
Lawrence Berkeley National Laboratory
LBL Publications

Title

I/O Access Patterns in HPC Applications: A 360-Degree Survey

Permalink

https://escholarship.org/uc/item/198194vd

Journal

ACM Computing Surveys, 56(2)

ISSN

0360-0300

Authors

Bez, Jean Luca
Byna, Suren
Ibrahim, Shadi

Publication Date

2024-02-29

DOI

10.1145/3611007

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/198194vd
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


I/O Access Patterns in HPC Applications: A 360-Degree Survey

JEAN LUCA BEZ and SUREN BYNA, Lawrence Berkeley National Laboratory, USA

SHADI IBRAHIM, Inria, Univ. Rennes, CNRS, IRISA, Rennes, France

The high-performance computing (HPC) I/O stack has been complex due to multiple software layers, the inter-dependencies among
these layers, and the different performance tuning options for each layer. In this complex stack, the definition of an “I/O access pattern”
has been re-appropriated to describe what an application is doing to write or read data from the perspective of different layers of the
stack, often comprising a different set of features. It has become common having to redefine what is meant when discussing a pattern
in every new study as no assumption can be made. This survey aims to propose a baseline taxonomy, harnessing the I/O community’s
knowledge over the last 20 years. This definition can serve as a common ground for HPC I/O researchers and developers to apply
known I/O tuning strategies and design new strategies for improving I/O performance. We seek to summarize and bring a consensus
with the multiple ways to describe a pattern based on common features already used by the community over the years.

CCS Concepts: • Information systems → Information storage systems; Storage architectures; Hierarchical storage management.

Additional Key Words and Phrases: I/O access pattern, HPC I/O, storage, I/O characterization

ACM Reference Format:
Jean Luca Bez, Suren Byna, and Shadi Ibrahim. 2023. I/O Access Patterns in HPC Applications: A 360-Degree Survey. 1, 1 (July 2023),
37 pages. https://doi.org/10.1145/3611007

1 INTRODUCTION

In High Performance Computing (HPC), “I/O access pattern” or “I/O signature” is broadly used to express how an
application is performing input and output (I/O) operations [21]. Though the word is broadly used, there is no globally
accepted convention to describe which features define an I/O access pattern and how they differ based on the level
in the HPC I/O software stack they are being used to describe. For instance, some studies do not consider temporal
features as part of the description of an access pattern [22] whilst others do [27, 219]. Moreover, some studies describe
the access pattern as seen by high-level libraries [26, 41, 66], some others by the I/O middleware [9, 216], and others by
what the underlying file system is receiving [24, 128, 237]. Hence, it is a common practice to have to re-describe exactly
what is meant when discussing “I/O access pattern” at every new study as no assumption can be made.

In this paper, we aim to propose a baseline taxonomy, harnessing the I/O community’s knowledge over the last 20
years, that researchers and application developers can use to define an application’s I/O access pattern. This definition
can serve as a common ground to apply known I/O tuning strategies as well as to design new strategies for improving
I/O performance. The definitions we proposed here seek to summarize and to bring a consensus to the multiple ways to
describe a pattern based on common features already used by the community over the years. It does not seek to be set
in stone but a baseline consensus, which can be extended to accommodate new applications from different domains.

Authors’ addresses: Jean Luca Bez, jlbez@lbl.gov; Suren Byna, sbyna@lbl.gov, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Shadi
Ibrahim, shadi.ibrahim@inria.fr, Inria, Univ. Rennes, CNRS, IRISA, Rennes, Rennes, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-3915-1135
HTTPS://ORCID.ORG/0000-0003-3048-3448
HTTPS://ORCID.ORG/0000-0002-4306-5280
https://doi.org/10.1145/3611007
https://orcid.org/0000-0002-3915-1135
https://orcid.org/0000-0003-3048-3448
https://orcid.org/0000-0002-4306-5280
https://orcid.org/0000-0002-4306-5280


2 Bez et al.

Besides solidifying a taxonomy based on common-ground features, our survey has practical applications for current
and future research in the area. For instance, a plethora of existing optimization techniques that seek to improve
applications’ I/O performance relies on the definition of an access pattern. Despite the strategies they apply, they all
work by modifying how an application is accessing its data (i.e., its I/O access pattern) to be more suited to the underlying
layer of the I/O stack. Request aggregation, reordering, scheduling, and collective operations [44, 59, 60, 113, 197, 216]
are a few examples of techniques that optimization mechanisms apply at different layers of the I/O stack. In general,
such optimizations typically improve the performance for a given system deployment and I/O patterns, but not for all.
Moreover, they often rely on correctly applying such techniques to the workload represented by a set of access patterns.

As novel applications from diverse domains are harnessing HPC platforms and the systems are becoming more
complex to handle more concurrent applications, it becomes paramount for those systems that seek to auto-tune their
parameters to detect the I/O access patterns at runtime accurately. Such detection allows them to make decisions and
apply the set of optimization techniques that are specifically designed for the observed patterns. Having an established
taxonomy with clearly defined features can help to bridge the gap between describing the access patterns and mapping
them to existing techniques allowing, for instance, AI-based and automatic tuning mechanisms to navigate the complex
parameter space to find which optimizations and configurations can be applied for an observed I/O access pattern.

ContributionsWhile the term “I/O access pattern” is used heavily in published literature, there has been no study that
encompasses, discusses, and categorizes I/O access patterns to the breadth to which the term is used in HPC. White et al.
[219] proposed a taxonomy for temporal I/O patterns of HPC jobs to aid in automatically detecting bad-performing
jobs. Boito et al. [21] touched on several key points of the HPC I/O stack, including access pattern extraction. However,
both suffer from the same issues of redefining what an access pattern means. Furthermore, those definitions do not
encompass all features of I/O and their impact when glancing at the different layers of the parallel I/O stack. In this
work, we seek to provide a broader taxonomy for I/O access patterns, taking into account temporal behavior and also
integrating other commonly used features as understood by the community, and to describe how those patterns are
represented, used, and transformed as we traverse the HPC I/O stack.

The remainder of the paper is organized as follows. In Section 2, we discuss the traditional HPC I/O software stack.
The discussion of access patterns is split into four sections representing the layers in the stack. In Section 3, we describe
the common data models used by scientific applications. Section 4 discusses how those data models are represented by
high-level I/O libraries. Section 5 approaches the translation of I/O accesses used by middleware libraries. Finally, in
Section 6, we present the perspective of the file system. In Section 8, we present common I/O benchmarks and kernels
used to exercise access patterns in different levels of the HPC I/O stack, and in Section 9, we describe popular tools to
visualize those patterns by using profiling and log traces. In Section 10, we conclude this survey with a summary of our
contributions, existing gaps, and highlight opportunities for further R&D.

2 HPC I/O STACK

To support the input and output (I/O) workloads from serial or parallel scientific applications, HPC systems provide a
multi-layered software stack, as illustrated by Figure 1. Between the applications and storage hardware, the parallel I/O
stack consists of high-level I/O libraries, middleware I/O libraries, optimization layers, and parallel file systems (PFS).

While traversing the stack, an access pattern is often reshaped via a series of data transformations originating from
distinct abstractions and mappings between the data models used in the layers and the application of optimization
techniques (e.g., scheduling, aggregation, and compression) before reaching the file system. Furthermore, some contextual
Manuscript submitted to ACM



I/O Access Patterns in HPC Applications: A 360-Degree Survey 3

Applications

High-Level I/O Libraries

Parallel I/O Middleware

Low-level I/O Libraries

I/O Forwarding Layer

Parallel File System

Storage Hardware

HDF5, NetCDF, ADIOS

MPI-IO

IBM ciod, IOFSL
Cray DVS, Cray Datawarp

 Lustre, GPFS, PVFS, 
OrangeFS, BeeGFS, PanFS

HDD, SSD, RAID

POSIX, STDIO

Fig. 1. The traditional HPC I/O software stack that includes several layers of libraries between applications and storage hardware.

information gets lost in this process. For instance, when requests arrive at the file system layer, the file system is
unaware of which application or process the request originated from, or even if the request went through any data
transformations and which ones. Consequently, an application may believe it is accessing its data in one way, whereas
something entirely different is happening in reality at the lowest layers of the stack.

High-level I/O libraries are used by applications to provide datamodels and filemanagement abstractions that facilitate
data portability and high performance. Examples of widely-adopted libraries are HDF5 [202], NetCDF [119]/PnetCDF
[121], and ADIOS [134]. Those libraries map the applications’ data abstractions into files or objects and encode the data
in portable file formats. These libraries allow users to add metadata to describe the data and their data structures. In
addition to these parallel I/O high libraries, application domain-specific libraries also exist. Among these, ROOT [5]
and FITS [80, 217] serve high-energy physics and astronomy communities, respectively. Applications may also use the
Message Passing Interface I/O (MPI-IO) [46], Portable Operating System Interface I/O (POSIX-IO) [67], or Standard
Input and Output (STDIO) interfaces directly to perform I/O to the file systems. We discuss these interfaces, their
challenges, and their known impact on HPC I/O performance in Section 7.1.4.

In MPI I/O, a file is an ordered collection of typed data items. It presents a higher level of data abstraction than POSIX
by allowing users to define data models that are natural to the application. Nonetheless, it supports defining complex
data patterns for parallel write and read operations using independent and collective I/O calls. Furthermore, it allows
taking advantage of optimization opportunities when using collective calls. In POSIX I/O, however, a file is viewed as a
sequence of bytes. This interface allows transferring contiguous regions of bytes between the file and memory and
non-contiguous regions of bytes from memory to a file by giving full, low-level control of the I/O operations. However,
in the context of HPC, there is little in the interface that inherently supports parallel I/O. For instance, POSIX does not
easily support collective access to files while leaving it to the programmer to coordinate access and ensure consistency.
STDIO, in contrast, abstracts all file operations into operations on (input or output) streams of bytes. It comprises the
C stdio.h family of functions [97], such as fopen(), fprintf(), and fscanf(). These I/O functions are commonly used in
genomics and biology to store sequencing information in text format [182]. However, STDIO functions do not directly

Manuscript submitted to ACM



4 Bez et al.

support random access to data files. Instead, it relies on the programmer to create a stream, seek the position in the file,
and then read/write bytes in sequence from/to the stream.

I/O forwarding [3], initially proposed for Blue Gene and later extended, seeks to reduce the number of (compute)
nodes concurrently accessing the PFS servers by creating an additional transparent layer between the compute nodes
and the data servers. Instead of the applications accessing the PFS directly, the I/O forwarding technique defines a
set of I/O nodes that are responsible for receiving I/O requests from applications and forwarding them to the PFS
in a controlled manner, allowing optimization techniques such as request scheduling, aggregation, and compression
[2, 16, 159, 190, 232], to reshape the pattern and flow of I/O requests to better suit the underlying layers.

In large-scale systems, applications rely on Parallel File Systems (PFS) to provide a globally persistent shared storage
infrastructure and a global namespace across many distributed storage servers to read and write data to files. A parallel
file system comprises two types of servers with distinct roles: the data servers and the metadata servers. The latter
handles information about the files (e.g., sizes and permissions) and their location in the system. Lustre [74, 93], IBM
Spectrum Scale (previously known as GPFS) [174], BeeGFS [87], PVFS [36], etc. are commonly used parallel file systems
on large-scale HPC systems. To achieve high performance, these file systems harness parallelism by using data striping

[188] which consists of partitioning the files and distributing the data into fixed-size chunks across multiple storage
nodes. Finally, the PFS servers provide a logical file system abstraction over diverse storage devices such as Hard Disk
Drives (HDDs), Solid State Drives (SSDs), or Redundant Array of Independent Drives (RAID).

Summary #1

The multi-layered software and hardware HPC I/O stack is complex. To access data in HPC systems, applications
issue requests that, while traversing the I/O stack, are reshaped via a series of data transformations. These originate
from distinct abstractions and mappings between the data models used in each layer combined with optimization
techniques applied before reaching the file system and, eventually, the storage hardware.

In the following sections, we discuss the I/O access patterns observed in the HPC stack’s layers, from application
data models and their I/O requests percolating through the underlying layers until the file systems handle them.

3 APPLICATION DATA MODELS AND ACCESS PATTERNS

Scientific applications often use data abstractions provided by high-level libraries (e.g., HDF5, NetCDF, ADIOS) to
express data structures more naturally to a problem and domain. HPC simulations often describe their data objects using
multi-dimensional data or meshes, arbitrary subsets, points and curves, and key values [151, 181]. Mesh data objects, in
particular, can be further represented by structured rectilinear, non-uniform rectilinear, grid-less points, structured
(curvilinear), arbitrary polyhedral, constructive solid geometry (CSG), unstructured zoo (UCD), and adaptive mesh
refinement (AMR) meshes. In Figure 2, we show these most common high-level data models used by HPC applications.

For instance, physics simulations rely on finite element methods to discretize the simulated domain by splitting it
into smaller elements. Numerical methods are then applied to solve differential equations on these elements. These
methods often assume that the domain is divided into a structured or unstructured mesh of smaller, simpler elements.
The first has some advantages over the latter. It is simpler to use, requiring less memory as its coordinates can be
calculated rather than stored. Whereas in the case of unstructured meshes, computations are irregular, causing problems
of indirect, non-strided (i.e., no gaps between successive data accesses), or non-contiguous access to memory [153]. On
the other hand, structured meshes lack the flexibility to represent complex shapes needed for some domains [14].
Manuscript submitted to ACM



I/O Access Patterns in HPC Applications: A 360-Degree Survey 5

(a) Uniform (b) Rectilinear (c) Curvilinear (d) Adaptive (e) Unstructured

Fig. 2. Visual representation of common high-level data models used by HPC applications in different science domains.

Uniform rectilinear meshes (Figure 2(a)) divide the computation domain into a set of rectangular cells and are regular
both in topology and geometry. If points and cells are organized into a 1D plane, they are often used to express image
data. Volume can be represented by arranging this mesh into multiple stacked planes. Rectilinear grids (Figure 2(b))
differ in their regularity, where the spacing between points may vary (in any of the axes), but the rows and columns are
still parallel to the axis of the cartesian coordinate system. Curvilinear (Figure 2(c)) or structured grids (also known as
mapped mesh or body-fitted mesh) have the same topology as a rectilinear grid but allow more variation in the shape of
the mash as they can be warped into any configuration without overlap or intersection. These grids do not use cartesian
grid lines but a curvilinear coordinate system where an array of point coordinates explicitly represents the geometry.
Curvilinear grids provide a more compact memory footprint and are regular in topology but present irregular geometry.
They are used for finite difference computations such as flow [64], heat transfer, and combustion simulations [31].
Unstructured grids (Figure 2(e)) are a tesselation that conforms to nearly any desired geometry. However, they require
more information to be stored and recovered than structured grids, for instance, to express the neighbor connectivity list.
Those meshes are used in seismic wave [65, 91, 225], fluid dynamics [79, 184], and heat transfer [130, 153] simulations.

The high-level data models can be stored in a file using two data layouts with regard to interleaving: Array of
Structures (AoS) or Structure of Arrays (SoA), as depicted in Figure 3. A contiguous pattern in the memory means
that multiple arrays are of the same basic data types such as integer, float, double, etc. The non-contiguous pattern in
memory, also referred to as “array of structures” or “derived data type”, represents compound data types derived from
basic data types. The first helps access adjacent work items in contiguous memory locations, while the latter is often
more intuitive from the developer’s perspective as each structure is kept together. Once that data needs to be persisted
in a file, it can use the same strategy or the opposite one used to represent the data in memory. Table 1 depicts this
by comparing in-memory and in-file representations when using HDF5, for instance, to store data in a contiguous or
compound fashion. Nonetheless, this representation is also used by other I/O libraries and interfaces such as MPI-IO,
where one can define data types to describe both memory and file layout.

As an application’s I/O requests need to transverse the I/O stack to ultimately reach the storage system, its I/O
pattern is reshaped and transformed by various existing optimizations techniques (e.g., collective buffering and data

A B C A B C A B C

A B C A B C A B C Array of Structures

Process 1Process 0 Process 3

A A A A B B B B C Structure of Arrays

A B C

Process 4

A B C

C C C

Data Layout
in the File

Fig. 3. Data layout in file for Array of Structures (AoS) or Structure of Arrays (SoA).
Manuscript submitted to ACM



6 Bez et al.

Table 1. In-memory data structure and in-file data layout mappings. For illustration purposes, we restrict ourselves to 1D arrays.

In-memory representation In-file representation

A A A

B B BArray B

Array A A A

B B

···

···

A

B

A A A

B B BDataset B

Dataset A A A

B B

···

···

A

B
Contiguous Contiguous

A A A

B B BArray B

Array A A A

B B

···

···

A

B
A B ADataset A, B A B···B

Continuous Compound

A B AArray A, B A B···B
A A A

B B BDataset B

Dataset A A A

B B

···

···

A

B
Compound Continuous

A B AArray A, B A B···B A B ADataset A, B A B···B
Compound Compound

sieving [9, 44, 136, 199, 216], request scheduling [6, 16, 20, 22], and request aggregation [96, 197, 208]). Often these
transformations are transparent to the end-user. Thus, what the application believes it is doing might differ from what
the other levels of the I/O stack perceive of the application’s behavior. Due to that, information related to how the
application is accessing its data can be lost throughout the stack. For instance, when requests arrive at a parallel file
system, it is near impossible to determine which rank issue that request and whether it was initially contiguous or
not. To clarify such an example, if I/O middleware libraries such as MPI-IO applies collective I/O optimization, only
the aggregators will issue the requests to the PFS, and only they will know to which ranks they should exchange data
about the request. To further complicate, suppose a forwarding layer [2, 98] (or any other transparent middleware)
is present, possibly merging or scheduling and aggregating requests from multiple compute nodes. In that case, the
PFS will not know which application rank originally issued the I/O request. On the other hand, when those requests
are forwarded to the PFS (using a forwarding layer), the latter will often not know from which compute nodes they
originated. Only the I/O nodes will have such information to forward back the data.

Summary #2

Parallel applications rely on data models that are naturally mapped to a problem domain. To be stored in files, data
must be transformed by intermediate layers of the HPC I/O stack. Thus, the features we can use to describe an I/O
access pattern at the file system level are not the same as the view we have at a higher level in the I/O stack.

4 ACCESS PATTERNS IN HIGH-LEVEL I/O LIBRARIES

High-level I/O libraries allow HPC applications to express scientific simulation data more naturally instead of being
constrained or caught up by system-specific details. HDF5, NetCDF/PnetCDF, ADIOS, ROOT, and FITS are examples of
such libraries, each providing a set of APIs to express complex multi-dimensional data, contiguous and non-contiguous
data, seeking to attain performance and portability, and also increase productivity.
Manuscript submitted to ACM



I/O Access Patterns in HPC Applications: A 360-Degree Survey 7

Memory Disk

(a) Hyperslab from a 2D array to
the corner of a smaller 2D array

Disk Memory

(b) Regular series of blocks from a
2D array to a contiguous 1D array

Memory Disk

(c) Points with no regular pattern
from a 2D array to a 3D array

Disk Memory

(d) Union of hyperslabs in file to
a union of hyperslabs in memory

Fig. 4. A visual representation of common hyperslab selections between memory and file representations for partial I/O in HDF5.

HDF5 (Hierarchical Data Format Version 5) is a well-known self-describing file format and an I/O library [202]
that provides flexibility, extendibility, and portability. It is used widely in many science domains to manage various
data models [28]. HDF5 uses the concept of dataspace objects to control data transfer when data is read or written.
A dataspace defines the layout of the data (i.e., the organization in rows, columns, etc.) in a file and memory. Data is
rearranged by the library when the different layouts are used to represent a given dataset in memory or a file. However,
both source and destination are stored as contiguous blocks of storage with the elements ordered as defined by the
dataspace. HDF5 allows an application to read or write to a portion of a dataset (partial I/O) by using hyperslabs and
points. Hyperslabs are portions of datasets whose selection can be a logically contiguous collection of points in a
dataspace or a regular pattern of points or blocks in a dataspace. Fig. 4 illustrates four types of partial I/O in HDF5.

An HDF5 hyperslab can be viewed as a rectangular pattern defined by four arrays: offsets of the starting location
for the hyperslab; the stride or number of elements to separate each element or block to be selected; the number of
elements or blocks to select along each dimension; and the size of the blocks selected from the dataspace. Figure 5
depicts a hyperslab selection (left) in a dataset.

[0, 0]

[8, 0] [8, 12]

start = [0,1] count [1] = 4

count [0] = 2

block [1] = 2

stride [1] = 3

blo
ck

 [0
] =

 3 stride [0] = 4

Fig. 5. Example of a hyperslab selection for partial I/O operations using the HDF5 library.

NetCDF provides scientific programmers with a self-describing and machine-independent portable format for storing
array-oriented data [119]. NetCDF-4 is the current version of classical NetCDF file format. NetCDF-4 supports parallel
file access to the classic netCDF and HDF5 files. Parallel I/O to the netCDF-4 formatted files is supported through
the HDF5 library, and that to the classic netCDF files is supported through PnetCDF. PnetCDF is a high-performance
parallel I/O library for accessing NetCDF files providing higher-level data structures (e.g., multi-dimensional arrays
of typed data). The NetCDF-4 read and write API functions, allow defining hyperslab parameters such as start and
count vector. For instance, the function nc_put_vara_int() – to write an array of integer values to a variable – has
arguments to specify start index for each dimension of an array and corresponding count specifying the edge lengths
along each dimension of the block of data values to be written.

Manuscript submitted to ACM



8 Bez et al.

The Adaptable Input Output System (ADIOS) [134, 139] provides an I/O abstraction framework for portable and
scalable I/O to aid scientific applications when data transfer volumes exceed the capabilities of traditional file I/O.
Different from HDF5, ADIOS is not a hierarchical model but rather sits on a layer of abstraction beneath those. However,
it also relies on self-describing data in binary-packed (.bp) format for rapid metadata extraction, but it can use different
back-end file storage formats such as HDF5 and netCDF. ADIOS can also extract relevant information from large data
sets, transporting and transforming groups of self-describing data variables and attributes across different media. This
library uses an external metadata file in XML format to describe variables, types, and the path to take from memory to
disk. It also has built-in optimization modules for buffering and scheduling [76]. The ADIOS-2 API allows specifying
the start and count vectors for setting the offsets and dimensions for the MPI ranks, respectively.

ROOT [5] is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed
for storing and analyzing petabytes of data efficiently. ROOT has been used for storing over one exabyte of HEP events
[140]. In ROOT, objects in memory go under serialization and compression before reaching the binary representation
in files. These are self-descriptive files comprised of a header and data following a hierarchical directory format. ROOT
can also use columnar representation for data in files, allowing I/O optimizations such as partial reading (i.e., reading
only a subset of relevant columns), prefetching, and read-ahead to improve performance. For instance, high-energy
physics applications benefit from such file layouts when analyzing many statistically independent collision events.

