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I/O Access Patterns in HPC Applications: A 360-Degree Survey

JEAN LUCA BEZ and SUREN BYNA, Lawrence Berkeley National Laboratory, USA

SHADI IBRAHIM, Inria, Univ. Rennes, CNRS, IRISA, Rennes, France

The high-performance computing (HPC) I/O stack has been complex due to multiple software layers, the inter-dependencies among
these layers, and the different performance tuning options for each layer. In this complex stack, the definition of an “I/O access pattern”
has been re-appropriated to describe what an application is doing to write or read data from the perspective of different layers of the
stack, often comprising a different set of features. It has become common having to redefine what is meant when discussing a pattern
in every new study as no assumption can be made. This survey aims to propose a baseline taxonomy, harnessing the I/O community’s
knowledge over the last 20 years. This definition can serve as a common ground for HPC I/O researchers and developers to apply
known I/O tuning strategies and design new strategies for improving I/O performance. We seek to summarize and bring a consensus
with the multiple ways to describe a pattern based on common features already used by the community over the years.
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1 INTRODUCTION

In High Performance Computing (HPC), “I/O access pattern” or “I/O signature” is broadly used to express how an
application is performing input and output (I/O) operations [21]. Though the word is broadly used, there is no globally
accepted convention to describe which features define an I/O access pattern and how they differ based on the level
in the HPC I/O software stack they are being used to describe. For instance, some studies do not consider temporal
features as part of the description of an access pattern [22] whilst others do [27, 219]. Moreover, some studies describe
the access pattern as seen by high-level libraries [26, 41, 66], some others by the I/O middleware [9, 216], and others by
what the underlying file system is receiving [24, 128, 237]. Hence, it is a common practice to have to re-describe exactly
what is meant when discussing “I/O access pattern” at every new study as no assumption can be made.

In this paper, we aim to propose a baseline taxonomy, harnessing the I/O community’s knowledge over the last 20
years, that researchers and application developers can use to define an application’s I/O access pattern. This definition
can serve as a common ground to apply known I/O tuning strategies as well as to design new strategies for improving
I/O performance. The definitions we proposed here seek to summarize and to bring a consensus to the multiple ways to
describe a pattern based on common features already used by the community over the years. It does not seek to be set
in stone but a baseline consensus, which can be extended to accommodate new applications from different domains.
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2 Bez et al.

Besides solidifying a taxonomy based on common-ground features, our survey has practical applications for current
and future research in the area. For instance, a plethora of existing optimization techniques that seek to improve
applications’ I/O performance relies on the definition of an access pattern. Despite the strategies they apply, they all
work by modifying how an application is accessing its data (i.e., its I/O access pattern) to be more suited to the underlying
layer of the I/O stack. Request aggregation, reordering, scheduling, and collective operations [44, 59, 60, 113, 197, 216]
are a few examples of techniques that optimization mechanisms apply at different layers of the I/O stack. In general,
such optimizations typically improve the performance for a given system deployment and I/O patterns, but not for all.
Moreover, they often rely on correctly applying such techniques to the workload represented by a set of access patterns.

As novel applications from diverse domains are harnessing HPC platforms and the systems are becoming more
complex to handle more concurrent applications, it becomes paramount for those systems that seek to auto-tune their
parameters to detect the I/O access patterns at runtime accurately. Such detection allows them to make decisions and
apply the set of optimization techniques that are specifically designed for the observed patterns. Having an established
taxonomy with clearly defined features can help to bridge the gap between describing the access patterns and mapping
them to existing techniques allowing, for instance, AI-based and automatic tuning mechanisms to navigate the complex
parameter space to find which optimizations and configurations can be applied for an observed I/O access pattern.

ContributionsWhile the term “I/O access pattern” is used heavily in published literature, there has been no study that
encompasses, discusses, and categorizes I/O access patterns to the breadth to which the term is used in HPC. White et al.
[219] proposed a taxonomy for temporal I/O patterns of HPC jobs to aid in automatically detecting bad-performing
jobs. Boito et al. [21] touched on several key points of the HPC I/O stack, including access pattern extraction. However,
both suffer from the same issues of redefining what an access pattern means. Furthermore, those definitions do not
encompass all features of I/O and their impact when glancing at the different layers of the parallel I/O stack. In this
work, we seek to provide a broader taxonomy for I/O access patterns, taking into account temporal behavior and also
integrating other commonly used features as understood by the community, and to describe how those patterns are
represented, used, and transformed as we traverse the HPC I/O stack.

The remainder of the paper is organized as follows. In Section 2, we discuss the traditional HPC I/O software stack.
The discussion of access patterns is split into four sections representing the layers in the stack. In Section 3, we describe
the common data models used by scientific applications. Section 4 discusses how those data models are represented by
high-level I/O libraries. Section 5 approaches the translation of I/O accesses used by middleware libraries. Finally, in
Section 6, we present the perspective of the file system. In Section 8, we present common I/O benchmarks and kernels
used to exercise access patterns in different levels of the HPC I/O stack, and in Section 9, we describe popular tools to
visualize those patterns by using profiling and log traces. In Section 10, we conclude this survey with a summary of our
contributions, existing gaps, and highlight opportunities for further R&D.

2 HPC I/O STACK

To support the input and output (I/O) workloads from serial or parallel scientific applications, HPC systems provide a
multi-layered software stack, as illustrated by Figure 1. Between the applications and storage hardware, the parallel I/O
stack consists of high-level I/O libraries, middleware I/O libraries, optimization layers, and parallel file systems (PFS).

While traversing the stack, an access pattern is often reshaped via a series of data transformations originating from
distinct abstractions and mappings between the data models used in the layers and the application of optimization
techniques (e.g., scheduling, aggregation, and compression) before reaching the file system. Furthermore, some contextual
Manuscript submitted to ACM
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Applications

High-Level I/O Libraries

Parallel I/O Middleware

Low-level I/O Libraries

I/O Forwarding Layer

Parallel File System

Storage Hardware

HDF5, NetCDF, ADIOS

MPI-IO

IBM ciod, IOFSL
Cray DVS, Cray Datawarp

 Lustre, GPFS, PVFS, 
OrangeFS, BeeGFS, PanFS

HDD, SSD, RAID

POSIX, STDIO

Fig. 1. The traditional HPC I/O software stack that includes several layers of libraries between applications and storage hardware.

information gets lost in this process. For instance, when requests arrive at the file system layer, the file system is
unaware of which application or process the request originated from, or even if the request went through any data
transformations and which ones. Consequently, an application may believe it is accessing its data in one way, whereas
something entirely different is happening in reality at the lowest layers of the stack.

High-level I/O libraries are used by applications to provide datamodels and filemanagement abstractions that facilitate
data portability and high performance. Examples of widely-adopted libraries are HDF5 [202], NetCDF [119]/PnetCDF
[121], and ADIOS [134]. Those libraries map the applications’ data abstractions into files or objects and encode the data
in portable file formats. These libraries allow users to add metadata to describe the data and their data structures. In
addition to these parallel I/O high libraries, application domain-specific libraries also exist. Among these, ROOT [5]
and FITS [80, 217] serve high-energy physics and astronomy communities, respectively. Applications may also use the
Message Passing Interface I/O (MPI-IO) [46], Portable Operating System Interface I/O (POSIX-IO) [67], or Standard
Input and Output (STDIO) interfaces directly to perform I/O to the file systems. We discuss these interfaces, their
challenges, and their known impact on HPC I/O performance in Section 7.1.4.

In MPI I/O, a file is an ordered collection of typed data items. It presents a higher level of data abstraction than POSIX
by allowing users to define data models that are natural to the application. Nonetheless, it supports defining complex
data patterns for parallel write and read operations using independent and collective I/O calls. Furthermore, it allows
taking advantage of optimization opportunities when using collective calls. In POSIX I/O, however, a file is viewed as a
sequence of bytes. This interface allows transferring contiguous regions of bytes between the file and memory and
non-contiguous regions of bytes from memory to a file by giving full, low-level control of the I/O operations. However,
in the context of HPC, there is little in the interface that inherently supports parallel I/O. For instance, POSIX does not
easily support collective access to files while leaving it to the programmer to coordinate access and ensure consistency.
STDIO, in contrast, abstracts all file operations into operations on (input or output) streams of bytes. It comprises the
C stdio.h family of functions [97], such as fopen(), fprintf(), and fscanf(). These I/O functions are commonly used in
genomics and biology to store sequencing information in text format [182]. However, STDIO functions do not directly

Manuscript submitted to ACM



4 Bez et al.

support random access to data files. Instead, it relies on the programmer to create a stream, seek the position in the file,
and then read/write bytes in sequence from/to the stream.

I/O forwarding [3], initially proposed for Blue Gene and later extended, seeks to reduce the number of (compute)
nodes concurrently accessing the PFS servers by creating an additional transparent layer between the compute nodes
and the data servers. Instead of the applications accessing the PFS directly, the I/O forwarding technique defines a
set of I/O nodes that are responsible for receiving I/O requests from applications and forwarding them to the PFS
in a controlled manner, allowing optimization techniques such as request scheduling, aggregation, and compression
[2, 16, 159, 190, 232], to reshape the pattern and flow of I/O requests to better suit the underlying layers.

