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Abstract
Rangelands support many important ecosystem services and are highly sensitive to climate change.
Understanding temporal dynamics in rangeland gross primary production (GPP) and how it may
change under projected future climate, including more frequent and severe droughts, is critical for
ranching communities to cope with future changes. Herein, we examined how climate regulates the
interannual variability of GPP in California’s diverse annual rangeland, based on the contemporary
records of satellite derived GPP at 500 m resolution since 2001. We built Gradient Boosted
Regression Tree models for 23 ecoregion subsections, relating annual GPP with 30 climatic
variables, to disentangle the partial dependence of GPP on each climate variable. The machine
learning results showed that GPP was most sensitive to growing season (GS) precipitation, with a
reduction in GPP up to 200 g cm−2 yr−1 when GS precipitation decreased from 400 to
100 mm yr−1 in one of the driest subsections. We also found that years with more evenly
distributed GS precipitation had higher GPP. Warmer winter minimum air temperature enhanced
GPP in approximately two-thirds of the subsections. In contrast, average GS air temperatures
showed a negative relationship with annual GPP. When the pre-trained models were forced by
downscaled future climate projections, changes in the predicted rangeland productivity by mid-
and end of century were more remarkable at the ecoregion subsection scale than at the state level.
Our machine learning-based analysis highlights key regional differences in GPP vulnerability to
climate and provides insights on the intertwining and potentially counteracting effects of seasonal
temperature and precipitation regimes. This work demonstrates the potential of using remote
sensing to enhance field-based rangeland monitoring and, combined with machine learning, to
inform adaptive management and conservation within the context of weather extremes and
climate change.

1. Background

Rangelands cover more than 30% of the global land
area and are biologically diverse landscapes that
include grasslands, shrublands, woodlands, wetlands,
and deserts (Lund 2007). Changes in rangeland pro-
duction affect many important ecosystem services,
including carbon storage, nutrient cycling, water
resource protection, biodiversity, and wildlife habitat
(Li 2012, Roche et al 2015). Gross primary produc-
tion (GPP) is a widely used metric for quantifying

photosynthesis rate at the ecosystem scale. Recent
studies have shown increasing interannual variabil-
ity in GPP globally, with 57% of the variability con-
tributed by rangeland-dominated ecosystems (Zhang
et al 2016). In semi-arid rangelands, precipitation is,
in most cases, the primary controller of GPP fluc-
tuations (Jin and Goulden 2014, Zhang et al 2016).
With projected increasing precipitation variability,
the interannual variation in GPP is also predicted to
increase (Zscheischler et al 2014). Therefore, monit-
oring GPP and understanding its variability may be a
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useful benchmark indicator of ecosystem response to
climate change.

In California, annual rangelands, which include
open grasslands and woodlands dominated by an
understory of herbaceous annual plants, are the
primary forage source for the State’s $3 billion live-
stock industry (California Department of Food &
Agriculture 2015). These annual rangelands com-
prise approximately 4million hectares, encompassing
portions of the Central Valley, the Coast Ranges
and Sierra Foothill Region (FRAP 2017). California
rangelands are highly variable, in part, because the
plant community phenology, consisting of annual
grasses and forbs, is dynamically linked to seasonal
weather patterns (Stromberg et al 2007). For example,
the growing season (GS) is initialized by fall rains
(September–December) exceeding 1.25–2.5 cm dur-
ing a seven-day period, which promotes germination.
Plant growth is slow in winter (December–February),
due to low air temperatures and low solar radiation.
In late winter/early spring (February–April), rapid
growth begins as air temperature increases (>7.2 ◦C)
and solar radiation intensifies. Finally, in mid-late
spring (April–June), plant production reaches peak
biomass once root zone moisture is depleted. Thus,
California rangeland GPP varies significantly season-
ally and from year-to-year (Jin and Goulden 2014), in
response to short-term changes in climate and solar
radiation. The large gradient of topography and long
term climate across California’s diverse landscape also
shapes the spatial patterns of rangelandGPP (Liu et al
2021) and potentially a differentiating sensitivity to
climate change.