FITS (Flexible Image Transport System) [80, 217] is a standardized data format in astronomy. Initially conceived
as a standard interchange format for digital images, FITS files are used as a working data format to store ASCII or
binary tabular data, in addition to images and spectra. Files consist of a sequence of one or more Header and Data Units
(HDUs). A header is composed of ASCII card images (usually read into a string array variable) that describe the content
of the associated data unit, which might be a spectrum (vector), an image (array), or tabular data in ASCII or binary
format (often read as a structure). Tabular data cannot appear in the first HDU, whereas image and vector data can be
present in any HDU. The HDUs following the first (or primary) HDU are also known as extensions.

Summary #3

High-level I/O libraries present a layer of abstractions so applications can easily map their data models to files.
Several of these libraries are designed to provide portability of file formats as well as a self-describing feature that
allows adding metadata to data. I/O access patterns of multi-dimensional data structures at this layer are designed
to hide the complexity of converting data models to their file layouts.

5 ACCESS PATTERNS AT THE I/O MIDDLEWARE LAYER

Before reaching the persistent media, an application’s request can go through a series of data transformations enabled
by I/O optimizations. For instance, using MPI-IO, if a group of MPI ranks knows which parts of a file each rank is
accessing, it becomes possible to merge these requests into a smaller number of larger and more contiguous accesses
that span over a large portion of the file. When applied at the client level, this optimization is described as two-phase
I/O [53, 199] with collective buffering and data sieving [200]. Such optimizations effectively change how the application
issues its I/O request, i.e., it changes its access pattern.

Collective buffering aims to reduce I/O time by making file accesses as large and as contiguous as possible, even if
it requires additional communication between the ranks. In two-phase I/O, aggregator processes are responsible for
carrying out the writes and reads. Each one manages a chunk of contiguous data from a subset of processes in a file.
Manuscript submitted to ACM



I/O Access Patterns in HPC Applications: A 360-Degree Survey 9

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

File Layout

0 3 6 1 4 7 2 5 8
Process 1Process 0 Process N

Buffers

PHASE TWO
Communication

PHASE ONE
Read

Fig. 6. Two-phase I/O for read requests.

During the write process, an aggregator gathers data from a subset of processes into contiguous chunks in memory
and writes the aggregated data to the file system. During reads, aggregators load part of the file and distribute smaller
chunks of data to a subset of processes, as shown in Fig. 6. For instance, ROMIO, which is a portable, high-performance
implementation of MPI-IO, exposes two user-defined tuning options that can control the application of this technique:
the number of processes that actually issue the I/O requests in the I/O phase (cb_nodes), often referred to as aggregators;
and the maximum buffer size on each process (cb_buffer_size). These options help define the access pattern perceived
by underlying layers of the I/O stack.

Data sieving is another optimization in MPI-IO aiming to reduce I/O latency by making as few requests to the PFS as
possible. For read operations, when a process issues non-contiguous requests, instead of reading each piece of data
separately, ROMIO reads a single contiguous chunk that ranges from the first to the last requested byte in the file
into a temporary buffer in memory. ROMIO provides two user-defined parameters to control the buffer size for reads
(ind_rd_buffer_size) and writes (ind_wr_buffer_size) [199]. If a user requests a large portion of the file that would
not fit in the allocated memory, ROMIO implementation performs the data sieving in parts delimited by the buffer size.
The caveat of data sieving is when there are large gaps in access, which can outweigh the costs of reading the extra data.

Summary #4

The middleware layer provides opportunities to apply optimization techniques to transform the data to be more
suitable for the underneath file system. Collective buffering and data sieving are two solutions available in MPI-IO
to improve data access by reshaping the I/O access pattern.

6 ACCESS PATTERNS AT THE FILE SYSTEM LAYER

Large-scale HPC systems use Parallel File Systems (PFS) to provide a persistent shared storage infrastructure, as
discussed in Section 2. A PFS is deployed over a set of dedicated nodes and offers a shared namespace, so applications
can seamlessly access remote files. They harness parallelism by breaking the files into chunks or stripes and distributing
them across multiple storage nodes to achieve high performance. This operation is often referred to data striping [188].
Fig. 7(a) illustrates how a file is striped among multiple storage servers, called OSTs (Object Storage Targets) in Lustre.

As stripes can be located in different storage targets, to complete a write/read operation, the PFS might need to
access multiple targets. Unaligned requests can also require access to multiple OSTs to complete an operation and
introduce inefficiencies [105, 127, 238] due to false data sharing. Fig. 7(b) depicts such scenario. For instance, consider
an application issuing 64KB requests to a file stored with a stripe size of 64KB. If the first 136KB of the file is used for
some header representation, all the data accesses are shifted by the header. Thus instead of issuing a single call to a
single OST to write/read the data, the PFS client will need to break the request, for instance, in Fig. 7(b) to complete the

Manuscript submitted to ACM



10 Bez et al.

0 1 3 4 5 6 7 8

File Layout

OST 1 OST 2 OST 3

0 3 6 1 4 7 2 5 8

2

64 KB

(a) Request aligned to the stripe

0 1 3 4 5 6 7 8

File Layout

OST 1 OST 2 OST 3

0 3 6 1 4 7 2 5 8

2

136 KB

(b) Request not aligned to the stripe

Fig. 7. Aligned and misaligned requests to a parallel file system with file striping.

second request (in pink), two targets (OST 2 and 3) should be contacted to access non-contiguous regions of the file
stripe to complete the request. It is easy to extrapolate the impact of misaligned requests on larger scales.

Furthermore, because of this centralized shared infrastructure, for clients to access the OSTs, they need to go over
the network, which could introduce overhead and contention, especially if the request size is small and bursty. The
previous example could cause a lot of smaller requests (64KB) to be issued because of the misalignment. Moreover, in
the file system servers, contiguous data access usually yields higher I/O performance than that of non-contiguous ones
[231] for both Hard Disk Drives (HDD) and Solid-State Disks (SSD). Zimmer et al. [242] among others, confirm that
small and random request patterns negatively impact the file system performance. Therefore, applications observe
benefits when accessing a file by issuing fewer requests, reducing the high I/O latency.

Another pivotal aspect that has a direct impact on performance when discussing access patterns at the file system
layer is the metadata accesses. In Unix-based operating systems, metadata is stored in an index-node (i-node) comprising
information about ownership, permission, object’s type (e.g., file or directory), size, and modified timestamp [170, 192].
Furthermore, since parallel file systems tend to rely on POSIX I/O semantics (which were not conceived with parallel
accesses in mind), the scalability of metadata accesses is often impaired. For instance, serialization is expected to happen
in scenarios where a large number of files are created by multiple processes in a single directory. This is a common
pattern observed in HPC applications [1, 13, 51, 205, 226].

Moreover, because these parallel file systems tend to adopt the concept of data striping (to allow parallel access and
improve performance), before accessing data, the PFS client must fetch permissions and obtain the file layout (including
striping locations and sizes) from one of the metadata servers. In Lustre parallel file system, a Metadata Service (MDS)
provides the index, or namespace, for a Lustre file system. The metadata content is stored in volumes called Metadata
Targets (MDTs). Since most basic operations involve metadata, it is paramount to ensure scalability of metadata accesses.
For instance, prior to Lustre 2.4, only a single MDT could be used to store metadata. Lustre 2.4 release introduced the
concept of the Distributed Name Space (DNE), where the metadata workload could be distributed across multiple MDTs,
which usually spread across multiple metadata servers. Nonetheless, metadata servers are often fewer than data servers
if not centralized into a single server to avoid complex cache coherence issues and overheads. Needless to mention that
an application creating or accessing a large number of files might be limited by metadata, possibly impacting other
applications in the system due to the shared nature of the metadata servers.

Different approaches [129, 145, 164, 166, 176, 221] have been proposed to tackle metadata issues covering how to
handle, scale, and index metadata efficiently. For instance, Liao et al. [129] present a metadata management system that
uses a database to record the information of datasets and manages metadata while providing a suitable I/O interface.
Paul et al. [166] propose a metadata indexing and search tool specifically designed for large-scale HPC storage systems.
Their solution relies on using an in-tree design with a parallel leveled partitioning approach to partition the file system
Manuscript submitted to ACM



I/O Access Patterns in HPC Applications: A 360-Degree Survey 11

namespace into disjoint sub-trees. They maintain an internal metadata index database that uses a 2-level database
sharding technique to increase indexing and querying performance, combined with a changelog-based approach to
keep track of the metadata changes and re-index the file system. Wu et al. [221] proposed StageFS, a parallel file system
optimized for SSD-based clusters. StageFS stores both the metadata and small files in LSM trees for fast indexing.
Seeking to avoid frequent small writes, StageFS uses buffering to better utilize the bandwidth of SSD devices. They
demonstrate up to 21.28× performance improvements in metadata operations compared to state-of-the-art solutions.

Due to the shared nature of these storage deployments, multiple concurrent applications submitting large number
of metadata operations simultaneously can easily saturate the shared PFS metadata resources. On that front, MetaFS,
proposed by Shaffer et al. [176], seeks to address the bursts of metadata activity during program loading. It indexes
the static metadata content of applications and delivers it in bulk to execution nodes, where it can be cached and
queried, essentially trading metadata activity for data transfer. Their approach observed order of magnitude decreases
in metadata load on the shared file system. On the same front, Macedo et al. [145] present a storage middleware that
enables system administrators to proactively control and ensure QoS over metadata workflows in HPC storage systems.
Their solution seeks to avoid saturating the shared metadata resources, which could lead to unresponsiveness of the
storage backend and overall performance degradation.

Summary #5

Due to its shared nature, a parallel file system receives interleaved requests from multiple concurrently running
applications. Thus, the I/O access pattern seen by these storage targets can present few resemblances to what the
application initially issued. Furthermore, metadata requests play a pivotal role in scalability and performance due
to the centralized characteristics of such systems.

7 ACCESS PATTERN TAXONOMY

HPC applications issue their I/O requests to a file system in diverse ways, depending on how their data was modeled
and coded. They also tend to present a consistent I/O behavior, with a few access patterns being repeated multiple times
over an extensive period [35, 61, 62, 70, 89, 137]. A better understanding of such patterns and what optimizations are
suited for each one can lead to performance improvement on the application side and when considering the system as a
whole. Based on that, some features can be used together to describe the application’s access pattern. Though there is no
globally accepted convention to describe which elements or features define an access pattern, researchers in the HPC
I/O area often examine a common subset of factors or parameters. For instance, the file approach (single file or shared
file), the number of requests, their sizes, and the spatial locality in the file [16, 34, 137, 138, 227]. However, other features
such as temporal behavior, intensity or burstiness, and overlapping accesses are considered for specific applications
or optimization techniques [16, 61, 187, 214, 228, 229, 234]. The access pattern does have a direct impact on achieved
performance which justifies the different research efforts put into optimizing data access [30, 81, 114, 138, 231].

We seek to provide a taxonomy for I/O access patterns based on collective understanding from the community and
its usage over time. We believe this formalization is helpful to the scientific community, as applications often observe
poor I/O performance due to bottlenecks in the system which could be a result of the lack of translation between metric
collection, bottleneck detection, and optimization solutions. A defined and globally accepted taxonomy will aid in
translating metrics into patterns and guide end-users on how to harness the various existing optimization techniques
to improve I/O application performance. Figure 8 uses a node-link hierarchical tree diagram of classes positioned in
polar coordinates to describe the taxonomy from different layers of the HPC I/O stack.

Manuscript submitted to ACM



12 Bez et al.

Access Patterns
A
pplication

Operation

Data

Write

New Data

Overwrite

Append Read

Full

Partial

All of 1 variable

All of a few variables

Rectangular subset

Area on plane

Metadata

Create

Open

Close
Stat

Seek
Flush

Delete

Synchronicity

Synchronous

Asynchronous

Tem
poral

O
nce

Periodic
Random

Request Size

Fixed
Variable

M
ode

Independent
C
ollective

Interface

H
igh-level Library

PO
SIX

M
PI-IO

ST
D

IO

Sp
at

ia
lit

y
C
on

ti
gu

ou
s

N
on

-c
on

ti
gu

ou
s

nD
-s

tr
id

ed
Fi

xe
d 

St
ri
de

d
N

eg
at

iv
e 

St
ri
de

d
R
an

do
m

 S
tr

id
ed

R
an

do
m

Fi
le

 A
pp

ro
ac

h
Fi

le
-p

er
-p

ro
ce

ss
Sh

ar
ed

 F
ile

Fu
lly

 S
ha

re
d

Pa
rt

ia
lly

 S
ha

re
d

Te
m

po
ra

l F
ile

Si
ng

le
 F

ile
M

ul
tip

le
 F

ile
s

Co
ns

is
te

nc
y

RA
R

W
AW

RA
W

W
AR

In
te

ns
ive

ne
ss

Dat
a

Met
ad

at
a

High-level Library

Opera
tio

n

Data

Writ
e

Ne
w D

at
a

Ove
rw

rit
e

Ap
pe

nd

Rea
d

Fu
ll

Pa
rtia

l

All o
f 1

 va
ria

ble

All o
f a

 fe
w va

ria
ble

s

Rect
an

gular
 su

bset

Area on plane

Metadata

Create

Open

Close

Stat

Seek

Flush

Delete

Temporal

Once

Periodic

Random

Request Size
Fixed
Variable

Alignment Aligned
Misaligned

Mode IndependentCollectiveInterface POSIXMPI-IOSTDIO
Spatiality

Contiguous
Non-contiguous

nD-stridedFixed Strided
Negative Strided

Random Strided

Random

File Approach
File-per-process

Shared File
Fully Shared

Partially Shared

I/O
 M

iddlew
are

Operation

Data

Write

New Data
Overwrite

Append

Read

FullPartial

All of 1 variable

All of a few
variables

Rectangular subset

Area on plane

M
etadata

Create

O
pen

Close

Stat

Seek

Flush

D
elete

Tem
poral

O
nce

Periodic

Random

Request Size
Fixed
Variable

A
lignm

ent
A
ligned

M
isaligned

M
od

e
In

de
pe

nd
en

t
C
ol

le
ct

iv
e

In
te

rf
ac

e
PO

SI
X

ST
D

IO

Sp
at

ia
lit

y

C
on

tig
uo

us

N
on

-c
on

tig
uo

us

nD
-s

tr
id

ed

Fi
xe

d 
St

ri
de

d

N
eg

at
iv

e 
St

rid
ed

Ra
nd

om
 S

tr
id

ed

Ra
nd

om
Fi
le

 A
pp

ro
ac

h

Fi
le

-p
er

-p
ro

ce
ss

Sh
ar

ed
 F

ile

Fu
lly

 S
ha

re
d

Pa
rt
ia

lly
 S

ha
re

d

File System

Ope
ra

tio
n

Da
ta

W
rit

e

Ne
w
 D

at
a

Ov
er

w
rit

e

Ap
pe

nd
Re

ad

Fu
llPa
rti

al

Al
l o

f 1
 v
ar

ia
bl
e

Al
l o

f a
 fe

w v
ar

iab
les

Re
ct
an

gu
lar

 su
bs

et

Ar
ea

 on
 pl

an
e

Meta
da

ta

Cr
ea

teOpe
nClos

eSta
tSeek

Flu
shUnlink

Temporal

OncePeriodicRandom

Request Size

FixedVariable

Alignment

AlignedMisaligned

Mode
Independent

InterfacePOSIX

SpatialityContiguous

Non-contiguous
nD-strided

Fixed Strided

Negative Strided

Random Strided
Random

Striping

Disbled

Fixed

Dynamic

Fig. 8. Taxonomy of features used to describe an I/O access pattern at different layers of the HPC I/O software stack: application side,
high-level I/O libraries, middleware layer, and file system. Some features are repeated as they are meaningful across layers of the
stack, while others are intrinsic to a particular layer. Section 7.2 groups these features based on community usage over the years.

Furthermore, besides the features used in each layer, an I/O access pattern can also be observed from different scopes.
Yin et al. [231] classifies the access pattern in local, global, or system-wide. The local pattern describes an application’s
behavior in the context of a process or task, whereas the global pattern describes it at the application level, considering
all processes and tasks. On the other hand, the system-wide one describes the patterns of the diverse concurrent
applications when using the shared storage infrastructure or I/O nodes. The local access pattern information is usually
employed to identify and apply optimizations on the client side. In contrast, the global access pattern is more suitable for
I/O middleware, the forwarding layer, or file system servers since it has an overview of the application’s data accesses.
The system-wide one can also be used in the data servers [23, 118, 169, 187, 236] and forwarding layer [2, 16, 20, 159, 232]
to coordinate accesses and optimize I/O performance of the whole system.
Manuscript submitted to ACM



I/O Access Patterns in HPC Applications: A 360-Degree Survey 13

7.1 Access Pattern Features

In this section, we discuss the features often used to describe an I/O access pattern and how they are used in the
I/O stack. We classify the patterns based on I/O operations, synchronicity, file approach, spatial locality, interfaces,
consistency, and temporal behavior.

7.1.1 Operation. We can broadly classify the I/O operations as writes and reads. For append operations, the file offset
is first positioned at the end of the file using a seek operation, and then a write operation appends the data. The
modification of the file offset and the write operation is performed as a single atomic step.

7.1.2 File Approach. There are various scenarios for executing parallel I/O depending on how many processes (MPI
ranks) are performing I/O and on how many files are accessed by the processes. In the first scenario, each process of an
application issues its operations to an individual file, which is called file-per-process approach, as shown in Figure 9(a).
This scenario is represented by having multiple files and multiple writers/readers. When the number of processes is too
large, instead of accessing a file per process, data can be aggregated to a small subset of processes, and they can access
a smaller number of files. This is called the sub-filing approach [28, 29]. Though that might achieve performance by
harnessing the parallelism inherited from having multiple data servers, future use of those files for post-processing
or analysis will have to access those multiple files to get the required data, as it is scattered. The scalability of this
approach is limited when handling metadata operations for extreme-scale applications.

In the second scenario, all the processes share a common file (shared file). We can further distinguish such a scenario
based on the number of writers. At the opposite extreme of the file-per-process, a single writer (commonly rank 0)
receives data from many or all the ranks (typically using collective MPI calls), rearranges it, and writes it to a single
shared file, as depicted by Figure 9(b). This performance of this approach is limited by the memory available in the
aggregator node (to receive and handle the data from the entire application), in addition, it can not utilize the total
available bandwidth to the storage servers, effectively. Instead of a single writer, we can have a subset of ranks that
aggregate and issue the I/O operations, as in Figure 9(d). This strategy implies communication between each rank and

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

File A

Process 1Process 0 Process N

File B File C

0 1 2

Process 4

0 1 2

File D

(a) File-per-process

0 1 2 6 7 8

File Layout

Process 1

3 4 5

Process 0 Process 3

9 10 11

Process 4

0 1 2 3 4 5 6 7 8 9 10 11

(b) Shared file, rank 0

0 1 2 6 7 8

File Layout

Process 1

3 4 5

Process 0 Process 3

9 10 11

Process 4

0 1 2 3 4 5 6 7 8 9 10 11

(c) Shared file, coordinated

0 1 2 3 4 5 6 7 8

File Layout

Process 1Process 0 Process 3

9 10 11

Process 4

0 1 2 3 4 5 6 7 8 9 10 11

(d) Shared file, aggregators
Fig. 9. Number of files and writes/readers.

Manuscript submitted to ACM



14 Bez et al.

its aggregator, and the latter also has an additional data rearrangement step before dispatching the requests to the
storage system. Finally, another known approach is having all the ranks write their data to the file in a pre-defined
non-overlapping location, avoiding inter-rank communication but relying on implicit coordination, as illustrated by
Figure 9(c). This performance of this approach is also limited as there is no coordination or aggregation of I/O requests
between ranks on the same compute node.

7.1.3 Spatial Locality. The spatial locality or spatiality refers to the file offsets between consecutive I/O accesses.
Typical spatial access patterns are contiguous, strided, or random. This feature directly impacts I/O performance because
the storage infrastructure (at hardware and software levels) is affected by the sequentiality of the requests [21]. For
instance, file systems can cache or prefetch data when they predict a regular pattern to avoid the costly seek operations
between consecutive I/O requests, thereby improving the I/O performance of HPC applications.

We can define spatial locality of an I/O request by its file offset 𝑜 𝑓 𝑓𝑖 and a size 𝑠𝑖𝑧𝑒𝑖 where 𝑖 identifies the 𝑖𝑡ℎ request.
If the access to a file is sequential, each process accesses contiguous chunks of the file (Figure 10(a)) and the relation
𝑜 𝑓 𝑓𝑝,𝑖+1 = 𝑜 𝑓 𝑓𝑝,𝑖 + 𝑠𝑖𝑧𝑒𝑝,𝑖 holds for all subsequent requests. On the other hand, in a strided (1D, 2D, 𝑛D) pattern, each
process accesses portions of the data with a fixed-size gap (or stride) between them (Figure 10(b)). The file pointer
is incremented by the same amount between each request (i.e., the stride), hence 𝑜 𝑓 𝑓𝑝,𝑖+1 = 𝑜 𝑓 𝑓𝑝,𝑖 + 𝑠𝑡𝑟𝑖𝑑𝑒𝑖 where
𝑠𝑡𝑟𝑖𝑑𝑒𝑖 =

∑
𝑝 𝑠𝑖𝑧𝑒𝑝,𝑖 is often a constant. Furthermore, strided accesses are common when accessing shared files. For the

file-per-process approach, it is fairly common for a file to be accessed contiguously. Despite random access (Figure
10(c)) being less common for traditional HPC [177], novel workloads from machine learning applications present such
behavior [43, 55, 240, 241] often due to shuffling data between iterations and epochs, which usually results in a large
number of concurrent data writes to the file system.

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
File Layout

Process 1Process 0 Process N

(a) Shared-file contiguous

0 3 6 1 4 7 2 5 8

0 1 2 3 4 5 6 7 8
File Layout

Process 1Process 0 Process N

(b) Shared-file 1D-strided

0 5 2 8 6 1 4 7 3

0 1 2 3 4 5 6 7 8
File Layout

Process 1Process 0 Process N

(c) Shared-file random
Fig. 10. Spatial locality of I/O requests in the file.

7.1.4 Interfaces. Interfaces seek to provide a convenient and easy-to-use way to access resources. In the context of I/O,
these have an important role when accessing files (locally or remotely) by defining APIs and semantics. Furthermore, in
HPC, these interfaces should strive to balance usability and high performance, often divergent goals. We can consider
three main interfaces that are used directly by applications or high-level libraries to express their access patterns:
POSIX I/O, MPI-IO, and STDIO. High-level I/O libraries provide various APIs that simplify mapping data models at the
application level with MPI-IO and POSIX interfaces. For instance, HDF5 uses the MPI-IO interface for parallel I/O and
POSIX-IO for sequential applications. ADIOS and PnetCDF use the MPI-IO and POSIX similarly. Hereafter, we briefly
discuss each interface and summarize their opportunities and challenges in the context of HPC in Table 2.

