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Price-Maker Economic Bidding in
Two-Settlement Pool-Based Markets:
The Case of Time-Shiftable Loads

Mahdi Kohansal, Student Member, IEEE, and Hamed Mohsenian-Rad, Senior Member, IEEE

Abstract—In this paper, a new scenario-based stochastic op-
timization framework is proposed for price-maker economic
bidding in day-ahead and real-time markets. The presented
methodology is general and can be applied to both demand and
supply bids. That is, no restrictive assumptions are made on the
characteristics of the pool and its agents. However, our focus is
on the operation of time-shiftable loads with deadlines, because
they play a central role in creating load flexibility and enhancing
demand response and peak-load shaving programs. Both basic
and complex time-shiftable load types are addressed, where the
latter includes time-shiftable loads that are uninterruptible, have
per-time-slot consumption limits or ramp constraints, or comprise
several smaller time-shiftable subloads. Four innovative analytical
steps are presented in order to transform the originally nonlinear
and hard-to-solve price-maker economic bidding optimization
problem into a tractable mixed-integer linear program. Accord-
ingly, the global optimal solutions are found for the price and
energy bids within a relatively short amount of computational
time. A detailed illustrative case study along with multiple case
studies based on the California energy market data are presented.
It is observed that the proposed optimal price-maker economic
bidding approach outperforms optimal price-maker self-sched-
uling as well as even-load-distribution.
Index Terms—Day-ahead market, demand response, energy

bids, price-maker economic bidding, price bids, real-time market,
stochastic mixed-integer linear programming, time-shiftable
loads.

NOMENCLATURE

Number of daily market intervals.
Index of time.
Index of random scenario.
Index of sub-loads.
Indexes of steps in price quota curves.
Time-shiftable load timing parameters.
Time-shiftable load energy usage parameter.
Energy bid to day-ahead market.
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Energy bid to real-time market.
Price bid submitted to the day-ahead market.
Cleared price in day-ahead market.
Cleared price in real-time market.
Dispatched energy for economic bid.
Dispatched energy for self-schedule bid.

th Maximum day-ahead cleared energy at a price.
Minimum price at each step of function th
Width of each step in function th.
Minimum energy at each step in function .
Width of each step in function .
Minimum energy at each step in function .
Width of each step in function .
On and off status of a time-shiftable load.
Total cleared energy in two-settlement markets.
Minimum consumption level.
Maximum consumption level.
Maximum ramp-down rate.
Maximum ramp-up rate.
Binary auxiliary variables.
Continuous auxiliary variables.
Energy procurement cost at day-ahead market.

I. INTRODUCTION

T IME-SHIFTABLE loads, a.k.a. deferrable loads with
deadlines, play a central role in creating load flexi-

bility and enhancing demand response and peak-load shaving
programs. Some examples of time-shiftable loads include:
charging plug-in electric vehicles [1], [2], irrigation pumps [3],
batch processes in data centers and computer servers [4]–[6],
intelligent pools [7], water heaters [8], industrial equipment in
process control and manufacturing [9], [10], and various home
appliances such as washing machine, dryer, and dish-washer
[11]–[16].
Recent efforts have been made to incorporate time-shiftable

loads into the wholesale electricity markets [17], [18]–[20].
For example, the problem of aggregating residential or other
time-shiftable loads using utility-driven incentives is discussed
in [17], [20]. [21]. Optimal demand bidding for time-shiftable
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loads using dynamic programming is presented in [22]–[24],
where the time shiftable load of interest is assumed to be
price-taker. That is, they are assumed to be relatively small so
that their operation does not have impact on the cleared market
price in the day-ahead or real-time markets. In [25], [26],
the authors address wholesale electricity market participation
of large and price-maker consumers with time-shiftable and
dispatchable loads. However, the focus is on self-scheduling
operation. That is, the load entity is assumed to submit only
energy bids, but not price bids. As a result, power procurement
is not subject to any condition on the clearing market price.