In large-scale systems, applications rely on Parallel File Systems (PFS) to provide a globally persistent shared storage
infrastructure and a global namespace across many distributed storage servers to read and write data to files. A parallel
file system comprises two types of servers with distinct roles: the data servers and the metadata servers. The latter
handles information about the files (e.g., sizes and permissions) and their location in the system. Lustre [74, 93], IBM
Spectrum Scale (previously known as GPFS) [174], BeeGFS [87], PVFS [36], etc. are commonly used parallel file systems
on large-scale HPC systems. To achieve high performance, these file systems harness parallelism by using data striping

[188] which consists of partitioning the files and distributing the data into fixed-size chunks across multiple storage
nodes. Finally, the PFS servers provide a logical file system abstraction over diverse storage devices such as Hard Disk
Drives (HDDs), Solid State Drives (SSDs), or Redundant Array of Independent Drives (RAID).

Summary #1

The multi-layered software and hardware HPC I/O stack is complex. To access data in HPC systems, applications
issue requests that, while traversing the I/O stack, are reshaped via a series of data transformations. These originate
from distinct abstractions and mappings between the data models used in each layer combined with optimization
techniques applied before reaching the file system and, eventually, the storage hardware.

In the following sections, we discuss the I/O access patterns observed in the HPC stack’s layers, from application
data models and their I/O requests percolating through the underlying layers until the file systems handle them.

3 APPLICATION DATA MODELS AND ACCESS PATTERNS

Scientific applications often use data abstractions provided by high-level libraries (e.g., HDF5, NetCDF, ADIOS) to
express data structures more naturally to a problem and domain. HPC simulations often describe their data objects using
multi-dimensional data or meshes, arbitrary subsets, points and curves, and key values [151, 181]. Mesh data objects, in
particular, can be further represented by structured rectilinear, non-uniform rectilinear, grid-less points, structured
(curvilinear), arbitrary polyhedral, constructive solid geometry (CSG), unstructured zoo (UCD), and adaptive mesh
refinement (AMR) meshes. In Figure 2, we show these most common high-level data models used by HPC applications.

For instance, physics simulations rely on finite element methods to discretize the simulated domain by splitting it
into smaller elements. Numerical methods are then applied to solve differential equations on these elements. These
methods often assume that the domain is divided into a structured or unstructured mesh of smaller, simpler elements.
The first has some advantages over the latter. It is simpler to use, requiring less memory as its coordinates can be
calculated rather than stored. Whereas in the case of unstructured meshes, computations are irregular, causing problems
of indirect, non-strided (i.e., no gaps between successive data accesses), or non-contiguous access to memory [153]. On
the other hand, structured meshes lack the flexibility to represent complex shapes needed for some domains [14].
Manuscript submitted to ACM
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(a) Uniform (b) Rectilinear (c) Curvilinear (d) Adaptive (e) Unstructured

Fig. 2. Visual representation of common high-level data models used by HPC applications in different science domains.

Uniform rectilinear meshes (Figure 2(a)) divide the computation domain into a set of rectangular cells and are regular
both in topology and geometry. If points and cells are organized into a 1D plane, they are often used to express image
data. Volume can be represented by arranging this mesh into multiple stacked planes. Rectilinear grids (Figure 2(b))
differ in their regularity, where the spacing between points may vary (in any of the axes), but the rows and columns are
still parallel to the axis of the cartesian coordinate system. Curvilinear (Figure 2(c)) or structured grids (also known as
mapped mesh or body-fitted mesh) have the same topology as a rectilinear grid but allow more variation in the shape of
the mash as they can be warped into any configuration without overlap or intersection. These grids do not use cartesian
grid lines but a curvilinear coordinate system where an array of point coordinates explicitly represents the geometry.
Curvilinear grids provide a more compact memory footprint and are regular in topology but present irregular geometry.
They are used for finite difference computations such as flow [64], heat transfer, and combustion simulations [31].
Unstructured grids (Figure 2(e)) are a tesselation that conforms to nearly any desired geometry. However, they require
more information to be stored and recovered than structured grids, for instance, to express the neighbor connectivity list.
Those meshes are used in seismic wave [65, 91, 225], fluid dynamics [79, 184], and heat transfer [130, 153] simulations.

The high-level data models can be stored in a file using two data layouts with regard to interleaving: Array of
Structures (AoS) or Structure of Arrays (SoA), as depicted in Figure 3. A contiguous pattern in the memory means
that multiple arrays are of the same basic data types such as integer, float, double, etc. The non-contiguous pattern in
memory, also referred to as “array of structures” or “derived data type”, represents compound data types derived from
basic data types. The first helps access adjacent work items in contiguous memory locations, while the latter is often
more intuitive from the developer’s perspective as each structure is kept together. Once that data needs to be persisted
in a file, it can use the same strategy or the opposite one used to represent the data in memory. Table 1 depicts this
by comparing in-memory and in-file representations when using HDF5, for instance, to store data in a contiguous or
compound fashion. Nonetheless, this representation is also used by other I/O libraries and interfaces such as MPI-IO,
where one can define data types to describe both memory and file layout.

As an application’s I/O requests need to transverse the I/O stack to ultimately reach the storage system, its I/O
pattern is reshaped and transformed by various existing optimizations techniques (e.g., collective buffering and data

A B C A B C A B C

A B C A B C A B C Array of Structures

Process 1Process 0 Process 3

A A A A B B B B C Structure of Arrays

A B C

Process 4

A B C

C C C

Data Layout
in the File

Fig. 3. Data layout in file for Array of Structures (AoS) or Structure of Arrays (SoA).
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Table 1. In-memory data structure and in-file data layout mappings. For illustration purposes, we restrict ourselves to 1D arrays.

In-memory representation In-file representation

A A A

B B BArray B

Array A A A

B B

···

···

A

B

A A A

B B BDataset B

Dataset A A A

B B

···

···

A

B
Contiguous Contiguous

A A A

B B BArray B

Array A A A

B B

···

···

A

B
A B ADataset A, B A B···B

Continuous Compound

A B AArray A, B A B···B
A A A

B B BDataset B

Dataset A A A

B B

···

···

A

B
Compound Continuous

A B AArray A, B A B···B A B ADataset A, B A B···B
Compound Compound

sieving [9, 44, 136, 199, 216], request scheduling [6, 16, 20, 22], and request aggregation [96, 197, 208]). Often these
transformations are transparent to the end-user. Thus, what the application believes it is doing might differ from what
the other levels of the I/O stack perceive of the application’s behavior. Due to that, information related to how the
application is accessing its data can be lost throughout the stack. For instance, when requests arrive at a parallel file
system, it is near impossible to determine which rank issue that request and whether it was initially contiguous or
not. To clarify such an example, if I/O middleware libraries such as MPI-IO applies collective I/O optimization, only
the aggregators will issue the requests to the PFS, and only they will know to which ranks they should exchange data
about the request. To further complicate, suppose a forwarding layer [2, 98] (or any other transparent middleware)
is present, possibly merging or scheduling and aggregating requests from multiple compute nodes. In that case, the
PFS will not know which application rank originally issued the I/O request. On the other hand, when those requests
are forwarded to the PFS (using a forwarding layer), the latter will often not know from which compute nodes they
originated. Only the I/O nodes will have such information to forward back the data.

Summary #2

Parallel applications rely on data models that are naturally mapped to a problem domain. To be stored in files, data
must be transformed by intermediate layers of the HPC I/O stack. Thus, the features we can use to describe an I/O
access pattern at the file system level are not the same as the view we have at a higher level in the I/O stack.

4 ACCESS PATTERNS IN HIGH-LEVEL I/O LIBRARIES

High-level I/O libraries allow HPC applications to express scientific simulation data more naturally instead of being
constrained or caught up by system-specific details. HDF5, NetCDF/PnetCDF, ADIOS, ROOT, and FITS are examples of
such libraries, each providing a set of APIs to express complex multi-dimensional data, contiguous and non-contiguous
data, seeking to attain performance and portability, and also increase productivity.
Manuscript submitted to ACM
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Memory Disk

(a) Hyperslab from a 2D array to
the corner of a smaller 2D array

Disk Memory

(b) Regular series of blocks from a
2D array to a contiguous 1D array

Memory Disk

(c) Points with no regular pattern
from a 2D array to a 3D array

Disk Memory

(d) Union of hyperslabs in file to
a union of hyperslabs in memory

Fig. 4. A visual representation of common hyperslab selections between memory and file representations for partial I/O in HDF5.

HDF5 (Hierarchical Data Format Version 5) is a well-known self-describing file format and an I/O library [202]
that provides flexibility, extendibility, and portability. It is used widely in many science domains to manage various
data models [28]. HDF5 uses the concept of dataspace objects to control data transfer when data is read or written.
A dataspace defines the layout of the data (i.e., the organization in rows, columns, etc.) in a file and memory. Data is
rearranged by the library when the different layouts are used to represent a given dataset in memory or a file. However,
both source and destination are stored as contiguous blocks of storage with the elements ordered as defined by the
dataspace. HDF5 allows an application to read or write to a portion of a dataset (partial I/O) by using hyperslabs and
points. Hyperslabs are portions of datasets whose selection can be a logically contiguous collection of points in a
dataspace or a regular pattern of points or blocks in a dataspace. Fig. 4 illustrates four types of partial I/O in HDF5.