Over the past decades, researchers have relied
on regression and/or correlation analyses to exam-
ine drivers regulating variability in annual GPP and
plant biomass production on rangelands at dif-
ferent scales. Taking advantage of the high cor-
relation between absorbed photosynthetically act-
ive radiation and GPP, Jin and Goulden (2014),
for example, reported GPP was positively related
to annual precipitation, with higher sensitivity in
grasslands than woody shrublands in California. A
few other studies also reported positive response of
rangeland GPP to annual precipitation amount in
Northern China (Guo et al 2015), North America
(Wu and Chen 2012), and across the entire globe
(Huang et al 2016).

Annual GPP can be further regulated by other cli-
mate variables. Seasonal distribution of rainfall events
has a significant impact on rangelandGPP by regulat-
ing the active GS (Xu and Baldocchi 2004). Warming
air temperature was found to reduce GPP in north-
ern Eurasia’s southwestern grasslands, although it was
the primary reason for recent GPP increases in north-
ern Eurasia’s shrublands (Dass et al 2016). In Califor-
nia, rangeland production is predicted to increase as
air temperatures becomewarmer in the San Francisco

Bay Area as early as mid-century (Chaplin-Kramer
and George 2013); however, another study predicted
a 14%–58% decrease in rangeland production across
California using a precipitation-based model (Shaw
et al 2011). Previous small scale studies showed that
variations inGPPwere related to the combined effects
of various climatic variables, and the relationship
between GPP and climatic variables may vary across
different locations. Thus, to fully understand vari-
ations in GPP and predict future changes, it is neces-
sary to build individual models with respect to differ-
ent regions and consider a suite of relevant climate
variables, including precipitation amount, seasonal
precipitation distribution, air temperature, and solar
radiation.

A long-term record of annual GPP at moder-
ate resolution is critical for a more robust analysis
of interannual variability in GPP and for build-
ing data-driven models. Advances in both remote
sensing technologies and data analysis are providing
novel, cost-effective opportunities to obtain data at
management-relevant scales for terrestrial-ecosystem
research, which has otherwise relied on traditional
statistical methods and field-based monitoring that
require substantial time and labor resources (Briske
et al 2017). The Moderate Resolution Imaging Spec-
troradiometer (MODIS) has been collecting ter-
restrial observations for more than 20 years on a
daily basis since the launch of Terra satellite in 1999
(Savtchenko et al 2004). GPP products derived from
MODIS satellite images at 500 m spatial resolution
are available at an eight-day interval for the entire
globe (Running et al 2019). Machine learning mod-
els have also become more interpretable while keep-
ing the powerful non-linear, multi-parameter model
fitting functionalities (Molnar 2019). These advances
are key because traditional statistical models lack the
ability to disentangle the interactions among variables
(Lee et al 2020, Liu et al 2021).

In this study, we aimed to improve our under-
standing of temporal variability in rangeland annual
GPP and assess how its sensitivity to changes in
weather and climate may vary across different eco-
regions in California. The machine learning models
were built to learn the complex climate impacts on
GPP, by leveraging 20 years of contemporary records
on weather and remote sensing based GPP. Using the
developed models, we further predicted and evalu-
ated how rangeland annual GPP would change under
different climate projections by mid and end of cen-
tury over California’s diverse landscape. We hypo-
thesized that the primary climatic variable regulating
California annual rangeland GPP varies by regions.
This spatial variability results from the influence
of other climatic and environmental variables that
become more pronounced as precipitation increases,
especially when water is no longer the primary limit-
ing resource.
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Figure 1. Statewide distribution of long-term-mean (a) precipitation and (c) GPP during 2001–2019 over California’s annual
rangelands. Maps of year-to-year variability in precipitation (b) and GPP (d) as quantified by the coefficient of variation. The
study area encompasses four ecoregions (black lines) that are further divided into 23 subsections (orange lines).