A. Comparison With Related Work
In this paper, our focus is on price-maker economic bidding

for time-shiftable loads. Unlike in [22]–[24], we do consider
the size of the load and hence the impact of demand bids on
the cleared market price. Also, unlike in [25], [26], we address
the more general case where the time-shiftable load submits not
only energy bids but also price bids. Accordingly, since an eco-
nomic demand bid is not cleared in the day-ahead market if
its price component is lower than the cleared market price, our
focus is on two-settlement markets, where energy is procured
from both day-ahead and real-time markets [27]–[29].
Besides the literature on time-shiftable loads, this paper is

also comparable with the literature on price-maker electricity
market participation, e.g., for generating companies. In partic-
ular, on the methodology side, this paper is a direct and major
extension of the analysis in [30], where the authors presented a
model for price-maker self-scheduling of generating companies
in a pool-based electricity market. As a result, in principle, our
proposed price-maker economic bidding approach is applicable
to not just time-shiftable loads but also generating companies
or other types of market participants such as in the examples in
[30], and its related studies in [31]–[34].

B. Summary of Technical Contributions
We can summarize the contributions in this paper as follows:
• A new scenario-based stochastic optimization framework
is proposed for price-maker economic bidding in coupled
day-ahead and real-time markets. Without loss of gener-
ality, the focus is on time-shiftable loads with deadlines.
Besides their core time-flexibility features, other charac-
teristics of time-shiftable loads are also considered, e.g.,
whether the time-shiftable load is uninterruptible, has per-
time-slot consumption limits or ramp constraints, or com-
prises several smaller time-shiftable subloads.

• The analysis in this paper advances the existing price-
taker results in [22], because here we consider price-maker
market participation of time-shiftable loads. This study
also advances the existing self-scheduling results in [30],
because here we consider economic bidding.

• Four innovative analytical steps are presented in order
to transform the originally nonlinear and hard-to-solve
price-maker economic bidding optimization problem into
a tractable mixed-integer linear program. Accordingly, we
find the global optimal solutions for the price and energy
bids to day-ahead market and the energy bids to real-time
market within a short amount of computational time.

• A detailed illustrative example and also multiple case
studies based on the California energy market data are
presented. The impact of different market scenarios are
assessed. The performance is compared with optimal
price-maker self-scheduling and even-load-distribution.
The proposed design outperforms both of these method.

II. PROBLEM STATEMENT

A. Two-Settlement Electricity Market
In a two-settlement wholesale electricity market, e.g., in

California [27], Pennsylvania-Jersey-Maryland [29], and Texas
[28], energy is traded in both day-ahead and real-time markets.
Buyers and sellers participate in these markets by submitting
demand and supply bids, respectively. The bids that are sub-
mitted to the day-ahead market indicate an energy quantity and
possibly also a price quantity. Following the terminology that is
used in the California energy market, we refer to a bid without
price quantity as Self-Schedule and a bid with price quantity
as Economic [27]. An Economic bid indicates that the buyer
(seller) is willing to purchase (sell) the given quantity of energy
only if the price is less (more) than or equal to the price bid.
A Self-Schedule bid indicates that the buyer (seller) is willing
to purchase (sell) the given quantity of energy, regardless of
the price. For instance, 51% of the total submitted supply bid
capacity and 11% of the total submitted demand bid capacity
in California during January 2014 was of type Economic [35].
Mathematically, a Self-Schedule bid is a special case of an
Economic bid with an infinite price quantity. As a result, there
are more energy cost minimization opportunities for loads in
Economic bidding than Self-Schedule bidding. The demand
bids that are submitted (or metered) to the real-time market
only indicate energy quantities. That is, they are always of type
Self-Schedule [27].

B. Day-Ahead Market
Let denote the number of daily market intervals. For ex-

ample, in an hourly market, we have . At each time
slot , let and denote the energy bid and the price bid that
are submitted to the day-ahead market, respectively. The market
outcome depends on not only the bids, but also the market price
quota curve1 [30], [36], as shown in Fig. 1. There are one self-
schedule and two economic bids shown in this figure. The self-
schedule bid does not include a price component; therefore, it is
a straight vertical line. Moving this line towards left or right can
affect the price, as explained in the price-maker self-scheduling
analysis in [30]. In contrast, price-maker economic bids have
both energy and price components. As a result, they appear in