POSIX I/O: The Portable Operating System Interface (POSIX) is a set of standards defined by IEEE to maintain
compatibility among diverse operating systems, allowing an application to obtain basic services from an operating
system. POSIX also defines an I/O API used to interact with the file system. Its I/O interface was first introduced in 1988
in the POSIX.1 specification, and it was designed for local file systems accesses. POSIX.1b [92] introduced asynchronous
Manuscript submitted to ACM



I/O Access Patterns in HPC Applications: A 360-Degree Survey 15

and synchronous behaviors. Despite the fact it was designed for local file systems that used to support sequential
applications, POSIX is widely employed by a wide range of applications due to its portability.

However, the portability of POSIX comes with a price when used in HPC. The POSIX semantics define what is and is
not guaranteed when its API is used. For instance, it specifies that write operations must be strongly consistent, i.e., a
write() call is required to block the application execution until the system can guarantee that any following read() calls
will actually read the data that was just written. In the case of HPC, these strict requirements introduce complexity for
distributed and parallel file systems where remote processes are unaware of what local processes might be modifying
in a file and vice versa. HPC centers often provide POSIX-based parallel file systems (e.g., Lustre and GPFS), which
adhere to strong consistency semantics forcing sequential accesses [209]. The required semantics force many parallel
file systems to implement distributed locking mechanisms to ensure consistency, thereby penalizing I/O accesses at a
large scale. However, modern HPC applications often do not require such strong consistency guarantees [132, 209].

Since POSIX was not designed specifically for HPC applications, it may also impose a burden on the end-users. For
instance, it is possible to use the shared-file parallel I/O approach. But, the complexity of coordinating parallel accesses,
buffering, and flushing is explicitly delegated to the end user. Furthermore, as files are viewed as opaque byte streams,
applications are unable to express or hint to the file system about how its data is organized. Such information is essential
for data placement strategies and for optimizations. For example, the MPI-IO interface uses such information to express
complex accesses and attain high performance. Nonetheless, there were some efforts that sought to extend POSIX
I/O to account for HPC needs. Vilayannur et al. [206] designed a proposed POSIX extension to support shared file
descriptors/group open, lazy metadata attributes, noncontiguous read/write interfaces, and bulk metadata operations.
Such efforts have not been integrated into major storage solutions yet.

MPI-IO: On the other hand, MPI-IO [68] was proposed as an extension to the MPI standard, defining I/O operations by
reusing the message passing concepts of MPI. Writing to a file is like sending a message, and reading from a file is like
receiving a message. MPI-IO provides a high-level interface to describe the data partitioning among processes, and a
collective interface to describe transfers of global data structures between process memories and files. In addition, it
supports asynchronous I/O operations. As a result, MPI-IO allows computation to be overlapped with I/O and enables
optimization of physical file layout on storage devices [47]. Furthermore, MPI-IO’s semantics differ from POSIX’s,
relaxing some consistency requirements, while offering an atomic mode for applications that rely on stricter semantics.

To express flexible I/O access patterns that are natural to the application, MPI-IO relies on MPI-derived datatypes.
These are used to represent how data is laid out in thememory and also in the file. Furthermore, there are three orthogonal
features to data access in MPI-IO: positioning (explicit offset or implicit file pointer), synchronization (blocking or
non-blocking), and coordination (independent or collective). All are expressed using file pointers (individual or shared).

The MPI-IO interface is implemented on top of a portable abstract-device interface for parallel I/O called ADIO
[198], which can be optimized for various file systems. ADIO itself is not intended to be used directly by application
programmers but rather as an internal to the implementation of some other user-level I/O interfaces. For instance,
ROMIO [201] is a high-performance, portable implementation of MPI-IO optimized for noncontiguous access patterns,
which are common in parallel applications. It relies on the portability of ADIO to be used with any MPI implementation
(ROMIO is often included as a part of several MPI implementations such as MPICH, Cray MPI, and OpenMPI).

As MPI-IO is layered atop POSIX, it generates complex I/O access patterns. The pattern that reaches the file system
may greatly differ from what was initially expressed in the scientific application code due to optimizations and
transformations (e.g., collective buffering and data sieving [53, 199]) as requests traverse the I/O stack.

Manuscript submitted to ACM



16 Bez et al.

Interface Opportunities Challenges

POSIX • Portability
• Strong consistency guarantees
• Shallow learning curve (wide adoption)

• Not designed for HPC
• Strong consistency vs. scalability
• Collective access (locking)
• Optimizations (lack of whole application view)

MPI-IO • Designed for HPC
• Relaxed consistency
• Flexibility (express patterns natural to applications)
• High-level I/O optimizations

• Hard adoption (source-code changes)
• Complex tunning

STDIO • Simple and buffered stream interface • Not designed for HPC
• Scalability
• Optimizations (lack of whole application view)

Table 2. Opportunities and challenges presented by each I/O interface when used in the context of HPC.

STDIO: The standard I/O library (STDIO) provides a simple and buffered stream I/O interface. It abstracts all file
operations into operations on streams of bytes. STDIO comprises the C stdio.h family of functions [97], e.g., fopen, fprintf,
and fscanf. However, STDIO functions do not directly support random access to data. In such cases, the application
must open a stream, seek to the desired location in the file, and then write/read bytes in sequence from the stream.

Recently, STDIO has been increasingly used for HPC workloads [144, 182], especially for genomics and biology
production applications that rely on I/O functions to store sequencing information in text format. Analysis of traces
from supercomputer facilities confirmed the noticeably increasing use of STDIO across supercomputer platforms and
for a wide range of science domains [17]. The study also revealed that though STDIO can obtain high bandwidths for
some transfer sizes, it consistently delivers lower performance than POSIX does across various transfer sizes in Cori
(NERSC) and Summit (OLCF) supercomputers, indicating overall poor I/O performance.

7.1.5 I/O Mode. The I/O mode refers to how parallel processes (MPI ranks) access a file: each rank individually or
collectively (by a subset of all ranks). Collective operations are readily available in interfaces such as MPI-I/O, and these
operations provide a big picture of the overall data movement across ranks. These functions require all processes that
collectively open the same file to participate in the calls, thus allowing optimizations such as collective buffering and
data sieving [199] to improve performance by building larger and contiguous accesses to the underlying storage system.

The I/O mode can directly transform the access pattern perceived by the underlying layer when using collective
operations. Instead of each rank issuing their individual operations, the aggregate file access region targeted by a
collective I/O call is divided among the aggregators into non-overlapping regions (file regions). In the communication
phase, all ranks send their I/O requests to the aggregators based on their file domain. In the I/O phase, aggregators
issue the requests to the system. Hence, aggregators effectively merge requests into larger and contiguous ones before
percolating to the POSIX layer or the file system.

7.1.6 Synchronicity. Synchronous or blocking I/O routines are not considered successful before an I/O operation
is completed. On the other hand, asynchronous or non-blocking I/O operations allow applications to hide the cost
associated with I/O operations by overlapping it with computation or communication steps, allowing the application to
progress. The latter is becoming popular among scientific applications to access large amounts of data and improve
user-perceived performance. POSIX and MPI-IO provide asynchronous APIs to write and read data from files. POSIX
standard provides the aio_* calls, whereas MPI-IO has MPI_File_i* calls for independent and collective I/O operations.
Some high-level I/O libraries, such as ADIOS and HDF5, also expose those non-blocking interfaces [195]. In contrast,
Manuscript submitted to ACM



I/O Access Patterns in HPC Applications: A 360-Degree Survey 17

data management systems such as the Proactive Data Containers (PDC) [194] offer asynchronous data movement to
and from their server nodes through network data transfer. Novel object storage file systems such as the Distributed
Asynchronous Object Storage (DAOS) [124] were built around the asynchronous concept to deliver performance. The
synchronicity feature will help shape the temporal behavior of the application’s access pattern.

7.1.7 Temporal Behavior. Towards the automatic detection of poorly performing HPC jobs, Buneci and Reed [27]
generated temporal signatures containing performance features from time-series metrics to group applications into
two groups: those that performed as expected and those that did not. They combine high-level states provided by
users, based on previous executions, with low-level metrics to detect factors affecting performance. Though their
approach uses two I/O metrics to build the signature, they do not focus on that, but instead on the combination of
CPU, memory, disk, and network usage. Dorier et al. [61, 62] proposed Omnisc’IO, which builds a grammar-based of
any HPC application I/O behavior to predict future use. They seek to predict when I/O operations will occur, i.e., the
inter-arrival time between requests and how much data will be accessed, including offset and size within the file. To
make time-related predictions, Omnisc’IO stores statistics such as minimum and maximum observed time between
requests, the average, and variance and relies on weighted inter-arrival average time to react to changes. From those,
they can anticipate whether an operation will immediately follow the current one in a predictable amount of time and
whether the time before the subsequent operations is more unpredictable.

On the other hand, White et al. [219] placed a particular focus on I/O by proposing a taxonomy for temporal I/O
patterns of HPC jobs to aid in automatically detecting bad performing jobs. They describe the design of a simple
heuristic classification algorithm that categorized jobs based on a very coarse measure of when the majority of the I/O
occurred. The authors observed a small number of common I/O access patterns: primary I/O usage near the start of the
job, main I/O usage near the end of the job, I/O activity at the beginning and end but not during the job, low I/O at the
start or end but high in the middle, regular activity throughout the job and regular periodic I/O activity.

7.1.8 Consistency. When checking for overlapping I/O patterns, Wang et al. [211] considers consistency of I/O
operations. They seek to understand whether or not a process ever writes/reads to the same part of a file more than
once, whether multiple processes write/read the same part of a file, and the order in which operation occurs in a given
offset. For that, they consider read after read (RAR), write after write (WAW), read after write (RAW), and write after
read (WAR) metrics to compose the pattern. The consistency policy used by an application can also aid in determining
whether caching techniques are feasible or not.

7.2 Community-based Usage Survey

Seeking to understand how I/O access patterns are approached and used by the broad HPC community to describe their
applications, we filtered the ACM Digital Library1 and the IEEE Xplore Digital Library2 considering a 20-year window,
covering publications between 2000 and 2021 that mention the terms “I/O access pattern,” “I/O characterization,” “I/O
characteristic,” or “I/O signature.” The text should also refer to “HPC” for any of the terms. After filtering for conferences
and journal publications, that search yielded 74 results in ACM and 161 in IEEE. In Fig. 11 and Fig 12, we show our
queries used in ACM DL and IEEE Xplore, respectively. We classify these papers based on the features used by the
authors to describe the I/O access pattern at multiple levels of the I/O stack, as illustrated in Fig. 13.

1https://dl.acm.org
2https://ieeexplore.ieee.org

Manuscript submitted to ACM

https://dl.acm.org
https://ieeexplore.ieee.org


18 Bez et al.

"query": {
AllField: (("I/O access pattern" OR "I/O characterization" OR "I/O characteristic" OR "I/O signature ") AND "HPC"))

}
"filter": {Publication Date: (01/01/2000 TO 12/31/2021)}, {ACM Content: DL}

Fig. 11. ACM DL query and filter parameters used in this survey.

("Full Text & Metadata":"I/O access pattern ") AND ("Full Text & Metadata":"HPC") OR
("Full Text & Metadata":"I/O characterization ") AND ("Full Text & Metadata":"HPC") OR
("Full Text & Metadata":"I/O characteristic ") AND ("Full Text & Metadata":"HPC") OR
("Full Text & Metadata":"I/O signature ") AND ("Full Text & Metadata":"HPC") Filters Applied: 2000 - 2021

Fig. 12. IEEE Xplore query and filter parameters used in this survey.

Our methodology consisted of looking for common pre-defined keywords in the entire text that is used to describe
each I/O access pattern feature. Each manuscript was pre-filtered and manually inspected to avoid false positives. We
defined a set of tags corresponding to each feature and its usage. Due to the selection approach and the broad use of the
term in correlated areas (e.g., memory), some of the selected papers were not, in fact, relevant to this survey. Therefore,
they were later excluded from the analysis. In the end, we considered 146 papers for the analysis presented in this
section (62.13% of the 235 results). Specifically, we used the following criteria to filter the initial set of papers.

• The keyword should have been used in the experiments or considered IN the proposed technique or solution;
• Merely citing or using a keyword does not make the paper fall into that classification (e.g., mentioning HDF5 as
an interface for IOR does not make it fall into the HDF5 category unless it was used in the evaluation);

• If the feature is used solely to describe related work that does not make the paper be marked in that category;
• Some of those keywords’ definitions are overloaded to describe features outside the I/O realm, for instance,
memory, communication, or even computing (e.g., synchronous/asynchronous). In such cases, they were not
considered as relevant in the context of the I/O access pattern;

• To avoid bias in classification, if the authors did not clearly state a feature, we assume they did not consider that
(unless it is evident from context); in doubt, we assume that it is not used.

In Fig. 13, we summarize our findings. When discussing access patterns, 122, i.e., 83.56% of the papers cover data
operations, whereas only 48 (32.89%) considers metadata operations. However, these do not go into the depth of

24

98

122

48

5

47

51

86

95

118

74

141

99

95

60

51

28

72

77

62

141

69

84

5

106

139

123

40

7

23

F
eatures

Interfaces
Libraries

0 50 100

Metadata

Data

Operation

Request Size

File Approach

Spatial Locality

Temporal Bahavior

Collectiveness

Synchronicity

STDIO

POSIX

MPI I/O

ADIOS

HDF5

netCDF

Research Papers

NO YES

Fig. 13. I/O access pattern features, interfaces, and libraries in ACM DL and IEEE Xplore research papers.

Manuscript submitted to ACM



I/O Access Patterns in HPC Applications: A 360-Degree Survey 19

describing their metadata I/O patterns in detail. Regarding features, operation (96.57%), request size (67.81%), and spatial
locality (65.07%) are the ones taken into account by the majority of the research papers. Despite the file approach
being strongly related to the spatial locality, the first is not explicitly addressed in 58.90% of the surveyed papers.
Collectiveness and synchronicity are the less targeted features when discussing or describing access patterns, and both
are related to I/O optimization techniques.

In Fig. 14, we depict the intersecting sets of features used in the surveyed research papers, considering the seven
features detailed in Fig. 13. To summarize all intersections and their distributions, we rely on the UpSet plot, a state-of-art
visualization technique for the quantitative analysis of intersecting sets and their properties [45, 120]. From this, it
becomes clear how not all relevant features are properly described and considered in the majority of the works and
which ones are commonly considered together (e.g., operation, request size, and spatial locality). Table 3 maps these
different features and references those works so readers can find detailed information on how those features were
employed in practice under diverse scenarios and science domains.

Fig. 14. Analysis of the set of features used to describe an I/O access pattern in ACM DL and IEEE Xplore research papers.

O
pe

ra
ti
on

R
eq

ue
st

Si
ze

Sp
at
ia
li
ty

Fi
le

A
pp

ro
ac
h

Te
m
po

ra
l

C
ol
le
ct
iv
en

es
s

Sy
nc

hr
on

ic
it
y

Pa
pe

rs

References
✓ ✓ ✓ p p p p 12 [10, 38, 57, 69, 77, 90, 101, 167, 168, 175, 186, 222]
✓ ✓ ✓ p ✓ p p 12 [4, 50, 78, 82, 86, 99, 100, 104, 110, 117, 160, 224]
✓ ✓ ✓ ✓ p p p 10 [15, 43, 48, 71, 83, 94, 95, 106, 115, 177]
✓ p p p p p p 7 [7, 32, 63, 131, 146, 152, 220]
✓ p p p ✓ p p 7 [70, 112, 123, 137, 212, 219, 233]
✓ ✓ ✓ ✓ p ✓ p 7 [11, 40, 102, 107, 191, 215, 235]
✓ ✓ ✓ ✓ ✓ ✓ p 7 [34, 116, 133, 141, 183, 196, 210]
✓ ✓ p p ✓ p p 6 [58, 103, 149, 150, 165, 239]
✓ ✓ ✓ p p ✓ p 6 [72, 81, 84, 135, 203, 213]
✓ ✓ ✓ ✓ ✓ p ✓ 6 [54, 61, 126, 161, 179, 204]
✓ ✓ ✓ ✓ ✓ ✓ ✓ 6 [21, 111, 147, 180, 193, 230]
✓ p p p p ✓ p 4 [33, 56, 143, 172]
✓ ✓ ✓ ✓ ✓ p p 4 [37, 75, 156, 163]
p p p p ✓ p p 3 [148, 157, 173]
✓ p p ✓ p p p 3 [49, 125, 189]
✓ p ✓ p p p p 3 [8, 162, 218]
✓ ✓ ✓ p ✓ ✓ ✓ 3 [85, 185, 236]

Table 3. Surveyed papers from ACM DL and IEEE Xplore grouped by the features they use when discussing I/O access patterns.
Manuscript submitted to ACM



20 Bez et al.

We also grouped the research papers according to the interface and high-level libraries they use. For interfaces,
the majority (57.53%) used MPI-IO in their experiments or explicitly considered that interface when discussing the
applicability of the proposed solution or optimization techniques. POSIX follows up with 47.26% whereas STDIO is
targeted by merely 3.42% of the surveyed papers. On the other hand, Bez et al. [18] highlight a widespread use of STDIO
across a wide range of science domains in HPC applications on both Summit (OLCF) and Cori (NERSC) supercomputers,
suggesting a possible new trend due to the shift from traditional numerical simulations to AI/ML applications for
training and inference while processing and producing ever-increasing amounts of scientific data. Regarding high-level
libraries, the majority do not explicitly acknowledge using a particular library, though HDF5 is used by 27.40%.

Summary #6

The community has been using common features (e.g., operation, size, and spatiality) to describe an I/O access
pattern, with additional information depending on the targeted layer or optimization context. Furthermore,
metadata access is often not as detailed as data access.

8 EXERCISING I/O ACCESS PATTERNS

This section briefly covers existing benchmarks and I/O kernels that are often used in scientific I/O research to exercise
access patterns. We describe the features benchmarks use to represent I/O accesses and the I/O workload characteristics
of different scientific application kernels.

Table 4 summarizes the benchmarks and I/O kernels used by the community to exercise the HPC I/O stack under
diverse data workloads. We group the tools by their representation (exclusively synthetic workloads or extracted as a
representative I/O kernel of an application), focus (data or metadata), operation (write or read), support to set the request
size, mode (independent or collective operations), temporal behavior, file approach (shared file or file-per-process), and
synchronicity (synchronous or asynchronous requests). We also describe the supported I/O interfaces.

Name Sy
nt
he

ti
c

K
er
ne

l(s
)

D
at
a

M
et
ad

at
a

W
ri
te

R
ea
d

R
eq

ue
st

Si
ze

In
de

pe
nd

en
t

C
ol
le
ct
iv
e

Te
m
po

ra
l

Sh
ar
ed

Fi
le

Fi
le
-p
er
-p
ro
ce
ss

Sy
nc

hr
on

ou
s

A
sy
nc

hr
on

ou
s

Interface

IOR [88] ✓ p ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ p
POSIX, MPI-IO, HDF5,
HDFS, S3, NCMPI,
IME, MMAP, RADOS

MADbench2 [25] p ✓ ✓ p ✓ ✓ ✓ ✓ p p ✓ ✓ ✓ ✓ POSIX, MPI-IO
IFER [227] ✓ p ✓ p ✓ p ✓ p ✓ ✓ ✓ p ✓ p MPI-IO
S3D [39] p ✓ ✓ p ✓ ✓ p p ✓ p ✓ p ✓ ✓ PnetCDF
NAS BT-IO [155] ✓ ✓ ✓ p ✓ ✓ p p ✓ ✓ ✓ p ✓ p MPI-IO
S3aSim [42] p ✓ p ✓ ✓ p ✓ ✓ ✓ ✓ ✓ p ✓ p MPI-IO
h5bench [122] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ HDF5
HACC-IO [207] p ✓ ✓ p ✓ ✓ p ✓ ✓ p ✓ ✓ ✓ p POSIX, MPI-IO
MACSio [151] ✓ p ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ p STDIO, MPI-IO, HDF5
MPI Tile I/O [171] ✓ p ✓ ✓ ✓ ✓ ✓ ✓ ✓ p ✓ p ✓ p POSIX, MPI-IO

Table 4. Summary of access pattern features exercised by each benchmark and I/O kernel. The check in orange indicates that h5bench
does support asynchronous operations, however, it requires the HDF5 ASYNC VOL Connector [195] to be available and enabled.

Manuscript submitted to ACM



I/O Access Patterns in HPC Applications: A 360-Degree Survey 21

IOR [88] is an I/O benchmark to test the performance of parallel storage systems using various interfaces and access
patterns. It supports different interfaces or APIs (POSIX, MPI-IO, HDF5, HDFS, S3, NCMPI, IME, MMAP, or RADOS).
IOR is flexible enough to express patterns by configuring the operation, the contiguous bytes to write per task (block
size), transfer size, number of segments, whether it uses collective or individual operations (where applicable), and
whether each task writes to its own file or a shared file.

MADbench2 [25] is an I/O kernel extracted from the MADspec application. MADbench2 allows testing the integrated
performance of the I/O, communication, and calculation subsystems of massively parallel architectures under the
stresses of a real scientific application. It is derived directly from a large-scale Cosmic Microwave Background (CMB)
data analysis package. It calculates the maximum likelihood angular power spectrum of the CMB radiation from a noisy
pixelized map of the sky and its pixel-pixel noise correlation matrix. MADbench2 has a regular mode, in which the full
code is executed, and an I/O mode where all calculation/communication is replaced with busy work. The kernel has
three component functions, each with different access patterns, named S, W, and C. In S, 𝑁𝑏𝑖𝑛 writes each of 𝑁𝑝𝑖𝑥

2

bytes on 𝑁𝑝 processors. InW, 𝑁𝑏𝑖𝑛 reads each of 𝑁𝑝𝑖𝑥
2 bytes on 𝑁𝑝 processors and 𝑁𝑏𝑖𝑛 writes each of 𝑁𝑝𝑖𝑥

2 bytes
on 𝑁𝑝/𝑁𝑔𝑎𝑛𝑔 processors. In C, 𝑁𝑏𝑖𝑛

2/𝑁𝑔𝑎𝑛𝑔 reads each of 𝑁𝑝𝑖𝑥
2 bytes on 𝑁𝑝/𝑁𝑔𝑎𝑛𝑔 processors where 𝑁𝑝 defines the

number of processes and 𝑁𝑝𝑖𝑥 sets the size of the pseudo-data, where all the component matrices have 𝑁𝑝𝑖𝑥 × 𝑁𝑝𝑖𝑥

elements. 𝑁𝑏𝑖𝑛 sets the size of the pseudo-dataset composed on 𝑁𝑏𝑖𝑛 component matrices. Finally, 𝑁𝑔𝑎𝑛𝑔 sets the level of
gang-parallelism, allowing the MADbench2 to run as a single or multi-gang. In the former, all the matrix operations are
carried out distributed over all of the processors. The kernel can use the POSIX or MPI-IO interfaces to synchronously
or asynchronously issue its I/O operations to a unique or shared file.