2. Data &methods

2.1. Study area
Our study focused on California annual rangelands,
spanning 33◦–41◦ N and 118◦–124◦ W, with a wide
range of microclimates resulting from complex geo-
graphic and topographic diversity. The study area
encompasses four major ecoregions as delineated
by the Ecological Classification and Mapping Task
Team (Cleland et al 2007): Northern California Coast
Ranges (NCCR), Northern California Interior Coast
Ranges (NCICR), Central Coast Ranges (CCR), and
Sierra Nevada Foothills (SNF) (figure 1(a)). Annual

rangelands feature a Mediterranean climate with hot,
dry summers and mild, moderately wet winters. The
active GS of annual rangelands coincides with the
rainy season: germination typically ensues in late
fall (November), and senescence occurs after the
rainy season ceases in late spring or early summer
(April–May).

Precipitation varies considerably across ecore-
gions, with long-term-means (LTMs) ranging from
160 mm yr−1 in the CCR to 2290 mm yr−1 in the
NCCR (figure 1(a)). Coastal regions are relatively
cooler in the summer and receive higher amounts of
precipitation than inland regions, especially those in
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rain shadows. Across the study area, air temperature
increased from the coast to inland, north to south,
and from valleys to mountains. Due to the significant
heterogeneity of the landscape, the four major eco-
regions are further divided into 23 ecoregion subsec-
tions based on similar ecological potentials, determ-
ined by many biotic and environmental factors such
as climate, physiography, soils, hydrology, and poten-
tial natural communities (figure 1(a)) (Cleland et al
2007). We hereafter refer to ecoregion subsections
by their parent ecoregion abbreviation followed by a
unique number as specified in figure 1(a).

2.2. Contemporary satellite and climate data
We obtained the version 6 gap-filled GPP product
(MYD17A2HGF) at 500 m resolution every eight
days from MODIS Terra and Aqua during 2000–
2019 (https://earthdata.nasa.gov/). MODIS provides
frequent multispectral moderate-resolution (250–
500 m) observations, revisiting the globe once to
twice per day since 2000. We calculated water
year (October–September) (U.S.Geological Survey
2016) cumulative GPP from the 8 day product
(Running et al 2019). A LTM annual GPP layer
(820 ± 283 g cm−2 yr−1) was derived from 2001–
2019 as a measure of spatial variation in forage pro-
duction (figure 1(c)). Annual rangeland GPP var-
ied significantly from year to year as shown in
figure 1(d), with a statewide mean ranging from
1017 g cm−2 yr−1 in 2005–750 g cm−2 yr−1 in 2008
(see detailed discussion in supplemental materials
section 1).

Meteorological data during 1986–2019 came
from Daymet hosted at the Oak Ridge National
Laboratory Distributed Active Archive Center
(Thornton et al 2016). The gridded daily surface
weather parameters at a 1 km resolution were inter-
polated from more than 8000 meteorological sta-
tions, based on a digital elevation model (Thornton
et al 2016). We aggregated daily precipitation,
min/max/mean air temperatures, and solar radiation
to monthly and seasonal averages, resulting in a total
of 30 climatic variables to be explored (as detailed in
table S1). To quantify seasonal precipitation variation
between the driest and wettest months during the
GS, a Precipitation Concentration Index (PCI) was
calculated as the ratio of the sum of squares of the
wet season monthly precipitation (November–May)
over squared water year precipitation multiplied by a
scaling factor of 58 (Oliver 1980, Sloat et al 2018).

2.3. Future climate projection data
For future climate, we obtained daily climate projec-
tions downscaled for California from Cal-Adapt Data
Server (http://albers.cnr.berkeley.edu/data/scripps/
loca/). This dataset is bias-corrected and downscaled
to a resolution of 1/16◦ (∼6 km) from 32 global
climate models (GCM) using the localized construc-
ted analogues statistical method (Pierce et al 2018).

The data include both the historical simulations dur-
ing 1950–2005 and future climate projections dur-
ing 2006–2099 under two emission scenarios that
have been widely used (e.g. by the California’s cli-
mate change assessments) for climate related policy
decisions (IPCC 2013). Representative Concentration
Pathway (RCP) 4.5 (Thomson et al 2011) is an inter-
mediate scenario where greenhouse gas emissions
peak around 2040 and then decline (IPCC 2013).
A worst-case scenario, RCP 8.5, represents rising
emissions throughout the 21st century (Thorne et al
2017). In this study, we used projections from four
GCMs that have demonstrated good performance
in reproducing California’s historical climate (Pierce
et al 2018): HadGEM2-ES, MIROC5, CNRM-CM5,
and CanESM2.

