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Abstract

A secure multi-party batch matrix multiplication problem (SMBMM) is considered, where

the goal is to allow a master to efficiently compute the pairwise products of two batches of

massive matrices, by distributing the computation across S servers. Any X colluding servers

gain no information about the input, and the master gains no additional information about the

input beyond the product. A solution called Generalized Cross Subspace Alignment codes with

Noise Alignment (GCSA- NA) is proposed in this work, based on cross-subspace alignment

codes. The state of art solution to SMBMM is a coding scheme called polynomial sharing (PS)

that was proposed by Nodehi and Maddah-Ali. GCSA-NA outperforms PS codes in several

key aspects — more efficient and secure inter-server communication, lower latency, flexible

inter-server network topology, efficient batch processing, and tolerance to stragglers. The idea

of noise alignment can also be combined with N-source Cross Subspace Alignment (N-CSA)

codes and fast matrix multiplication algorithms like Strassen’s construction. Moreover, noise

alignment can be applied to symmetric secure private information retrieval to achieve the

asymptotic capacity.

I. INTRODUCTION

Recent interest in coding for secure, private, and distributed computing combines a

variety of elements such as coded distributed massive matrix multiplication, straggler

tolerance, batch computing and private information retrieval [1]–[40]. These related

ideas converged recently in Generalized Cross Subspace Alignment (GCSA) codes pre-

sented in [40]. GCSA codes originated in the setting of secure private information
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retrieval [37] and have recently been developed further in [40] for applications to coded

distributed batch computation problems. GCSA codes generalize and improve upon the

state of art distributed computing schemes such as Polynomials codes [2], MatDot codes

and PolyDot codes [3], Generalized PolyDot codes [4] and Entangled Polynomial Codes

[5] that partition matrices into submatrices, as well as Lagrange Coded Computing [6],

[7] that allows batch processing of multiple computations.

As the next step in the expanding scope of coding for distributed computing, re-

cently in [41] Nodehi and Maddah-Ali explored its application to secure multiparty

computation [42]. Specifically, Nodehi et al. consider a system including N sources, S

servers and one master. Each source sends a coded function of its data (called a share)

to each server. The servers process their inputs and while doing so, may communicate

with each other. After that each server sends a message to the master, such that the

master can recover the required function of the source inputs. The input data must be

kept perfectly secure from the servers even if up to X of the servers collude among

themselves. The master must not gain any information about the input data beyond the

result. Nodehi et al. propose a scheme called polynomial sharing (PS), which admits

basic matrix operations such as addition and multiplication. By concatenating basic

operations, arbitrary polynomial function can be calculated. The PS scheme has a few

key limitations. It needs multiple rounds of communication among servers where every

server needs to send messages to every other server. This carries a high communica-

tion cost and requires the network topology among servers to be a complete graph

(otherwise data security may be compromised), does not tolerate stragglers, and does

not lend itself to batch processing. These aspects (batch processing, improved inter-

server communication efficiency, various network topologies) are highlighted as open

problems by Nodehi et al. in [41].

Since GCSA codes are particularly efficient at batch processing and already encompass

prior approaches to coded distributed computing, in this work we explore whether

GCSA codes can also be applied to the problem identified by Nodehi et al. In particular,

we focus on the problem of multiplication of two matrices. As it turns out, in this context

the answer is in the affirmative. Securing the data against any X colluding servers is

already possible with GCSA codes as shown in [40]. The only remaining challenge is

how to prevent the master from learning anything about the inputs besides the result of
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the computation. Let us refer to the additional terms that are contained in the answers

sent by the servers to the master, which may collectively reveal information about

the inputs beyond the result of the computation, as interference terms. To secure these

interference terms, we use the idea of Noise Alignment (NA) – the workers communicate

among themselves to share noise terms (unknown to the master) that are structured in

the same manner as the interfering terms. Because of their matching structures, when

added to the answer, the noise terms align perfectly with the interference terms and as

a result no information is leaked to the master about the input data besides the result

of the computation. Notably, the idea of noise alignment is not novel. While there are

superficial distinctions, noise alignment is used essentially in the same manner in [43].

The combination of GCSA codes with noise alignment, GCSA-NA in short, leads

to significant advantages over PS schemes. Foremost, because it uses GCSA codes, it

allows the benefits of batch processing as well as straggler robustness, neither of which

are available in the PS scheme of [41]. The only reason any inter-server communication

is needed in a GCSA-NA scheme is to share the aligned noise terms among the servers.

Since these terms do not depend on the data inputs, the inter-server communication in

a GCSA-NA scheme is secure in a stronger sense than possible with PS, i.e., even if all

inter-server communication is leaked, it can reveal nothing about the data inputs. In fact,

the inter-server communication can take place before the input data is determined, say

during off-peak hours. This directly leads to another advantage. The GCSA-NA scheme

allows the inter-server communication network graph to be any connected graph unlike

PS schemes which require a complete graph.

The rest of the paper is organized as follows. Section II presents the problem state-

ment. In Section III we state the main result and compare it with previous approaches.

A toy example is presented in Section IV. The construction and proof of GCSA-NA are

shown in Section V. Section VI concludes the paper.
Notation: For positive integers M,N (M < N ), [N ] stands for the set {1, 2, . . . , N} and

[M : N ] stands for the set {M,M+1, . . . , N}. For a set I = {i1, i2, . . . , iN}, XI denotes the
set {Xi1 , Xi2 , . . . , XiN}. The notation ⊗ denotes the Kronecker product of two matrices.
IN denotes the N × N identity matrix. T(X1, X2, · · · , XN) denotes the N × N lower
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triangular Toeplitz matrix, i.e.,

T(X1, X2, · · · , XN ) =




X1

X2 X1

...
. . . . . .

XN · · · X2 X1



.

For a matrix M , |M | denotes the number of elements in M . For a polynomial P ,

degα(P ) denotes the degree with respect to a variable α. Define the degree of the

zero polynomial as −1. The notation Õ(a log2 b) suppresses polylog terms. It may be

replaced with O(a log2 b) if the field F supports the Fast Fourier Transform (FFT), and

with O(a log2 b log log(b)) if it does not.

II. PROBLEM STATEMENT

Consider a system including 2 sources (A and B), S servers (workers) and one master,

as illustrated in Fig. 1. Each source is connected to every single server. Servers are

connected to each other, and all of the servers are connected to the master. All of these

links are secure and error free.