1For a given hour, the quota of a price maker generator or load is defined
as the amount of power that it generates or consumes in that hour. The curve
that expresses how the market-clearing price changes as this quota changes is
called residual generation/demand curve [36] or simply price quota curve [30].
While the price quota curve is step-wise monotonically decreasing with respect
to generation level for a price maker generator, it is step-wise monotonically
increasing with respect to consumption level for a price maker consumer. Price
quota curves are stepwise because the supply/demand bids are assumed to be
blocks of generation/load at given prices [30]. These curves embody the effects
of all interactions with competitors and the market rules [30], [36]. The price
quota curves of a price maker generator or load can be obtained by either market
simulation or using forecasting procedures [36], [37].
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Fig. 1. Example for price-maker self-scheduling and price-maker economic
bidding for a given price quota curve in a pool-based market.

form of step functions and they affect not only the price but also
the amount of cleared energy quality, as shown in Fig. 2(a) and
(b), respectively. In fact, under price-maker economic bidding,
the clearedmarket price and the cleared energy quantity are two-
dimensional functions and , respectively.
For each price bid , the cleared market price is a
step-wise increasing function of energy bid . Also, for each
price bid , the cleared energy quantity is a straight
identity line that is saturated beyond a certain threshold. Such
threshold increases as the price bid increases, allowing larger
energy bids to be cleared in the day-ahead market. For the ex-
ample in Fig. 2, if the energy bid is MW and the price
bid is $/MW, then we have $/MW
and MW. If MW and $/MW,
then we have $/MW and MW.
These numbers are marked on Fig. 2 for clarification.

C. Real-Time Market

Recall from Section II-A that the demand bids in real-time
markets do not indicate any price quantity. In fact, in prac-
tice, the demand is only metered and then the payments cor-
responding to the real-time markets are calculated accordingly
[38]. At each time slot , let denote the energy bid that is sub-
mitted (or metered) to the real-time market. The cleared market
price and the cleared energy quantity are modeled as one-dimen-
sional functions and , respectively. The former is
a step-wise increasing function of energy bid . The latter is
simply a straight identity line, i.e., .

D. Time-Shiftable Load

A time-shiftable load is a task that requires a certain total en-
ergy to finish, but its operation can be scheduled any time within
a pre-determined tolerable time frame, where the end of such
time frame is the deadline to finish operation. As we explained
in Section I, time-shiftable loads have recently received a great
deal of attention due to their role in demand response programs,
e.g., see [1]–[15]. A time-shiftable load is modeled with at least
three parameters , and . Parameters and indicate the

Fig. 2. Example for the market outcome under price-maker economic bidding
for two different price bids: (a) cleared price of electricity; (b) cleared energy
quantity. Here, the price quota curve is the same as the one in Fig. 1.

beginning and the end of the time interval at which the oper-
ation of the load can be scheduled, where .
A higher indicates more time flexibility. Parameter de-
notes the total energy that must be consumed in order to finish
the time-shiftable task of interest.
The above model describes a time-shiftable load in its most

generic form. However, in general, a time-shiftable load may
have other characteristics, including inter-temporal dynamics,
or other types of constraints. Several of such additional charac-
teristics will be discussed in details later in Section IV.

E. Optimization Problem

In practice, market participation is prone to uncertainty. Let
denote the number of random market scenarios. At each time

slot and for each scenario , the multiplications
and indicate the cost of

power procurement from the day-ahead market and the
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real-time market, respectively. The price-maker economic bid-
ding problem for time-shiftable loads can be formulated as

(1)

where the optimization variables are , and for any
time slot and any market scenario . The objective in (1) is
to minimize the expected value of the total energy expenditure
to finish the task. The equality constraints assure that for all
scenarios, the total energy purchased matches the target energy
level . Note that, the energy bids to real-time market act as
recourse variables [39], [40]. As a result, they are specific to
each scenario to purchase a total of
MWh energy from the real-time market under scenario .
The nonlinear mixed-integer stochastic optimization problem

in (1) is difficult to solve. In fact, it is recently shown in [22] that
even if the time-shiftable load is small and price-taker, i.e.,
and are independent of the bids, then solving problem (1)
is still a challenging task due to the nonlinearity in .
Nevertheless, we will next present an innovative method to find
the global optimal solution of problem (1) within a short amount
of computational time.