For each model and scenario projection, we
acquired daily mean precipitation, air temperature
(minimum, maximum, and mean), and solar radi-
ation layers. Tomatch the contemporary record, a bias
adjustment was applied to the GCM data, based on
20 years of overlapping time periods between Day-
met and GCM historical simulations. We first calcu-
lated the differences between Daymet and GCM data
derived for each climate variable (see table S1) for
each overlapping year during 1986–2005. LTM offsets
were then calculated, and applied to the originalGCM
projection to derive bias-adjusted future climate data.

2.4. Machine learning GPPmodel development
Using the contemporary records of satellite derived
GPP andDaymet weather during 2000–2019, we built
Gradient Boosted Regression Trees (GBRT) models
for each ecoregion subsection to investigate the com-
plex associations between the interannual variability
in annual rangeland GPP and climatic drivers. The
annual GPP layers were resampled to 1-km resolution
with a linear method to match the Daymet grid size.
The LTM GPP at 1 km was included as an additional
independent variable (table S2: LTMGPP, top one or
two variables), in order to account for spatial variab-
ility in GPP caused by topography and soils.

GBRT is one of the most popular ensemble
machine learning methods that combine outputs
from many individual trees to overcome the poten-
tial poor performance and reduce the risk of over-
fitting faced by single learner methods (Friedman
2001). Instead of building trees independently, it fits
regression trees sequentially, with each tree aimed at
minimizing prediction residuals of its predecessors
(Friedman 2001). GBRT is a powerful tool for dis-
covering and representing nonlinearities and com-
plex interactions among predictors (Elith et al 2008),
because the hierarchical tree structure inherently
models the dependence of the response variable to
one predictor given the values of inputs higher in the
tree. For each ecoregion subsection, a GBRT model
was trained with 70% randomly selected pixel-years,
using key variables selected from table S1.
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Feature selection was conducted to remove
redundant climatic variables and reduce potential
overfitting issues. We first iteratively eliminated vari-
ables with respect to their correlation to other vari-
ables (i.e. when two variables are highly correlated
(r > 0.8), removing the variable having the lower
distance correlation (Székely et al 2007) with annual
rangeland GPP. We further removed variables that
had low predictive power using the Recursive Feature
Elimination with cross-validation technique (Guyon
et al 2002). Finally, a permutation importance-based
feature selection was performed to further reduce
the number of variables. Permutation importance is
computed as a decrease in the model performance
(for example, measured by R2 or Root Mean Squared
Error (RMSE)) when a variable is permuted. We
sequentially permuted variables with the least per-
mutation importance score and fitted models with
the most important three to nine variables. For the
purpose of balancing model accuracy and complex-
ity, we kept the top seven variables to build ecore-
gion subsection-specific machine learning models
(figure S1).

We investigated how each of the key climatic
variables affects interannual rangeland GPP variation
using partial dependence plots from the GBRT mod-
els (Friedman 2001, Friedman and Meulman 2003).
Partial dependence function shows the response to
one target predictor after accounting for the aver-
age effects from all other predictors, by marginalizing
the model over the distribution of other independ-
ent variables (Molnar 2019). It is therefore used here
to visualize and disentangle the interactive response
of GPP to a suite of climate variables. The y-axis
of partial dependence plots represents the difference
between the marginalized prediction and mean GPP
for each value of the predictor on the x-axis. For
example, a wide range on the y-axis indicates strong
sensitivity of GPP to the target predictor when other
confounding factors are excluded.

2.5. Future GPP projection and attribution
To predict future rangeland GPP, we applied the
trained GBRT models, built specifically for each
ecoregion-subsection, to bias-adjusted climate pro-
jections from 2040–2099 as described in 2.3. For
a consistent comparison, GPP estimations by the
same models driven by the Daymet climate data
during 2001–2019 were used as a contemporary
baseline. The results were summarized by taking
the means over three-time windows: contemporary
(2001–2019), mid-century (2041–2059), and end of
century (2081–2099), under two emission scenarios.