An HDF5 hyperslab can be viewed as a rectangular pattern defined by four arrays: offsets of the starting location
for the hyperslab; the stride or number of elements to separate each element or block to be selected; the number of
elements or blocks to select along each dimension; and the size of the blocks selected from the dataspace. Figure 5
depicts a hyperslab selection (left) in a dataset.

[0, 0]

[8, 0] [8, 12]

start = [0,1] count [1] = 4

count [0] = 2

block [1] = 2

stride [1] = 3

blo
ck

 [0
] =

 3 stride [0] = 4

Fig. 5. Example of a hyperslab selection for partial I/O operations using the HDF5 library.

NetCDF provides scientific programmers with a self-describing and machine-independent portable format for storing
array-oriented data [119]. NetCDF-4 is the current version of classical NetCDF file format. NetCDF-4 supports parallel
file access to the classic netCDF and HDF5 files. Parallel I/O to the netCDF-4 formatted files is supported through
the HDF5 library, and that to the classic netCDF files is supported through PnetCDF. PnetCDF is a high-performance
parallel I/O library for accessing NetCDF files providing higher-level data structures (e.g., multi-dimensional arrays
of typed data). The NetCDF-4 read and write API functions, allow defining hyperslab parameters such as start and
count vector. For instance, the function nc_put_vara_int() – to write an array of integer values to a variable – has
arguments to specify start index for each dimension of an array and corresponding count specifying the edge lengths
along each dimension of the block of data values to be written.

Manuscript submitted to ACM



8 Bez et al.

The Adaptable Input Output System (ADIOS) [134, 139] provides an I/O abstraction framework for portable and
scalable I/O to aid scientific applications when data transfer volumes exceed the capabilities of traditional file I/O.
Different from HDF5, ADIOS is not a hierarchical model but rather sits on a layer of abstraction beneath those. However,
it also relies on self-describing data in binary-packed (.bp) format for rapid metadata extraction, but it can use different
back-end file storage formats such as HDF5 and netCDF. ADIOS can also extract relevant information from large data
sets, transporting and transforming groups of self-describing data variables and attributes across different media. This
library uses an external metadata file in XML format to describe variables, types, and the path to take from memory to
disk. It also has built-in optimization modules for buffering and scheduling [76]. The ADIOS-2 API allows specifying
the start and count vectors for setting the offsets and dimensions for the MPI ranks, respectively.

ROOT [5] is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed
for storing and analyzing petabytes of data efficiently. ROOT has been used for storing over one exabyte of HEP events
[140]. In ROOT, objects in memory go under serialization and compression before reaching the binary representation
in files. These are self-descriptive files comprised of a header and data following a hierarchical directory format. ROOT
can also use columnar representation for data in files, allowing I/O optimizations such as partial reading (i.e., reading
only a subset of relevant columns), prefetching, and read-ahead to improve performance. For instance, high-energy
physics applications benefit from such file layouts when analyzing many statistically independent collision events.

FITS (Flexible Image Transport System) [80, 217] is a standardized data format in astronomy. Initially conceived
as a standard interchange format for digital images, FITS files are used as a working data format to store ASCII or
binary tabular data, in addition to images and spectra. Files consist of a sequence of one or more Header and Data Units
(HDUs). A header is composed of ASCII card images (usually read into a string array variable) that describe the content
of the associated data unit, which might be a spectrum (vector), an image (array), or tabular data in ASCII or binary
format (often read as a structure). Tabular data cannot appear in the first HDU, whereas image and vector data can be
present in any HDU. The HDUs following the first (or primary) HDU are also known as extensions.

Summary #3

High-level I/O libraries present a layer of abstractions so applications can easily map their data models to files.
Several of these libraries are designed to provide portability of file formats as well as a self-describing feature that
allows adding metadata to data. I/O access patterns of multi-dimensional data structures at this layer are designed
to hide the complexity of converting data models to their file layouts.

5 ACCESS PATTERNS AT THE I/O MIDDLEWARE LAYER

Before reaching the persistent media, an application’s request can go through a series of data transformations enabled
by I/O optimizations. For instance, using MPI-IO, if a group of MPI ranks knows which parts of a file each rank is
accessing, it becomes possible to merge these requests into a smaller number of larger and more contiguous accesses
that span over a large portion of the file. When applied at the client level, this optimization is described as two-phase
I/O [53, 199] with collective buffering and data sieving [200]. Such optimizations effectively change how the application
issues its I/O request, i.e., it changes its access pattern.

Collective buffering aims to reduce I/O time by making file accesses as large and as contiguous as possible, even if
it requires additional communication between the ranks. In two-phase I/O, aggregator processes are responsible for
carrying out the writes and reads. Each one manages a chunk of contiguous data from a subset of processes in a file.
Manuscript submitted to ACM
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Fig. 6. Two-phase I/O for read requests.

During the write process, an aggregator gathers data from a subset of processes into contiguous chunks in memory
and writes the aggregated data to the file system. During reads, aggregators load part of the file and distribute smaller
chunks of data to a subset of processes, as shown in Fig. 6. For instance, ROMIO, which is a portable, high-performance
implementation of MPI-IO, exposes two user-defined tuning options that can control the application of this technique:
the number of processes that actually issue the I/O requests in the I/O phase (cb_nodes), often referred to as aggregators;
and the maximum buffer size on each process (cb_buffer_size). These options help define the access pattern perceived
by underlying layers of the I/O stack.

Data sieving is another optimization in MPI-IO aiming to reduce I/O latency by making as few requests to the PFS as
possible. For read operations, when a process issues non-contiguous requests, instead of reading each piece of data
separately, ROMIO reads a single contiguous chunk that ranges from the first to the last requested byte in the file
into a temporary buffer in memory. ROMIO provides two user-defined parameters to control the buffer size for reads
(ind_rd_buffer_size) and writes (ind_wr_buffer_size) [199]. If a user requests a large portion of the file that would
not fit in the allocated memory, ROMIO implementation performs the data sieving in parts delimited by the buffer size.
The caveat of data sieving is when there are large gaps in access, which can outweigh the costs of reading the extra data.

Summary #4

The middleware layer provides opportunities to apply optimization techniques to transform the data to be more
suitable for the underneath file system. Collective buffering and data sieving are two solutions available in MPI-IO
to improve data access by reshaping the I/O access pattern.

6 ACCESS PATTERNS AT THE FILE SYSTEM LAYER

Large-scale HPC systems use Parallel File Systems (PFS) to provide a persistent shared storage infrastructure, as
discussed in Section 2. A PFS is deployed over a set of dedicated nodes and offers a shared namespace, so applications
can seamlessly access remote files. They harness parallelism by breaking the files into chunks or stripes and distributing
them across multiple storage nodes to achieve high performance. This operation is often referred to data striping [188].
Fig. 7(a) illustrates how a file is striped among multiple storage servers, called OSTs (Object Storage Targets) in Lustre.

As stripes can be located in different storage targets, to complete a write/read operation, the PFS might need to
access multiple targets. Unaligned requests can also require access to multiple OSTs to complete an operation and
introduce inefficiencies [105, 127, 238] due to false data sharing. Fig. 7(b) depicts such scenario. For instance, consider
an application issuing 64KB requests to a file stored with a stripe size of 64KB. If the first 136KB of the file is used for
some header representation, all the data accesses are shifted by the header. Thus instead of issuing a single call to a
single OST to write/read the data, the PFS client will need to break the request, for instance, in Fig. 7(b) to complete the
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Fig. 7. Aligned and misaligned requests to a parallel file system with file striping.

second request (in pink), two targets (OST 2 and 3) should be contacted to access non-contiguous regions of the file
stripe to complete the request. It is easy to extrapolate the impact of misaligned requests on larger scales.

Furthermore, because of this centralized shared infrastructure, for clients to access the OSTs, they need to go over
the network, which could introduce overhead and contention, especially if the request size is small and bursty. The
previous example could cause a lot of smaller requests (64KB) to be issued because of the misalignment. Moreover, in
the file system servers, contiguous data access usually yields higher I/O performance than that of non-contiguous ones
[231] for both Hard Disk Drives (HDD) and Solid-State Disks (SSD). Zimmer et al. [242] among others, confirm that
small and random request patterns negatively impact the file system performance. Therefore, applications observe
benefits when accessing a file by issuing fewer requests, reducing the high I/O latency.

Another pivotal aspect that has a direct impact on performance when discussing access patterns at the file system
layer is the metadata accesses. In Unix-based operating systems, metadata is stored in an index-node (i-node) comprising
information about ownership, permission, object’s type (e.g., file or directory), size, and modified timestamp [170, 192].
Furthermore, since parallel file systems tend to rely on POSIX I/O semantics (which were not conceived with parallel
accesses in mind), the scalability of metadata accesses is often impaired. For instance, serialization is expected to happen
in scenarios where a large number of files are created by multiple processes in a single directory. This is a common
pattern observed in HPC applications [1, 13, 51, 205, 226].