III. PROPOSED SOLUTION METHOD

In this section, we explain how we can reformulate problem
(1) as a mixed-integer linear program. This is done by taking
four key steps. The reformulated optimization problem is then
solved efficiently using various mixed-integer linear program-
ming solvers, such as CPLEX [41] or MOSEK [42].

A. Problem Reformulation Steps

Step 1: At each time slot and for each scenario , we define
as the maximum energy quantity that can be cleared in

the day-ahead market when the price bid is . For example,
from Fig. 2(b), we have MWh. This is because
the cleared energy curve for any bid with is bounded
by 15 MWh. In other words, if the time-shiftable load seeks to
procure more than 15 MWh, then it must submit a price bid that
is higher than $36. As another example, we have
MWh. Amethod to model will be provided later in Step
3. However, for now, assume that the value of is given
for each price bid . We can write

(2)

In other words, we have

(3)

Next, we define a new auxiliary variable as

(4)

From (2)–(4), we have

(5)
and

(6)

Interestingly, for any time slot and any market scenario , the
relationships in (5) and (6) are equivalent to

(7)
(8)
(9)

where is a large number compared to load size . To show the
above, we note that, if , then (8) and (9) become

(10)
(11)

The lower bound and the upper bound in (10) are equal. Also,
since is a large number, the lower bound constraint in (11) is
not binding. Therefore, we can conclude that the relationship in
(5) holds. If , then (8) and (9) become

(12)
(13)

The lower bound constraint in (11) is not binding. From this and
because the lower bound and the upper bound in (10) are equal,
we can conclude the relationship in (6).
Step 2: At each time slot and for each scenario , the cleared

market price in the day-ahead market is obtained as

(14)

where is the price quota curve for an infinite price
bid, i.e., the price curve under Self-Scheduling [30]. Next, we
note that the cost of power procurement from the day-ahead
market at time slot and under scenario is modeled as

(15)

From (2) and (14), we can rewrite the above expression as

(16)

If , then . Accord-
ingly, we have . Also, if

, then . Accordingly, we have
. Therefore, we can rewrite (16) as

(17)

From (4), (16), and (17), we have

(18)
and

(19)
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Again, for any time slot and any market scenario , the rela-
tionships in (18) and (19) are equivalent to (7) and

(20)
(21)

where is again a large number. To show the above equiva-
lence, we note that if , then (20) and (21) become

(22)
(23)

The lower bound and the upper bound in (22) are equal. Also,
since is a large number, the lower bound constraint in (23) is
not binding. Therefore, we can conclude that the relationship in
(18) holds. If , then (20) and (21) become

(24)
(25)

The lower bound constraint in (24) is not binding. From this and
because the lower bound and the upper bound in (25) are equal,
we can conclude the relationship in (19).
Step 3: At each time slot and for each scenario , the

threshold is a step-wise linear function of price bid .
For example, in Fig. 1, is 0 for any , it is 8 for
any , it is 15 for any , and so on
and so forth. Following the general methodology in [30] for
modeling step-wise linear functions, we can write

(26)

(27)

where
(28)
(29)

(30)

Here, is the number of price steps in the step-wise linear
function , parameter is the minimum price in step
number , parameter is the cleared energy in step number
, parameter is the width of step number and

are auxiliary variables. For example, in Fig. 1, we have

, etc. We can also write

(31)

Step 4: Finally, at each time slot and for each scenario ,
we can again adjust the modeling approach in [30] and write

(32)

(33)

and

(34)

(35)

where
(36)
(37)
(38)
(39)

(40)

(41)

Here, parameters , and characterize the step-
wise linear day-ahead price quota curve under Self-
Schedule bidding; and , and characterize the
step-wise linear real-time price quota curve . For ex-
ample, based on the curves in Figs. 1 and 2, we have

, etc.

B. Resulted Mixed-Integer Linear Program
After applying the changes in the four steps in Section III-A,

we can reformulate optimization problem (1) as
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(42)

where the optimization variables are
, and for any

time slot , any market scenario , and any step number . The
problem in (42) is a mixed-integer linear program.

IV. MORE COMPLEX TIME-SHIFTABLE LOADS
The model that we used in our analysis so far describes a

time-shiftable load in its most generic form. In this section, we
explain how other characteristics of time-shiftable loads can
also be incorporated into the analysis. More specifically, we
show that the optimal bidding framework in this paper can in-
clude any other feature of time-shiftable loads, as long as the
feature can be modeled as linear mixed-integer constraints.