Source A and B independently generate sequences1 of L matrices, denoted as A =
(
A(1),A(2), . . . ,A(L)

)
, and B =

(
B(1),B(2), . . . ,B(L)

)
, respectively, such that ∀l ∈ [L],

A(l) ∈ Fλ×κ and B(l) ∈ Fκ×µ. The master is interested in the sequence of product matrices,

AB =
(
A(1)B(1),A(2)B(2), . . . ,A(L)B(L)

)
. The system operates in three phases: 1) sharing,

2) computation and communication, and 3) reconstruction.

1) Sharing: Each source encodes (encrypts) its matrices for the sth server as Ãs and

B̃s, so Ãs = fs(A,ZA), B̃s = gs(B,ZB), where ZA and ZB represent private randomness

(noise) generated by the source. The encoded matrices, Ãs, B̃s, are sent to the sth server.

2) Computation and Communication: Servers may send messages to other servers, and

process what they received from both the sources and other servers. Denote the com-

munication from Server s to Server s′ as Ms→s′ . Define Ms , {Ms′→s | s′ ∈ [S] \ {s}} as

the messages that Server s receives from other servers, and M , {Ms | s ∈ [S]} as the

total messages that all servers receive. After the communication among servers, each

server s computes a response Ys and sends it to the master. Ys is a function of Ãs, B̃s

1The batch size L can be chosen to be arbitrarily large by the coding algorithm.
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Source A

A =
(
A(1), . . . ,A(L)

)
,ZA

Source B

B =
(
B(1), . . . ,B(L)

)
,ZB

Server S

Server 1
· · ·

Server i1

· · ·

Server iX

· · ·

ÃS

Ã1 Ãi1

ÃiX

B̃1

B̃iX

B̃i1

B̃S

Master

Y1 Yi1

YiX

AB =
(
A(1)B(1), . . . ,A(L)B(L)

)

I(A,B;Y1, Y2, · · · , YS | AB) = 0

A total of R answers downloaded

X possible colluding servers

Fig. 1: The SMBMM problem. Sources generate matrices A = (A(1),A(2), · · · ,A(L)) with

separate noise ZA and B = (B(1),B(2), · · · ,B(L)) with separate noise ZB, and upload

information to S distributed servers in coded form Ã[S], B̃[S], respectively. Servers could send

to each other some messages. For security, any X colluding servers (e.g., Servers i1 to iX in the

figure) gain nothing about A,B. The sth server computes the answer Ys, which is a function

of all information available to it. For effective straggler (e.g., Server S in the figure) mitigation,

upon downloading answers from any R servers, where R < S, the master must be able to recover

the product AB = (A(1)B(1),A(2)B(2), . . . ,A(L)B(L)). For privacy, the master must not gain

any additional information about A,B beyond the desired product AB.

and Ms, i.e., Ys = hs(Ã
s, B̃s,Ms), where hs, s ∈ [S] are the functions used to produce

the answer, and we denote them collectively as h = (h1, h2, . . . , hS).

3) Reconstruction: The master downloads information from servers. Some servers may

fail to respond (or respond after the master executes the reconstruction), such servers

are called stragglers. The master decodes the sequence of product matrices AB based

on the information from the responsive servers, using a class of decoding functions

d = {dR | R ⊂ [S]} where dR is the decoding function used when the set of responsive

servers is R.

This scheme must satisfy three constraints.
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Correctness: The master must be able to recover the desired products AB, i.e.,

H(AB | YR) = 0, (1)

or equivalently AB = dR(YR), for some R.

Security & Strong Security: We first define security which is called privacy for workers

in [41]. The servers must remain oblivious to the content of the data A,B, even if X of

them collude. Formally, ∀X ⊂ [S], |X | ≤ X ,

I(A,B; ÃX , B̃X ,MX ) = 0, (2)

In this paper, strong security is also considered. It requires that the information trans-

mitted among servers is independent of data A,B and all the shares Ã[S], B̃[S], i.e.,

I(A,B, Ã[S], B̃[S];M) = 0. (3)

This property makes it possible that inter-server communications happen before receiv-

ing data from sources, and makes the server communication network topology more

flexible. Note that PS does not satisfy strong security because H (AB | M) = 0 in the

PS scheme.

Privacy: The master must not gain any additional information about A,B, beyond

the required product. Precisely,

I(A,B;Y1, Y2, · · · , YS | AB) = 0. (4)

This is the privacy for the master in [41].

We say that (f, g,h,d) form an SMBMM (Secure coded Multi-party Batch Matrix

Multiplication) code if it satisfies these three constraints. An SMBMM code is said to

be r-recoverable if the master is able to recover the desired products from the answers

obtained from any r servers. In particular, an SMBMM code (f, g,h,d) is r-recoverable if

for any R ⊂ [S], |R| = r, and for any realization of A, B, we have AB = dR(YR). Define

the recovery threshold R of an SMBMM code (f, g,h,d) to be the minimum integer r

such that the SMBMM code is r-recoverable.
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The communication cost of an SMBMM code is comprised of these parts: upload cost

of the sources, communication cost among the servers, and download cost of the master.

The (normalized)2 upload costs UA and UB are defined as follows.

UA =

∑
s∈[S] |Ãs|
Lλκ

, UB =

∑
s∈[S] |B̃s|
Lκµ

. (5)

Similarly, the (normalized) server communication cost CC and download cost D are

defined as follows.

CC =
|M|
Lλµ

, D = max
R,R⊂[S],|R|=R

∑
s∈R |Ys|
Lλµ

. (6)

Next let us consider the complexity of encoding, decoding and server computation.

Define the (normalized) computational complexity at each server, Cs, to be the order of

the number of arithmetic operations required to compute the function hs at each server,

normalized by L. Similarly, define the (normalized) encoding computational complexity

CeA for Ã[S] and CeB for B̃[S] as the order of the number of arithmetic operations required

to compute the functions f and g, respectively, each normalized by L. Finally, define the

(normalized) decoding computational complexity Cd to be the order of the number of

arithmetic operations required to compute dR(YR), maximized over R,R ⊂ [S], |R| = R,

and normalized by L. Note that normalization by batch-size L is needed to have fair

comparisons between batch processing approaches and individual matrix-partitioning

solutions per matrix multiplication.

III. MAIN RESULT

Our main result appears in the following theorem.