Moreover, because these parallel file systems tend to adopt the concept of data striping (to allow parallel access and
improve performance), before accessing data, the PFS client must fetch permissions and obtain the file layout (including
striping locations and sizes) from one of the metadata servers. In Lustre parallel file system, a Metadata Service (MDS)
provides the index, or namespace, for a Lustre file system. The metadata content is stored in volumes called Metadata
Targets (MDTs). Since most basic operations involve metadata, it is paramount to ensure scalability of metadata accesses.
For instance, prior to Lustre 2.4, only a single MDT could be used to store metadata. Lustre 2.4 release introduced the
concept of the Distributed Name Space (DNE), where the metadata workload could be distributed across multiple MDTs,
which usually spread across multiple metadata servers. Nonetheless, metadata servers are often fewer than data servers
if not centralized into a single server to avoid complex cache coherence issues and overheads. Needless to mention that
an application creating or accessing a large number of files might be limited by metadata, possibly impacting other
applications in the system due to the shared nature of the metadata servers.

Different approaches [129, 145, 164, 166, 176, 221] have been proposed to tackle metadata issues covering how to
handle, scale, and index metadata efficiently. For instance, Liao et al. [129] present a metadata management system that
uses a database to record the information of datasets and manages metadata while providing a suitable I/O interface.
Paul et al. [166] propose a metadata indexing and search tool specifically designed for large-scale HPC storage systems.
Their solution relies on using an in-tree design with a parallel leveled partitioning approach to partition the file system
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namespace into disjoint sub-trees. They maintain an internal metadata index database that uses a 2-level database
sharding technique to increase indexing and querying performance, combined with a changelog-based approach to
keep track of the metadata changes and re-index the file system. Wu et al. [221] proposed StageFS, a parallel file system
optimized for SSD-based clusters. StageFS stores both the metadata and small files in LSM trees for fast indexing.
Seeking to avoid frequent small writes, StageFS uses buffering to better utilize the bandwidth of SSD devices. They
demonstrate up to 21.28× performance improvements in metadata operations compared to state-of-the-art solutions.

Due to the shared nature of these storage deployments, multiple concurrent applications submitting large number
of metadata operations simultaneously can easily saturate the shared PFS metadata resources. On that front, MetaFS,
proposed by Shaffer et al. [176], seeks to address the bursts of metadata activity during program loading. It indexes
the static metadata content of applications and delivers it in bulk to execution nodes, where it can be cached and
queried, essentially trading metadata activity for data transfer. Their approach observed order of magnitude decreases
in metadata load on the shared file system. On the same front, Macedo et al. [145] present a storage middleware that
enables system administrators to proactively control and ensure QoS over metadata workflows in HPC storage systems.
Their solution seeks to avoid saturating the shared metadata resources, which could lead to unresponsiveness of the
storage backend and overall performance degradation.

Summary #5

Due to its shared nature, a parallel file system receives interleaved requests from multiple concurrently running
applications. Thus, the I/O access pattern seen by these storage targets can present few resemblances to what the
application initially issued. Furthermore, metadata requests play a pivotal role in scalability and performance due
to the centralized characteristics of such systems.

7 ACCESS PATTERN TAXONOMY

HPC applications issue their I/O requests to a file system in diverse ways, depending on how their data was modeled
and coded. They also tend to present a consistent I/O behavior, with a few access patterns being repeated multiple times
over an extensive period [35, 61, 62, 70, 89, 137]. A better understanding of such patterns and what optimizations are
suited for each one can lead to performance improvement on the application side and when considering the system as a
whole. Based on that, some features can be used together to describe the application’s access pattern. Though there is no
globally accepted convention to describe which elements or features define an access pattern, researchers in the HPC
I/O area often examine a common subset of factors or parameters. For instance, the file approach (single file or shared
file), the number of requests, their sizes, and the spatial locality in the file [16, 34, 137, 138, 227]. However, other features
such as temporal behavior, intensity or burstiness, and overlapping accesses are considered for specific applications
or optimization techniques [16, 61, 187, 214, 228, 229, 234]. The access pattern does have a direct impact on achieved
performance which justifies the different research efforts put into optimizing data access [30, 81, 114, 138, 231].

We seek to provide a taxonomy for I/O access patterns based on collective understanding from the community and
its usage over time. We believe this formalization is helpful to the scientific community, as applications often observe
poor I/O performance due to bottlenecks in the system which could be a result of the lack of translation between metric
collection, bottleneck detection, and optimization solutions. A defined and globally accepted taxonomy will aid in
translating metrics into patterns and guide end-users on how to harness the various existing optimization techniques
to improve I/O application performance. Figure 8 uses a node-link hierarchical tree diagram of classes positioned in
polar coordinates to describe the taxonomy from different layers of the HPC I/O stack.
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Fig. 8. Taxonomy of features used to describe an I/O access pattern at different layers of the HPC I/O software stack: application side,
high-level I/O libraries, middleware layer, and file system. Some features are repeated as they are meaningful across layers of the
stack, while others are intrinsic to a particular layer. Section 7.2 groups these features based on community usage over the years.

Furthermore, besides the features used in each layer, an I/O access pattern can also be observed from different scopes.
Yin et al. [231] classifies the access pattern in local, global, or system-wide. The local pattern describes an application’s
behavior in the context of a process or task, whereas the global pattern describes it at the application level, considering
all processes and tasks. On the other hand, the system-wide one describes the patterns of the diverse concurrent
applications when using the shared storage infrastructure or I/O nodes. The local access pattern information is usually
employed to identify and apply optimizations on the client side. In contrast, the global access pattern is more suitable for
I/O middleware, the forwarding layer, or file system servers since it has an overview of the application’s data accesses.
The system-wide one can also be used in the data servers [23, 118, 169, 187, 236] and forwarding layer [2, 16, 20, 159, 232]
to coordinate accesses and optimize I/O performance of the whole system.
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7.1 Access Pattern Features

In this section, we discuss the features often used to describe an I/O access pattern and how they are used in the
I/O stack. We classify the patterns based on I/O operations, synchronicity, file approach, spatial locality, interfaces,
consistency, and temporal behavior.

7.1.1 Operation. We can broadly classify the I/O operations as writes and reads. For append operations, the file offset
is first positioned at the end of the file using a seek operation, and then a write operation appends the data. The
modification of the file offset and the write operation is performed as a single atomic step.

7.1.2 File Approach. There are various scenarios for executing parallel I/O depending on how many processes (MPI
ranks) are performing I/O and on how many files are accessed by the processes. In the first scenario, each process of an
application issues its operations to an individual file, which is called file-per-process approach, as shown in Figure 9(a).
This scenario is represented by having multiple files and multiple writers/readers. When the number of processes is too
large, instead of accessing a file per process, data can be aggregated to a small subset of processes, and they can access
a smaller number of files. This is called the sub-filing approach [28, 29]. Though that might achieve performance by
harnessing the parallelism inherited from having multiple data servers, future use of those files for post-processing
or analysis will have to access those multiple files to get the required data, as it is scattered. The scalability of this
approach is limited when handling metadata operations for extreme-scale applications.

In the second scenario, all the processes share a common file (shared file). We can further distinguish such a scenario
based on the number of writers. At the opposite extreme of the file-per-process, a single writer (commonly rank 0)
receives data from many or all the ranks (typically using collective MPI calls), rearranges it, and writes it to a single
shared file, as depicted by Figure 9(b). This performance of this approach is limited by the memory available in the
aggregator node (to receive and handle the data from the entire application), in addition, it can not utilize the total
available bandwidth to the storage servers, effectively. Instead of a single writer, we can have a subset of ranks that
aggregate and issue the I/O operations, as in Figure 9(d). This strategy implies communication between each rank and
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Fig. 9. Number of files and writes/readers.

Manuscript submitted to ACM



14 Bez et al.

its aggregator, and the latter also has an additional data rearrangement step before dispatching the requests to the
storage system. Finally, another known approach is having all the ranks write their data to the file in a pre-defined
non-overlapping location, avoiding inter-rank communication but relying on implicit coordination, as illustrated by
Figure 9(c). This performance of this approach is also limited as there is no coordination or aggregation of I/O requests
between ranks on the same compute node.

7.1.3 Spatial Locality. The spatial locality or spatiality refers to the file offsets between consecutive I/O accesses.
Typical spatial access patterns are contiguous, strided, or random. This feature directly impacts I/O performance because
the storage infrastructure (at hardware and software levels) is affected by the sequentiality of the requests [21]. For
instance, file systems can cache or prefetch data when they predict a regular pattern to avoid the costly seek operations
between consecutive I/O requests, thereby improving the I/O performance of HPC applications.

We can define spatial locality of an I/O request by its file offset 𝑜 𝑓 𝑓𝑖 and a size 𝑠𝑖𝑧𝑒𝑖 where 𝑖 identifies the 𝑖𝑡ℎ request.
If the access to a file is sequential, each process accesses contiguous chunks of the file (Figure 10(a)) and the relation
𝑜 𝑓 𝑓𝑝,𝑖+1 = 𝑜 𝑓 𝑓𝑝,𝑖 + 𝑠𝑖𝑧𝑒𝑝,𝑖 holds for all subsequent requests. On the other hand, in a strided (1D, 2D, 𝑛D) pattern, each
process accesses portions of the data with a fixed-size gap (or stride) between them (Figure 10(b)). The file pointer
is incremented by the same amount between each request (i.e., the stride), hence 𝑜 𝑓 𝑓𝑝,𝑖+1 = 𝑜 𝑓 𝑓𝑝,𝑖 + 𝑠𝑡𝑟𝑖𝑑𝑒𝑖 where
𝑠𝑡𝑟𝑖𝑑𝑒𝑖 =

∑
𝑝 𝑠𝑖𝑧𝑒𝑝,𝑖 is often a constant. Furthermore, strided accesses are common when accessing shared files. For the

file-per-process approach, it is fairly common for a file to be accessed contiguously. Despite random access (Figure
10(c)) being less common for traditional HPC [177], novel workloads from machine learning applications present such
behavior [43, 55, 240, 241] often due to shuffling data between iterations and epochs, which usually results in a large
number of concurrent data writes to the file system.
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(a) Shared-file contiguous
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Fig. 10. Spatial locality of I/O requests in the file.