A. Per-Time-Slot Consumption Limits
Some time-shiftable loads may have limitations on their con-

sumption level at each time slot. Let and denote
the minimum and maximum consumption levels that the time-
shiftable load of interest can support. We must have

(43)

where for each time slot and random scenario , we have

(44)

and is a new binary variable to indicate whether the load is
switched “on” or “off” at time slot and under scenario . This
new variable will be useful also later in Section IV-C.

B. Ramp Constraints
The ramp up and ramp down constraints do not allow the

time-shiftable load to change its consumption level faster than
certain rates within two consecutive time slots:

(45a)
(45b)

where and denote the maximum ramp up and max-
imum ramp down rates, respectively. Note that the constraints
in (45) address one type of inter-temporal dependency in time-
shiftable loads. Another type is discussed next.

C. Uninterruptible Loads
If a time-shiftable load is uninterruptible, then as soon as it

switches “on” to start operation, it must continue its operation
until it finishes its intended task. Based on the notations that we
defined in Section IV-A, the following constraints must hold for
an uninterruptable time-shiftable load:

(46)

From (46), at time slot and under scenario , we can choose
only if either , i.e., the operation of the

load continues in the next time slot, or , i.e., the
operation of the load finishes by the end of the current time slot
[9]. Note that, the constraints in (46) address yet another type of
inter-temporal dependency in time-shiftable loads.

D. Aggregated Small Sub-Loads
In some cases, a time-shiftable load may consist of several

smaller time-shiftable subloads or subtasks [22]. In that case,
besides selecting the day-ahead and real-time market bids, we
must also optimally schedule the operation of all subloads. Let

denote the number of time-shiftable subloads. For each
subload , let and denote the beginning and
the end of the time interval at which the subload can be sched-
uled. Also let denote the total energy that must be consumed
in order to finish the operation of subload . We can incorpo-
rate the problem of scheduling subloads by adding the following
constraints into the problem formulation:

(47)

(48)

Note that, if there is only one subload, i.e., , then (47)
reduces to (44); and (48) reduces to the first constraint in (42).

V. CASE STUDIES

A. Case Study 1: A Detailed Illustrative Example
In this section, we present a detailed illustrative example.

Suppose we would like to procure energy for a time-shiftable
load with start time , deadline , and total
energy consumption MWh. The uncertainty in the elec-
tricity market is modeled using scenarios.
1) Basic Time-Shiftable Loads: First, consider the most

generic time-shiftable load model in Section II-D. The price
quota curves for the day-ahead and the real-time markets and
the corresponding optimal bids are shown in Fig. 3. These op-
timal solutions are first obtained by solving the mixed-integer
linear program in (42) and then the results are verified using
exhaustive search. Using a computer with a 2.40-GHz CPU
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Fig. 3. Price quota curves and optimal bids for Case Study 1, where the time-
shiftable load has its basic features as addressed in Section V-A1. Sub-figures
(a), (c), (e), (g), (i), and (k) correspond to the day-ahead market and sub-figures
(b), (d), (f), (h), (j), and (l) correspond to the real-time market.

and 80 GB of shared RAM, the mixed-integer linear program
in (42) was solved in less than 1 second. However, it took
multiple days for the exhaustive search with several for loops
to finish the search and give the exact same solution.
From Fig. 3, we can see that the bidding outcome and the

schedule of the time-shiftable load across time slots highly de-

Fig. 4. Cost of energy procurement for Case Study 1 when the time-shiftable
has (a) per-time-slot consumption limits and (b) ramp constraints.

pends on the realization of the market scenario. For example, if
scenario occurs, then the power consumption at time slot

becomes 47MWh, out of which 20MWh is procured from
the day-ahead market at 24 $/MW and 27 MWh is procured
from the real-time market at 29 $/MW. In this scenario, because
the prices are high at time slot , no energy usage is sched-
uled at this time slot. Finally, the power consumption at time slot

and scenario is MWh, out of which 10
MWh is procured from the day-ahead market at 23 $/MW and
18MWh is procured from the real-timemarket at 25 $/MW. The
total cost of power purchase from the day-ahead market in this
scenario is .
Also, the total cost of power procurement from the real-time
market is obtained as .
We can similarly calculate the total cost of power procure-

ment from the day-ahead market and the total cost of power
procurement from the real-time market under scenario as
$1089 and $708, respectively. Therefore, the expected overall
cost of power procurement, i.e., the objective value in optimiza-
tion problem (1) becomes $1870. Note that if we use the price-
maker Self-Schedule bidding in [30], then the total expected
cost of power procurement becomes $1904, i.e., $34 higher than
our proposed price-maker economic bidding method. Also, if
we do even load distribution, i.e., we distribute the total load