Theorem 1. For SMBMM over a field F with S servers, X-security, and positive integers

(`,Kc, p,m, n) such that m | λ, p | κ, n | µ and L = `Kc ≤ |F| − S, the GCSA-NA scheme

2We normalize source upload cost with the number of elements contained in the constituent matrices A,B. The

server communication cost and master download cost are normalized by the number of elements contained in the

desired product AB.
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presented in Section V is a solution, and its recovery threshold, cost, and complexity are listed

as follows.

Recovery Threshold: R = pmn(`+ 1)Kc + 2X − 1,

Source Upload Cost of Ã[S], B̃[S]: (UA, UB) =

(
S

Kcpm
,

S

Kcpn

)
,

Server Communication Cost: CC =
S − 1

`Kcmn
,

Master Download Cost: D =
R

`Kcmn
,

Source Encoding Complexity for Ã[S], B̃[S]: (CeA, CeB) =

(
Õ
(
λκS log2 S

Kcpm

)
, Õ
(
κµS log2 S

Kcpn

))
,

Server Computation Complexity: Cs = O
(

λκµ

Kcpmn

)
,

Master Decoding Complexity: Cd = Õ
(
λµp log2R

)
.

The following observations place the result of Theorem 1 in perspective.

1. GCSA-NA codes are based on the construction of GCSA codes from [40], combined

with the idea of noise-alignment (e.g., [43]). In turn, GCSA codes are based on a

combination of CSA codes for batch processing [40] and EP codes for matrix partitioning

[5]. CSA codes are themselves based on the idea of cross-subspace alignment (CSA) that

was introduced in the context of secure PIR [37]. It is a remarkable coincidence that while

the idea of CSA originated in the context of PIR [37], and Lagrange Coded Computing

was introduced in parallel independently in [6] for the context of coded computing, the

two approaches are essentially identical, with CSA codes being slightly more powerful

in the context of coded distributed matrix multiplication (CSA codes offer additional

improvements over LCC codes in terms of download cost [40]). Indeed, LCC codes for

batch matrix multiplication are recovered as a special case of CSA codes.

2. The idea of noise alignment can be applied to the N -CSA codes [40], for N -source

secure coded multi-party batch matrix computation. In [7], Strassen’s construction [44],

combined with LCC, are introduced for batch distributed matrix multiplication. Noise

alignment is also applicable to Strassen’s constructions (see Section VI). By setting

Kc = 1, ` = L and S = R, the construction of GCSA-NA codes, with a straightfor-

ward generalization, can be further modified to settle the asymptotic (the number of

message goes to infinity) capacity of symmetric X-secure T -private computation (and
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also the corresponding private information retrieval setting) [37]. However, the amount

of randomness required by the construction is not necessarily optimal. For example, it

is shown in [37] that by the achievable scheme for XSTPIR, symmetric security (privacy)

is automatically satisfied when T = 1, i.e., no randomness among servers is required.

Polynomial Sharing (PS [41]) GCSA-NA

Strong Security No Yes

Recovery Threshold (R) 2pmn+ 2X − 1 pmn(`+ 1)Kc + 2X − 1

Straggler Tolerance No (S = R) Yes. Tolerates S −R stragglers

Server Network Topology Complete Graph Any Connected Graph

Source Encoding

Complexity
(CeA, CeB)

(
Õ
(
λκS log2 S

pm

)
, Õ
(
κµS log2 S

pn

)) (
Õ
(
λκS log2 S
Kcpm

)
, Õ
(
κµS log2 S
Kcpn

))
Source Upload Cost (UA, UB)

(
S
pm
, S
pn

) (
S

Kcpm
, S
Kcpn

)
Server Communication Cost (CC) S(S−1)

mn
S−1

`Kcmn

Server Computation

Complexity
(Cs) O

(
λκµ
pmn

)
+O (λµ) + Õ

(
S log2 Sλµ

mn

)
O
(

λκµ
Kcpmn

)
+O

(
λµ

Kcmn

)
+ Õ

(
λµ log2 S
`Kcmn

)
+O

(
(S−1)λµ
mn

)
≈ O

(
λκµ
pmn

)
if κ

p
� S ≈ O

(
λκµ

Kcpmn

)
if κ

p
� S

Master Download Cost (D) mn+X
mn

R
`Kcmn

Master Decoding Complexity (Cd) Õ
(
λµ log2(mn+X)

)
Õ
(
λµp log2(R)

)
TABLE I: Performance Comparison of PS and GCSA-NA.

3. A side-by-side comparison of the GCSA-NA solution with polynomial sharing (PS)

appears in Table I. Because all inter-server communication is independent of input data,

GCSA-NA schemes are strongly secure, i.e., even if all inter-server communication is

leaked it does not compromise the security of input data. In GCSA-NA the inter-server

network graph can be any connected graph. This is not possible with PS. For example,

if the inter-server network graph is a star graph, then the hub server can decode AB

by monitoring all the inter-server communication in a PS scheme, violating the security

constraint. Unlike the PS scheme, in GCSA-NA, all inter-server communication can take

place during off-peak hours, even before the input data is generated, giving GCSA-

NA a significant latency advantage. Unlike PS where every server must communicate

with every server, i.e., S(S − 1) such inter-server communications must take place,

GCSA-NA only requires S−1 inter-server communications to propagate structured noise

terms across all servers. This improvement is shown numerically in Fig. 2a. The server
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computation complexity is also lower for the GCSA-NA scheme than the PS scheme.

This is because in PS, each server needs to multiply the two shares received from the

sources, calculate the shares for every other server and sum up all the shares from every

other server. However, in GCSA-NA, each server only needs to multiply the two shares

received from the sources and add noise (which can be precomputed during off-peak

hours). This advantage is particularly significant for large number of servers. The GCSA-

NA scheme naturally allows robustness to stragglers, which is particularly important

for massive matrix multiplications. Stragglers can be an especially significant concern

for PS because of the strongly sequential nature of multi-round computation that is

central to PS. This is because server failures between computation rounds disrupt the

computation sequence. Remarkably, Fig. 2a shows that the inter-server communication

cost of GCSA-NA is significantly better than PS even when GCSA-NA accommodates

stragglers (while PS does not).

When restricted to batch size 1, i.e., with ` = Kc = 1, GCSA-NA has the same recovery

threshold as PS. Now consider batch processing, i.e., batch size L > 1, e.g., with L =

Kc, ` = 1. PS can be applied to batch processing by repeating the scheme L times. Fig.