7.1.4 Interfaces. Interfaces seek to provide a convenient and easy-to-use way to access resources. In the context of I/O,
these have an important role when accessing files (locally or remotely) by defining APIs and semantics. Furthermore, in
HPC, these interfaces should strive to balance usability and high performance, often divergent goals. We can consider
three main interfaces that are used directly by applications or high-level libraries to express their access patterns:
POSIX I/O, MPI-IO, and STDIO. High-level I/O libraries provide various APIs that simplify mapping data models at the
application level with MPI-IO and POSIX interfaces. For instance, HDF5 uses the MPI-IO interface for parallel I/O and
POSIX-IO for sequential applications. ADIOS and PnetCDF use the MPI-IO and POSIX similarly. Hereafter, we briefly
discuss each interface and summarize their opportunities and challenges in the context of HPC in Table 2.

POSIX I/O: The Portable Operating System Interface (POSIX) is a set of standards defined by IEEE to maintain
compatibility among diverse operating systems, allowing an application to obtain basic services from an operating
system. POSIX also defines an I/O API used to interact with the file system. Its I/O interface was first introduced in 1988
in the POSIX.1 specification, and it was designed for local file systems accesses. POSIX.1b [92] introduced asynchronous
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and synchronous behaviors. Despite the fact it was designed for local file systems that used to support sequential
applications, POSIX is widely employed by a wide range of applications due to its portability.

However, the portability of POSIX comes with a price when used in HPC. The POSIX semantics define what is and is
not guaranteed when its API is used. For instance, it specifies that write operations must be strongly consistent, i.e., a
write() call is required to block the application execution until the system can guarantee that any following read() calls
will actually read the data that was just written. In the case of HPC, these strict requirements introduce complexity for
distributed and parallel file systems where remote processes are unaware of what local processes might be modifying
in a file and vice versa. HPC centers often provide POSIX-based parallel file systems (e.g., Lustre and GPFS), which
adhere to strong consistency semantics forcing sequential accesses [209]. The required semantics force many parallel
file systems to implement distributed locking mechanisms to ensure consistency, thereby penalizing I/O accesses at a
large scale. However, modern HPC applications often do not require such strong consistency guarantees [132, 209].

Since POSIX was not designed specifically for HPC applications, it may also impose a burden on the end-users. For
instance, it is possible to use the shared-file parallel I/O approach. But, the complexity of coordinating parallel accesses,
buffering, and flushing is explicitly delegated to the end user. Furthermore, as files are viewed as opaque byte streams,
applications are unable to express or hint to the file system about how its data is organized. Such information is essential
for data placement strategies and for optimizations. For example, the MPI-IO interface uses such information to express
complex accesses and attain high performance. Nonetheless, there were some efforts that sought to extend POSIX
I/O to account for HPC needs. Vilayannur et al. [206] designed a proposed POSIX extension to support shared file
descriptors/group open, lazy metadata attributes, noncontiguous read/write interfaces, and bulk metadata operations.
Such efforts have not been integrated into major storage solutions yet.

MPI-IO: On the other hand, MPI-IO [68] was proposed as an extension to the MPI standard, defining I/O operations by
reusing the message passing concepts of MPI. Writing to a file is like sending a message, and reading from a file is like
receiving a message. MPI-IO provides a high-level interface to describe the data partitioning among processes, and a
collective interface to describe transfers of global data structures between process memories and files. In addition, it
supports asynchronous I/O operations. As a result, MPI-IO allows computation to be overlapped with I/O and enables
optimization of physical file layout on storage devices [47]. Furthermore, MPI-IO’s semantics differ from POSIX’s,
relaxing some consistency requirements, while offering an atomic mode for applications that rely on stricter semantics.

To express flexible I/O access patterns that are natural to the application, MPI-IO relies on MPI-derived datatypes.
These are used to represent how data is laid out in thememory and also in the file. Furthermore, there are three orthogonal
features to data access in MPI-IO: positioning (explicit offset or implicit file pointer), synchronization (blocking or
non-blocking), and coordination (independent or collective). All are expressed using file pointers (individual or shared).

The MPI-IO interface is implemented on top of a portable abstract-device interface for parallel I/O called ADIO
[198], which can be optimized for various file systems. ADIO itself is not intended to be used directly by application
programmers but rather as an internal to the implementation of some other user-level I/O interfaces. For instance,
ROMIO [201] is a high-performance, portable implementation of MPI-IO optimized for noncontiguous access patterns,
which are common in parallel applications. It relies on the portability of ADIO to be used with any MPI implementation
(ROMIO is often included as a part of several MPI implementations such as MPICH, Cray MPI, and OpenMPI).

As MPI-IO is layered atop POSIX, it generates complex I/O access patterns. The pattern that reaches the file system
may greatly differ from what was initially expressed in the scientific application code due to optimizations and
transformations (e.g., collective buffering and data sieving [53, 199]) as requests traverse the I/O stack.
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Interface Opportunities Challenges

POSIX • Portability
• Strong consistency guarantees
• Shallow learning curve (wide adoption)

• Not designed for HPC
• Strong consistency vs. scalability
• Collective access (locking)
• Optimizations (lack of whole application view)

MPI-IO • Designed for HPC
• Relaxed consistency
• Flexibility (express patterns natural to applications)
• High-level I/O optimizations

• Hard adoption (source-code changes)
• Complex tunning

STDIO • Simple and buffered stream interface • Not designed for HPC
• Scalability
• Optimizations (lack of whole application view)

Table 2. Opportunities and challenges presented by each I/O interface when used in the context of HPC.

STDIO: The standard I/O library (STDIO) provides a simple and buffered stream I/O interface. It abstracts all file
operations into operations on streams of bytes. STDIO comprises the C stdio.h family of functions [97], e.g., fopen, fprintf,
and fscanf. However, STDIO functions do not directly support random access to data. In such cases, the application
must open a stream, seek to the desired location in the file, and then write/read bytes in sequence from the stream.

Recently, STDIO has been increasingly used for HPC workloads [144, 182], especially for genomics and biology
production applications that rely on I/O functions to store sequencing information in text format. Analysis of traces
from supercomputer facilities confirmed the noticeably increasing use of STDIO across supercomputer platforms and
for a wide range of science domains [17]. The study also revealed that though STDIO can obtain high bandwidths for
some transfer sizes, it consistently delivers lower performance than POSIX does across various transfer sizes in Cori
(NERSC) and Summit (OLCF) supercomputers, indicating overall poor I/O performance.

7.1.5 I/O Mode. The I/O mode refers to how parallel processes (MPI ranks) access a file: each rank individually or
collectively (by a subset of all ranks). Collective operations are readily available in interfaces such as MPI-I/O, and these
operations provide a big picture of the overall data movement across ranks. These functions require all processes that
collectively open the same file to participate in the calls, thus allowing optimizations such as collective buffering and
data sieving [199] to improve performance by building larger and contiguous accesses to the underlying storage system.

The I/O mode can directly transform the access pattern perceived by the underlying layer when using collective
operations. Instead of each rank issuing their individual operations, the aggregate file access region targeted by a
collective I/O call is divided among the aggregators into non-overlapping regions (file regions). In the communication
phase, all ranks send their I/O requests to the aggregators based on their file domain. In the I/O phase, aggregators
issue the requests to the system. Hence, aggregators effectively merge requests into larger and contiguous ones before
percolating to the POSIX layer or the file system.

7.1.6 Synchronicity. Synchronous or blocking I/O routines are not considered successful before an I/O operation
is completed. On the other hand, asynchronous or non-blocking I/O operations allow applications to hide the cost
associated with I/O operations by overlapping it with computation or communication steps, allowing the application to
progress. The latter is becoming popular among scientific applications to access large amounts of data and improve
user-perceived performance. POSIX and MPI-IO provide asynchronous APIs to write and read data from files. POSIX
standard provides the aio_* calls, whereas MPI-IO has MPI_File_i* calls for independent and collective I/O operations.
Some high-level I/O libraries, such as ADIOS and HDF5, also expose those non-blocking interfaces [195]. In contrast,
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data management systems such as the Proactive Data Containers (PDC) [194] offer asynchronous data movement to
and from their server nodes through network data transfer. Novel object storage file systems such as the Distributed
Asynchronous Object Storage (DAOS) [124] were built around the asynchronous concept to deliver performance. The
synchronicity feature will help shape the temporal behavior of the application’s access pattern.