MWh equally across the time-slots and
also equally across the day-ahead and real-time markets, then
the total expected cost of power procurement becomes $2169,
i.e., $299 higher than our proposed price-maker economic bid-
ding method.
2) Time-Shiftable Loads With Consumption Limits: Next,

we consider the basic time-shiftable load model, but we also
assume that there exist per-time-slot consumption limits as in
Section IV-A. The results are shown in Fig. 4(a), where
MWh and varies from 25 to 50 MWh. We can see

that the optimal energy procurement cost is high if the oper-
ation of the time-shiftable load is highly restricted due to the
per-time-slot power consumption constraints. However, as we
increase , the cost reduces and finally reaches its original
level as in Section V-A1, where is not binding.
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Fig. 5. Price quota curves and optimal bids for Case Study 1, where the time-
shiftable load uninterrupitble as addressed in Section V-A4. Sub-figures (a), (c),
(e), (g), (i), and (k) correspond to the day-ahead market and sub-figures (b), (d),
(f), (h), (j), and (l) correspond to the real-time market.

3) Time-Shiftable Loads With Ramp Constraints: Again,
consider the basic time-shiftable load model, but this time
assume that there exist ramp constraints as in Section IV-B.
The results are shown in Fig. 4(b), where vary
from 0 to 30 MWh. Note that, if , then
the load does not tolerate any inter-temporal variation. We can

Fig. 6. Procured energy for different time-shiftable sub-loads at different time
slots as in Section V-A5. (a) Scenario . (b) Scenario .

see that ramp constraints can significantly increase the energy
procurement cost. However, as we increase and ,
the cost reduces and finally reaches its original level as in
Section V-A1, where the ramp constraints are not binding.
4) Uninterruptible Time-Shiftable Loads: Recall from

Section IV-C that if a time-shiftable load is uninterruptible,
then it is still flexible with respect to its operation start time;
however, once it starts operation, it cannot be interrupted until
it finishes its task. Here, interruption is defined as selecting

, which requires choosing , i.e., switching
the load off. The optimal bids when the time-shiftable load is
uninterruptible is shown in Fig. 5, where . We can
see that, the time-shiftable load procures energy from all three
time slots, including the second time slot which has high prices.
This is because, unlike in Fig. 3, here, the operation cannot
be interrupted during the second time slot and then resumed
during the third time slot. Note that, since an uninterruptible
time-shiftable load is less flexible than a basic time-shiftable
load, it pays 14$ more for its energy procurement compared to
the case in Section V-A1.
5) Aggregated Time-Shiftable Subloads: To study the impact

of time-shiftable subloads on the choice of demand bids, the
total load MWh is now divided into three sub-loads as
follow: 1) , 2)

, and 3) . Fig. 6 shows
the procured energy for different loads at scenarios and

. We can see that the different start and end-times for
sub-loads affects the amount of total energy that needs to be
procured under each scenario and at each time slot.

B. Case Study 2: California Energy Market

In this section, we present some additional case studies, this
time based on the California energy market. To create the price
quota curves, we used the hourly generator bids data from the
public bids database in [35] at one dollar price bid resolution.
The day-ahead and real-time prices are also obtained from the
prices database in [35], where we averaged real-time market
prices in each hour to make them comparable with the hourly
price data from the day-ahead market. Finally, since the focus
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Fig. 7. Savings due to using optimal price-maker economic bidding over op-
timal price-maker self-scheduling. (a) Off-peak hours. (b) Peak hours.