2b shows that the normalized server communication cost of GCSA-NA decreases as L

increases and is significantly less than that in PS. For the same number of servers S,

the upload cost of GCSA-NA is smaller by a factor of 1/Kc compared to PS. GCSA-NA

does have higher download cost and decoding complexity than PS by approximately a

factor of p, which depends on how the matrices are partitioned. If p is a small value,

e.g., p = 1, then the costs are quite similar. The improvement in download cost and

decoding complexity of PS by a factor of 1/p comes at the penalty of increased inter-

server communication cost by a factor of S. But since S ≥ R ≥ 2pmn + 2X − 1 ≥ p,

and typically S � p, the improvement is dominated by the penalty, so that overall the

communication cost of PS is still significantly higher.

IV. TOY EXAMPLE

Let us consider a toy example with parameters λ = κ = µ,m = n = 1, p = 2, l = 1, Kc =

2, X = 1 and S = R. Suppose matrices A,B ∈ Fλ×λ, and we wish to multiply matrix

A = [A1 A2] with matrix B =
[
BT

1 BT
2

]T
to compute the product AB = A1B1 + A2B2,
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Fig. 2: λ = κ = µ, p = m = n. (a) Server communication cost vs. partition size, given

L = 1 and X = 5. (b) Server communication cost vs. batch size, given p = 2 and X = 5.

where A1,A2 ∈ Fλ×λ2 ,B1,B2 ∈ Fλ
2
×λ. For this toy example we summarize both the

Polynomial Sharing approach [41], [45], [46], and our GCSA-NA approach.

A. Polynomial Sharing Solution

Polynomial sharing is based on EP code [5] . The given partitioning corresponds to

EP code construction for m = n = 1, p = 2, and we have

P = A1 + αA2, Q = αB1 + B2 (7)

=⇒ PQ = A1B2 + α(A1B1 + A2B2) + α2A2B1. (8)

To satisfy X = 1 security, PS includes noise with each share, i.e., Ã = P + α2ZA, B̃ =

Q + α2ZB, where α, Ã, B̃ are generic variables that should be replaced with αs, Ã
s, B̃s

for Server s, and α1, · · · , αS are distinct elements. Each server computes the product of
the shares that it receives, i.e.,

ÃB̃ = PQ+ α2PZB + α2ZAQ+ α4ZAZB (9)

= A1B2 + α(A1B1 + A2B2) + α2(A2B1 + A1Z
B + ZAB2) + α3(A2Z

B + ZAB1) + α4ZAZB . (10)

To secure inputs from the master, PS requires that every server sends to the master

only the desired term A1B1 + A2B2 by using secret sharing scheme among servers.
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Since degα(ÃB̃) = 4, A1B1 + A2B2 can be calculated from 5 distinct ÃB̃ according to

the Lagrange interpolation rules. In particular, there exist 5 constants r1, · · · , r5, such

that A1B1 +A2B2 =
∑

s∈[5] rsÃ
sB̃s. Consider Server s, it sends Ms→j = rsÃ

sB̃s +αjZs to

Server j, where Z1, · · · ,Z5 are i.i.d. uniform noise matrices. After Server s collects all

the shares Mj→s, it sums them up

Ys =
∑

j∈[5]

Mj→s =
∑

j∈[5]

rjÃ
jB̃j + αs

∑

j∈[5]

Zj = A1B1 + A2B2 + αs
∑

j∈[5]

Zj, (11)

and sends Ys to the master. Note that after receiving Mj→s for all j ∈ [5], Server s still

gains no information about the input data, which guarantees the security. However, it

does not satisfy strong security, because AB can be decoded based on Mj→s, j, s ∈ [5].

The master can decode AB after collecting 2 responses from servers.3 Note that PS

needs at least S = R = 5 servers, since 5 distinct ÃB̃ are required to obtain Ys.

B. GCSA-NA Solution

GCSA codes [40] can handle batch processing, therefore let us consider batch size 2

(` = 1, Kc = 2). Denote the second instance by A′,B′. Using CSA code,

P = A1 + (f − α)A2, Q = (f − α)B1 + B2. (12)

P ′ = A′1 + (f ′ − α)A′2, Q′ = (f ′ − α)B′1 + B′2. (13)

and the shares are constructed as follows,

Ã = ∆

(
P

(f − α)2
+

P ′

(f ′ − α)2

)
, B̃ =

Q

(f − α)2
+

Q′

(f ′ − α)2
(14)

where ∆ = (f − α)2(f ′ − α)2, and α, Ã, B̃ are generic variables that should be replaced

with αs, Ã
s, B̃s for Server s. Furthermore, f, f ′, α1, α2, · · · , αS are distinct elements. Each

server computes the product of the shares that it receives, i.e.,

ÃB̃ =
c0

(f − α)2
PQ+

c1

f − αPQ+
c′0

(f ′ − α)2
P ′Q′ +

c′1
f ′ − αP

′Q′ + I0 + αI1 + α2I2 (15)

=
c0A1B2

(f − α)2
+
c0A1B1 + c0A2B2 + c1A1B2

f − α +
c′0A

′
1B
′
2

(f ′ − α)2
+
c′0A

′
1B
′
1 + c′0A

′
2B
′
2 + c′1A

′
1B
′
2

f ′ − α
+ I0 + αI1 + α2I2, (16)

3In [46], for arbitrary polynomials, Ms→j = rsÃ
sB̃s + α2

jZs because Ys is forced to be casted in the form of

entangled polynomial sharing.
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where I0, I1, I2 are combinations of PQ,P ′Q′, PQ′, P ′Q and c0, c1, c
′
0, c
′
1 are constants. This

is the original GCSA code [40], and we need R = pmn((`+1)Kc−1)+p−1 = 7 responses

to recover the desired product.

Next, let us modify the scheme to make it X = 1 secure by including noise with each

share, i.e.,

Ã = ∆

(
P

(f − α)2
+

P ′

(f ′ − α)2
+ ZA

)
, B̃ =

Q

(f − α)2
+

Q′

(f ′ − α)2
+ ZB. (17)

=⇒ ÃB̃ =
c0PQ

(f − α)2
+
c1PQ

f − α +
c′0P

′Q′

(f ′ − α)2
+
c′1P

′Q′

f ′ − α +
4∑

i=0

αiIi. (18)

As a result of the added noise terms, the recovery threshold is now increased to 9.

Note that the term I4 contains only contributions from ∆ZAZB, i.e., this term leaks no

information about A,B matrices.