IFER is a microbenchmark similar to IOR but instead seeks to provide insights on I/O contention [227]. It splits the
ranks into two groups running on two separate sets of nodes to emulate two competing applications. Each group of
processes executes a series of collective I/O operations following a pre-defined pattern. Though IFER only provides
support for write requests to a shared file by application, it considers two patterns: contiguous and one-dimensional
strided. IFER also relies on two additional parameters, the block size, which represents the contiguous bytes to write
per process, and the block count. The number of blocks will be continuously written per process in the contiguous
pattern. For the strided pattern, the blocks are distributed along the file depending on their offsets. Because its original
goal was to study I/O interference, IFER allows users to define the inter-arrival time between the I/O phases.

The S3D I/O Kernel [39] is a continuum scale first principles direct numerical simulation code that solves the
compressible governing equations of mass continuity, momenta, energy, and mass fractions of chemical species,
including chemical reactions. It creates 𝑁 checkpoints at regular intervals, where it writes three and four-dimensional
arrays of doubles into a newly created file. All three-dimensional arrays are partitioned among the MPI processes using
block partitioning in all 𝑥-𝑦-𝑧 dimensions, whereas the fourth dimension (the most significant one) is not partitioned.
The kernel can be configured to use PnetCDF blocking or non-blocking APIs. For the latter, a checkpoint has four
non-blocking write calls, one per variable, followed by a call to wait and flush the write requests [128].

NAS BT-IO [155] is a benchmark based on the Block-Tridiagonal (BT) problem of the NAS Parallel Benchmarks
(NPB). Each rank is responsible for multiple Cartesian subsets of the data set, whose number increases as the square
root of the number of ranks participating in the computation. The entire solution, consisting of five double-precision
words per mesh point, must be written to file at every five timesteps. In the end, all data belonging to a single time step
must be stored in the same file and must be sorted by vector component, 𝑥 , 𝑦, and 𝑧-coordinate.

S3aSim [42] is an I/O kernel based on a sequence similarity search framework. It uses a master-slave parallel
programming model with database segmentation, mimicking the mpiBLAST [52] access pattern. Given input query

Manuscript submitted to ACM



22 Bez et al.

sequences, S3aSim divides up the database sequences into fragments. Workers request a query and fragment information
from the master and search the query against the database fragment assigned. The results are sent to the master to be
sorted and then written to a single shared file. Without synchronizing after every query, this application uses individual
I/O operations to write data to a single shared file.

Parallel I/O Kernels (https://github.com/hpc-io/PIOK) provide the parallel I/O portion of various scientific simulation
codes that use HDF5. These kernels have been expanded with h5bench to cover a variety of HDF5 I/O patterns. h5bench
[122] is a set of HDF5 I/O kernels representing I/O patterns that are commonly used in HDF5 applications on HPC
systems. It provides a framework to test, exercise, and tune I/O performance using novel features introduced in HDF5 and
understanding how the library performs in different machines under such I/O workloads. It measures I/O performance
from various aspects, including the raw and observed I/O time and rate.

HACC-IO [207] is a kernel extracted from the HACC (Hardware Accelerated Cosmology Code) cosmology framework
(Gordon Bell Award Finalist 2012, 2013). It uses the N-body to simulate collisionless fluids under the influence of gravity.
The kernel includes the checkpoint, restart, and analysis outputs produced by the simulation. Hence, it is quite I/O
intensive. It also supports both POSIX and MPI-IO (with independent and collective operations) interfaces. Regarding
the file approach, HACC-IO can be configured to write to a single shared file, a file-per-process, or a mix of both (i.e.,
file per group). It only takes as an input argument the number of particles (𝑛), where each particle is comprised of seven
4-bytes floats, an 8-byte integer, and a 2-byte integer. Thus, each process writes/reads 𝑛 × 38 bytes.

MACSio (Multi-purpose, Application-Centric, Scalable I/O Proxy Application) [151] was built for I/O performance
testing and evaluation of tradeoffs in data models, I/O library interfaces, and parallel I/O paradigms for multi-physics,
HPC applications. It differs from other benchmarks in the sense that it actually constructs and marshals data as real data
objects commonly used in scientific computing applications. Hence, MACSio allows closely mimicking I/O workloads
from the multi-physics domain, where data object distribution and composition vary within and across parallel processes.
It also supports representing the data using multiple file approaches (segmented and strided single shared file, multiple
independent files, or file-per-process), using independent and collective operations.

MPI Tile I/O [171] is a benchmark suited to test the performance of an underlying MPI-IO and file system implemen-
tation under a non-contiguous access workload. It logically divides a data file into a dense two-dimensional set of tiles
based on the number of tiles in the 𝑥 and 𝑦 dimensions. It allows the end-user to configure the number of elements
in each tile dimension and the size of an element. It can express overlap elements by defining how many of them are
shared between adjacent tiles in each dimension. MPI Tile I/O has support for collective I/O allowing fine tune of the
list of nodes involved in the aggregation.

Towards emulating scientific deep learning workloads that are becoming popular on HPC systems, DLIO [55] provides
an I/O benchmark suite. DLIO supports various scientific deep learning applications, including Neutrino and Cosmic
Tagging with UNet, Distributed Flood Filling Networks (FFN), Convolutional Neural Networks (CNN), CosmoFlow for
cosmology datasets, Fusion Recurrent Neural Net (FRNN), and Cancer Distributed Learning Environment (CANDLE).
DLIO allows reading data from different file formats and APIs, such as HDF5, CSV, and tfrecord formats.

Summary #7

A plethora of benchmarks and I/O kernels are available to the community to exercise access patterns at different
layers of the stack. There is not a single one that encompasses all features but combined, they cover distinct
features, interfaces, and application data models.

Manuscript submitted to ACM



I/O Access Patterns in HPC Applications: A 360-Degree Survey 23

9 PROFILING AND VISUALIZING I/O ACCESS PATTERNS

Darshan [34] is a popular tool to collect I/O profiling information from applications in a lightweight manner. Darshan
aggregates I/O profile information to provide valuable insights without adding overhead or perturbing application
behavior. It also provides an extended tracing module (DXT) [223] to obtain a fine-grain view of the application behavior
to understand I/O performance issues. Once enabled, DXT collects detailed traces from the POSIX and MPI-IO layers
reporting the operation (write/read), the rank that issued the call, the segment, the offset in the file, and the size of each
request. It also captures the start and end timestamps of all the operations issued by each rank.

Recorder [211] is a multi-level I/O tracing framework to capture I/O function calls at multiple levels of the I/O
stack, including HDF5, MPI-IO, and POSIX I/O. As a shared library, it requires no modification or recompilation of the
application and allows users to control tracing levels. Recorder captures timestamps, function names, and all parameters
from intercepted I/O calls using function interposing to intercept I/O calls.

The Tuning and Analysis Utilities (TAU) [178] is an integrated toolkit for performance instrumentation, measurement,
and analysis. It can capture file I/O (serial and parallel), communication, memory, and CPU. Regarding I/O, TAU
can handle profiling and tracing, observing inclusive (including all child regions) and exclusive (for a region only)
measurements. It uses library wrapping to characterize I/O performance, which helps automate the instrumentation of
external I/O packages and libraries. Thus, TAU can capture POSIX and MPI-IO and instrument libraries such as HDF5.

IOPin [107] proposes a dynamic instrumentation framework to understand the complex interactions across different
I/O layers from applications to the underlying PFS. It leverages Pin lightweight binary instrumentation using probe
mode to instrument applications and components of the I/O stack, providing a hierarchical view for parallel I/O. Their
implementation supports the MPI library and PVFS. Their approach traces and instruments only the process that has
been identified by Pin to have the maximum I/O latency. This dynamic instruction reduces the overhead and focuses on
detecting only one critical I/O path that affects performance in the stack. The metrics provided by IOPin include latency,
disk throughput, number of requests from client to server, and number of disk accesses for each request. However, it
does not provide a characterization of each I/O request.

ScalaIOTrace [142] is a multi-level I/O tracing tool based on ScalaTrace [158], an MPI communication tracing
framework for parallel applications. ScalaIOTrace supports both MPI-IO and POSIX-IO interposition. MPI-IO tracing
relies on the MPI profiling layer (PMPI) to intercept and collect MPI calls. At the same time, POSIX is captured via
wrappers using GNUlink time entry interpositioning with domain-specific parameter compression, similar to PMPI.
This tracing tool captures I/O events as singletons, vectors, and regular section descriptors to describe the application
behavior. Those are stored in a single, lossless, and order-preserving trace file. Their goal is to generate a trace that can
be extrapolated into target sizes of nodes and replayed to assert I/O scalability.

Score-P [109] is a measurement tool suite for profiling and event tracing of HPC applications. The instrumentation
allows users to insert measurement probes in their codes to collect performance-related data when triggered by linking
against several provided run-time libraries for serial execution, OpenMP or MPI parallelism or hybrid combinations.
It also allows selective filtering in both profiling and tracing mode to restrict the recording to specific regions. For
input and output operations, Score-P can collect data on POSIX-IO (e.g., open/close), POSIX asynchronous I/O (e.g.,
aio_read/aio_write), STDIO (e.g., fopen/fclose) and MPI-IO calls. Visualizing Score-P output files using Periscope
[12], Scalasca [73], TAU [154], and Vampir [108] is possible. Periscope is an online profiling analysis that evaluates
performance properties and tests hypotheses about typical performance problems. Scalasca allows post-mortem analysis
of event traces and automatically detects performance-critical situations. It is also possible to use the TAU visualization

Manuscript submitted to ACM



24 Bez et al.

toolset to correlate performance data collected with Score-P or Vampir, which works as a post-mortem interactive event
trace visualization software.

DXT Explorer [19] is an interactive web-based log analysis tool to visualize Darshan DXT traces and help under-
standing the I/O behavior of applications. The tool adds an interactive component to Darshan trace analysis that can aid
researchers, developers, and end-users to visually inspect their applications’ I/O behavior, zoom in on areas of interest
and have a clear picture of where the I/O problem is.

Gaps in Visualizing Access Pattern Transformations

As discussed in Section 3, the way the application issues its I/O requests will differ from what the intermediate layers
and the file system actually perceive. To illustrate the transformations an application’s I/O requests undergo as they
traverse the stack, we use Darshan traces and DXT Explorer to visualize the I/O access pattern at different levels.

H
D

F
5

M
P

IIO
P

O
S

IX

*

*

0

32

64

96

M
P

I R
an

k

IOR A IOR B

LU
S

T
R

E

0 10 20 30 40 50 60 70 80 90

#1

#2

#3

#4

#5

#6

#7

#8

Runtime (seconds)

O
S

T
 ID

Fig. 15. Two concurrent IOR instances using DXT Explorer. We depict the access pattern from the high-level library (HDF5) and their
corresponding transformations until they reach the POSIX layer and the underlying Object Storage Targets (OST) in Lustre.

Figure 15 depicts such transformations. In this experiment, we have two instances of IOR (one in red and another in
blue). We executed each one in two non-overlapping sets of 16 compute nodes, with eight ranks per node, totaling 128
ranks. We configured IOR to write ten iterations of one segment with a 32MB block size using 4MB transfer sizes to a
shared file using the HDF5 API and collective MPI operations. Both instances were started simultaneously. We collected
profile and tracing data using Darshan. As Darshan Extended Tracing does not yet capture fine-grain information
about high-level libraries, such as HDF5, we rely upon manually instrumenting the code to collect timestamps before
performing the write operations and after the dataset is completely written to a given file. We condensed both plot
facets as all the ranks collectively issued the I/O calls to the MPI-IO layer. We represented these collective calls by the
star symbol on the 𝑦-axis.
Manuscript submitted to ACM



I/O Access Patterns in HPC Applications: A 360-Degree Survey 25

LU
S

T
R

E

2.0 2.5 3.0 3.5 4.0

#1

#2

#3

#4

#5

#6

#7

#8

Runtime (seconds)

O
S

T
 ID

Fig. 16. I/O request from the two concurrent IOR instances (one in read another in blue) as they arrive in each of the eight Lustre
storage servers. We zoom in the first two seconds of the experiment reported in Figure 15.

As far as the application is concerned, its data in memory is a 1D-dataset represented by HDF5. HDF5 will define a
hyperslab based on the start offset, count, stride, and block to access the data. A hyperslab represents a portion of the
datasets that can be a logically contiguous collection of points in a dataspace or a regular pattern of points or blocks in
a dataspace. In our experiments, for a shared file, IOR defines the start offset as offset module segmentSize, count as
one, and a stride and a block equal to the transfer size, i.e., 4MB. However, once the requests reach the MPI-IO layer, they
are further broken down by the four collective aggregators into a larger number of 1MB POSIX requests, considering
the underlying parallel file system striping configuration before sending them to each storage device. We have defined
Lustre to use 1MB stripes over eight servers to make it easier to visualize. Once we delve into lower levels of the I/O
stack, we are to lose contextual information from the applications and start to observe the effect of natural interference
in this shared storage infrastructure. For instance, if we glance at one OST, the requests arrive at the storage servers in
an interleaved fashion, coming from the two applications that the file system is unaware of. At this point, the original
contiguous requests issued by the application using 4MB requests arrive at the server much smaller (in 1MB requests)
and with a different spatiality (non-contiguous).

Furthermore, it is essential to highlight the inter-application interference caused by other applications sharing those
data servers. Figure 15 clearly depicts how two identical applications that started simultaneously begin to diverge
in time towards the end of our experiment. Such observation also highlights the importance of taking into account
temporal features when discussing access patterns.

Summary #8

Different tools extract and visualize I/O access patterns from coarse-grain profilers to fine-grain traces as I/O
requests pass through the stack. However, we could not find a complete solution that allows observing patterns
and all of their transformations in the context of each layer. Because of the complexity of the current stack, this
gap might not easily reflect the root causes of bottlenecks.

10 CONCLUSION

The HPC I/O stack has been complex due to multiple layers of hardware and software, their various tuning options, and
inter-dependencies among the layers. This survey discussed extensively the overloaded “I/O access pattern” terminology
used to describe how accesses are done from the major layers of the HPC I/O stack, covering the high-level models used
by scientific applications, how those are represented by high-level I/O libraries and translated by middleware libraries
before reaching the parallel file system. We have also highlighted I/O benchmarks and kernels employed to exercise
access patterns in different levels, alongside existing tools to visualize those patterns using profiling and tracing.

Manuscript submitted to ACM



26 Bez et al.

Harnessing the I/O community’s knowledge over the last 20 years, we surveyed 146 papers from ACM DL and IEEE
Xplore to propose a baseline taxonomy that could define an application’s I/O access patterns. Our effort targets bringing
a consensus to the varying ways to describe a pattern based on features already used by the community over the years,
serving as a common ground between end-user, application developers, and system administrators when discussing,
proposing, and applying I/O tuning strategies to improve I/O performance.

Furthermore, the existing I/O stack exposes a plethora of tunable parameters and enables different, often comple-
mentary, optimization techniques to improve performance. However, there is little to no guidance to developers and
end-users on how and when to apply them. Besides the lack of knowledge that those options are available and could
help for a particular set of access patterns, there has not been a single set of instructions to define a set of tuning
parameters. Reaching a list of best practices, even for a single system, is challenging due to various factors affecting I/O
performance. Finally, not having a common ground to identify and refer to access patterns could add to this complexity
and makes it difficult to map I/O access patterns to their performance behaviors and then to optimization strategies.

As the HPC platforms become more complex and specialized to host novel applications from machine learning to
scientific workflows, it becomes paramount for those systems that seek to auto-tune their parameters to accurately
detect the I/O access patterns at runtime. An established taxonomy can help bridge the gap between metric collection,
access patterns representation, and the application of AI-based and automatic tuning mechanisms to navigate the
complex parameter space, seeking optimizations and configurations to apply for an observed application workload.

Consequently, despite having tools to collect profiles and metrics about I/O performance and features that can be
used to describe the application’s access patterns at different layers of the HPC I/O stack, there are still gaps between
visualizing and understanding what the application is doing, identifying the bottlenecks, and correctly re-shaping its
pattern to perform better in the system. Reporting and automatically mapping performance problems into actionable
items based on the observed pattern require novel tools, models, and further R&D.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration. This research used resources of the National Energy Research Scientific Computing Center, a DOE
Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research
used resources from the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The work presented in this paper was the result of a collaboration between the
Myriads project team at Inria and Lawrence Berkeley National Laboratory in the framework of the Hermes Associate team. Shadi Ibrahim’s research was
partly supported by the ANR KerStream project (ANR-16-CE25-0014-01). This research received funding from The Ohio State University (AWD-114169).

REFERENCES
[1] Sadaf R. Alam, Hussein N. El-Harake, Kristopher Howard, Neil Stringfellow, and Fabio Verzelloni. 2011. Parallel I/O and the Metadata Wall. In

Proceedings of the Sixth Workshop on Parallel Data Storage (Seattle, Washington, USA) (PDSW ’11). Association for Computing Machinery, New
York, NY, USA, 13–18. https://doi.org/10.1145/2159352.2159356

[2] Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimpe, Samuel Lang, Robert Latham, Robert Ross, Lee Ward, and P Sadayappan. 2009. Scalable I/O
Forwarding Framework for High-Performance Computing Systems. In 2009 IEEE International Conference on Cluster Computing and Workshops.
IEEE International Conference on Cluster Computing and Workshops, IEEE, Berkeley, USA, 1–10. https://doi.org/10.1109/CLUSTR.2009.5289188

[3] George Almási, Ralph Bellofatto, José Brunheroto, Călin Caşcaval, José G. Castanos, Luis Ceze, Paul Crumley, C. Christopher Erway, Joseph
Gagliano, Derek Lieber, Xavier Martorell, José E. Moreira, and Alda Sanomiya. 2003. An Overview of the Blue Gene/L System Software
Organization. In Euro-Par 2003 Parallel Processing. Euro-Par 2003 Conference, Lecture Notes in Computer Science, Springer-Verlag, 543–555.
https://doi.org/10.1007/978-3-540-45209-6_79

[4] Jonathon Anderson, Patrick J. Burns, Daniel Milroy, Peter Ruprecht, Thomas Hauser, and Howard Jay Siegel. 2017. Deploying RMACC Summit:
An HPC Resource for the Rocky Mountain Region. In Proceedings of the Practice and Experience in Advanced Research Computing 2017 on
Sustainability, Success and Impact (New Orleans, LA, USA) (PEARC17). Association for Computing Machinery, New York, NY, USA, Article 8,

Manuscript submitted to ACM

https://doi.org/10.1145/2159352.2159356
https://doi.org/10.1109/CLUSTR.2009.5289188
https://doi.org/10.1007/978-3-540-45209-6_79


I/O Access Patterns in HPC Applications: A 360-Degree Survey 27

7 pages. https://doi.org/10.1145/3093338.3093379
[5] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic, Ph. Canal, D. Casadei, O. Couet, V. Fine, L. Franco, G. Ganis, A. Gheata,

D. Gonzalez Maline, M. Goto, J. Iwaszkiewicz, A. Kreshuk, D. Marcos Segura, R. Maunder, L. Moneta, A. Naumann, E. Offermann, V. Onuchin, S.
Panacek, F. Rademakers, P. Russo, and M. Tadel. 2009. ROOT — A C++ Framework for Petabyte Data Storage, Statistical Analysis and Visualization.
Computer Physics Communications 180, 12 (2009), 2499–2512. https://doi.org/10.1016/j.cpc.2009.08.005 40 YEARS OF CPC: A celebratory issue
focused on quality software for high performance, grid and novel computing architectures.

[6] Guilllaume Aupy, Ana Gainaru, and Valentin Le Fèvre. 2019. I/O Scheduling Strategy for Periodic Applications. ACM Trans. Parallel Comput. 6, 2,
Article 7 (jul 2019), 26 pages. https://doi.org/10.1145/3338510

[7] Robert A. Ballance and Jonathan Cook. 2010. Monitoring MPI Programs for Performance Characterization and Management Control. In Proceedings
of the 2010 ACM Symposium on Applied Computing (Sierre, Switzerland) (SAC ’10). Association for Computing Machinery, New York, NY, USA,
2305–2310. https://doi.org/10.1145/1774088.1774566

[8] Jiwoo Bang, Chungyong Kim, Kesheng Wu, Alex Sim, Suren Byna, Sunggon Kim, and Hyeonsang Eom. 2020. HPC Workload Characterization
Using Feature Selection and Clustering. In Proceedings of the 3rd International Workshop on Systems and Network Telemetry and Analytics (Stockholm,
Sweden) (SNTA ’20). Association for Computing Machinery, New York, NY, USA, 33–40. https://doi.org/10.1145/3391812.3396270

[9] Ayşe Bağbaba. 2020. Improving Collective I/O Performance with Machine Learning Supported Auto-tuning. In 2020 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE, New Orleans, LA, USA, 814–821. https://doi.org/10.1109/IPDPSW50202.2020.00138

[10] Babak Behzad, Surendra Byna, Prabhat, and Marc Snir. 2015. Pattern-Driven Parallel I/O Tuning. In Proceedings of the 10th Parallel Data Storage
Workshop (Austin, Texas) (PDSW ’15). Association for Computing Machinery, New York, NY, USA, 43–48. https://doi.org/10.1145/2834976.2834977

[11] Babak Behzad, Surendra Byna, Prabhat, and Marc Snir. 2019. Optimizing I/O Performance of HPC Applications with Autotuning. ACM Trans.
Parallel Comput. 5, 4, Article 15 (mar 2019), 27 pages. https://doi.org/10.1145/3309205

[12] Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt. 2010. PERISCOPE: An Online-Based Distributed Performance Analysis Tool. In Tools
for High Performance Computing 2009, Matthias S. Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 1–16.