7.1.7 Temporal Behavior. Towards the automatic detection of poorly performing HPC jobs, Buneci and Reed [27]
generated temporal signatures containing performance features from time-series metrics to group applications into
two groups: those that performed as expected and those that did not. They combine high-level states provided by
users, based on previous executions, with low-level metrics to detect factors affecting performance. Though their
approach uses two I/O metrics to build the signature, they do not focus on that, but instead on the combination of
CPU, memory, disk, and network usage. Dorier et al. [61, 62] proposed Omnisc’IO, which builds a grammar-based of
any HPC application I/O behavior to predict future use. They seek to predict when I/O operations will occur, i.e., the
inter-arrival time between requests and how much data will be accessed, including offset and size within the file. To
make time-related predictions, Omnisc’IO stores statistics such as minimum and maximum observed time between
requests, the average, and variance and relies on weighted inter-arrival average time to react to changes. From those,
they can anticipate whether an operation will immediately follow the current one in a predictable amount of time and
whether the time before the subsequent operations is more unpredictable.

On the other hand, White et al. [219] placed a particular focus on I/O by proposing a taxonomy for temporal I/O
patterns of HPC jobs to aid in automatically detecting bad performing jobs. They describe the design of a simple
heuristic classification algorithm that categorized jobs based on a very coarse measure of when the majority of the I/O
occurred. The authors observed a small number of common I/O access patterns: primary I/O usage near the start of the
job, main I/O usage near the end of the job, I/O activity at the beginning and end but not during the job, low I/O at the
start or end but high in the middle, regular activity throughout the job and regular periodic I/O activity.

7.1.8 Consistency. When checking for overlapping I/O patterns, Wang et al. [211] considers consistency of I/O
operations. They seek to understand whether or not a process ever writes/reads to the same part of a file more than
once, whether multiple processes write/read the same part of a file, and the order in which operation occurs in a given
offset. For that, they consider read after read (RAR), write after write (WAW), read after write (RAW), and write after
read (WAR) metrics to compose the pattern. The consistency policy used by an application can also aid in determining
whether caching techniques are feasible or not.

7.2 Community-based Usage Survey

Seeking to understand how I/O access patterns are approached and used by the broad HPC community to describe their
applications, we filtered the ACM Digital Library1 and the IEEE Xplore Digital Library2 considering a 20-year window,
covering publications between 2000 and 2021 that mention the terms “I/O access pattern,” “I/O characterization,” “I/O
characteristic,” or “I/O signature.” The text should also refer to “HPC” for any of the terms. After filtering for conferences
and journal publications, that search yielded 74 results in ACM and 161 in IEEE. In Fig. 11 and Fig 12, we show our
queries used in ACM DL and IEEE Xplore, respectively. We classify these papers based on the features used by the
authors to describe the I/O access pattern at multiple levels of the I/O stack, as illustrated in Fig. 13.

1https://dl.acm.org
2https://ieeexplore.ieee.org
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"query": {
AllField: (("I/O access pattern" OR "I/O characterization" OR "I/O characteristic" OR "I/O signature ") AND "HPC"))

}
"filter": {Publication Date: (01/01/2000 TO 12/31/2021)}, {ACM Content: DL}

Fig. 11. ACM DL query and filter parameters used in this survey.

("Full Text & Metadata":"I/O access pattern ") AND ("Full Text & Metadata":"HPC") OR
("Full Text & Metadata":"I/O characterization ") AND ("Full Text & Metadata":"HPC") OR
("Full Text & Metadata":"I/O characteristic ") AND ("Full Text & Metadata":"HPC") OR
("Full Text & Metadata":"I/O signature ") AND ("Full Text & Metadata":"HPC") Filters Applied: 2000 - 2021

Fig. 12. IEEE Xplore query and filter parameters used in this survey.

Our methodology consisted of looking for common pre-defined keywords in the entire text that is used to describe
each I/O access pattern feature. Each manuscript was pre-filtered and manually inspected to avoid false positives. We
defined a set of tags corresponding to each feature and its usage. Due to the selection approach and the broad use of the
term in correlated areas (e.g., memory), some of the selected papers were not, in fact, relevant to this survey. Therefore,
they were later excluded from the analysis. In the end, we considered 146 papers for the analysis presented in this
section (62.13% of the 235 results). Specifically, we used the following criteria to filter the initial set of papers.

• The keyword should have been used in the experiments or considered IN the proposed technique or solution;
• Merely citing or using a keyword does not make the paper fall into that classification (e.g., mentioning HDF5 as
an interface for IOR does not make it fall into the HDF5 category unless it was used in the evaluation);

• If the feature is used solely to describe related work that does not make the paper be marked in that category;
• Some of those keywords’ definitions are overloaded to describe features outside the I/O realm, for instance,
memory, communication, or even computing (e.g., synchronous/asynchronous). In such cases, they were not
considered as relevant in the context of the I/O access pattern;

• To avoid bias in classification, if the authors did not clearly state a feature, we assume they did not consider that
(unless it is evident from context); in doubt, we assume that it is not used.

In Fig. 13, we summarize our findings. When discussing access patterns, 122, i.e., 83.56% of the papers cover data
operations, whereas only 48 (32.89%) considers metadata operations. However, these do not go into the depth of
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describing their metadata I/O patterns in detail. Regarding features, operation (96.57%), request size (67.81%), and spatial
locality (65.07%) are the ones taken into account by the majority of the research papers. Despite the file approach
being strongly related to the spatial locality, the first is not explicitly addressed in 58.90% of the surveyed papers.
Collectiveness and synchronicity are the less targeted features when discussing or describing access patterns, and both
are related to I/O optimization techniques.

In Fig. 14, we depict the intersecting sets of features used in the surveyed research papers, considering the seven
features detailed in Fig. 13. To summarize all intersections and their distributions, we rely on the UpSet plot, a state-of-art
visualization technique for the quantitative analysis of intersecting sets and their properties [45, 120]. From this, it
becomes clear how not all relevant features are properly described and considered in the majority of the works and
which ones are commonly considered together (e.g., operation, request size, and spatial locality). Table 3 maps these
different features and references those works so readers can find detailed information on how those features were
employed in practice under diverse scenarios and science domains.

Fig. 14. Analysis of the set of features used to describe an I/O access pattern in ACM DL and IEEE Xplore research papers.
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Table 3. Surveyed papers from ACM DL and IEEE Xplore grouped by the features they use when discussing I/O access patterns.
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We also grouped the research papers according to the interface and high-level libraries they use. For interfaces,
the majority (57.53%) used MPI-IO in their experiments or explicitly considered that interface when discussing the
applicability of the proposed solution or optimization techniques. POSIX follows up with 47.26% whereas STDIO is
targeted by merely 3.42% of the surveyed papers. On the other hand, Bez et al. [18] highlight a widespread use of STDIO
across a wide range of science domains in HPC applications on both Summit (OLCF) and Cori (NERSC) supercomputers,
suggesting a possible new trend due to the shift from traditional numerical simulations to AI/ML applications for
training and inference while processing and producing ever-increasing amounts of scientific data. Regarding high-level
libraries, the majority do not explicitly acknowledge using a particular library, though HDF5 is used by 27.40%.

Summary #6

The community has been using common features (e.g., operation, size, and spatiality) to describe an I/O access
pattern, with additional information depending on the targeted layer or optimization context. Furthermore,
metadata access is often not as detailed as data access.

8 EXERCISING I/O ACCESS PATTERNS

This section briefly covers existing benchmarks and I/O kernels that are often used in scientific I/O research to exercise
access patterns. We describe the features benchmarks use to represent I/O accesses and the I/O workload characteristics
of different scientific application kernels.

Table 4 summarizes the benchmarks and I/O kernels used by the community to exercise the HPC I/O stack under
diverse data workloads. We group the tools by their representation (exclusively synthetic workloads or extracted as a
representative I/O kernel of an application), focus (data or metadata), operation (write or read), support to set the request
size, mode (independent or collective operations), temporal behavior, file approach (shared file or file-per-process), and
synchronicity (synchronous or asynchronous requests). We also describe the supported I/O interfaces.
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POSIX, MPI-IO, HDF5,
HDFS, S3, NCMPI,
IME, MMAP, RADOS

MADbench2 [25] p ✓ ✓ p ✓ ✓ ✓ ✓ p p ✓ ✓ ✓ ✓ POSIX, MPI-IO
IFER [227] ✓ p ✓ p ✓ p ✓ p ✓ ✓ ✓ p ✓ p MPI-IO
S3D [39] p ✓ ✓ p ✓ ✓ p p ✓ p ✓ p ✓ ✓ PnetCDF
NAS BT-IO [155] ✓ ✓ ✓ p ✓ ✓ p p ✓ ✓ ✓ p ✓ p MPI-IO
S3aSim [42] p ✓ p ✓ ✓ p ✓ ✓ ✓ ✓ ✓ p ✓ p MPI-IO
h5bench [122] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ HDF5
HACC-IO [207] p ✓ ✓ p ✓ ✓ p ✓ ✓ p ✓ ✓ ✓ p POSIX, MPI-IO
MACSio [151] ✓ p ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ p STDIO, MPI-IO, HDF5
MPI Tile I/O [171] ✓ p ✓ ✓ ✓ ✓ ✓ ✓ ✓ p ✓ p ✓ p POSIX, MPI-IO

Table 4. Summary of access pattern features exercised by each benchmark and I/O kernel. The check in orange indicates that h5bench
does support asynchronous operations, however, it requires the HDF5 ASYNC VOL Connector [195] to be available and enabled.