If the servers directly return their computed values of ÃB̃ to the master, then besides

the result of the computation some additional information about the input matrices

A,B may be leaked by the interference terms
(

c0

(f − α)2
+

c1

f − α

)
A1B2 +

(
c′0

(f ′ − α)2
+

c′1
f ′ − α

)
A′1B

′
2 +

3∑

i=0

αiIi (19)

which can be secured by the addition of aligned noise terms

Z̃ =

(
c0

(f − α)2
+

c1

f − α

)
Z +

(
c′0

(f ′ − α)2
+

c′1
f ′ − α

)
Z′ +

3∑

i=0

αiZi (20)

at each server so that the answer returned by each server to the master is ÃB̃+ Z̃. Here

Z,Z′,Z0,Z1,Z2,Z3 are i.i.d. uniform noise matrices, that can all be privately generated

by one server, who can then share their aligned form Z̃ with all other servers. This

sharing of Z̃ is the only inter-server communication needed in GCSA-NA. Since it is

independent of the inputs, it can be done during off-peak hours, thereby reducing the

latency of server computation. The strong security is also automatically satisfied.

V. CONSTRUCTION OF GCSA-NA

Now let us present the general construction. L = `Kc instances of A and B matrices

are split into ` groups. ∀l ∈ [`],∀k ∈ [Kc], denote

Al,k = A(Kc(l−1)+k), Bl,k = B(Kc(l−1)+k). (21)
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Further, each matrix Al,k is partitioned into m × p blocks and each matrix Bl,k is

partitioned into p× n blocks, i.e.,

Al,k =




Al,k
1,1 Al,k

1,2 · · · Al,k
1,p

Al,k
2,1 Al,k

2,2 · · · Al,k
2,p

...
...

...
...

Al,k
m,1 Al,k

m,2 · · · Al,k
m,p



,Bl,k =




Bl,k
1,1 Bl,k

1,2 · · · Bl,k
1,n

Bl,k
2,1 Bl,k

2,2 · · · Bl,k
2,n

...
...

...
...

Bl,k
p,1 Bl,k

p,2 · · · Bl,k
p,n



,

where
(
Al,k
i,j

)
i∈[m],j∈[p]

∈ F
λ
m
×κ
p and

(
Bl,k
i,j

)
i∈[m],j∈[p]

∈ F
κ
p
×µ
n .

Let f1,1, f1,2, · · · , f`,Kc , α1, α2, · · · , αS be (S +L) distinct elements from the field F. For

convenience, define

R′ = pmn, DE = max(pm, pmn− pm+ p)− 1, (22)

E = {p+ p(m′ − 1) + pm(n′′ − 1) | m′ ∈ [m], n′′ ∈ [n]} , (23)

∆l,Kc
s =

∏

k∈[Kc]

(fl,k − αs)R
′
,∀l ∈ [`],∀s ∈ [S]. (24)

Define cl,k,i, i ∈ {0, 1, · · · , R′(Kc − 1)} to be the coefficients satisfying

Ψl,k(α) =
∏

k′∈[Kc]\{k}

(α + (fl,k′ − fl,k))R
′
=

R′(Kc−1)∑

i=0

cl,k,iα
i,∀l ∈ [`],∀k ∈ [Kc], (25)

i.e., they are the coefficients of the polynomial Ψl,k(α) =
∏

k′∈[Kc]\{k} (α + (fl,k′ − fl,k))R
′
,

which is defined by its roots. Note that all the coefficients (cl,k,i)l∈[L],k∈[Kc],i∈{0,1,··· ,R′(Kc−1)},

α[S], (fl,k)l∈[L],k∈[K] are globally known.

A. Sharing

Firstly, each source encodes each constituent matrix blocks Al,k and Bl,k with Entan-

gled Polynomial code [5]. For all l ∈ [`], k ∈ [Kc], define

P l,k
s =

∑

m′∈[m]

∑

p′∈[p]

Al,k
m′,p′(fl,k − αs)p

′−1+p(m′−1), (26)

Ql,k
s =

∑

p′′∈[p]

∑

n′′∈[n]

Bl,k
p′′,n′′(fl,k − αs)p−p

′′+pm(n′′−1). (27)

Note that the original Entangled Polynomial code can be regarded as polynomials of

αs, and here for each (l, k), Entangled Polynomial code is constructed as polynomials

of (fl,k − αs).
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Each source generates `X independent random matrices, ZA =
{
ZA1,1, · · · ,ZA`,X

}
and

ZB =
{
ZB1,1, · · · ,ZB`,X

}
. The independence is established as follows.

H(ZA,ZB,A,B) = H(A) +H(B) +
∑

l∈[`],x∈[X]

H
(
ZAl,x
)

+
∑

l∈[`],x∈[X]

H
(
ZBl,x
)
. (28)

For all s ∈ [S], the shares of matrices A and B at the sth server are constructed as
Ãs = (Ãs1, Ã

s
2, . . . , Ã

s
`), B̃

s = (B̃s
1, B̃

s
2, . . . , B̃

s
` ), where for all l ∈ [`],

Ãsl = ∆l,Kc
s


 ∑

k∈[Kc]

P l,ks
(fl,k − αs)R′ +

∑

x∈[X]

αx−1
s ZAl,x


 , B̃sl =

∑

k∈[Kc]

Ql,ks
(fl,k − αs)R′ +

∑

x∈[X]

αx−1
s ZBl,x. (29)

Then each pair of shares Ãs, B̃s is sent to the corresponding server.

B. Computation and Communication

One of the servers generates a set of λ
m
× µ

n
matrices Zserver, which contains R′(Kc −

1) + X + DE + `Kc(p − 1)mn independent random matrices and `Kcmn zero matrices.

In particular, Zserver = {Zserver1 ,Zserver2 }, Zserver1 = {Z′i | i ∈ [R′(Kc − 1) +X +DE]}, and

Zserver2 =
{
Z′′l,k,i | l ∈ [`], k ∈ [Kc], i ∈ [R′]

}
. Here,

Z′′l,k,i =




0, if i ∈ E

Z′′′l,k,i, otherwise,
∀l ∈ [`],∀k ∈ [Kc].

Here Z′i and Z′′′l,k,i are the independent random matrices. The independence is established
as follows.

H(Zserver,A,B) = H(A) +H(B) +
∑

i∈[R′(Kc−1)+X+DE ]

H(Z′i) +
∑

l∈[`],k∈[Kc],i∈[R′]

H(Z′′l,k,i). (30)

Without loss of generality, assume the first server generates Zserver, encodes them into

M̃s =
∑

x∈[R′(Kc−1)+X+DE ]

αx−1
s Z′x +

∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k.i−i′Z

′′
l,k,i′+1

(fl,k − αs)R′−i
, (31)

and sends M̃s to server s, s ∈ [S]\{1}, where cl,k,i is defined in (25). The answer returned

by the sth server to the master is constructed as Ys =
∑

l∈[`] Ã
s
l B̃

s
l + M̃s.