[13] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski, James Nunez, Milo Polte, and MeghanWingate. 2009. PLFS: a checkpoint
filesystem for parallel applications. In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis. 1–12.
https://doi.org/10.1145/1654059.1654081

[14] MARSHALL BERN and DAVID EPPSTEIN. 1992. MESH GENERATION AND OPTIMAL TRIANGULATION. 23–90. https://doi.org/10.1142/
9789814355858_0002

[15] Jean Luca Bez, Francieli Zanon Boito, Ramon Nou, Alberto Miranda, Toni Cortes, and Philippe O. A. Navaux. 2019. Detecting I/O Access Patterns
of HPC Workloads at Runtime. In 2019 31st International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). IEEE,
Campo Grande, Brazil, 80–87. https://doi.org/10.1109/SBAC-PAD.2019.00025

[16] Jean Luca Bez, Francieli Zanon Boito, Lucas Mello Schnorr, Philippe Olivier Alexandre Navaux, and Jean-François Méhaut. 2017. TWINS: Server
Access Coordination in the I/O Forwarding Layer. In 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based
Processing (PDP). IEEE, St. Petersburg, Russia, 116–123. https://doi.org/10.1109/PDP.2017.61

[17] Jean Luca Bez, Ahmad Maroof Karimi, Arnab K. Paul, Bing Xie, Suren Byna, Philip Carns, Sarp Oral, Feiyi Wang, and Jesse Hanley. 2022. Access
Patterns and Performance Behaviors of Multi-Layer Supercomputer I/O Subsystems under Production Load. In Proceedings of the 31st International
Symposium on High-Performance Parallel and Distributed Computing (Minneapolis, MN, USA) (HPDC ’22). Association for Computing Machinery,
New York, NY, USA, 43–55. https://doi.org/10.1145/3502181.3531461

[18] Jean Luca Bez, Ahmad Maroof Karimi, Arnab K. Paul, Bing Xie, Suren Byna, Philip Carns, Sarp Oral, Feiyi Wang, and Jesse Hanley. 2022. Access
Patterns and Performance Behaviors of Multi-Layer Supercomputer I/O Subsystems under Production Load. In Proceedings of the 31st International
Symposium on High-Performance Parallel and Distributed Computing (Minneapolis, MN, USA) (HPDC ’22). Association for Computing Machinery,
New York, NY, USA, 43–55. https://doi.org/10.1145/3502181.3531461

[19] Jean Luca Bez, Houjun Tang, Bing Xie, David Williams-Young, Rob Latham, Rob Ross, Sarp Oral, and Suren Byna. 2021. I/O Bottleneck Detection
and Tuning: Connecting the Dots using Interactive Log Analysis. In 2021 IEEE/ACM Sixth International Parallel Data Systems Workshop (PDSW).
IEEE, St. Louis, MO, USA, 15–22. https://doi.org/10.1109/PDSW54622.2021.00008

[20] Jean Luca Bez, Francieli Zanon Boito, Ramon Nou, Alberto Miranda, Toni Cortes, and Philippe O.A. Navaux. 2020. Adaptive request scheduling for
the I/O forwarding layer using reinforcement learning. Future Generation Computer Systems 112 (2020), 1156–1169. https://doi.org/10.1016/j.
future.2020.05.005

[21] Francieli Zanon Boito, Eduardo C. Inacio, Jean Luca Bez, Philippe O. A. Navaux, Mario A. R. Dantas, and Yves Denneulin. 2018. A Checkpoint of
Research on Parallel I/O for High-Performance Computing. ACMComput. Surv. 51, 2, Article 23 (mar 2018), 35 pages. https://doi.org/10.1145/3152891

[22] Francieli Zanon Boito, Rodrigo Virote Kassick, Philippe O.A. Navaux, and Yves Denneulin. 2013. AGIOS: Application-Guided I/O Scheduling for
Parallel File Systems. In 2013 International Conference on Parallel and Distributed Systems. IEEE, Seoul, Korea (South), 43–50. https://doi.org/10.
1109/ICPADS.2013.19

[23] Francieli Zanon Boito, Rodrigo Virote Kassick, Philippe O. A. Navaux, and Yves Denneulin. 2016. Automatic I/O scheduling algorithm selection
for parallel file systems. Concurrency and Computation: Practice and Experience 28, 8 (2016), 2457–2472. https://doi.org/10.1002/cpe.3606
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3606

Manuscript submitted to ACM

https://doi.org/10.1145/3093338.3093379
https://doi.org/10.1016/j.cpc.2009.08.005
https://doi.org/10.1145/3338510
https://doi.org/10.1145/1774088.1774566
https://doi.org/10.1145/3391812.3396270
https://doi.org/10.1109/IPDPSW50202.2020.00138
https://doi.org/10.1145/2834976.2834977
https://doi.org/10.1145/3309205
https://doi.org/10.1145/1654059.1654081
https://doi.org/10.1142/9789814355858_0002
https://doi.org/10.1142/9789814355858_0002
https://doi.org/10.1109/SBAC-PAD.2019.00025
https://doi.org/10.1109/PDP.2017.61
https://doi.org/10.1145/3502181.3531461
https://doi.org/10.1145/3502181.3531461
https://doi.org/10.1109/PDSW54622.2021.00008
https://doi.org/10.1016/j.future.2020.05.005
https://doi.org/10.1016/j.future.2020.05.005
https://doi.org/10.1145/3152891
https://doi.org/10.1109/ICPADS.2013.19
https://doi.org/10.1109/ICPADS.2013.19
https://doi.org/10.1002/cpe.3606
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.3606


28 Bez et al.

[24] Francieli Zanon Boito, Ramon Nou, Laércio Lima Pilla, Jean Luca Bez, Jean-François Méhaut, Toni Cortes, and Philippe O.A. Navaux. 2019. On
server-side file access pattern matching. In 2019 International Conference on High Performance Computing Simulation (HPCS). IEEE, Dublin, Ireland,
217–224. https://doi.org/10.1109/HPCS48598.2019.9188092

[25] Julian Borrill, Leonid Oliker, John Shalf, and Hongzhang Shan. 2007. Investigation of Leading HPC I/O Performance Using a Scientific-Application
Derived Benchmark. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (Reno, Nevada) (SC’07). Association for Computing
Machinery, New York, NY, USA, Article 10, 12 pages. https://doi.org/10.1145/1362622.1362636

[26] David A. Boyuka, Sriram Lakshminarasimhan, Xiaocheng Zou, Zhenhuan Gong, John Jenkins, Eric R. Schendel, Norbert Podhorszki, Qing Liu,
Scott Klasky, and Nagiza F. Samatova. 2014. Transparent in Situ Data Transformations in ADIOS. In Proceedings of the 14th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing (Chicago, Illinois) (CCGRID ’14). IEEE Press, 256–266. https://doi.org/10.1109/CCGrid.2014.73

[27] Emma S. Buneci and Daniel A. Reed. 2008. Analysis of Application Heartbeats: Learning Structural and Temporal Features in Time Series Data for
Identification of Performance Problems. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (Austin, Texas) (SC ’08). IEEE Press,
Article 52, 12 pages.

[28] Suren Byna, M. Scot Breitenfeld, Bin Dong, Quincey Koziol, Elena Pourmal, Dana Robinson, Jerome Soumagne, Houjun Tang, VenkatramVishwanath,
and Richard Warren. 2020. ExaHDF5: Delivering Efficient Parallel I/O on Exascale Computing Systems. J. Comput. Sci. Technol. 35, 1 (jan 2020),
145–160. https://doi.org/10.1007/s11390-020-9822-9

[29] Suren Byna, Mohamad Chaarawi, Quincey Koziol, John Mainzer, and Frank Willmore. 2017. Tuning HDF5 subfiling performance on parallel file
systems. CUG (5 2017). https://www.osti.gov/biblio/1398484

[30] Surendra Byna, Yong Chen, Xian-He Sun, Rajeev Thakur, andWilliam Gropp. 2008. Parallel I/O prefetching usingMPI file caching and I/O signatures.
In SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. IEEE, Austin, TX, 1–12. https://doi.org/10.1109/SC.2008.5213604

[31] Wenxiang Cai, Jianxing Zhao, Xiaosong Wu, and Bo Sun. 2009. Influence of Radiation Model on Numerical Prediction of Two-Phase Reaction Flow.
In 2009 International Conference on Computational Intelligence and Software Engineering. 1–4. https://doi.org/10.1109/CISE.2009.5366244

[32] Jinrui Cao, Om Rameshwar Gatla, Mai Zheng, Dong Dai, Vidya Eswarappa, Yan Mu, and Yong Chen. 2018. PFault: A General Framework for
Analyzing the Reliability of High-Performance Parallel File Systems. In Proceedings of the 2018 International Conference on Supercomputing (Beijing,
China) (ICS ’18). Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3205289.3205302

[33] André Ramos Carneiro, Jean Luca Bez, Carla Osthoff, Lucas Mello Schnorr, and Philippe O. A. Navaux. 2021. HPC Data Storage at a Glance: The
Santos Dumont Experience. In 2021 IEEE 33rd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)
(Belo Horizonte, Brazil). IEEE, 157–166. https://doi.org/10.1109/SBAC-PAD53543.2021.00027

[34] Philip Carns, Kevin Harms, William Allcock, Charles Bacon, Samuel Lang, Robert Latham, and Robert Ross. 2011. Understanding and Improving
Computational Science Storage Access through Continuous Characterization. ACM Trans. Storage 7, 3, Article 8 (oct 2011), 26 pages. https:
//doi.org/10.1145/2027066.2027068

[35] Philip Carns, Robert Latham, Robert Ross, Kamil Iskra, Samuel Lang, and Katherine Riley. 2009. 24/7 Characterization of Petascale I/O Workloads.
In 2009 IEEE International Conference on Cluster Computing and Workshops (CLUSTER). IEEE Computer Society, Los Alamitos, CA, USA, 1–10.
https://doi.org/10.1109/CLUSTR.2009.5289150

[36] Philip H. Carns, Walter B. Ligon, Robert B. Ross, and Rajeev Thakur. 2000. PVFS: A Parallel File System for Linux Clusters. In Proceedings of the 4th
Annual Linux Showcase & Conference - Volume 4 (Atlanta, Georgia) (ALS’00). USENIX Association, USA, 28.

[37] Yan-Tyng Sherry Chang, Henry Jin, and John Bauer. 2016. Methodology and Application of HPC: I/O Characterization with MPIProf and IOT. In
2016 5th Workshop on Extreme-Scale Programming Tools (ESPT). IEEE, Salt Lake City, UT, USA, 1–8. https://doi.org/10.1109/ESPT.2016.005

[38] Junjie Chen, Philip C. Roth, and Yong Chen. 2013. Using pattern-models to guide SSD deployment for Big Data applications in HPC systems. In
2013 IEEE International Conference on Big Data. IEEE, Silicon Valley, CA, USA, 332–337. https://doi.org/10.1109/BigData.2013.6691592

[39] J H Chen, A Choudhary, B de Supinski, M DeVries, E R Hawkes, S Klasky, W K Liao, K L Ma, J Mellor-Crummey, N Podhorszki, R Sankaran, S
Shende, and C S Yoo. 2009. Terascale direct numerical simulations of turbulent combustion using S3D. Computational Science & Discovery 2, 1 (jan
2009), 015001. https://doi.org/10.1088/1749-4699/2/1/015001

[40] Steven W. D. Chien, Artur Podobas, Ivy B. Peng, and Stefano Markidis. 2020. tf-Darshan: Understanding Fine-grained I/O Performance in Machine
Learning Workloads. In 2020 IEEE International Conference on Cluster Computing (CLUSTER). IEEE Computer Society, Los Alamitos, CA, USA,
359–370. https://doi.org/10.1109/CLUSTER49012.2020.00046

[41] Avery Ching, Wei-keng Liao, Alok Choudhary, Robert Ross, and Lee Ward. 2007. Noncontiguous Locking Techniques for Parallel File Systems. In
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (Reno, Nevada) (SC ’07). Association for Computing Machinery, New York, NY,
USA, Article 26, 12 pages. https://doi.org/10.1145/1362622.1362658

[42] A. Ching, Wu-chun Feng, Heshan Lin, Xiaosong Ma, and A. Choudhary. 2006. Exploring I/O Strategies for Parallel Sequence-Search Tools
with S3aSim. In 2006 15th IEEE International Conference on High Performance Distributed Computing. IEEE, Paris, France, 229–240. https:
//doi.org/10.1109/HPDC.2006.1652154

[43] Fahim Chowdhury, Yue Zhu, Todd Heer, Saul Paredes, AdamMoody, Robin Goldstone, Kathryn Mohror, andWeikuan Yu. 2019. I/O Characterization
and Performance Evaluation of BeeGFS for Deep Learning. In Proceedings of the 48th International Conference on Parallel Processing (Kyoto, Japan)
(ICPP 2019). Association for Computing Machinery, New York, NY, USA, Article 80, 10 pages. https://doi.org/10.1145/3337821.3337902

[44] Giuseppe Congiu, Sai Narasimhamurthy, Tim SuB, and Andre Brinkmann. 2016. Improving Collective I/O Performance Using Non-volatile
Memory Devices. In 2016 IEEE International Conference on Cluster Computing (CLUSTER) (Taipei, Taiwan). IEEE, Taipei, Taiwan, 120–129.

Manuscript submitted to ACM

https://doi.org/10.1109/HPCS48598.2019.9188092
https://doi.org/10.1145/1362622.1362636
https://doi.org/10.1109/CCGrid.2014.73
https://doi.org/10.1007/s11390-020-9822-9
https://www.osti.gov/biblio/1398484
https://doi.org/10.1109/SC.2008.5213604
https://doi.org/10.1109/CISE.2009.5366244
https://doi.org/10.1145/3205289.3205302
https://doi.org/10.1109/SBAC-PAD53543.2021.00027
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1109/CLUSTR.2009.5289150
https://doi.org/10.1109/ESPT.2016.005
https://doi.org/10.1109/BigData.2013.6691592
https://doi.org/10.1088/1749-4699/2/1/015001
https://doi.org/10.1109/CLUSTER49012.2020.00046
https://doi.org/10.1145/1362622.1362658
https://doi.org/10.1109/HPDC.2006.1652154
https://doi.org/10.1109/HPDC.2006.1652154
https://doi.org/10.1145/3337821.3337902


I/O Access Patterns in HPC Applications: A 360-Degree Survey 29

https://doi.org/10.1109/CLUSTER.2016.37
[45] Jake R Conway, Alexander Lex, and Nils Gehlenborg. 2017. UpSetR: an R package for the visualization of intersecting sets and their properties.

Bioinformatics 33, 18 (06 2017), 2938–2940. https://doi.org/10.1093/bioinformatics/btx364 arXiv:https://academic.oup.com/bioinformatics/article-
pdf/33/18/2938/49040768/bioinformatics_33_18_2938_s1.pdf

[46] Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg, Jean-Pierre Prost, Marc Snir, Bernard Traversat, and Parkson Wong. 1995.
Overview Of The MPI-IO Parallel I/O Interface.

[47] Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg, Jean-Pierre Prost, Marc Snirt, Bernard Traversat, and Parkson Wong. 1996.
Overview of the MPI-IO Parallel I/O Interface. Springer US, Boston, MA, 127–146. https://doi.org/10.1007/978-1-4613-1401-1_5

[48] Chuck Cranor, Milo Polte, and Garth Gibson. 2013. Structuring PLFS for Extensibility. In Proceedings of the 8th Parallel Data Storage Workshop
(Denver, Colorado) (PDSW ’13). Association for Computing Machinery, New York, NY, USA, 20–26. https://doi.org/10.1145/2538542.2538564

[49] Dong Dai, Yong Chen, Philip Carns, John Jenkins, and Robert Ross. 2017. Lightweight Provenance Service for High-Performance Computing.
In 2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE, Portland, OR, USA, 117–129. https:
//doi.org/10.1109/PACT.2017.14

[50] Dong Dai, Yong Chen, Dries Kimpe, and Robert Ross. 2014. Two-Choice Randomized Dynamic I/O Scheduler for Object Storage Systems. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (New Orleans, Louisana) (SC ’14).
IEEE Press, 635–646. https://doi.org/10.1109/SC.2014.57

[51] Marco Dantas, Diogo Leitão, Peter Cui, Ricardo Macedo, Xinlian Liu, Weijia Xu, and João Paulo. 2022. Accelerating Deep Learning Training
Through Transparent Storage Tiering. In 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). 21–30.
https://doi.org/10.1109/CCGrid54584.2022.00011

[52] A E Darling, L Carey, and W C Feng. 2003. The design, Implementation, and Evaluation of mpiBLAST. (1 2003). https://www.osti.gov/biblio/976625
[53] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. 1993. Improved Parallel I/O via a Two-phase Run-time Access Strategy. ACM

SIGARCH Computer Architecture News 21, 5 (Dec. 1993), 31–38. https://doi.org/10.1145/165660.165667
[54] Hariharan Devarajan, Anthony Kougkas, Prajwal Challa, and Xian-He Sun. 2018. Vidya: Performing Code-Block I/O Characterization for Data Access

Optimization. In 2018 IEEE 25th International Conference on High Performance Computing (HiPC). 255–264. https://doi.org/10.1109/HiPC.2018.00036
[55] Hariharan Devarajan, Huihuo Zheng, Anthony Kougkas, Xian-He Sun, and Venkatram Vishwanath. 2021. DLIO: A Data-Centric Benchmark for

Scientific Deep Learning Applications. In 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid). 81–91.
https://doi.org/10.1109/CCGrid51090.2021.00018

[56] James Dickson, StevenWright, SatheeshMaheswaran, AndyHerdman, Mark C.Miller, and Stephen Jarvis. 2016. Replicating HPC I/OWorkloads with
Proxy Applications. In 2016 1st Joint International Workshop on Parallel Data Storage and data Intensive Scalable Computing Systems (PDSW-DISCS).
13–18. https://doi.org/10.1109/PDSW-DISCS.2016.007

[57] Bin Dong, Verónica Rodríguez Tribaldos, Xin Xing, Suren Byna, Jonathan Ajo-Franklin, and Kesheng Wu. 2020. DASSA: Parallel DAS Data
Storage and Analysis for Subsurface Event Detection. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 254–263.
https://doi.org/10.1109/IPDPS47924.2020.00035

[58] Wenrui Dong, Guangming Liu, Jie Yu, and You Zuo. 2015. Using FTracer to characterize an I/O-intensive application. In 2015 4th International
Conference on Computer Science and Network Technology (ICCSNT), Vol. 01. 324–327. https://doi.org/10.1109/ICCSNT.2015.7490761

[59] Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, Robert Sisneros, Orcun Yildiz, Shadi Ibrahim, Tom Peterka, and Leigh Orf. 2016.
Damaris: Addressing performance variability in data management for post-petascale simulations. ACM Transactions on Parallel Computing (TOPC)
3, 3 (2016), 1–43.

[60] Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries Kimpe, and Shadi Ibrahim. 2014. CALCioM: Mitigating I/O Interference in HPC Systems through
Cross-Application Coordination. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium. 155–164. https://doi.org/10.1109/
IPDPS.2014.27

[61] Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, and Rob Ross. 2014. Omnisc’IO: A Grammar-Based Approach to Spatial and Temporal I/O
Patterns Prediction. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (New Orleans,
Louisana) (SC ’14). IEEE Press, 623–634. https://doi.org/10.1109/SC.2014.56

[62] Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, and Rob Ross. 2016. Using Formal Grammars to Predict I/O Behaviors in HPC: The Omnisc’IO
Approach. IEEE Transactions on Parallel and Distributed Systems 27, 8 (2016), 2435–2449. https://doi.org/10.1109/TPDS.2015.2485980

[63] Nikoli Dryden, Roman Böhringer, Tal Ben-Nun, and Torsten Hoefler. 2021. Clairvoyant Prefetching for Distributed Machine Learning I/O. In
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (St. Louis, Missouri) (SC ’21).
Association for Computing Machinery, New York, NY, USA, Article 92, 15 pages. https://doi.org/10.1145/3458817.3476181

[64] David Ellsworth, Bryan Green, and Patrick Moran. 2004. Interactive Terascale Particle Visualization. In Proceedings of the Conference on Visualization
’04 (VIS ’04). IEEE Computer Society, USA, 353–360. https://doi.org/10.1109/VISUAL.2004.55

[65] V. Etienne, E. Chaljub, J. Virieux, and N. Glinsky. 2010. An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave
modelling. Geophysical Journal International 183, 2 (11 2010), 941–962. https://doi.org/10.1111/j.1365-246X.2010.04764.x

[66] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011. An Overview of the HDF5 Technology Suite and Its Applications.
In Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases (Uppsala, Sweden) (AD ’11). Association for Computing Machinery, New York,
NY, USA, 36–47. https://doi.org/10.1145/1966895.1966900

Manuscript submitted to ACM

https://doi.org/10.1109/CLUSTER.2016.37
https://doi.org/10.1093/bioinformatics/btx364
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/33/18/2938/49040768/bioinformatics_33_18_2938_s1.pdf
https://arxiv.org/abs/https://academic.oup.com/bioinformatics/article-pdf/33/18/2938/49040768/bioinformatics_33_18_2938_s1.pdf
https://doi.org/10.1007/978-1-4613-1401-1_5
https://doi.org/10.1145/2538542.2538564
https://doi.org/10.1109/PACT.2017.14
https://doi.org/10.1109/PACT.2017.14
https://doi.org/10.1109/SC.2014.57
https://doi.org/10.1109/CCGrid54584.2022.00011
https://www.osti.gov/biblio/976625
https://doi.org/10.1145/165660.165667
https://doi.org/10.1109/HiPC.2018.00036
https://doi.org/10.1109/CCGrid51090.2021.00018
https://doi.org/10.1109/PDSW-DISCS.2016.007
https://doi.org/10.1109/IPDPS47924.2020.00035
https://doi.org/10.1109/ICCSNT.2015.7490761
https://doi.org/10.1109/IPDPS.2014.27
https://doi.org/10.1109/IPDPS.2014.27
https://doi.org/10.1109/SC.2014.56
https://doi.org/10.1109/TPDS.2015.2485980
https://doi.org/10.1145/3458817.3476181
https://doi.org/10.1109/VISUAL.2004.55
https://doi.org/10.1111/j.1365-246X.2010.04764.x
https://doi.org/10.1145/1966895.1966900


30 Bez et al.

[67] International Organization for Standardization. c1996-. Information technology–Portable Operating System Interface (POSIX). Second edition
1996-07-12. New York, NY, USA : Institute of Electrical and Electronics Engineers, c1996-.

[68] Message-Passing Interface Forum. 1994. MPI: A Message-Passing Interface Standard – Version 4.0. Technical Report. Knoxville, Tennessee, USA.
[69] Michael Frasca, Ramya Prabhakar, Padma Raghavan, and Mahmut Kandemir. 2011. Virtual I/O caching: Dynamic storage cache management for

concurrent workloads. In SC ’11: Proceedings of 2011 Int. Conference for High Performance Computing, Networking, Storage and Analysis. 1–11.
[70] Ana Gainaru, Guillaume Aupy, Anne Benoit, Franck Cappello, Yves Robert, and Marc Snir. 2015. Scheduling the I/O of HPC Applications Under

Congestion. In 2015 IEEE International Parallel and Distributed Processing Symposium. 1013–1022. https://doi.org/10.1109/IPDPS.2015.116
[71] Rong Ge, Xizhou Feng, Sindhu Subramanya, and Xian-he Sun. 2010. Characterizing energy efficiency of I/O intensive parallel applications

on power-aware clusters. In 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW). 1–8.
https://doi.org/10.1109/IPDPSW.2010.5470904

[72] Rong Ge, Xizhou Feng, and Xian-He Sun. 2012. SERA-IO: Integrating Energy Consciousness into Parallel I/O Middleware. In Proceedings of the 2012
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (Ccgrid 2012) (CCGRID ’12). IEEE Computer Society, USA, 204–211.
https://doi.org/10.1109/CCGrid.2012.39

[73] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, and Bernd Mohr. 2010. The Scalasca Performance Toolset Architecture.
Concurr. Comput. : Pract. Exper. 22, 6 (apr 2010), 702–719.