Manuscript submitted to ACM



I/O Access Patterns in HPC Applications: A 360-Degree Survey 21

IOR [88] is an I/O benchmark to test the performance of parallel storage systems using various interfaces and access
patterns. It supports different interfaces or APIs (POSIX, MPI-IO, HDF5, HDFS, S3, NCMPI, IME, MMAP, or RADOS).
IOR is flexible enough to express patterns by configuring the operation, the contiguous bytes to write per task (block
size), transfer size, number of segments, whether it uses collective or individual operations (where applicable), and
whether each task writes to its own file or a shared file.

MADbench2 [25] is an I/O kernel extracted from the MADspec application. MADbench2 allows testing the integrated
performance of the I/O, communication, and calculation subsystems of massively parallel architectures under the
stresses of a real scientific application. It is derived directly from a large-scale Cosmic Microwave Background (CMB)
data analysis package. It calculates the maximum likelihood angular power spectrum of the CMB radiation from a noisy
pixelized map of the sky and its pixel-pixel noise correlation matrix. MADbench2 has a regular mode, in which the full
code is executed, and an I/O mode where all calculation/communication is replaced with busy work. The kernel has
three component functions, each with different access patterns, named S, W, and C. In S, 𝑁𝑏𝑖𝑛 writes each of 𝑁𝑝𝑖𝑥

2

bytes on 𝑁𝑝 processors. InW, 𝑁𝑏𝑖𝑛 reads each of 𝑁𝑝𝑖𝑥
2 bytes on 𝑁𝑝 processors and 𝑁𝑏𝑖𝑛 writes each of 𝑁𝑝𝑖𝑥

2 bytes
on 𝑁𝑝/𝑁𝑔𝑎𝑛𝑔 processors. In C, 𝑁𝑏𝑖𝑛

2/𝑁𝑔𝑎𝑛𝑔 reads each of 𝑁𝑝𝑖𝑥
2 bytes on 𝑁𝑝/𝑁𝑔𝑎𝑛𝑔 processors where 𝑁𝑝 defines the

number of processes and 𝑁𝑝𝑖𝑥 sets the size of the pseudo-data, where all the component matrices have 𝑁𝑝𝑖𝑥 × 𝑁𝑝𝑖𝑥

elements. 𝑁𝑏𝑖𝑛 sets the size of the pseudo-dataset composed on 𝑁𝑏𝑖𝑛 component matrices. Finally, 𝑁𝑔𝑎𝑛𝑔 sets the level of
gang-parallelism, allowing the MADbench2 to run as a single or multi-gang. In the former, all the matrix operations are
carried out distributed over all of the processors. The kernel can use the POSIX or MPI-IO interfaces to synchronously
or asynchronously issue its I/O operations to a unique or shared file.

IFER is a microbenchmark similar to IOR but instead seeks to provide insights on I/O contention [227]. It splits the
ranks into two groups running on two separate sets of nodes to emulate two competing applications. Each group of
processes executes a series of collective I/O operations following a pre-defined pattern. Though IFER only provides
support for write requests to a shared file by application, it considers two patterns: contiguous and one-dimensional
strided. IFER also relies on two additional parameters, the block size, which represents the contiguous bytes to write
per process, and the block count. The number of blocks will be continuously written per process in the contiguous
pattern. For the strided pattern, the blocks are distributed along the file depending on their offsets. Because its original
goal was to study I/O interference, IFER allows users to define the inter-arrival time between the I/O phases.

The S3D I/O Kernel [39] is a continuum scale first principles direct numerical simulation code that solves the
compressible governing equations of mass continuity, momenta, energy, and mass fractions of chemical species,
including chemical reactions. It creates 𝑁 checkpoints at regular intervals, where it writes three and four-dimensional
arrays of doubles into a newly created file. All three-dimensional arrays are partitioned among the MPI processes using
block partitioning in all 𝑥-𝑦-𝑧 dimensions, whereas the fourth dimension (the most significant one) is not partitioned.
The kernel can be configured to use PnetCDF blocking or non-blocking APIs. For the latter, a checkpoint has four
non-blocking write calls, one per variable, followed by a call to wait and flush the write requests [128].

NAS BT-IO [155] is a benchmark based on the Block-Tridiagonal (BT) problem of the NAS Parallel Benchmarks
(NPB). Each rank is responsible for multiple Cartesian subsets of the data set, whose number increases as the square
root of the number of ranks participating in the computation. The entire solution, consisting of five double-precision
words per mesh point, must be written to file at every five timesteps. In the end, all data belonging to a single time step
must be stored in the same file and must be sorted by vector component, 𝑥 , 𝑦, and 𝑧-coordinate.

S3aSim [42] is an I/O kernel based on a sequence similarity search framework. It uses a master-slave parallel
programming model with database segmentation, mimicking the mpiBLAST [52] access pattern. Given input query
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sequences, S3aSim divides up the database sequences into fragments. Workers request a query and fragment information
from the master and search the query against the database fragment assigned. The results are sent to the master to be
sorted and then written to a single shared file. Without synchronizing after every query, this application uses individual
I/O operations to write data to a single shared file.

Parallel I/O Kernels (https://github.com/hpc-io/PIOK) provide the parallel I/O portion of various scientific simulation
codes that use HDF5. These kernels have been expanded with h5bench to cover a variety of HDF5 I/O patterns. h5bench
[122] is a set of HDF5 I/O kernels representing I/O patterns that are commonly used in HDF5 applications on HPC
systems. It provides a framework to test, exercise, and tune I/O performance using novel features introduced in HDF5 and
understanding how the library performs in different machines under such I/O workloads. It measures I/O performance
from various aspects, including the raw and observed I/O time and rate.

HACC-IO [207] is a kernel extracted from the HACC (Hardware Accelerated Cosmology Code) cosmology framework
(Gordon Bell Award Finalist 2012, 2013). It uses the N-body to simulate collisionless fluids under the influence of gravity.
The kernel includes the checkpoint, restart, and analysis outputs produced by the simulation. Hence, it is quite I/O
intensive. It also supports both POSIX and MPI-IO (with independent and collective operations) interfaces. Regarding
the file approach, HACC-IO can be configured to write to a single shared file, a file-per-process, or a mix of both (i.e.,
file per group). It only takes as an input argument the number of particles (𝑛), where each particle is comprised of seven
4-bytes floats, an 8-byte integer, and a 2-byte integer. Thus, each process writes/reads 𝑛 × 38 bytes.

MACSio (Multi-purpose, Application-Centric, Scalable I/O Proxy Application) [151] was built for I/O performance
testing and evaluation of tradeoffs in data models, I/O library interfaces, and parallel I/O paradigms for multi-physics,
HPC applications. It differs from other benchmarks in the sense that it actually constructs and marshals data as real data
objects commonly used in scientific computing applications. Hence, MACSio allows closely mimicking I/O workloads
from the multi-physics domain, where data object distribution and composition vary within and across parallel processes.
It also supports representing the data using multiple file approaches (segmented and strided single shared file, multiple
independent files, or file-per-process), using independent and collective operations.

MPI Tile I/O [171] is a benchmark suited to test the performance of an underlying MPI-IO and file system implemen-
tation under a non-contiguous access workload. It logically divides a data file into a dense two-dimensional set of tiles
based on the number of tiles in the 𝑥 and 𝑦 dimensions. It allows the end-user to configure the number of elements
in each tile dimension and the size of an element. It can express overlap elements by defining how many of them are
shared between adjacent tiles in each dimension. MPI Tile I/O has support for collective I/O allowing fine tune of the
list of nodes involved in the aggregation.

Towards emulating scientific deep learning workloads that are becoming popular on HPC systems, DLIO [55] provides
an I/O benchmark suite. DLIO supports various scientific deep learning applications, including Neutrino and Cosmic
Tagging with UNet, Distributed Flood Filling Networks (FFN), Convolutional Neural Networks (CNN), CosmoFlow for
cosmology datasets, Fusion Recurrent Neural Net (FRNN), and Cancer Distributed Learning Environment (CANDLE).
DLIO allows reading data from different file formats and APIs, such as HDF5, CSV, and tfrecord formats.

Summary #7

A plethora of benchmarks and I/O kernels are available to the community to exercise access patterns at different
layers of the stack. There is not a single one that encompasses all features but combined, they cover distinct
features, interfaces, and application data models.
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9 PROFILING AND VISUALIZING I/O ACCESS PATTERNS

Darshan [34] is a popular tool to collect I/O profiling information from applications in a lightweight manner. Darshan
aggregates I/O profile information to provide valuable insights without adding overhead or perturbing application
behavior. It also provides an extended tracing module (DXT) [223] to obtain a fine-grain view of the application behavior
to understand I/O performance issues. Once enabled, DXT collects detailed traces from the POSIX and MPI-IO layers
reporting the operation (write/read), the rank that issued the call, the segment, the offset in the file, and the size of each
request. It also captures the start and end timestamps of all the operations issued by each rank.