C. Reconstruction

After the master collects any R answers, it decodes the desired products AB.
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D. Proof of Theorem 1

To begin, let us recall the standard result for Confluent Cauchy-Vandermonde matrices

[47], replicated here for the sake of completeness.

Lemma 1. If f1,1, f1,2, · · · , f`,Kc , α1, α2, · · · , αR are R + L distinct elements of F, with |F| ≥
R+L, L = `Kc and R = R′(`+1)Kc+2X−1, then the R×R Confluent Cauchy-Vandermonde
matrix (32) is invertible over F.

V̂`,Kc,R′,X,R ,




1
(f1,1−α1)R′ · · · 1

f1,1−α1
· · · 1

(f`,Kc−α1)R′ · · · 1
f`,Kc−α1

1 · · · αR
′Kc+2X−2

1

1
(f1,1−α2)R′ · · · 1

f1,1−α2
· · · 1

(f`,Kc−α2)R′ · · · 1
f`,Kc−α2

1 · · · αR
′Kc+2X−2

2

...
...

...
...

...
...

...
...

...
...

1
(f1,1−αR)R′ · · · 1

f1,1−αR
· · · 1

(f`,Kc−αR)R′ · · · 1
f`,Kc−αR

1 · · · αR
′Kc+2X−2

R




(32)

Firstly, let us prove that the GCSA-NA codes are R = pmn(`+1)Kc+2X−1 recoverable.
Rewrite Ys as follows.

Ys = Ãs1B̃
s
1 + Ãs2B̃

s
2 + · · ·+ Ãs`B̃

s
` + M̃s (33)

=
∑

l∈[`]

∆l,Kc
s


 ∑

k∈[Kc]

P l,ks
(fl,k − αs)R′ +

∑

x∈[X]

αx−1
s ZAl,x




 ∑

k∈[Kc]

Ql,ks
(fl,k − αs)R′ +

∑

x∈[X]

αx−1
s ZBl,x


+ M̃s (34)

=
∑

l∈[`]

∆l,Kc
s


 ∑

k∈[Kc]

P l,ks
(fl,k − αs)R′




 ∑

k∈[Kc]

Ql,ks
(fl,k − αs)R′


+

∑

l∈[`]

∆l,Kc
s


 ∑

k∈[Kc]

P l,ks
(fl,k − αs)R′




 ∑

x∈[X]

αx−1
s ZBl,x




︸ ︷︷ ︸
Γ2

+
∑

l∈[`]

∆l,Kc
s


 ∑

k∈[Kc]

Ql,ks
(fl,k − αs)R′




 ∑

x∈[X]

αx−1
s ZAl,x




︸ ︷︷ ︸
Γ3

+
∑

l∈[`]

∆l,Kc
s


 ∑

x∈[X]

αx−1
s ZAl,x




 ∑

x∈[X]

αx−1
s ZBl,x




︸ ︷︷ ︸
Γ4

+M̃s

(35)

=
∑

l∈[`]

∑

k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′ − αs)R

′

(fl,k − αs)R′ P l,ks Ql,ks +
∑

l∈[`]

∑

k,k′∈[Kc]
k 6=k′


 ∏

k′′∈[Kc]\{k,k′}

(fl,k′′ − αs)R
′


P l,ks Ql,k

′

s

︸ ︷︷ ︸
Γ1

+ Γ2 + Γ3 + Γ4 + M̃s. (36)

Consider the first term in (36). For each l ∈ [`], k ∈ [Kc], we have
∏
k′∈[Kc]\{k}(fl,k′ − αs)R

′

(fl,k − αs)R′ P l,ks Ql,ks

=

∏
k′∈[Kc]\{k} ((fl,k − αs) + (fl,k′ − fl,k))

R′

(fl,k − αs)R′ P l,ks Ql,ks (37)
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=
Ψl,k(fl,k − αs)
(fl,k − αs)R′ P

l,k
s Ql,ks (38)

=

(
cl,k,0

(fl,k − αs)R′ +
cl,k,1

(fl,k − αs)R′−1
+ · · ·+ cl,k,R′−1

fl,k − αs

)
P l,ks Ql,ks

+



R′(Kc−1)∑

i=R′

cl,k,i(fl,k − αs)i−R
′


P l,ks Ql,ks

︸ ︷︷ ︸
Γ5

. (39)

where (38) results from the definition of Ψl,k(·) as in (25) and in (39) the polynomial

Ψl,k(fl,k − αs) is rewritten in terms of its coefficients.

By the construction of Entangled Polynomial code (26) (27), the product P l,k
s Ql,k

s can

be written as weighted sums of the terms 1, (fl,k − αs), · · · , (fl,k − αs)R′+p−2, i.e.,

P l,k
s Ql,k

s =

R′+p−2∑

i=0

Cl,k
i+1(fl,k − αs)i, (40)

where Cl,k
1 ,C

l,k
2 , · · · ,Cl,k

R′+p−1 are various linear combinations of products of blocks of

Al,k and blocks of Bl,k. Consider the first term in (39).
(

cl,k,0
(fl,k − αs)R′

+
cl,k,1

(fl,k − αs)R′−1
+ · · ·+ cl,k,R′−1

fl,k − αs

)
P l,k
s Ql,k

s

(40)
=

(
cl,k,0

(fl,k − αs)R′
+

cl,k,1
(fl,k − αs)R′−1

+ · · ·+ cl,k,R′−1

fl,k − αs

) R′+p−2∑

i=0

Cl,k
i+1(fl,k − αs)i (41)

=
R′−1∑

i=0

∑i
i′=0 cl,k,i−i′C

l,k
i′+1

(fl,k − αs)R′−i
+

p−2∑

i=0

(fl,k − αs)i
(

R′+i′∑

i′=i+1

cl,k,R′−i′+iC
l,k
i′+1

)

︸ ︷︷ ︸
Γ6

+

R′+p−3∑

i=p−1

(fl,k − αs)i
(
R′+p−2∑

i′=i+1

cl,k,R′−i′+iC
l,k
i′+1

)

︸ ︷︷ ︸
Γ7

. (42)