[74] Anjus George, RickMohr, James Simmons, and Sarp Oral. 2021. Understanding Lustre Internals 2nd Edition. (9 2021). https://doi.org/10.2172/1824954
[75] Pilar Gomez-Sanchez, Sandra Mendez, Dolores Rexachs, and Emilio Luque. 2017. A Parallel I/O Behavior Model for HPC Applications Using Serial

I/O Libraries. In 2017 International Conference on High Performance Computing & Simulation (HPCS). 244–251. https://doi.org/10.1109/HPCS.2017.45
[76] Junmin Gu, Scott Klasky, Norbert Podhorszki, Ji Qiang, and Kesheng Wu. 2018. Querying Large Scientific Data Sets with Adaptable IO System

ADIOS. In Supercomputing Frontiers, Rio Yokota and Weigang Wu (Eds.). Springer International Publishing, Cham, 51–69.
[77] Peng Gu, Jun Wang, and Robert Ross. 2008. Bridging the Gap Between Parallel File Systems and Local File Systems: A Case Study with PVFS. In

2008 37th International Conference on Parallel Processing. 554–561. https://doi.org/10.1109/ICPP.2008.43
[78] Raghul Gunasekaran, Sarp Oral, Jason Hill, Ross Miller, Feiyi Wang, and Dustin Leverman. 2015. Comparative I/O Workload Characterization

of Two Leadership Class Storage Clusters. In Proceedings of the 10th Parallel Data Storage Workshop (Austin, Texas) (PDSW ’15). Association for
Computing Machinery, New York, NY, USA, 31–36. https://doi.org/10.1145/2834976.2834985

[79] Ioan Hadade, Timothy M. Jones, Feng Wang, and Luca di Mare. 2020. Software Prefetching for Unstructured Mesh Applications. ACM Trans.
Parallel Comput. 7, 1, Article 3 (mar 2020), 23 pages. https://doi.org/10.1145/3380932

[80] Hanisch, R. J., Farris, A., Greisen, E. W., Pence, W. D., Schlesinger, B. M., Teuben, P. J., Thompson, R. W., and Warnock, A. 2001. Definition of the
Flexible Image Transport System (FITS)*. A&A 376, 1 (2001), 359–380. https://doi.org/10.1051/0004-6361:20010923

[81] Jun He, John Bent, Aaron Torres, Gary Grider, Garth Gibson, Carlos Maltzahn, and Xian-He Sun. 2013. I/O Acceleration with Pattern Detection. In
Proceedings of the 22nd International Symposium on High-Performance Parallel and Distributed Computing (New York, New York, USA) (HPDC ’13).
Association for Computing Machinery, New York, NY, USA, 25–36. https://doi.org/10.1145/2493123.2462909

[82] Jun He, Huaiming Song, Xian-He Sun, Yanlong Yin, and Rajeev Thakur. 2011. Pattern-Aware File Reorganization in MPI-IO. In Proceedings of the
Sixth Workshop on Parallel Data Storage (Seattle, Washington, USA) (PDSW ’11). Association for Computing Machinery, New York, NY, USA, 43–48.
https://doi.org/10.1145/2159352.2159363

[83] Shuibing He, Yan Liu, and Xian-He Sun. 2014. PSA: A Performance and Space-Aware Data Layout Scheme for Hybrid Parallel File Systems. In 2014
International Workshop on Data Intensive Scalable Computing Systems. 41–48. https://doi.org/10.1109/DISCS.2014.10

[84] Shuibing He, Yanlong Yin, Xian-He Sun, Xuechen Zhang, and Zongpeng Li. 2020. Optimizing Parallel I/O Accesses through Pattern-Directed and
Layout-Aware Replication. IEEE Trans. Comput. 69, 2 (2020), 212–225. https://doi.org/10.1109/TC.2019.2946135

[85] Weiping He, David H. C. Du, and Sai B. Narasimhamurthy. 2015. PIONEER: A Solution to Parallel I/O Workload Characterization and Generation.
In Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing (Shenzhen, China) (CCGRID ’15). IEEE Press,
111–120. https://doi.org/10.1109/CCGrid.2015.32

[86] Youbiao He, Dong Dai, and Forrest Sheng Bao. 2019. Modeling HPC Storage Performance Using Long Short-Term Memory Networks. In 2019 IEEE
21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th
International Conference on Data Science and Systems (HPCC/SmartCity/DSS). 1107–1114. https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00157

[87] Frank Herold and Sven Breuner. 2018. An introduction to BeeGFS. Technical Report. ThinkParQ. https://www.beegfs.io/docs/whitepapers/
Introduction_to_BeeGFS_by_ThinkParQ.pdf

[88] HPC IO Benchmark Repository. 2022. IOR. github.com/hpc/ior.
[89] Wei Hu, Guang-ming Liu, Qiong Li, Yan-huang Jiang, and Gui-lin Cai. 2016. Storage Wall for Exascale Supercomputing. Frontiers of Information

Technology and Electronic Engineering 17, 11 (01 Nov 2016), 1154–1175. https://doi.org/10.1631/FITEE.1601336
[90] Dachuan Huang, Xuechen Zhang, Wei Shi, Mai Zheng, Song Jiang, and Feng Qin. 2013. LiU: Hiding Disk Access Latency for HPC Applications with a

New SSD-Enabled Data Layout. In 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication
Systems. 111–120. https://doi.org/10.1109/MASCOTS.2013.19

[91] Tsuyoshi Ichimura, Kohei Fujita, Seizo Tanaka, Muneo Hori, Maddegedara Lalith, Yoshihisa Shizawa, and Hiroshi Kobayashi. 2014. Physics-
Based Urban Earthquake Simulation Enhanced by 10.7 BlnDOF × 30 K Time-Step Unstructured FE Non-Linear Seismic Wave Simulation. In
Proceedings of the Int. Conf. for High Performance Computing, Networking, Storage and Analysis (New Orleans, Louisana) (SC ’14). IEEE Press, 15–26.

Manuscript submitted to ACM

https://doi.org/10.1109/IPDPS.2015.116
https://doi.org/10.1109/IPDPSW.2010.5470904
https://doi.org/10.1109/CCGrid.2012.39
https://doi.org/10.2172/1824954
https://doi.org/10.1109/HPCS.2017.45
https://doi.org/10.1109/ICPP.2008.43
https://doi.org/10.1145/2834976.2834985
https://doi.org/10.1145/3380932
https://doi.org/10.1051/0004-6361:20010923
https://doi.org/10.1145/2493123.2462909
https://doi.org/10.1145/2159352.2159363
https://doi.org/10.1109/DISCS.2014.10
https://doi.org/10.1109/TC.2019.2946135
https://doi.org/10.1109/CCGrid.2015.32
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00157
https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
https://www.beegfs.io/docs/whitepapers/Introduction_to_BeeGFS_by_ThinkParQ.pdf
github.com/hpc/ior
https://doi.org/10.1631/FITEE.1601336
https://doi.org/10.1109/MASCOTS.2013.19


I/O Access Patterns in HPC Applications: A 360-Degree Survey 31

https://doi.org/10.1109/SC.2014.7
[92] IEEE. 2013. Standard for Information Technology—Portable Operating System Interface (POSIX(TM)) Base Specifications, Issue 7. IEEE Std 1003.1,

2013 Edition (incorporates IEEE Std 1003.1-2008, and IEEE Std 1003.1-2008/Cor 1-2013) (2013), 1–3906. https://doi.org/10.1109/IEEESTD.2013.6506091
[93] Sun Microsystems Inc. 2007. High-Performance Storage Architecture and Scalable Cluster File System. Technical Report.
[94] Mihailo Isakov, Eliakin del Rosario, Sandeep Madireddy, Prasanna Balaprakash, Philip Carns, Robert B. Ross, and Michel A. Kinsy. 2020. Toward

Generalizable Models of I/O Throughput. In 2020 IEEE/ACM International Workshop on Runtime and Operating Systems for Supercomputers (ROSS).
41–49. https://doi.org/10.1109/ROSS51935.2020.00010

[95] Mihailo Isakov, Eliakin del Rosario, Sandeep Madireddy, Prasanna Balaprakash, Philip Carns, Robert B. Ross, and Michel A. Kinsy. 2020. HPC I/O
Throughput Bottleneck Analysis with Explainable Local Models. In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, Atlanta, GA, 1–13. https://doi.org/10.1109/SC41405.2020.00037

[96] Tanzima Zerin Islam, Kathryn Mohror, Saurabh Bagchi, Adam Moody, Bronis R. de Supinski, and Rudolf Eigenmann. 2012. MCREngine: A scalable
checkpointing system using data-aware aggregation and compression. In SC ’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. 1–11. https://doi.org/10.1109/SC.2012.77

[97] ISO. 2018. ISO/IEC 9899:2018 Information technology — Programming languages — C (4 ed.). International Organization for Standardization, Geneva,
Switzerland. 520 pages. https://www.iso.org/standard/74528.html

[98] IBM journal of Research and Development staff. 2008. Overview of the IBM Blue Gene/P Project. IBM J. Res. Dev. 52, 1/2 (jan 2008), 199–220.
[99] Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah, Joonhyuk Yoo, and Mahmut T. Kandemir. 2014. HIOS: A Host Interface I/O Scheduler for Solid

State Disks. SIGARCH Comput. Archit. News 42, 3 (jun 2014), 289–300. https://doi.org/10.1145/2678373.2665715
[100] Myoungsoo Jung and Mahmut Kandemir. 2013. Revisiting Widely Held SSD Expectations and Rethinking System-Level Implications. In Proceedings

of the ACM SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems (Pittsburgh, PA, USA) (SIGMETRICS ’13).
Association for Computing Machinery, New York, NY, USA, 203–216. https://doi.org/10.1145/2465529.2465548

[101] Donghe Kang, Oliver Rübel, Suren Byna, and Spyros Blanas. 2020. Predicting and Comparing the Performance of Array Management Libraries. In
2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 906–915. https://doi.org/10.1109/IPDPS47924.2020.00097

[102] Qiao Kang, Scot Breitenfeld, Kaiyuan Hou, Wei-keng Liao, Robert Ross, and Suren Byna. 2021. Optimizing Performance of Parallel I/O Accesses to
Non-contiguous Blocks in Multiple Array Variables. In 2021 IEEE International Conference on Big Data (Big Data). 98–108. https://doi.org/10.1109/
BigData52589.2021.9671638

[103] Harsh Khetawat, Christopher Zimmer, Frank Mueller, Scott Atchley, Sudharshan S. Vazhkudai, and Misbah Mubarak. 2019. Evaluating Burst Buffer
Placement in HPC Systems. In IEEE International Conference on Cluster Computing (CLUSTER). 1–11. https://doi.org/10.1109/CLUSTER.2019.8891051

[104] Sunggon Kim, Alex Sim, Kesheng Wu, Suren Byna, Yongseok Son, and Hyeonsang Eom. 2020. Towards HPC I/O Performance Prediction through
Large-Scale Log Analysis. In Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing (Stockholm,
Sweden) (HPDC ’20). Association for Computing Machinery, New York, NY, USA, 77–88. https://doi.org/10.1145/3369583.3392678

[105] Sunggon Kim, Alex Sim, Kesheng Wu, Suren Byna, Teng Wang, Yongseok Son, and Hyeonsang Eom. 2019. DCA-IO: A Dynamic I/O Control
Scheme for Parallel and Distributed File Systems. In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID).
IEEE Computer Society, Los Alamitos, CA, USA, 351–360. https://doi.org/10.1109/CCGRID.2019.00049

[106] Sunggon Kim, Alex Sim, Kesheng Wu, Suren Byna, Teng Wang, Yongseok Son, and Hyeonsang Eom. 2019. DCA-IO: A Dynamic I/O Control
Scheme for Parallel and Distributed File Systems. In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID).
351–360. https://doi.org/10.1109/CCGRID.2019.00049

[107] Seong Jo Kim, Seung Woo Son, Wei-keng Liao, Mahmut Kandemir, Rajeev Thakur, and Alok Choudhary. 2012. IOPin: Runtime Profiling of Parallel
I/O in HPC Systems. In 2012 SC Companion: High Performance Computing, Networking Storage and Analysis. 18–23. https://doi.org/10.1109/SC.
Companion.2012.14

[108] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger Mickler, Matthias S. Müller, and Wolfgang E. Nagel. 2008.
The Vampir Performance Analysis Tool-Set. In Tools for High Performance Computing, Michael Resch, Rainer Keller, Valentin Himmler, Bettina
Krammer, and Alexander Schulz (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, "139–155.

[109] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm, Dominic Eschweiler, Markus Geimer, Michael Gerndt, Daniel
Lorenz, Allen Malony, Wolfgang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk Schmidl, Sameer Shende, Ronny Tschüter, Michael
Wagner, Bert Wesarg, and Felix Wolf. 2012. Score-P: A Joint Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU,
and Vampir. In Tools for High Performance Computing 2011, Holger Brunst, Matthias S. Müller, Wolfgang E. Nagel, and Michael M. Resch (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 79–91.

[110] Andy Konwinski, John Bent, James Nunez, and Meghan Quist. 2007. Towards an I/O Tracing Framework Taxonomy. In Proceedings of the
2nd International Workshop on Petascale Data Storage: Held in Conjunction with Supercomputing ’07 (Reno, Nevada) (PDSW ’07). Association for
Computing Machinery, New York, NY, USA, 56–62. https://doi.org/10.1145/1374596.1374610

[111] Anthony Kougkas, Hariharan Devarajan, and Xian-He Sun. 2020. Bridging Storage Semantics Using Data Labels and Asynchronous I/O. ACM
Trans. Storage 16, 4, Article 22 (oct 2020), 34 pages. https://doi.org/10.1145/3415579

[112] Anthony Kougkas, Matthieu Dorier, Rob Latham, Rob Ross, and Xian-He Sun. 2016. Leveraging burst buffer coordination to prevent I/O interference.
In 2016 IEEE 12th International Conference on e-Science (e-Science). 371–380. https://doi.org/10.1109/eScience.2016.7870922

Manuscript submitted to ACM

https://doi.org/10.1109/SC.2014.7
https://doi.org/10.1109/IEEESTD.2013.6506091
https://doi.org/10.1109/ROSS51935.2020.00010
https://doi.org/10.1109/SC41405.2020.00037
https://doi.org/10.1109/SC.2012.77
https://www.iso.org/standard/74528.html
https://doi.org/10.1145/2678373.2665715
https://doi.org/10.1145/2465529.2465548
https://doi.org/10.1109/IPDPS47924.2020.00097
https://doi.org/10.1109/BigData52589.2021.9671638
https://doi.org/10.1109/BigData52589.2021.9671638
https://doi.org/10.1109/CLUSTER.2019.8891051
https://doi.org/10.1145/3369583.3392678
https://doi.org/10.1109/CCGRID.2019.00049
https://doi.org/10.1109/CCGRID.2019.00049
https://doi.org/10.1109/SC.Companion.2012.14
https://doi.org/10.1109/SC.Companion.2012.14
https://doi.org/10.1145/1374596.1374610
https://doi.org/10.1145/3415579
https://doi.org/10.1109/eScience.2016.7870922


32 Bez et al.

[113] Sidharth Kumar, Robert Ross, Michael E. Papkafa, Jacqueline Chen, Valerio Pascucci, Avishek Saha, et al. 2013. Characterization and modeling of
PIDX parallel I/O for performance optimization. In SC ’13 Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis. ACM Press, 1–12. https://doi.org/10.1145/2503210.2503252

[114] Chih-Song Kuo, Aamer Shah, Akihiro Nomura, Satoshi Matsuoka, and FelixWolf. 2014. How file access patterns influence interference among cluster
applications. In 2014 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 185–193. https://doi.org/10.1109/CLUSTER.2014.6968743

[115] Cristiano A. Künas, Matheus S. Serpa, Jean Luca Bez, Edson L. Padoin, and Philippe O. A. Navaux. 2021. Offloading the Training of an I/O
Access Pattern Detector to the Cloud. In 2021 International Symposium on Computer Architecture and High Performance Computing Workshops
(SBAC-PADW). 15–19. https://doi.org/10.1109/SBAC-PADW53941.2021.00013

[116] Sriram Lakshminarasimhan, David A. Boyuka, Saurabh V. Pendse, Xiaocheng Zou, John Jenkins, Venkatram Vishwanath, Michael E. Papka, and
Nagiza F. Samatova. 2013. Scalable in Situ Scientific Data Encoding for Analytical Query Processing. In Proceedings of the 22nd International
Symposium on High-Performance Parallel and Distributed Computing (New York, New York, USA) (HPDC ’13). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/2493123.2465527

[117] Svetlana Lazareva and Ilia Demianenko. 2015. Automatic Request Analyzer for QoS Enabled Storage System. In Proceedings of the 11th Central
Eastern European Software Engineering Conference in Russia (Moscow, Russia) (CEE-SECR ’15). Association for Computing Machinery, New York,
NY, USA, Article 3, 8 pages. https://doi.org/10.1145/2855667.2855670

[118] Adrien Lebre, Guillaume Huard, Yves Denneulin, and Przemyslaw Sowa. 2006. I/O Scheduling Service for Multi-Application Clusters. In 2006 IEEE
International Conference on Cluster Computing. IEEE, Barcelona, Spain, 1–10. https://doi.org/10.1109/CLUSTR.2006.311854

[119] Choonghwan Lee,MuQun Yang, and Ruth Aydt. 2008. NetCDF-4 Performance Report. (2008), 22 pages. https://www.hdfgroup.org/pubs/papers/2008-
06_netcdf4_perf_report.pdf

[120] Alexander Lex, Nils Gehlenborg, Hendrik Strobelt, Romain Vuillemot, and Hanspeter Pfister. 2014. UpSet: Visualization of Intersecting Sets. IEEE
Transactions on Visualization and Computer Graphics 20, 12 (2014), 1983–1992. https://doi.org/10.1109/TVCG.2014.2346248

[121] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William Gropp, Rob Latham, Andrew Siegel, Brad Gallagher, and Michael
Zingale. 2003. Parallel NetCDF: A High-Performance Scientific I/O Interface. In Proceedings of the 2003 ACM/IEEE Conference on Supercomputing
(Phoenix, AZ, USA) (SC ’03). Association for Computing Machinery, New York, NY, USA, 39. https://doi.org/10.1145/1048935.1050189

[122] Tonglin Li, Suren Byna, Houjun Tang, Quincey Koziol, USDOE, and Oak Ridge National Laboratory. 2021. H5bench: a benchmark suite for parallel
HDF5 (H5bench) v0.6. https://doi.org/10.11578/dc.20210624.4

[123] Weihao Liang, Yong Chen, and Hong An. 2019. Interference-Aware I/O Scheduling for Data-Intensive Applications on Hierarchical HPC Storage
Systems. In 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on
Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE.

[124] Zhen Liang, Johann Lombardi, Mohamad Chaarawi, and Michael Hennecke. 2020. DAOS: A Scale-Out High Performance Storage Stack for Storage
Class Memory. In Supercomputing Frontiers, Dhabaleswar K. Panda (Ed.). Springer International Publishing, Cham, 40–54.

[125] Jianwei Liao, Li Li, Huaidong Chen, and Xiaoyan Liu. 2015. Adaptive Replica Synchronization for Distributed File Systems. IEEE Systems Journal 9,
3 (2015), 865–877. https://doi.org/10.1109/JSYST.2014.2300611

[126] Jianwei Liao, François Trahay, and Guoqiang Xiao. 2016. Dynamic Process Migration Based on Block Access Patterns Occurring in Storage Servers.
ACM Trans. Archit. Code Optim. 13, 2, Article 20 (jun 2016), 20 pages. https://doi.org/10.1145/2899002

[127] Wei-keng Liao, Avery Ching, Kenin Coloma, Alok Choudhary, and Lee Ward. 2007. An Implementation and Evaluation of Client-Side File
Caching for MPI-IO. In 2007 IEEE International Parallel and Distributed Processing Symposium. IEEE, Long Beach, CA, USA, 1–10. https:
//doi.org/10.1109/IPDPS.2007.370239

[128] Wei-keng Liao and Alok Choudhary. 2008. Dynamically Adapting File Domain Partitioning Methods for Collective I/O Based on Underlying
Parallel File System Locking Protocols. In ACM/IEEE Conference on Supercomputing (Austin, Texas) (SC ’08). IEEE Press, Article 3, 12 pages.

[129] Wei-keng Liao, Xaiohui Shen, and Alok Choudhary. 2000. Meta-data Management System for High-Performance Large-Scale Scientific Data Access.
In High Performance Computing — HiPC 2000, Mateo Valero, Viktor K. Prasanna, and Sriram Vajapeyam (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 293–300.