We further quantified changes in GPP by mid-
century and end of the century caused by each type
of climatic variable (e.g. precipitation amount, pre-
cipitation distribution, minimum air temperature,
mean air temperature, maximum air temperature,
and solar radiation). For each type of variable, the

attribution was performed by comparing the differ-
ence between GPPs predicted for the contemporary
period and GPPs predicted with the future climate
simulation for the target type of variables while keep-
ing all other variables as the contemporary climate.
Differences between this newly predicted GPP and
the original contemporary GPP indicate the extent to
which changes in GPP are attributed to changes in
precipitation, air temperature, and solar radiation.

3. Results

3.1. Sensitivity of interannual rangeland GPP to
climate
For each of the 23 subsections, we chose the top seven
climate variables (see table S2) to model annual ran-
geland productivity at 6-km, based on GBRT model-
based feature selection as detailed in section 2.3.
Predicted GPP was shown in good agreement with
the MODIS GPP product when tested against the
validation dataset, with an R2 of 0.97, RMSE of
30.7 g cm−2 yr−1, and a mean absolute percentage
error of 4.1% (figure S2).

Overall, precipitation-related variables were
found important for 23 subsections for capturing
interannual variation in rangelandproductivity (table
S2 and figure 2). Specifically, at least one variable
representing precipitation amount was selected for
all subsections, either for individual winter and/or
spring months or seasonal cumulative amount,
depending on the region (figure 2(a) and table S2).
Over eight subsections, precipitation amount dur-
ing the GS enhanced annual GPP before reaching
a plateau at 300–700 mm yr−1, depending on the
subsection (figure 3(c)); production in the drier sub-
sections of the central coast were most sensitive, with
a decrease by more than 200 g cm−2 yr−1 when GS
precipitation varied from 400 to 100 mm yr−1.

PCI was critical in 21 subsections, except for
the two driest subsections on the central coast. Par-
tial dependence plots from subsection-specific GBRT
models showed that annual GPP decreased rapidly
before the curves flattened at a PCI equal to 13
(figure 3(a)). This suggests that years with more
evenly distributed precipitation (i.e. lower PCI val-
ues) had higher GPP than years with less evenly dis-
tributed precipitation (i.e. higher PCI values), when
everything else was held constant.

Winter monthly minimum air temperature
(November–February), was the third important
variable category, followed by mean air temperat-
ure, selected by 19 and 9 subsections, respectively
(figure 2). Tmax and solar radiation during GS were
important in less than five subsections, mostly in
north coast interior and central coast (table S2).

Air temperatures (Tmin, Tmean, and Tmax) showed
different controls on GPP. Warmer January min-
imum air temperature enhanced annual GPP as it
warmed from 0 ◦C to 6 ◦C (figure 3(b)). In contrast,

5



Environ. Res. Lett. 18 (2023) 014011 H Liu et al

Figure 2. Prevalence of selected (a) climate variables and (b) climate variable groups, summarized among the 23-subsection
specific models. For example, an appearance in 21 subsections for the precipitation concentration index (PCI) was selected as one
of the seven top variables in 21 subsection models. Tmin, tave/tmean, and tmax stand for minimum, average, and maximum air
temperature. Cumuprcp stands for cumulative precipitation. Srad stands for shortwave solar radiation. See table S1 for a full list
of variable abbreviation definitions.

Figure 3. Partial dependence of annual GPP on selected key climate variables, including (a) precipitation concentration index
(PCI), (b) January minimum air temperature, (c) (growing season (GS), October–May) precipitation amount, (d) November
mean air temperature, (e) GS solar radiation, (f) GS maximum air temperature.

mean November air temperature and GS maximum
air temperature showed a negative impact on annual
GPP (figures 3(d)–(f)). For example, as November

mean air temperature increased from 7 ◦C to 14 ◦C,
GPP decreased from 10∼40 g cm−2 yr−1 above the
LTM (during 2001–2019) to 5∼40 g cm−2 yr−1 below
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Table 1. Projected GPP (g cm−2 yr−1) for the entire study area (lower and upper 25% quantiles, mean and standard deviation) during
contemporary (2001–19), mid-century (2041–59), and end of century (2081–99) periods under two different emission scenarios, as
compared to the contemporary time period. Results summarized from the predicted GPP ensemble at 6 km by machine learning models
driven by future climate projections from four GCMs. Areas are expressed as percentage of the entire study area.