in this paper is on pool-based markets, the grid topology and
transmission constraints are not considered in our simulations.
In total, we examined 10 cases. Each case has a time shiftable

load with GWh and market scenarios. For
Case 1, the three scenarios are based on the price and bid data
during January 1, 2014 to January 3, 2014. For Case 2, the three
scenarios are based on the price and bid data during January 4,
2014 to January 6, 2014. The rest of the cases are setup similarly,
all together using data for 30 days. For each case, three design
options are compared: 1) Optimal price-marker self-schedule
bidding, which is an extension of the design in [30] to both day-
ahead and real-timemarkets; 2) Optimal price-marker economic
bidding, which is based on the design in this paper; and 3) Even
load distribution, which distributes the load equally across time-
slots and markets.
The amount of savings due to using optimal price-maker eco-

nomic bidding over optimal price-maker self-schedule bidding
across the 10 cases are shown in Fig. 7(a) and (b), during some
off-peak hours from AM to PM and
also during some on-peak hours from PM to

PM, receptively. Similarly, the amount of savings
due to using optimal price-maker economic bidding over even
load distribution across the 10 cases are shown in Fig. 8.
Finally, the detailed simulation results for the example of

Case 1 during off-peak hours are shown in Figs. 9 and 10. We
can see major differences across the three designs, in terms
of both the average cleared energy and the average purchase
price. Note that, the averaging here is done across the
random market scenarios. For instance, on average, if optimal
price-maker economic bidding is employed, then 29.8%, 33.7%
and 36.5% of the total needed energy is purchased from the
day-ahead and real-time markets during hours 10:00 AM, 11:00
AM, and 12:00 PM, respectively. These percentages change to
30.6%, 38.1%, and 21.3% if optimal price-maker self-sched-
uling is being employed. As for the price results in Fig. 10,
an interesting observation is that optimal price-maker economic
bidding is more successful in smoothing down the prices across
the three operational hours and also to some extent across the
day-ahead and real-time markets.

Fig. 8. Savings due to using optimal price-maker economic bidding over even
load distribution. (a) Off-peak hours. (b) Peak hours.

Fig. 9. Comparison between the three designs in terms of average cleared en-
ergy for Case 1 during off-peak hours. (a) Optimal price-maker economic bid-
ding. (b) Optimal price-maker self-scheduling. (c) Even load distribution.

Fig. 10. Comparison between the three designs in terms of average purchase
price for Case 1 during off-peak hours. (a) Optimal price-maker economic bid-
ding. (b) Optimal price-maker self-scheduling. (c) Even load distribution.

Finally, the computation time of the proposed method versus
the number of random scenarios is shown in Table I. As one
would expect, increasing the number of random scenarios re-
sults in increasing the number of optimization variables, i.e., in-
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TABLE I
COMPUTATION TIME VERSUS THE NUMBER OF SCENARIOS

creasing the size of the optimization problem. Accordingly, the
computation time increases. When it comes to solving mixed-
integer linear programs, the computation time particularly de-
pends on the number of binary variables, because it indicates
the maximum branching steps needed when we use a branch and
bound algorithm [43]. From Table I, despite the increased com-
putational complexity, one can still use the proposed method in
this paper under larger sets of random scenarios. If needed, one
can lower the price resolution at price quota curve, e.g., by set-
ting resolution to $2 instead of $1, so as to decrease the number
of steps in the price quota curve in order to further lower the
computation time.

VI. CONCLUSION
We formulated and efficiently solved a new scenario-based

stochastic mixed-integer linear programming framework for
price-maker economic bidding of time-shiftable loads with
deadlines in day-ahead and real-time markets. On the applica-
tion side, the results in this paper extended some recent results
in price-taker operation of time-shiftable loads in wholesale
electricity markets. Both basic and complex time-shiftable load
types are addressed, where the latter includes time-shiftable
loads that are uninterruptible, have per-time-slot consump-
tion limits or ramp constraints, or comprise several smaller
time-shiftable subloads. On the methodology side, the re-
sults in this paper also extended the existing results on
price-maker self-scheduling of both loads and generators,
because price-maker self-scheduling is a restricted special
case of price-maker economic bidding. To investigate the
performance of our design, a highly detailed illustrative case
study along with multiple case studies based on the California
energy market data are presented. We showed that the proposed
optimal price-maker economic bidding approach outperforms
both optimal price-maker self-scheduling and even-load-distri-
bution.
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