[130] Don Liu, Yong-Lai Zheng, and Arden Moore. 2016. Three Dimensional Simulations of Fluid Flow and Heat Transfer with Spectral Element Method.
In Proceedings of the XSEDE16 Conference on Diversity, Big Data, and Science at Scale (Miami, USA) (XSEDE16). Association for Computing Machinery,
New York, NY, USA, Article 8, 9 pages. https://doi.org/10.1145/2949550.2949569

[131] Jialin Liu, Debbie Bard, Quincey Koziol, Stephen Bailey, and Prabhat. 2017. Searching for millions of objects in the BOSS spectroscopic survey data
with H5Boss. In 2017 New York Scientific Data Summit (NYSDS). 1–9. https://doi.org/10.1109/NYSDS.2017.8085044

[132] Jialin Liu, Quincey Koziol, Gregory F. Butler, Neil Fortner, Mohamad Chaarawi, Houjun Tang, Suren Byna, Glenn K. Lockwood, Ravi Cheema,
Kristy A. Kallback-Rose, Damian Hazen, and Mr Prabhat. 2018. Evaluation of HPC Application I/O on Object Storage Systems. In IEEE/ACM 3rd Int.
Workshop on Parallel Data Storage and Data Intensive Scalable Computing Systems. 24–34. https://doi.org/10.1109/PDSW-DISCS.2018.00005

[133] Mingliang Liu, Ye Jin, Jidong Zhai, Yan Zhai, Qianqian Shi, Xiaosong Ma, and Wenguang Chen. 2013. ACIC: Automatic Cloud I/O Configurator
for HPC Applications. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis (Denver,
Colorado) (SC ’13). Association for Computing Machinery, New York, NY, USA, Article 38, 12 pages. https://doi.org/10.1145/2503210.2503216

[134] Qing Liu, Jeremy Logan, Yuan Tian, Hasan Abbasi, Norbert Podhorszki, Jong Youl Choi, Scott Klasky, Roselyne Tchouam, Lofsteadm Jay, Ron
Oldfield, Manish Parashar, Nagiza Samatova, Karsten Schwan, Arie Shoshani, Matthew Wolf, Kesheng Wu, and Weikuan Yu. 2014. Hello ADIOS:

Manuscript submitted to ACM

https://doi.org/10.1145/2503210.2503252
https://doi.org/10.1109/CLUSTER.2014.6968743
https://doi.org/10.1109/SBAC-PADW53941.2021.00013
https://doi.org/10.1145/2493123.2465527
https://doi.org/10.1145/2855667.2855670
https://doi.org/10.1109/CLUSTR.2006.311854
https://www.hdfgroup.org/pubs/papers/2008-06_netcdf4_perf_report.pdf
https://www.hdfgroup.org/pubs/papers/2008-06_netcdf4_perf_report.pdf
https://doi.org/10.1109/TVCG.2014.2346248
https://doi.org/10.1145/1048935.1050189
https://doi.org/10.11578/dc.20210624.4
https://doi.org/10.1109/JSYST.2014.2300611
https://doi.org/10.1145/2899002
https://doi.org/10.1109/IPDPS.2007.370239
https://doi.org/10.1109/IPDPS.2007.370239
https://doi.org/10.1145/2949550.2949569
https://doi.org/10.1109/NYSDS.2017.8085044
https://doi.org/10.1109/PDSW-DISCS.2018.00005
https://doi.org/10.1145/2503210.2503216


I/O Access Patterns in HPC Applications: A 360-Degree Survey 33

the challenges and lessons of developing leadership class I/O frameworks. Concurrency and Computation: Practice and Experience 26, 7 (2014),
1453–1473. https://doi.org/10.1002/cpe.3125

[135] Wei Liu, Kai Wu, Jialin Liu, Feng Chen, and Dong Li. 2017. Performance Evaluation and Modeling of HPC I/O on Non-Volatile Memory. In 2017
International Conference on Networking, Architecture, and Storage (NAS). 1–10. https://doi.org/10.1109/NAS.2017.8026869

[136] Weifeng Liu, Linping Wu, and Xiaowen Xu. 2020. Topology Aware Algorithm for Two-Phase I/O in Clusters With Tapered Hierarchical Networks.
IEEE Access 8 (2020), 66917–66930. https://doi.org/10.1109/ACCESS.2020.2985928

[137] Yang Liu, Raghul Gunasekaran, XiaosongMa, and Sudharshan S. Vazhkudai. 2016. Server-Side Log Data Analytics for I/OWorkload Characterization
and Coordination on Large Shared Storage Systems. In SC ’16: Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. 819–829. https://doi.org/10.1109/SC.2016.69

[138] Jay Lofstead, Milo Polte, Garth Gibson, Scott Klasky, Karsten Schwan, Ron Oldfield, Matthew Wolf, and Qing Liu. 2011. Six Degrees of Scientific
Data: Reading Patterns for Extreme Scale Science IO. In Proceedings of the 20th International Symposium on High Performance Distributed Computing
(San Jose, California, USA) (HPDC ’11). Association for Computing Machinery, New York, NY, USA, 49–60. https://doi.org/10.1145/1996130.1996139

[139] Jay F. Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and Chen Jin. 2008. Flexible IO and Integration for Scientific Codes through the
Adaptable IO System (ADIOS). In Proceedings of the 6th International Workshop on Challenges of Large Applications in Distributed Environments
(Boston, MA, USA) (CLADE ’08). Association for Computing Machinery, New York, NY, USA, 15–24. https://doi.org/10.1145/1383529.1383533

[140] Javier Ló pez-Gómez and Jakob Blomer. 2021. Exploring Object Stores for High-Energy Physics Data Storage. EPJ Web of Conferences 251 (2021),
02066. https://doi.org/10.1051/epjconf/202125102066

[141] Yin Lu, Yong Chen, Rob Latham, and Yu Zhuang. 2014. Revealing Applications’ Access Pattern in Collective I/O for Cache Management. In
Proceedings of the 28th ACM International Conference on Supercomputing (Munich, Germany) (ICS ’14). Association for Computing Machinery, New
York, NY, USA, 181–190. https://doi.org/10.1145/2597652.2597686

[142] Xiaoqing Luo, Frank Mueller, Philip Carns, Jonathan Jenkins, Robert Latham, Robert Ross, and Shane Snyder. 2017. ScalaIOExtrap: Elastic I/O
Tracing and Extrapolation. In 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE Computer Society, Los Alamitos,
CA, USA, 585–594. https://doi.org/10.1109/IPDPS.2017.45

[143] Huong Luu, Babak Behzad, Ruth Aydt, and Marianne Winslett. 2013. A multi-level approach for understanding I/O activity in HPC applications. In
2013 IEEE International Conference on Cluster Computing (CLUSTER). 1–5. https://doi.org/10.1109/CLUSTER.2013.6702690

[144] Huong Luu, Marianne Winslett, William Gropp, Robert Ross, Philip Carns, Kevin Harms, Mr Prabhat, Suren Byna, and Yushu Yao. 2015. A
Multiplatform Study of I/O Behavior on Petascale Supercomputers. In Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing (Portland, Oregon, USA) (HPDC ’15). Association for Computing Machinery, New York, NY, USA, 33–44.
https://doi.org/10.1145/2749246.2749269

[145] Ricardo Macedo, Mariana Miranda, Yusuke Tanimura, Jason Haga, Amit Ruhela, Stephen Lien Harrell, Richard Todd Evans, and João Paulo. 2022.
Protecting Metadata Servers From Harm Through Application-level I/O Control. In 2022 IEEE International Conference on Cluster Computing
(CLUSTER). 573–580. https://doi.org/10.1109/CLUSTER51413.2022.00075

[146] Sandeep Madireddy, Prasanna Balaprakash, Philip Carns, Robert Latham, Robert Ross, Shane Snyder, and Stefan M. Wild. 2017. Analysis and
Correlation of Application I/O Performance and System-Wide I/O Activity. In 2017 International Conference on Networking, Architecture, and Storage
(NAS). 1–10. https://doi.org/10.1109/NAS.2017.8026844

[147] Adam Manzanares, John Bent, Meghan Wingate, and Garth Gibson. 2012. The Power and Challenges of Transformative I/O. In 2012 IEEE
International Conference on Cluster Computing. 144–154. https://doi.org/10.1109/CLUSTER.2012.86

[148] Sandra Mendez, Dolores Rexachs, and Emilio Luque. 2017. Analyzing the Parallel I/O Severity of MPI Applications. In 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, Madrid, Spain, 953–962. https://doi.org/10.1109/CCGRID.2017.45

[149] Mitesh R. Meswani, Pietro Cicotti, Jiahua He, and Allan Snavely. 2010. Predicting disk I/O time of HPC applications on flash drives. In 2010 IEEE
Globecom Workshops. 1926–1929. https://doi.org/10.1109/GLOCOMW.2010.5700279

[150] Mitesh R. Meswani, Michael A. Laurenzano, Laura Carrington, and Allan Snavely. 2010. Modeling and Predicting Disk I/O Time of HPC Applications.
In 2010 DoD High Performance Computing Modernization Program Users Group Conference. 478–486. https://doi.org/10.1109/HPCMP-UGC.2010.27

[151] Miller, Mark C. 2022. MACsio – Lawrence Livermore National Laboratory. https://computing.llnl.gov/projects/co-design/macsio.
[152] Christopher Mitchell, James Nunez, and Jun Wang. 2009. Overlapped checkpointing with hardware assist. In 2009 IEEE International Conference on

Cluster Computing and Workshops. 1–10. https://doi.org/10.1109/CLUSTR.2009.5289154
[153] Pavanakumar Mohanamuraly and Gabriel Staffelbach. 2020. Hardware Locality-Aware Partitioning and Dynamic Load-Balancing of Unstructured

Meshes for Large-Scale Scientific Applications. In Proceedings of the Platform for Advanced Scientific Computing Conference (Geneva, Switzerland)
(PASC ’20). Association for Computing Machinery, New York, NY, USA, Article 7, 10 pages. https://doi.org/10.1145/3394277.3401851

[154] Bernd Mohr, Darryl Brown, and Allen Malony. 1994. TAU: A portable parallel program analysis environment for pC++. In Parallel Processing:
CONPAR 94 — VAPP VI, Bruno Buchberger and Jens Volkert (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 29–40.

[155] NASA Advanced Supercomputing Division. 2003. NAS Parallel Benchmarks. NASA. https://www.nas.nasa.gov/publications/npb.html
[156] Sarah Neuwirth, Feiyi Wang, Sarp Oral, and Ulrich Bruening. 2017. Automatic and Transparent Resource Contention Mitigation for Improving

Large-Scale Parallel File System Performance. In 2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS). 604–613.
https://doi.org/10.1109/ICPADS.2017.00084

Manuscript submitted to ACM

https://doi.org/10.1002/cpe.3125
https://doi.org/10.1109/NAS.2017.8026869
https://doi.org/10.1109/ACCESS.2020.2985928
https://doi.org/10.1109/SC.2016.69
https://doi.org/10.1145/1996130.1996139
https://doi.org/10.1145/1383529.1383533
https://doi.org/10.1051/epjconf/202125102066
https://doi.org/10.1145/2597652.2597686
https://doi.org/10.1109/IPDPS.2017.45
https://doi.org/10.1109/CLUSTER.2013.6702690
https://doi.org/10.1145/2749246.2749269
https://doi.org/10.1109/CLUSTER51413.2022.00075
https://doi.org/10.1109/NAS.2017.8026844
https://doi.org/10.1109/CLUSTER.2012.86
https://doi.org/10.1109/CCGRID.2017.45
https://doi.org/10.1109/GLOCOMW.2010.5700279
https://doi.org/10.1109/HPCMP-UGC.2010.27
https://computing.llnl.gov/projects/co-design/macsio
https://doi.org/10.1109/CLUSTR.2009.5289154
https://doi.org/10.1145/3394277.3401851
https://www.nas.nasa.gov/publications/npb.html
https://doi.org/10.1109/ICPADS.2017.00084


34 Bez et al.

[157] Bogdan Nicolae, Pierre Riteau, and Kate Keahey. 2014. Bursting the Cloud Data Bubble: Towards Transparent Storage Elasticity in IaaS Clouds. In
2014 IEEE 28th International Parallel and Distributed Processing Symposium. 135–144. https://doi.org/10.1109/IPDPS.2014.25

[158] Michael Noeth, Jaydeep Marathe, Frank Mueller, Martin Schulz, and Bronis de Supinski. 2006. Scalable Compression and Replay of Communication
Traces in Massively Parallel Environments. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (Tampa, Florida) (SC ’06). Association
for Computing Machinery, New York, NY, USA, 144–es. https://doi.org/10.1145/1188455.1188605

[159] Kazuki Ohta, Dries Kimpe, Jason Cope, Kamil Iskra, Robert Ross, and Yutaka Ishikawa. 2010. Optimization Techniques at the I/O Forwarding
Layer. In 2010 IEEE International Conference on Cluster Computing. International Conference on Cluster Computing, IEEE, 312–321. https:
//doi.org/10.1109/CLUSTER.2010.36

[160] Sarp Oral, James Simmons, Jason Hill, Dustin Leverman, Feiyi Wang, Matt Ezell, Ross Miller, Douglas Fuller, Raghul Gunasekaran, Youngjae Kim,
Saurabh Gupta, Devesh Tiwari, Sudharshan S. Vazhkudai, James H. Rogers, David Dillow, Galen M. Shipman, and Arthur S. Bland. 2014. Best
Practices and Lessons Learned from Deploying and Operating Large-Scale Data-Centric Parallel File Systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (New Orleans, Louisana) (SC ’14). IEEE Press, 217–228. https:
//doi.org/10.1109/SC.2014.23

[161] Sarp Oral, Sudharshan S. Vazhkudai, Feiyi Wang, Christopher Zimmer, Christopher Brumgard, Jesse Hanley, George Markomanolis, Ross Miller,
Dustin Leverman, Scott Atchley, and Veronica Vergara Larrea. 2019. End-to-End I/O Portfolio for the Summit Supercomputing Ecosystem.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (Denver, Colorado) (SC ’19).
Association for Computing Machinery, New York, NY, USA, Article 63, 14 pages. https://doi.org/10.1145/3295500.3356157

[162] Lu Pang, Anis Alazzawe, Krishna Kant, and Jeremy Swift. 2019. Data Heat Prediction in Storage Systems Using Behavior Specific Prediction Models.
In IEEE 38th International Performance Computing and Communications Conference (IPCCC). 1–8. https://doi.org/10.1109/IPCCC47392.2019.8958715

[163] Tirthak Patel, Suren Byna, Glenn K. Lockwood, and Devesh Tiwari. 2019. Revisiting I/O Behavior in Large-Scale Storage Systems: The Expected
and the Unexpected. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (Denver,
Colorado) (SC ’19). Association for Computing Machinery, New York, NY, USA, Article 65, 13 pages. https://doi.org/10.1145/3295500.3356183

[164] Swapnil Patil and Garth Gibson. 2011. Scale and Concurrency of GIGA+: File System Directories with Millions of Files. In Proceedings of the 9th
USENIX Conference on File and Stroage Technologies (San Jose, California) (FAST’11). USENIX Association, USA, 13.

[165] Arnab K. Paul, Olaf Faaland, Adam Moody, Elsa Gonsiorowski, Kathryn Mohror, and Ali R. Butt. 2020. Understanding HPC Application I/O
Behavior Using System Level Statistics. In 2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC).
202–211. https://doi.org/10.1109/HiPC50609.2020.00034

[166] Arnab K. Paul, Brian Wang, Nathan Rutman, Cory Spitz, and Ali R. Butt. 2020. Efficient Metadata Indexing for HPC Storage Systems. In 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). 162–171. https://doi.org/10.1109/CCGrid49817.2020.00-77

[167] Pablo J. Pavan, Jean Luca Bez, Matheus S. Serpa, Francieli Zanon Boito, and Philippe O. A. Navaux. 2019. An Unsupervised Learning Approach
for I/O Behavior Characterization. In 2019 31st International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD).
33–40. https://doi.org/10.1109/SBAC-PAD.2019.00019

[168] Ramya Prabhakar, Mahmut Kandemir, and Myoungsoo Jung. 2013. Disk-Cache and Parallelism Aware I/O Scheduling to Improve Storage System
Performance. In 2013 IEEE 27th International Symposium on Parallel and Distributed Processing. 357–368. https://doi.org/10.1109/IPDPS.2013.59

[169] Abhishek Rajimwale, Vijayan Prabhakaran, and John D. Davis. 2009. Block Management in Solid-State Devices. In Proceedings of the 2009 Conference
on USENIX Annual Technical Conference (San Diego, California) (USENIX’09). USENIX Association, USA, 21.

[170] Dennis M. Ritchie and Ken Thompson. 1974. The UNIX Time-Sharing System. Commun. ACM 17, 7 (jul 1974), 365–375. https://doi.org/10.1145/
361011.361061

[171] Rob Ross. 2002. MPI-Tile-IO benchmark. https://www.mcs.anl.gov/research/projects/pio-benchmark/.
[172] Philip C. Roth. 2007. Characterizing the I/O Behavior of Scientific Applications on the Cray XT. In Proceedings of the 2nd International Workshop on

Petascale Data Storage: Held in Conjunction with Supercomputing ’07 (Reno, Nevada) (PDSW ’07). Association for Computing Machinery, New York,
NY, USA, 50–55. https://doi.org/10.1145/1374596.1374609

[173] Salem El Sayed, Matthias Bolten, Dirk Pleiter, and Wolfgang Frings. 2016. Parallel I/O Characterisation Based on Server-Side Performance Counters.
In Proceedings of the 1st Joint International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems (Salt Lake City, Utah)
(PDSW-DISCS ’16). IEEE Press, 7–12. https://doi.org/10.1109/PDSW-DISCS.2016.006

[174] Frank Schmuck and Roger Haskin. 2002. GPFS: A Shared-Disk File System for Large Computing Clusters. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies (Monterey, CA) (FAST ’02). USENIX Association, USA, 19–es.

[175] Saba Sehrish, Grant Mackey, Pengju Shang, Jun Wang, and John Bent. 2013. Supporting HPC Analytics Applications with Access Patterns Using
Data Restructuring and Data-Centric Scheduling Techniques in MapReduce. IEEE Transactions on Parallel and Distributed Systems 24, 1 (2013),
158–169. https://doi.org/10.1109/TPDS.2012.88

[176] Tim Shaffer and Douglas Thain. 2017. Taming Metadata Storms in Parallel Filesystems with MetaFS. In Proceedings of the 2nd Joint International
Workshop on Parallel Data Storage and Data Intensive Scalable Computing Systems (Denver, Colorado) (PDSW-DISCS ’17). Association for Computing
Machinery, New York, NY, USA, 25–30. https://doi.org/10.1145/3149393.3149401

[177] Hongzhang Shan, Katie Antypas, and John Shalf. 2008. Characterizing and predicting the I/O performance of HPC applications using a parameterized
synthetic benchmark. In SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. 1–12. https://doi.org/10.1109/SC.2008.5222721

Manuscript submitted to ACM

https://doi.org/10.1109/IPDPS.2014.25
https://doi.org/10.1145/1188455.1188605
https://doi.org/10.1109/CLUSTER.2010.36
https://doi.org/10.1109/CLUSTER.2010.36
https://doi.org/10.1109/SC.2014.23
https://doi.org/10.1109/SC.2014.23
https://doi.org/10.1145/3295500.3356157
https://doi.org/10.1109/IPCCC47392.2019.8958715
https://doi.org/10.1145/3295500.3356183
https://doi.org/10.1109/HiPC50609.2020.00034
https://doi.org/10.1109/CCGrid49817.2020.00-77
https://doi.org/10.1109/SBAC-PAD.2019.00019
https://doi.org/10.1109/IPDPS.2013.59
https://doi.org/10.1145/361011.361061
https://doi.org/10.1145/361011.361061
https://www.mcs.anl.gov/research/projects/pio-benchmark/
https://doi.org/10.1145/1374596.1374609
https://doi.org/10.1109/PDSW-DISCS.2016.006
https://doi.org/10.1109/TPDS.2012.88
https://doi.org/10.1145/3149393.3149401
https://doi.org/10.1109/SC.2008.5222721


I/O Access Patterns in HPC Applications: A 360-Degree Survey 35

[178] Sameer Shende, Allen D. Malony, Wyatt Spear, and Karen Schuchardt. 2011. Characterizing I/O Performance Using the TAU Performance System.
In Applications, Tools and Techniques on the Road to Exascale Computing, Proceedings of the conference ParCo 2011, 31 August - 3 September 2011,
Ghent, Belgium (Advances in Parallel Computing, Vol. 22), Koen De Bosschere, Erik H. D’Hollander, Gerhard R. Joubert, David A. Padua, Frans J.
Peters, and Mark Sawyer (Eds.). IOS Press, 647–655. https://doi.org/10.3233/978-1-61499-041-3-647

[179] Xuanhua Shi, Ming Li, Wei Liu, Hai Jin, Chen Yu, and Yong Chen. 2017. SSDUP: A Traffic-Aware Ssd Burst Buffer for HPC Systems. In Proceedings
of the International Conference on Supercomputing (Chicago, Illinois) (ICS ’17). Association for Computing Machinery, New York, NY, USA, Article
27, 10 pages. https://doi.org/10.1145/3079079.3079087

[180] Xuanhua Shi, Wei Liu, Ligang He, Hai Jin, Ming Li, and Yong Chen. 2020. Optimizing the SSD Burst Buffer by Traffic Detection. ACM Trans. Archit.
Code Optim. 17, 1, Article 8 (mar 2020), 26 pages. https://doi.org/10.1145/3377705

[181] Arie Shoshani and Doron Rotem. 2009. Scientific Data Management: Challenges, Technology, and Deployment (1 ed.). Chapman and Hall/CRC.
https://doi.org/10.1201/9781420069815

[182] Shane Snyder, Philip Carns, Kevin Harms, Robert Ross, Glenn K. Lockwood, and Nicholas J. Wright. 2016. Modular HPC I/O Characterization with
Darshan. In Proceedings of the 5th Workshop on Extreme-Scale Programming Tools (Salt Lake City, Utah) (ESPT ’16). IEEE Press, 9–17.

[183] Shane Snyder, Philip Carns, Robert Latham, Misbah Mubarak, Robert Ross, Christopher Carothers, Babak Behzad, Huong Vu Thanh Luu, Surendra
Byna, and Prabhat. 2015. Techniques for Modeling Large-Scale HPC I/O Workloads. In Proceedings of the 6th International Workshop on Performance
Modeling, Benchmarking, and Simulation of High Performance Computing Systems (Austin, Texas) (PMBS ’15). Association for Computing Machinery,
New York, NY, USA, Article 5, 11 pages. https://doi.org/10.1145/2832087.2832091

[184] Lizandro Solano-Quinde, Zhi Jian Wang, Brett Bode, and Arun K. Somani. 2011. Unstructured Grid Applications on GPU: Performance Analysis
and Improvement. In Proceedings of the Fourth Workshop on General Purpose Processing on Graphics Processing Units (Newport Beach, California,
USA) (GPGPU-4). Association for Computing Machinery, New York, NY, USA, Article 13, 8 pages. https://doi.org/10.1145/1964179.1964197

[185] Huaiming Song, Yanlong Yin, Yong Chen, and Xian-He Sun. 2011. A Cost-Intelligent Application-Specific Data Layout Scheme for Parallel File
Systems. In Proceedings of the 20th International Symposium on High Performance Distributed Computing (San Jose, California, USA) (HPDC ’11).
Association for Computing Machinery, New York, NY, USA, 37–48. https://doi.org/10.1145/1996130.1996138

[186] Huaiming Song, Yanlong Yin, Xian-He Sun, Rajeev Thakur, and Samuel Lang. 2011. A Segment-Level Adaptive Data Layout Scheme for
Improved Load Balance in Parallel File Systems. In 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. 414–423.
https://doi.org/10.1109/CCGrid.2011.26

[187] Huaiming Song, Yanlong Yin, Xian-He Sun, Rajeev Thakur, and Samuel Lang. 2011. Server-Side I/O Coordination for Parallel File Systems. In
Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (Seattle, Washington) (SC ’11).
Association for Computing Machinery, New York, NY, USA, Article 17, 11 pages. https://doi.org/10.1145/2063384.2063407

[188] Jan Stender, Björn Kolbeck, Felix Hupfeld, Eugenio Cesario, Erich Focht, Matthias Hess, Jesús Malo, and Jonathan Martí. 2008. Striping without
Sacrifices: Maintaining POSIX Semantics in a Parallel File System. In First USENIX Workshop on Large-Scale Computing (Boston, MA) (LASCO’08).
USENIX Association, USA, Article 6, 8 pages.