RCP4.5 RCP8.5 RCP4.5 RCP8.5

Q25 Mean± Std Q75 Q25
Mean
± Std Q75 Area

Mean
changes
± Std Area

Mean
changes
± Std

Contemporary
(2001–2019)

663 816± 271 973 — — — — — — — —

Mid-century
(2040–2069)

643 809± 260 947 647 812± 258 942 Increased
GPP

40% 17± 16 44% 18± 15

Reduced
GPP

60% −17± 14 56% −19± 21

End of
century
(2070–2099)

639 812± 264 959 642 813± 265 959 Increased
GPP

41% 23± 18 53% 27± 18

Reduced
GPP

59% −27± 21 47% −37± 32

the LTM in subsections SNF-3, SNF-4, NCCR-3, and
NCCR-4 (figure 3(d)). Maximum air temperature
during the GS showed a more substantial negat-
ive impact than mean air temperature. Annual GPP
decreased more than 100 g cm−2 yr−1 as GS max-
imum air temperature increased from 17 ◦C in a
colder year to 21 ◦C in a warmer year in CCR-2, CCR-
3, NCICR-1, and NCICR-3 (figure 3(f)). Despite the
large latitudinal difference, all subsections had higher
annual GPP in years with a lower amount of solar
radiation (figure 3(e)).

3.2. Changes in GPP under future climate
projections
When driven by future climate projections from four
GCMs, the GBRT model predictions showed that,
cross the entire study area, mean annual GPP was
projected to decrease from 816 ± 271 g cm−2 yr−1

to 809 ± 260 g cm−2 yr−1 by mid-century and to
812 ± 264 g cm−2 yr−1 by the end of the cen-
tury (2081–2099) under RCP4.5 (table 1). Although
mean reductions in GPP were projected to be small,
these changes were not spatially uniform within
the study area (figures 4 and 5). Both the lower
and upper quantiles of the predicted mid-century
GPP showed more significant reductions (e.g. by
20 and 26 g cm−2 yr−1, respectively). Predicted
GPP decreased in over 59% of the study area by
27 ± 21 g c m−2 yr−1 by the end of the cen-
tury, which was partly counteracted by an increase
over 41% of the study area (23 ± 18 g cm−2 yr−1)
compared to the contemporary period (2001–2019)
(table 1).

Under the RCP8.5 emission scenario, the model
predicted GPP changes similar to the RCP4.5 model
over our study area; however, compared to the
RCP4.5 model, a smaller extent of the study area
would exhibit GPP reductions (i.e. only 56% and 47%
by mid- and end of century, respectively) (table 1).

The magnitude of changes in GPP was larger though
than under RCP4.5, especially by the end of the cen-
tury, i.e. by−37± 32 g cm−2 yr−1 (table 1).

3.3. Spatial patterns of future GPP change and
climate change contributions
Future GPP reductions were predicted to occur
mostly in moderate to wetter areas, such as NCCR,
central and southern Sierra Nevada, relatively wet-
ter parts of the Central Coast, and to a lesser degree
in NCICR (figures 5 and 6(a)). Less evenly distrib-
uted precipitation during the rangeland GS, as indic-
ated by the projected increase in PCI (Figures. S4c
and S5c), contributed the most to the GPP decrease
by both mid- and end of the century, especially
over regions with intermediate rainfall (figure 6(b)).
For example, GPP declined by as much as 15–
30 g cm−2 yr−1 in subsections CCR-11, SNF-3, and
SNF-4 (more than 29% of the entire study area)
where the impact of PCI was dominant. In wet-
ter regions, reduction in GPP was further caused
by warmer Tmean during GS such as in CCR and
SNF (figures S4(e) and S5(e)). Warmer Feburary
Tmin (figures S4(d) and S5(d)) was also predicted to
induce a GPP reduction in costal subsections NCCR-
1 and CCR-11, except in the wettest costal subsection
NCCR-4.