Recorder [211] is a multi-level I/O tracing framework to capture I/O function calls at multiple levels of the I/O
stack, including HDF5, MPI-IO, and POSIX I/O. As a shared library, it requires no modification or recompilation of the
application and allows users to control tracing levels. Recorder captures timestamps, function names, and all parameters
from intercepted I/O calls using function interposing to intercept I/O calls.

The Tuning and Analysis Utilities (TAU) [178] is an integrated toolkit for performance instrumentation, measurement,
and analysis. It can capture file I/O (serial and parallel), communication, memory, and CPU. Regarding I/O, TAU
can handle profiling and tracing, observing inclusive (including all child regions) and exclusive (for a region only)
measurements. It uses library wrapping to characterize I/O performance, which helps automate the instrumentation of
external I/O packages and libraries. Thus, TAU can capture POSIX and MPI-IO and instrument libraries such as HDF5.

IOPin [107] proposes a dynamic instrumentation framework to understand the complex interactions across different
I/O layers from applications to the underlying PFS. It leverages Pin lightweight binary instrumentation using probe
mode to instrument applications and components of the I/O stack, providing a hierarchical view for parallel I/O. Their
implementation supports the MPI library and PVFS. Their approach traces and instruments only the process that has
been identified by Pin to have the maximum I/O latency. This dynamic instruction reduces the overhead and focuses on
detecting only one critical I/O path that affects performance in the stack. The metrics provided by IOPin include latency,
disk throughput, number of requests from client to server, and number of disk accesses for each request. However, it
does not provide a characterization of each I/O request.

ScalaIOTrace [142] is a multi-level I/O tracing tool based on ScalaTrace [158], an MPI communication tracing
framework for parallel applications. ScalaIOTrace supports both MPI-IO and POSIX-IO interposition. MPI-IO tracing
relies on the MPI profiling layer (PMPI) to intercept and collect MPI calls. At the same time, POSIX is captured via
wrappers using GNUlink time entry interpositioning with domain-specific parameter compression, similar to PMPI.
This tracing tool captures I/O events as singletons, vectors, and regular section descriptors to describe the application
behavior. Those are stored in a single, lossless, and order-preserving trace file. Their goal is to generate a trace that can
be extrapolated into target sizes of nodes and replayed to assert I/O scalability.

Score-P [109] is a measurement tool suite for profiling and event tracing of HPC applications. The instrumentation
allows users to insert measurement probes in their codes to collect performance-related data when triggered by linking
against several provided run-time libraries for serial execution, OpenMP or MPI parallelism or hybrid combinations.
It also allows selective filtering in both profiling and tracing mode to restrict the recording to specific regions. For
input and output operations, Score-P can collect data on POSIX-IO (e.g., open/close), POSIX asynchronous I/O (e.g.,
aio_read/aio_write), STDIO (e.g., fopen/fclose) and MPI-IO calls. Visualizing Score-P output files using Periscope
[12], Scalasca [73], TAU [154], and Vampir [108] is possible. Periscope is an online profiling analysis that evaluates
performance properties and tests hypotheses about typical performance problems. Scalasca allows post-mortem analysis
of event traces and automatically detects performance-critical situations. It is also possible to use the TAU visualization
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toolset to correlate performance data collected with Score-P or Vampir, which works as a post-mortem interactive event
trace visualization software.

DXT Explorer [19] is an interactive web-based log analysis tool to visualize Darshan DXT traces and help under-
standing the I/O behavior of applications. The tool adds an interactive component to Darshan trace analysis that can aid
researchers, developers, and end-users to visually inspect their applications’ I/O behavior, zoom in on areas of interest
and have a clear picture of where the I/O problem is.

Gaps in Visualizing Access Pattern Transformations

As discussed in Section 3, the way the application issues its I/O requests will differ from what the intermediate layers
and the file system actually perceive. To illustrate the transformations an application’s I/O requests undergo as they
traverse the stack, we use Darshan traces and DXT Explorer to visualize the I/O access pattern at different levels.
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Fig. 15. Two concurrent IOR instances using DXT Explorer. We depict the access pattern from the high-level library (HDF5) and their
corresponding transformations until they reach the POSIX layer and the underlying Object Storage Targets (OST) in Lustre.

Figure 15 depicts such transformations. In this experiment, we have two instances of IOR (one in red and another in
blue). We executed each one in two non-overlapping sets of 16 compute nodes, with eight ranks per node, totaling 128
ranks. We configured IOR to write ten iterations of one segment with a 32MB block size using 4MB transfer sizes to a
shared file using the HDF5 API and collective MPI operations. Both instances were started simultaneously. We collected
profile and tracing data using Darshan. As Darshan Extended Tracing does not yet capture fine-grain information
about high-level libraries, such as HDF5, we rely upon manually instrumenting the code to collect timestamps before
performing the write operations and after the dataset is completely written to a given file. We condensed both plot
facets as all the ranks collectively issued the I/O calls to the MPI-IO layer. We represented these collective calls by the
star symbol on the 𝑦-axis.
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Fig. 16. I/O request from the two concurrent IOR instances (one in read another in blue) as they arrive in each of the eight Lustre
storage servers. We zoom in the first two seconds of the experiment reported in Figure 15.

As far as the application is concerned, its data in memory is a 1D-dataset represented by HDF5. HDF5 will define a
hyperslab based on the start offset, count, stride, and block to access the data. A hyperslab represents a portion of the
datasets that can be a logically contiguous collection of points in a dataspace or a regular pattern of points or blocks in
a dataspace. In our experiments, for a shared file, IOR defines the start offset as offset module segmentSize, count as
one, and a stride and a block equal to the transfer size, i.e., 4MB. However, once the requests reach the MPI-IO layer, they
are further broken down by the four collective aggregators into a larger number of 1MB POSIX requests, considering
the underlying parallel file system striping configuration before sending them to each storage device. We have defined
Lustre to use 1MB stripes over eight servers to make it easier to visualize. Once we delve into lower levels of the I/O
stack, we are to lose contextual information from the applications and start to observe the effect of natural interference
in this shared storage infrastructure. For instance, if we glance at one OST, the requests arrive at the storage servers in
an interleaved fashion, coming from the two applications that the file system is unaware of. At this point, the original
contiguous requests issued by the application using 4MB requests arrive at the server much smaller (in 1MB requests)
and with a different spatiality (non-contiguous).

Furthermore, it is essential to highlight the inter-application interference caused by other applications sharing those
data servers. Figure 15 clearly depicts how two identical applications that started simultaneously begin to diverge
in time towards the end of our experiment. Such observation also highlights the importance of taking into account
temporal features when discussing access patterns.

Summary #8

Different tools extract and visualize I/O access patterns from coarse-grain profilers to fine-grain traces as I/O
requests pass through the stack. However, we could not find a complete solution that allows observing patterns
and all of their transformations in the context of each layer. Because of the complexity of the current stack, this
gap might not easily reflect the root causes of bottlenecks.

10 CONCLUSION

The HPC I/O stack has been complex due to multiple layers of hardware and software, their various tuning options, and
inter-dependencies among the layers. This survey discussed extensively the overloaded “I/O access pattern” terminology
used to describe how accesses are done from the major layers of the HPC I/O stack, covering the high-level models used
by scientific applications, how those are represented by high-level I/O libraries and translated by middleware libraries
before reaching the parallel file system. We have also highlighted I/O benchmarks and kernels employed to exercise
access patterns in different levels, alongside existing tools to visualize those patterns using profiling and tracing.
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Harnessing the I/O community’s knowledge over the last 20 years, we surveyed 146 papers from ACM DL and IEEE
Xplore to propose a baseline taxonomy that could define an application’s I/O access patterns. Our effort targets bringing
a consensus to the varying ways to describe a pattern based on features already used by the community over the years,
serving as a common ground between end-user, application developers, and system administrators when discussing,
proposing, and applying I/O tuning strategies to improve I/O performance.

Furthermore, the existing I/O stack exposes a plethora of tunable parameters and enables different, often comple-
mentary, optimization techniques to improve performance. However, there is little to no guidance to developers and
end-users on how and when to apply them. Besides the lack of knowledge that those options are available and could
help for a particular set of access patterns, there has not been a single set of instructions to define a set of tuning
parameters. Reaching a list of best practices, even for a single system, is challenging due to various factors affecting I/O
performance. Finally, not having a common ground to identify and refer to access patterns could add to this complexity
and makes it difficult to map I/O access patterns to their performance behaviors and then to optimization strategies.

As the HPC platforms become more complex and specialized to host novel applications from machine learning to
scientific workflows, it becomes paramount for those systems that seek to auto-tune their parameters to accurately
detect the I/O access patterns at runtime. An established taxonomy can help bridge the gap between metric collection,
access patterns representation, and the application of AI-based and automatic tuning mechanisms to navigate the
complex parameter space, seeking optimizations and configurations to apply for an observed application workload.

Consequently, despite having tools to collect profiles and metrics about I/O performance and features that can be
used to describe the application’s access patterns at different layers of the HPC I/O stack, there are still gaps between
visualizing and understanding what the application is doing, identifying the bottlenecks, and correctly re-shaping its
pattern to perform better in the system. Reporting and automatically mapping performance problems into actionable
items based on the observed pattern require novel tools, models, and further R&D.
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