recorded at the soma. This produced a lower I–

V slope at each time point during the synaptic response, which led

to a more depolarized synaptic reversal potential estimate

(Figure 2c) and an underestimate of the total conductance

(Figure 17d, black). For this spot stimulus, the excitatory and

inhibitory synaptic conductances were underestimated by factors

of ,40% and ,50%, respectively (Figure 17d, red, blue).

Inhibitory conductances were underestimated more than excit-

atory conductances because space clamp errors were greater at

depolarized clamp potentials, leading to a lower slope on the I/V

plot and a reversal potential more positive than expected. A more

positive synaptic reversal potential is interpreted as a relatively

larger excitatory component or smaller inhibitory component.

When the spot of synaptic input was localized over the soma and

proximal dendrites, errors in the synaptic conductance estimates

were minimal. In a similar model using a moving bar, the synaptic

conductances were under-estimated by a similar amount in the

distal dendrites and the soma.

Supporting Information

Video S1 Movie of the simulation of the DSGC, showing

dendritic spike initiation, forward propagation to the soma, and

back propagation to the remainder of the dendritic tree.

Explanatory text is included in the movie. The movie is in

H.264 MPEG-4 format.

Found at: doi:10.1371/journal.pcbi.1000899.s001 (7.54 MB

MOV)

Acknowledgments

We thank Richard Masland, Thomas Münch, and Thomas Euler for

helpful discussions.

Author Contributions

Conceived and designed the experiments: MJS RGS WRT. Performed the

experiments: MJS NO. Analyzed the data: MJS. Wrote the paper: RGS

WRT.

References

1. Barlow HB, Hill RM, Levick WR (1964) Retinal ganglion cells responding selectively

to direction and speed of image motion in the rabbit. J Physiol 173: 377–407.

2. Barlow HB, Levick WR (1965) The mechanism of directionally selective units in

rabbit’s retina. J Physiol 178: 477–504.

3. Oesch N, Euler T, Taylor WR (2005) Direction-selective dendritic action

potentials in rabbit retina. Neuron 47: 739–750.
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