In contrast, increases in predicted future GPP
were found mostly in drier and less productive sub-
sections, as shown in the 6 km map (figure 5) and
summarized at the ecoregion subsection level (left-
hand side of figures S4–S6), with a few exceptions.
GPP in drier subsections that received less than
513∼522 mm yr−1 precipitation, mostly in the CCR,
benefited from a predicted increase in precipitation
(figure S4(b)). Increasing minimum air temperature
(figures S4(d) and S5(d)) further enhances rangeland
productivity in these areas (figure 6). The projected
increase inmaximum air temperature under RCP 4.5,
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Figure 4. Predicted changes in GPP based on (a) MIROC5 (dry model) and (b) CNRM-CM5 (wet model), as well as the
corresponding simulated changes in GS precipitation (c), (d) by the end of century under the intermediate scenario (RCP4.5).

however, caused a significant decline in GPP in the
southern drier end of the central coast and northern
interior coast, by 45 and 12 g cm−2 yr−1 in CCR-2 and
CCR-3, and 13 g cm−2 yr−1 in NCICR-3, respectively.

4. Discussion

4.1. Impacts of climate variables on rangeland GPP
This study leveraged 20 years of remote sensing
records and machine learning methods to quantify
and disentangle the interactive response of annual
GPP to a suite of climate variables across California’s
annual rangelands. We found a high degree of spatial
variability in responses across the 23 ecologically dis-
tinct subsections, as a result of varying sensitivity
to climate change. While the relative importance
of climatic variables varied in controlling interan-
nual GPP variability across ecoregion subsections,

variables related to precipitation, in general, were
major drivers of rangeland productivity responses.
Moving from drier to wetter areas, the driving cli-
matic variable for GPP shifted from total GS pre-
cipitation to the relative distribution of GS rainfall
(PCI). This is consistent with previous findings from
field observations—that is, water is likely no longer
the limiting factor to plant growth in wet regions in
most years. Instead, timing and monthly distribution
of precipitation become more important because, as
intervals between rainfall events increase, the dura-
tion and severity of soil water stress is expected to
increase (Knapp et al 2008). Furthermore, we found
greater total precipitation in wetter areas reduced
GPP, likely in part because oversaturated soils can
create anaerobic conditions that impair growth and
development of upland (i.e. non-wetland species)
plants (Wilson and Livingston 1932). Wetter years
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Figure 5. Percentage change in mean predicted GPP due to climate changes projected by four GCMs by (a), (c) mid-century and
end of century (b), (d) compared to the contemporary period under (a), (b) intermediate (RCP4.5) and (c), (d) worst-case
(RCP8.5) scenarios.

may also have colder temperatures and lower solar
radiation resulting from greater cloud cover.

Air temperatures (minimum, mean, and max-
imum) showed different controls on GPP. We found
a positive relationship between GPP and winter min-
imum air temperature in all but four subsections
(SNF-1, SNF-2, SNF-3, and NCCR-3), likely due to
warmer temperatures in the early season promot-
ing germination and early growth (Becchetti et al
2016). In contrast, Mean and maximum air tem-
peratures had a negative control on GPP in several

subsections across the study area, likely by increasing
water demand and thus causing water stress (Devine
et al 2019). Higher solar radiation during GS was also
shown to cause GPP reduction in three subsections,
probably via enhanced drying processes. Further
work is needed to better understand coupling effects
of climate variables, such as the combined impacts of
cold temperatures and high precipitation on GPP, as
well as reasons for spatial differences in climate con-
trols on GPP, such as why GPP is not as responsive to
air temperature in some areas as it is in other areas.
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Figure 6. Percent change in GPP and their attribution to climatic variables for the 23 subsections under the intermediate scenario
(RCP4.5). Subsections are ordered from driest (left) to wettest (right). For attribution under RCP8.5, see figure S6.