Note that if Kc = 1, ∀i 6= 0, cl,k,i = 0, then Γ5 and Γ7 are zero polynomials. Now let us
consider the degree with respect to αs of Γ1, · · · ,Γ7.

degαs (Γ1) =




R′(Kc − 1) + p− 2, if Kc > 1

−1, otherwise
, degαs (Γ2) = R′(Kc − 1) + pm+X − 2,

degαs (Γ3) = R′(Kc − 1) + pmn− pm+ p+X − 2, degαs (Γ4) = R′Kc + 2X − 2, degαs (Γ6) = p− 2,

degαs
(Γ5) =




R′(Kc − 1) + p− 2, if Kc > 1

−1, otherwise
, degαs

(Γ7) =




R′ + p− 3, if Kc > 1

−1, otherwise
.
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Recall X, p,m, n,Kc are positive integers. If Kc > 1, it is easy to see that R′Kc+2X−2

is the largest. If Kc = 1, R′ = pmn ≥ p > p − 2, R′Kc + 2X − 2 is also the largest.

Therefore the sum of Γ1, · · · ,Γ7 can be expanded into weighted sums of the terms

1, αs, · · · , αR′Kc+2X−2
s . Note that the weights of terms αR

′(Kc−1)+X+DE+1
s , · · · , αR′Kc+2X−2

s

are functions of ZA,ZB. Ys can be rewritten as

Ys =
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k,i−i′C

l,k
i′+1

(fl,k − αs)R′−i
+

∑

x∈[R′Kc+2X−1]

αx−1
s Ix + M̃s (43)

(31)
=
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k,i−i′C

l,k
i′+1

(fl,k − αs)R′−i
+

∑

x∈[R′Kc+2X−1]

αx−1
s Ix +

∑

x∈[R′(Kc−1)+X+DE ]

αx−1
s Z′x

+
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k.i−i′Z

′′
l,k,i′+1

(fl,k − αs)R′−i
(44)

=
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k,i−i′

(
Cl,k
i′+1 + Z′′l,k,i′+1

)

(fl,k − αs)R′−i
+

∑

x∈[R′(Kc−1)+X+DE ]

αx−1
s (Ix + Z′x)

+
R′Kc+2X−1∑

x=R′(Kc−1)+X+DE+1

αx−1
s Ix (45)

=
∑

l∈[`]

∑

k∈[Kc]

R′−1∑

i=0

∑i
i′=0 cl,k,i−i′D

l,k
i′+1

(fl,k − αs)R′−i
+

∑

x∈[R′Kc+2X−1]

αx−1
s Jx, (46)

where Dl,k
i = Cl,k

i +Z′′l,k,i, l ∈ [`], k ∈ [Kc], i ∈ [R′], Jx = Ix +Z′x, x ∈ [R′(Kc− 1) +X +DE]

and Jx = Ix, x ∈ [R′(Kc − 1) +X +DE + 1 : R′Kc + 2X − 1]. In the matrix form, answers
from any R = R′Kc + 2X − 1 +R′L = pmn(`+ 1)Kc + 2X − 1 servers, whose indices are
denoted as s1, s2, · · · , sR, can be written as (47).



Ys1

Ys2
...

YsR




=




1
(f1,1−αs1 )R′ · · · 1

f1,1−αs1
· · · 1

(f`,Kc−αs1 )R′ · · · 1
f`,Kc−αs1

1 · · · αR
′Kc+2X−2

s1

1
(f1,1−αs2

)R′ · · · 1
f1,1−αs2

· · · 1
(f`,Kc−αs2

)R′ · · · 1
f`,Kc−αs2

1 · · · αR
′Kc+2X−2

s2

...
...

...
...

...
...

...
...

...
...

1
(f1,1−αsR

)R′ · · · 1
f1,1−αsR

· · · 1
(f`,Kc−αsR

)R′ · · · 1
f`,Kc−αsR

1 · · · αR
′Kc+2X−2

sR




︸ ︷︷ ︸
V̂`,Kc,R′,X,R
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T(c1,1,0, · · · , c1,1,R′−1)

. . .

T(c`,Kc,0, · · · , c`,Kc,R′−1)

IR−R′L




︸ ︷︷ ︸
V̂′

`,Kc,R′,X,R

⊗Iλ/m




D1,1
1

...

D1,1
R′

...

D`,Kc

1

...

D`,Kc

R′

J1

...

JR′Kc+2X−1




. (47)

Since f1,1, f1,2, · · · , f`,Kc are distinct, for all l ∈ [`], k ∈ [Kc], cl,k,0 =
∏

k′∈[Kc]\{k}(fl,k′−fl,k)R
′

are non-zero. Hence, the lower triangular toeplitz matrices T(c1,1,0, · · · , c1,1,R′−1), · · · ,
T(c`,Kc,0, · · · , c`,Kc,R′−1) are non-singular, and the block diagonal matrix V̂′`,Kc,R′,X,R is

invertible. Guaranteed by Lemma 1 and the fact that the Kronecker product of non-

singular matrices is non-singular, the matrix (V̂`,Kc,R′,X,RV̂
′
`,Kc,R′,X,R

)⊗ Iλ/m is invertible.

Therefore, the master is able to recover
(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

by inverting the matrix. Note

that Z′′l,k,i = 0, l ∈ [`], k ∈ [Kc], i ∈ E , therefore
(
Cl,k
i

)
l∈[`],k∈[Kc],i∈E

=
(
Dl,k
i

)
l∈[`],k∈[Kc],i∈E

.

The desired products (A(l)B(l))l∈[L] are recoverable from
(
Cl,k
i

)
l∈[`],k∈[Kc],i∈E

, guaranteed

by the correctness of Entangled Polynomial code [5]. This completes the proof of recov-

ery threshold R = pmn(`+ 1)Kc + 2X − 1.