[189] Kohei Sugihara and Osamu Tatebe. 2020. Design of Direct Read from Sparse Segments in MPI-IO. In 2020 IEEE 22nd International Conference on
High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS). 1308–1315. https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00168

[190] Stephen Sugiyama and David Wallace. 2008. Cray DVS: Data Virtualization Service. (2008), 6 pages.
[191] Hanul Sung, Jiwoo Bang, Alexander Sim, Kesheng Wu, and Hyeonsang Eom. 2019. Understanding Parallel I/O Performance Trends Under

Various HPC Configurations. In Proceedings of the ACM Workshop on Systems and Network Telemetry and Analytics (Phoenix, AZ, USA) (SNTA ’19).
Association for Computing Machinery, New York, NY, USA, 29–36. https://doi.org/10.1145/3322798.3329258

[192] Andrew S. Tanenbaum and Herbert Bos. 2014. Modern Operating Systems (4th ed.). Prentice Hall Press, USA.
[193] Houjun Tang, Suren Byna, Stephen Bailey, Zarija Lukic, Jialin Liu, Quincey Koziol, and Bin Dong. 2019. Tuning Object-Centric Data Management

Systems for Large Scale Scientific Applications. In 2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics
(HiPC). 103–112. https://doi.org/10.1109/HiPC.2019.00023

[194] Houjun Tang, Suren Byna, François Tessier, Teng Wang, Bin Dong, Jingqing Mu, Quincey Koziol, Jerome Soumagne, Venkatram Vishwanath,
Jialin Liu, and Richard Warren. 2018. Toward Scalable and Asynchronous Object-Centric Data Management for HPC. In Proceedings of the
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (Washington, DC) (CCGrid ’18). IEEE Press, 113–122. https:
//doi.org/10.1109/CCGRID.2018.00026

[195] Houjun Tang, Quincey Koziol, John Ravi, and Suren Byna. 2022. Transparent Asynchronous Parallel I/O Using Background Threads. IEEE
Transactions on Parallel and Distributed Systems 33, 4 (2022), 891–902. https://doi.org/10.1109/TPDS.2021.3090322

[196] François Tessier, Preeti Malakar, Venkatram Vishwanath, Emmanuel Jeannot, and Florin Isaila. 2016. Topology-Aware Data Aggregation for
Intensive I/O on Large-Scale Supercomputers. In 2016 First International Workshop on Communication Optimizations in HPC (COMHPC). 73–81.
https://doi.org/10.1109/COMHPC.2016.013

[197] Francois Tessier, Venkatram Vishwanath, and Emmanuel Jeannot. 2017. TAPIOCA: An I/O Library for Optimized Topology-Aware Data Aggregation
on Large-Scale Supercomputers. In 2017 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, Honolulu, HI, USA, 70–80. https:
//doi.org/10.1109/CLUSTER.2017.80

Manuscript submitted to ACM

https://doi.org/10.3233/978-1-61499-041-3-647
https://doi.org/10.1145/3079079.3079087
https://doi.org/10.1145/3377705
https://doi.org/10.1201/9781420069815
https://doi.org/10.1145/2832087.2832091
https://doi.org/10.1145/1964179.1964197
https://doi.org/10.1145/1996130.1996138
https://doi.org/10.1109/CCGrid.2011.26
https://doi.org/10.1145/2063384.2063407
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00168
https://doi.org/10.1145/3322798.3329258
https://doi.org/10.1109/HiPC.2019.00023
https://doi.org/10.1109/CCGRID.2018.00026
https://doi.org/10.1109/CCGRID.2018.00026
https://doi.org/10.1109/TPDS.2021.3090322
https://doi.org/10.1109/COMHPC.2016.013
https://doi.org/10.1109/CLUSTER.2017.80
https://doi.org/10.1109/CLUSTER.2017.80


36 Bez et al.

[198] Rajeev Thakur, William Gropp, and Ewing Lusk. 1996. An abstract-device interface for implementing portable parallel-I/O interfaces. In Proceedings
of 6th Symposium on the Frontiers of Massively Parallel Computation (Frontiers ’96). 180–187. https://doi.org/10.1109/FMPC.1996.558080

[199] Rajeev Thakur, William Gropp, and Ewing Lusk. 1999. Data Sieving and Collective I/O in ROMIO. In Proceedings. Frontiers ’99. Seventh Symposium
on the Frontiers of Massively Parallel Computation. 182–189. https://doi.org/10.1109/FMPC.1999.750599

[200] Rajeev Thakur, William Gropp, and Ewing Lusk. 2002. Optimizing Noncontiguous Accesses in MPI-IO. Parallel Comput. 28, 1 (Jan. 2002), 83–105.
https://doi.org/10.1016/S0167-8191(01)00129-6

[201] Rajeev Thakur, Ewing Lusk, and William Gropp. 1997. Users guide for ROMIO: A high-performance, portable MPI-IO implementation. (10 1997).
https://doi.org/10.2172/564273

[202] The HDF Group. 1997-2022. Hierarchical Data Format, version 5. https://www.hdfgroup.org/HDF5/.
[203] Yuichi Tsujita, Atsushi Hori, Toyohisa Kameyama, Atsuya Uno, Fumiyoshi Shoji, and Yutaka Ishikawa. 2018. Improving Collective MPI-IO Using

Topology-Aware Stepwise Data Aggregation with I/O Throttling. In Proceedings of the International Conference on High Performance Computing in
Asia-Pacific Region (Chiyoda, Tokyo, Japan) (HPC Asia 2018). ACM, New York, NY, USA, 12–23. https://doi.org/10.1145/3149457.3149464

[204] Sudharshan S. Vazhkudai, Bronis R. de Supinski, Arthur S. Bland, Al Geist, James Sexton, Jim Kahle, Christopher J. Zimmer, Scott Atchley, Sarp Oral,
Don E.Maxwell, Veronica G. Vergara Larrea, AdamBertsch, Robin Goldstone,Wayne Joubert, Chris Chambreau, David Appelhans, Robert Blackmore,
Ben Casses, George Chochia, Gene Davison, Matthew A. Ezell, Tom Gooding, Elsa Gonsiorowski, Leopold Grinberg, Bill Hanson, Bill Hartner,
Ian Karlin, Matthew L. Leininger, Dustin Leverman, Chris Marroquin, Adam Moody, Martin Ohmacht, Ramesh Pankajakshan, Fernando Pizzano,
James H. Rogers, Bryan Rosenburg, Drew Schmidt, Mallikarjun Shankar, Feiyi Wang, Py Watson, Bob Walkup, Lance D. Weems, and Junqi Yin. 2018.
The Design, Deployment, and Evaluation of the CORAL Pre-Exascale Systems. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (Dallas, Texas) (SC ’18). IEEE Press, Article 52, 12 pages. https://doi.org/10.1109/SC.2018.00055

[205] Marc-André Vef, Vasily Tarasov, Dean Hildebrand, and André Brinkmann. 2018. Challenges and Solutions for Tracing Storage Systems: A Case
Study with Spectrum Scale. ACM Trans. Storage 14, 2, Article 18 (apr 2018), 24 pages. https://doi.org/10.1145/3149376

[206] M Vilayannur, S Lang, R Ross, R Klundt, L Ward, Mathematics, Computer Science, Inc. VMWare, and SNL. 2008. Extending the POSIX I/O interface:
a parallel file system perspective. (12 2008). https://doi.org/10.2172/946036

[207] Venkatram Vishwanath. 2022. HACC I/O. https://asc.llnl.gov/coral-benchmarks#hacc.
[208] Venkatram Vishwanath, Mark Hereld, Vitali Morozov, andMichael E. Papka. 2011. Topology-Aware Data Movement and Staging for I/O Acceleration

on Blue Gene/P Supercomputing Systems. In Proceedings of 2011 Int. Conf. for High Performance Computing, Networking, Storage and Analysis
(Seattle, Washington) (SC ’11). ACM, New York, NY, USA, Article 19, 11 pages. https://doi.org/10.1145/2063384.2063409

[209] ChenWang, Kathryn Mohror, and Marc Snir. 2021. File System Semantics Requirements of HPC Applications. In Proceedings of the 30th International
Symposium on High-Performance Parallel and Distributed Computing (Virtual Event, Sweden) (HPDC ’21). Association for Computing Machinery,
New York, NY, USA, 19–30. https://doi.org/10.1145/3431379.3460637

[210] ChenWang, Kathryn Mohror, and Marc Snir. 2021. File System Semantics Requirements of HPC Applications. In Proceedings of the 30th International
Symposium on High-Performance Parallel and Distributed Computing (Virtual Event, Sweden) (HPDC ’21). Association for Computing Machinery,
New York, NY, USA, 19–30. https://doi.org/10.1145/3431379.3460637

[211] Chen Wang, Jinghan Sun, Marc Snir, Kathryn Mohror, and Elsa Gonsiorowski. 2020. Recorder 2.0: Efficient Parallel I/O Tracing and Analysis.
In 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, New Orleans, LA, USA, 1–8. https:
//doi.org/10.1109/IPDPSW50202.2020.00176

[212] Lipeng Wang, Songgao Ye, Baichen Yang, Youyou Lu, Hequan Zhang, Shengen Yan, and Qiong Luo. 2020. DIESEL: A Dataset-Based Distributed
Storage and Caching System for Large-Scale Deep Learning Training. In 49th International Conference on Parallel Processing - ICPP (Edmonton, AB,
Canada) (ICPP ’20). Association for Computing Machinery, New York, NY, USA, Article 20, 11 pages. https://doi.org/10.1145/3404397.3404472

[213] Teng Wang, Suren Byna, Glenn K. Lockwood, Shane Snyder, Philip Carns, Sunggon Kim, and Nicholas J. Wright. 2019. A Zoom-in Analysis of I/O
Logs to Detect Root Causes of I/O Performance Bottlenecks. In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). 102–111. https://doi.org/10.1109/CCGRID.2019.00021

[214] Teng Wang, Sarp Oral, Yandong Wang, Brad Settlemyer, Scott Atchley, and Weikuan Yu. 2014. BurstMem: A high-performance burst buffer system
for scientific applications. In 2014 IEEE International Conference on Big Data (Big Data). 71–79. https://doi.org/10.1109/BigData.2014.7004215

[215] Teng Wang, Kevin Vasko, Zhuo Liu, Hui Chen, and Weikuan Yu. 2014. BPAR: A Bundle-Based Parallel Aggregation Framework for Decoupled I/O
Execution. In 2014 International Workshop on Data Intensive Scalable Computing Systems. 25–32. https://doi.org/10.1109/DISCS.2014.6

[216] Zhixiang Wang, Xuanhua Shi, Hai Jin, Song Wu, and Yong Chen. 2014. Iteration based collective I/O strategy for Parallel I/O systems. In CCGRID
’14 Proceedings of the 14th IEEE/ACM Int. Symposium on Cluster, Cloud and Grid Computing. IEEE, 287–294. https://doi.org/10.1109/CCGrid.2014.61

[217] Donald C. Wells and Eric. W. Greisen. 1981. FITS: A Flexible Image Transport System. Astronomy and Astrophysics Suppl. Series 44 (1981), 363–370.
[218] Joseph P. White, Martins Innus, Matthew D. Jones, Robert L. DeLeon, Nikolay Simakov, Jeffrey T. Palmer, Steven M. Gallo, Thomas R. Furlani,

Michael Showerman, Robert Brunner, Andriy Kot, Gregory Bauer, Brett Bode, Jeremy Enos, and William Kramer. 2017. Challenges of Workload
Analysis on Large HPC Systems: A Case Study on NCSA Blue Waters. In Proceedings of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Impact (New Orleans, LA, USA) (PEARC17). ACM, New York, NY, USA, Article 6, 8 pages. https:
//doi.org/10.1145/3093338.3093348

[219] Joseph P. White, Alexander D. Kofke, Robert L. DeLeon, Martins Innus, Matthew D. Jones, and Thomas R. Furlani. 2018. Automatic Characterization
of HPC Job Parallel Filesystem I/O Patterns. In Proceedings of the Practice and Experience on Advanced Research Computing (Pittsburgh, PA, USA)

Manuscript submitted to ACM

https://doi.org/10.1109/FMPC.1996.558080
https://doi.org/10.1109/FMPC.1999.750599
https://doi.org/10.1016/S0167-8191(01)00129-6
https://doi.org/10.2172/564273
https://doi.org/10.1145/3149457.3149464
https://doi.org/10.1109/SC.2018.00055
https://doi.org/10.1145/3149376
https://doi.org/10.2172/946036
https://asc.llnl.gov/coral-benchmarks#hacc
https://doi.org/10.1145/2063384.2063409
https://doi.org/10.1145/3431379.3460637
https://doi.org/10.1145/3431379.3460637
https://doi.org/10.1109/IPDPSW50202.2020.00176
https://doi.org/10.1109/IPDPSW50202.2020.00176
https://doi.org/10.1145/3404397.3404472
https://doi.org/10.1109/CCGRID.2019.00021
https://doi.org/10.1109/BigData.2014.7004215
https://doi.org/10.1109/DISCS.2014.6
https://doi.org/10.1109/CCGrid.2014.61
https://doi.org/10.1145/3093338.3093348
https://doi.org/10.1145/3093338.3093348


I/O Access Patterns in HPC Applications: A 360-Degree Survey 37

(PEARC ’18). Association for Computing Machinery, New York, NY, USA, Article 3, 8 pages. https://doi.org/10.1145/3219104.3219121
[220] Hanpei Wu, Tongliang Deng, Yanliang Zou, Shu Yin, Si Chen, and Tao Xie. 2021. ADA: An Application-Conscious Data Acquirer for Visual

Molecular Dynamics. In 50th International Conference on Parallel Processing (Lemont, IL, USA) (ICPP 2021). Association for Computing Machinery,
New York, NY, USA, Article 61, 9 pages. https://doi.org/10.1145/3472456.3473509

[221] Huijun Wu, Liming Zhu, Kai Lu, Gen Li, and Dongyao Wu. 2016. StageFS: A Parallel File System Optimizing Metadata Performance for SSD Based
Clusters. In 2016 IEEE Trustcom/BigDataSE/ISPA. 2147–2152. https://doi.org/10.1109/TrustCom.2016.0330

[222] Tzuhsien Wu, Jerry Chou, Shyng Hao, Bin Dong, Scott Klasky, and Kesheng Wu. 2017. Optimizing the Query Performance of Block Index through
Data Analysis and I/O Modeling. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’17). ACM, New York, NY, USA, Article 12, 10 pages. https://doi.org/10.1145/3126908.3126934

[223] Cong Xu, Shane Snyder, Omkar Kulkarni, Vishwanath Venkatesan, Phillip Carns, Surendra Byna, Robert Sisneros, and Kalyana Chadalavada. 2019.
DXT: Darshan eXtended Tracing. 8. https://www.osti.gov/biblio/1490709

[224] Tianqi Xu, Kento Sato, and Satoshi Matsuoka. 2018. Explorations of Data Swapping on Burst Buffer. In 2018 IEEE 24th International Conference on
Parallel and Distributed Systems (ICPADS). 517–526. https://doi.org/10.1109/PADSW.2018.8644561

[225] Y. Xu and X. Chen. 2019. Numerical simulation of unstructured grids discontinuous galerkin finite element method for complex surface. In AGU
Fall Meeting Abstracts, Vol. 2019. Article NS13B-0669, NS13B-0669 pages.

[226] Bin Yang, Wei Xue, Tianyu Zhang, Shichao Liu, Xiaosong Ma, Xiyang Wang, and Weiguo Liu. 2023. End-to-End I/O Monitoring on Leading
Supercomputers. ACM Trans. Storage 19, 1, Article 3 (jan 2023), 35 pages. https://doi.org/10.1145/3568425

[227] Orcun Yildiz, Matthieu Dorier, Shadi Ibrahim, Rob Ross, and Gabriel Antoniu. 2016. On the Root Causes of Cross-Application I/O Interference in
HPC Storage Systems. In Int. Parallel and Distributed Processing Symposium. IEEE, Chicago, IL, USA, 750–759. https://doi.org/10.1109/IPDPS.2016.50

[228] Orcun Yildiz, Amelie Chi Zhou, and Shadi Ibrahim. 2017. Eley: On the Effectiveness of Burst Buffers for Big Data Processing in HPC Systems. In
2017 IEEE International Conference on Cluster Computing (CLUSTER). 87–91. https://doi.org/10.1109/CLUSTER.2017.73

[229] Orcun Yildiz, Amelie Chi Zhou, and Shadi Ibrahim. 2018. Improving the Effectiveness of Burst Buffers for Big Data Processing in HPC Systems
with Eley. Future Gener. Comput. Syst. 86, C (sep 2018), 308–318. https://doi.org/10.1016/j.future.2018.03.029

[230] Yanlong Yin, Surendra Byna, Huaiming Song, Xian-He Sun, and Rajeev Thakur. 2012. Boosting Application-Specific Parallel I/O Optimization
Using IOSIG. In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (Ccgrid 2012) (CCGRID ’12).
IEEE Computer Society, USA, 196–203. https://doi.org/10.1109/CCGrid.2012.136

[231] Yanlong Yin, Jibing Li, Jun He, Xian-He Sun, and Rajeev Thakur. 2013. Pattern-Direct and Layout-Aware Replication Scheme for Parallel I/O
Systems. In Proceedings of the 2013 IEEE 27th Int. Symposium on Parallel and Distributed Processing (IPDPS ’13). IEEE Computer Society, USA,
345–356. https://doi.org/10.1109/IPDPS.2013.114

[232] Jie Yu, Guangming Liu, Xiaoyong Li, Wenrui Dong, and Qiong Li. 2018. Cross-layer coordination in the I/O software stack of
extreme-scale systems. Concurrency and Computation: Practice and Experience 30, 10 (2018), e4396. https://doi.org/10.1002/cpe.4396
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4396 e4396 cpe.4396.

[233] Jie Yu, Guangming Liu, Xin Liu, Wenrui Dong, Xiaoyong Li, and Yusheng Liu. 2018. Rethinking Node Allocation Strategy for Data-Intensive
Applications in Consideration of Spatially Bursty I/O. In Proceedings of the 2018 International Conference on Supercomputing (Beijing, China) (ICS
’18). Association for Computing Machinery, New York, NY, USA, 12–21. https://doi.org/10.1145/3205289.3205305

[234] Jie Yu, Wenxiang Yang, Fang Wang, Dezun Dong, Jinghua Feng, and Yuqi Li. 2020. Spatially Bursty I/O on Supercomputers: Causes, Impacts and
Solutions. IEEE Transactions on Parallel and Distributed Systems 31, 12 (2020), 2908–2922. https://doi.org/10.1109/TPDS.2020.3005572

[235] Weikuan Yu, Jeffrey S. Vetter, and H. Sarp Oral. 2008. Performance characterization and optimization of parallel I/O on the Cray XT. In 2008 IEEE
International Symposium on Parallel and Distributed Processing. 1–11. https://doi.org/10.1109/IPDPS.2008.4536277

[236] Xuechen Zhang, Kei Davis, and Song Jiang. 2010. IOrchestrator: Improving the Performance ofMulti-Node I/O Systems via Inter-Server Coordination.
In Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC ’10). IEEE
Computer Society, USA, 1–11. https://doi.org/10.1109/SC.2010.30

[237] Xuechen Zhang, Song Jiang, and Kei Davis. 2009. Making resonance a common case: A high-performance implementation of collective I/O on
parallel file systems. In 2009 IEEE International Symposium on Parallel Distributed Processing. 1–12. https://doi.org/10.1109/IPDPS.2009.5161070

[238] X. Zhang, K. Liu, K. Davis, and S. Jiang. 2013. iBridge: Improving Unaligned Parallel File Access with Solid-State Drives. In Parallel and Distributed
Processing Symposium, International. IEEE Computer Society, Los Alamitos, CA, USA, 381–392. https://doi.org/10.1109/IPDPS.2013.21

[239] Zhou Zhou, Xu Yang, Dongfang Zhao, Paul Rich, Wei Tang, Jia Wang, and Zhiling Lan. 2015. I/O-Aware Batch Scheduling for Petascale Computing
Systems. In 2015 IEEE International Conference on Cluster Computing. 254–263. https://doi.org/10.1109/CLUSTER.2015.45

[240] Yue Zhu, Fahim Chowdhury, Huansong Fu, Adam Moody, Kathryn Mohror, Kento Sato, and Weikuan Yu. 2018. Entropy-Aware I/O Pipelining for
Large-Scale Deep Learning on HPC Systems. In 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS). 145–156. https://doi.org/10.1109/MASCOTS.2018.00023

[241] Yue Zhu, Weikuan Yu, Bing Jiao, Kathryn Mohror, Adam Moody, and Fahim Chowdhury. 2019. Efficient User-Level Storage Disaggregation for
Deep Learning. In 2019 IEEE International Conference on Cluster Computing (CLUSTER). 1–12. https://doi.org/10.1109/CLUSTER.2019.8891023

[242] Christopher Zimmer, Saurabh Gupta, and Veronica G. Vergara Larrea. 2016. Finally, A Way to Measure Frontend I/O Performance. In Proceedings of
the 2016 Cray User Group Meeting. Cray User Group Meeting, 8 pages.

Manuscript submitted to ACM

https://doi.org/10.1145/3219104.3219121
https://doi.org/10.1145/3472456.3473509
https://doi.org/10.1109/TrustCom.2016.0330
https://doi.org/10.1145/3126908.3126934
https://www.osti.gov/biblio/1490709
https://doi.org/10.1109/PADSW.2018.8644561
https://doi.org/10.1145/3568425
https://doi.org/10.1109/IPDPS.2016.50
https://doi.org/10.1109/CLUSTER.2017.73
https://doi.org/10.1016/j.future.2018.03.029
https://doi.org/10.1109/CCGrid.2012.136
https://doi.org/10.1109/IPDPS.2013.114
https://doi.org/10.1002/cpe.4396
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4396
https://doi.org/10.1145/3205289.3205305
https://doi.org/10.1109/TPDS.2020.3005572
https://doi.org/10.1109/IPDPS.2008.4536277
https://doi.org/10.1109/SC.2010.30
https://doi.org/10.1109/IPDPS.2009.5161070
https://doi.org/10.1109/IPDPS.2013.21
https://doi.org/10.1109/CLUSTER.2015.45
https://doi.org/10.1109/MASCOTS.2018.00023
https://doi.org/10.1109/CLUSTER.2019.8891023

	Abstract
	1 Introduction
	2 HPC I/O Stack
	3 Application Data Models and Access Patterns
	4 Access Patterns in High-Level I/O Libraries
	5 Access Patterns at the I/O Middleware Layer
	6 Access Patterns at the File System Layer
	7 Access Pattern Taxonomy
	7.1 Access Pattern Features
	7.2 Community-based Usage Survey

	8 Exercising I/O Access Patterns
	9 Profiling and Visualizing I/O Access Patterns
	10 Conclusion
	Acknowledgments
	References