4.2. Implications of future changes in rangeland
GPP
While our models predicted small changes in future
rangeland productivity for the study area as a whole
(table 1), impacts at the ecoregion subsection scale
were more marked and suggest rangeland productiv-
ity responses to climate change will be highly variable
at the local level (figure 4). We found greater mag-
nitude of GPP changes (mostly increases) in many
drier subsections (figure 6(a)) in response to slightly
higher predicted precipitation and higher GS min-
imum temperatures over time. Considering the entire
study area, predicted increases in GPP from favor-
able future precipitation and temperature conditions
in mostly drier subsections (41% of the study area)
were counterbalanced by predicted decreases in GPP
from unfavorable changes in temperature, rainfall
distribution, and solar radiation in wetter subsections
(59%of the study area)—resulting in the overall small
decrease in GPP.

However, it is worth noting that several uncer-
tainties in GPP projections exist due to inconsisten-
cies among GCMs, especially in precipitation simula-
tions. For example, although four GCM projections
agreed on larger variation in monthly precipitation
(less evenly distributed) in the future, the amount of
precipitation change, however, varied among GCMs.
A drier climate was projected by MIROC5 versus a
wetter climate by CNRM-CM5 (figures 4(c) and (d)),
resulting in large discrepancies between GPP projec-
tions: by mid-century under RCP4.5, GPP projec-
tions withMIRCO5 (dry model) versus CNRM-CM5
(wet model) differed by as much as 36 g cm−2 yr−1

(figures 4(c) and (d); see detailed discussion in sup-
plemental materials section 2). The sign of projec-
ted precipitation changes also varied by regions, in
contrast to the warming trend across the state by all
model simulations.

Climate change threatens California’s annual ran-
gelands, which are largely rainfall-dependent and
therefore highly vulnerable to weather extremes
(Macon et al 2016, Roche 2016). More extreme
weather events and more frequent year-to-year
weather swings in the future will lead to greater inter-
annual rangeland productivity, potentially threat-
ening the sustainability of forage supply and, ulti-
mately, the resilience of ranches and rangelands to
climate change. Other modeling approaches have
similarly projected declines in productivity in vari-
ous rangeland systems around the globe, with asso-
ciated decreases in ecosystem goods and services,
including livestock production (Boone et al 2018).
The high degree of spatial variability in productiv-
ity impacts projected by our models means local,
climate-informed decision-making will be increas-
ingly critical to identifying adaptation strategies for
mitigating climate risks.

This work can be leveraged to create near-
real time rangeland productivity tracking and fore-
casting tools to support adaptive decision-making
across California’s extensive and highly variable
rangelands. Future research and development will
need to combine new data and emerging techno-
logies with land management expertise to create
locally-calibrated decision support systems. Working
with land managers to co-develop decision-support
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tools will ensure on-the-ground relevance to sustain-
ability and resilience at local scales and, therefore,
greatly increase manager adoption. Broader benefits
potentially include producing locally-trusted tools
and data to help inform policy and management
guidance (e.g. drought and disaster early warning sys-
tems) at regional and national scales.

5. Conclusion

Climate change is expected to impact forage produc-
tion across California’s annual rangelands, threaten-
ing the economic viability and environmental sus-
tainability of these highly valued systems. This study
projected the degree to which GPP may respond to
changes in different climatic variables bymid-century
and end of century under RCP4.5 (intermediate emis-
sions) and RCP8.5 (worst-case emissions) scenarios
using remote sensing and machine learning tech-
niques. Our machine learning-based analysis high-
lighted regional differences in GPP vulnerability to
climate and provided insights on the intertwining and
potentially counteracting effects of seasonal temper-
ature and precipitation regimes. While total annual
precipitation dominates the variations in annual GPP
in drier ecoregions, changes in seasonal precipita-
tion distribution affects the interannual GPP vari-
ability, especially in the wetter areas. We found that
warmerwinter seasonminimumair temperature pro-
motes GPP for the majority of ecoregions; however,
the maximum temperature during the GS reduced
production in the CCR andNCICR. These results can
inform rangeland management and conservation in
the context of climate adaptation during an era of cli-
mate change.
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