Consider the strong security property. According to the construction, M1 = 0, Ms =

M̃s, s ∈ [S] \ {1}, and M = {M̃s | s ∈ [S] \ {1}}. Since M̃s is a function of Zserver,

I(A,B, Ã[S], B̃[S];M) ≤ I(A,B, Ã[S], B̃[S];Zserver) = 0. (48)

Strong security is satisfied. Security is guaranteed because ∀X ⊂ [S], |X | = X ,

I(A,B; ÃX , B̃X ,MX ) = I(A,B;MX ) + I(A,B; ÃX , B̃X | MX ) (49)

= I(A,B;MX ) + I(A,B; ÃX , B̃X ) = 0, (50)

where (50) is due to (28), (30) and the facts that each share is encoded with (X,S)

Reed-Solomon code with uniformly and independently distributed noise.
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Consider the privacy property,

I(Y1, Y2, · · · , YS ;A,B | AB) = I

((
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

, (Jx)x∈[R′Kc+2X−1];A,B | AB

)
(51)

= I

((
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

;A,B | AB

)
+ I

(
(Jx)x∈[R′Kc+2X−1];A,B | AB,

(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

)

(52)

= I

(
(Jx)x∈[R′Kc+2X−1];A,B | AB,

(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

)
(53)

≤ I
(

(Jx)x∈[R′Kc+2X−1];A,B,AB,
(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

)
(54)

≤ I
(
Zserver1 ,ZA,ZB ;A,B,

(
Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

)
= 0, (55)

where (51) holds because the map from
((

Dl,k
i

)
l∈[`],k∈[Kc],i∈[R′]

, (Jx)x∈[R′Kc+2X−1]

)
to (Y1, · · · , YS)

is bijective. Equation (53) holds due to (30) and the fact
(
Cl,k
i

)
l∈[`],k∈[Kc],i∈E

are functions

of AB.

Consider the communication cost. The source upload cost UA = S
Kcpm

and UB = S
Kcpn

.

The server communication cost CC = S−1
`Kcmn

. Note that the master is able to recover

Lmn desired symbols from R downloaded symbols, the master download cost is D =

R
Lmn

= pmn(`+1)Kc+2X−1
`Kcmn

. Thus the desired costs are achievable.

Now let us consider the computation complexity. Note that the source encoding pro-

cedure can be regarded as products of confluent Cauchy matrices by vectors. So by fast

algorithms [48], the encoding complexity of (CeA, CeB) =
(
Õ
(
λκS log2 S
Kcpm

)
, Õ
(
κµS log2 S
Kcpn

))
is

achievable. For the server computation complexity, each server multiplies the ` pairs of

shares Ãsl , B̃
s
l , l ∈ [`], and returns the sum of these ` products and structured noise M̃s.

With straightforward matrix multiplication algorithms, each of the ` matrix products has

a computation complexity of O
(
λκµ
pmn

)
for a total of O

(
`λκµ
pmn

)
. The complexity of summa-

tion over the products and noise is O
(
`λµ
mn

)
. To construct the noise, one server needs to

encode the noise, whose complexity is Õ
(
λµS log2 S

mn

)
by fast algorithms [48]. Normalized

by the number of servers, it is Õ
(
λµ log2 S
mn

)
. Considering these 3 procedures, upon

normalization by L = `Kc, it yields a complexity of O
(

λκµ
Kcpmn

)
+O

(
λµ

Kcmn

)
+Õ

(
λµ log2 S
`Kcmn

)

per server. The master decoding complexity is inherited from that of GCSA codes [40],

which is at most Õ(λµp log2R). This completes the proof of Theorem 1.

Remark: When L = ` = Kc = 1, S = R, by setting f1,1 = 0, our construction of shares

of Ãs and B̃s essentially recovers the construction of shares in [41].
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VI. DISCUSSION AND CONCLUSION

In this paper, the class of GCSA codes is expanded by including noise-alignment, so

that the resulting GCSA-NA code is a solution for secure coded multi-party computation

of massive matrix multiplication. For two sources and matrix multiplication, GCSA-NA

strictly generalizes PS [41] and outperforms it in several key aspects. This construc-

tion also settles the asymptotic capacity of symmetric X-secure T -private information

retrieval. The idea of noise-alignment can be applied to construct a scheme for N

sources based on N -CSA codes, and be combined with Strassen’s construction. As open

problems, exploring the optimal amount of randomness and finding the communication

efficient schemes for arbitrary polynomial are interesting directions.
Since Strassen’s algorithm [44] is an important fast matrix multiplication approach,

it is interesting to show noise alignment can be combined with it for secure multi-
party matrix multiplication. Consider an example with two 2 × 2 block matrices A,B

and X = 1. It can be shown that the general recursive Strassen’s algorithm also works

similarly. The desired product C =


C1,1 C1,2

C2,1 C2,2


. The Strassen’s constuction constructs

14 matrices Pi, Qi, i ∈ [7] (Pi only depends on A and Qi only depends on B) and



C1,1

C1,2

C2,1

C2,2




=




0 −1 0 1 1 1 0

1 1 0 0 0 0 0

0 0 1 1 0 0 0

1 0 −1 0 1 0 −1







P1Q1

P2Q2

...

P7Q7.




(56)

This is the basic Strassen algorithm. Now let us see how we apply CSA and noise
alignment to it. Each share is constructed based on CSA code principles with noise, i.e.,

Ã = ∆


∑

i∈[7]

Pi
fi − α

+ ZA


 , B̃ =

∑

i∈[7]

Qi
fi − α

+ ZB , ÃB̃ =
∑

i∈[7]

ci
fi − α

PiQi +

7∑

i=0

αiIi. (57)

If the servers directly return ÃB̃ to the master, additional information about the input

may be leaked due to interference terms P1Q1, · · · , P7Q7 and
∑6

i=0 α
iIi. We secure the

scheme by the addition of noise. The idea is that we want the master to decode T1, · · · , T7

instead of P1Q1, · · · , P7Q7, such that

H(C | T1, · · · , T7) = 0, I(A,B;T1, · · · , T7 | C) = 0. (58)
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T1, · · · , Tv are constructed as follows.

T1 = P1Q1 − Z1 − Z2 + Z3, T2 = P2Q2 − Z1 + Z2 − Z3, T3 = P3Q3 − Z1, (59)

T4 = P4Q4 + Z1, T5 = P5Q5 + Z2, T6 = P6Q6 − Z3, T7 = P7Q7 + Z3, (60)

where Z1,Z2,Z3 are i.i.d. uniform noise matrices. To align the noise, we construct Z̃,

Z̃ =

(
− c1
f1 − α

− c2
f2 − α

− c3
f3 − α

+
c4

f4 − α

)
Z1 +

(
− c1
f1 − α

+
c2

f2 − α
+

c5
f5 − α

)
Z2

+

(
c1

f1 − α
− c2
f2 − α

− c6
f6 − α

+
c7

f7 − α

)
Z3 +

6∑

i=0

αiZi+4, (61)

where Z4, · · · ,Z10 are i.i.d. uniform noise matrices. The answer returned by each server

to the master is ÃB̃ + Z̃. The correctness and privacy are easily proved.
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