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ABSTRACT OF THE DISSERTATION

A sufficient condition for stochastic stability of an Internet congestion

control model in terms of fluid model stability

by

Nam H. Lee

Doctor of Philosophy in Mathematics

University of California San Diego, 2008

Professor Ruth Williams, Chair

We consider a model of Internet congestion control, introduced by Massoulié and

Roberts, as an example of a stochastic network with resource sharing and a non-

head-of-the-line service discipline. To describe the evolution of this system, we use

a stochastic process that tracks the amount of service that has been given to each

document that is still in the system and the time since the last arrival to each route.

This is a Borel right process with a locally compact with countable base state space.

It is shown that under mild assumptions, stability of a related fluid model for residual

document sizes is sufficient for stability (positive Harris recurrence) of the Borel right

process.

ix



Chapter 1

Introduction

1.1 Overview

Stochastic networks are used as models for complex dynamic systems subject to

uncertainty. Applications arise in manufacturing, telecommunications, computer sys-

tems, and the service industry. Two major questions of interest for such models are

their stability and performance when heavily loaded. For a certain class of stochas-

tic networks known as multiclass queueing networks operating under head-of-the-line

(HL) service disciplines, there is now a fairly well developed theory of fluid and dif-

fusion approximations for studying the stability and performance of these networks.

For more general stochastic networks operating under non-HL service disciplines,

there is currently no analogous theory of fluid and diffusion approximations.

In this thesis, a model of Internet congestion control is considered as an example

of a stochastic network with resource sharing and a non-HL service discipline. With

generally distributed document sizes, it is an open question whether this model is

stable under a nominal load condition. The answer to this question is known to be

yes for α-fair sharing disciplines and exponential document sizes (see Bonald and

Massoulié [4] and De Veciana et al. [11]) and also for a proportional fair sharing

1
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discipline with phase type distributions for the document sizes (see Massoulié [20]).

Here, under mild conditions, it is shown that if a related fluid model is stable, then a

process describing the Markov dynamics of the stochastic Internet congestion control

model is positive Harris recurrent, i.e., is stable. Some components of this process

are measure-valued (to keep track of the partial processing of documents). Our result

provides an analogue, for this stochastic network model, of a well known theorem

for multiclass HL queueing networks due to Dai [8]. Our result proved in this thesis

reduces the problem of establishing sufficient conditions for stability for the stochastic

network model to proving stability for a simpler deterministic fluid model.

The model of Internet congestion control considered here was introduced by Mas-

soulié and Roberts [21]. It aims to capture connection level dynamics in data net-

works like the Internet. The bandwidth sharing policies considered with this model

are generalizations of the processor sharing discipline. Assuming Poisson arrivals and

exponentially distributed document sizes, it is known that the Massoulié-Roberts

model is stable when operating under various utility based bandwidth sharing poli-

cies, provided a nominal load condition is satisfied. The exponential assumptions

permit one to use queue-length as a Markovian state descriptor in this context.

It is of considerable interest to understand the behavior of models like that of

Massoulié and Roberts when the document sizes are more generally distributed than

exponential. To describe the dynamics of such a model, one needs a higher dimen-

sional state descriptor than queue-length. In particular, we use an age process that

has measure-valued components that track the amount of service that has been given

to each document that is still in the system and components that track the time since

the last arrival to each route. This process is a Borel right process. We associate

with this age process a residual document size process. Gromoll and Williams [14]

developed a fluid model approximation for such residual processes.

The main result of this thesis is that stability of Gromoll and Williams’ fluid

model [13] is sufficient for stability (positive Harris recurrence) of our age process.
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The thesis is organized as follows. In Section 1.2, we explain elementary termi-

nology and notation that is used in this work, and in Section 1.3, relevant material

from the theory of Borel right processes is reviewed. In Chapter 2, we introduce

the age process as a Borel right process. We introduce the notion of a fluid model

solution in Section 2.6 and state our main theorem in Section 2.7 under two as-

sumptions, Assumptions 2.2.1 and 2.2.2 that are specified in Section 2.2. While the

age process is the main object in our stability analysis, the residual document size

process associated with the age process plays an important role in connecting the

age process to the fluid model developed in Gromoll and Williams [13]. In Chapter

3, we will carefully verify that the hypotheses of the main theorem of Gromoll and

Williams [13] are satisfied by the residual document size process associated with the

age process. In fact, Assumptions 2.2.1 and 2.2.2 are formulated chiefly to overcome

various difficulties that arise when doing this. In Chapter 4, we give our proof of the

main theorem. The overall proof strategy used there is similar to that in Dai [8] and

Bramson [5]. However, there are differences because of the measure-valued aspects

of the age process and the resource sharing aspect of our model.

1.2 Notation and terminology

In this section, we suppose that X is a locally compact space with countable

space, and that (Ω,F ,P) is a probability space. We list some elementary notation

and terminology that will be used throughout our discussion.

We denote by B(X) the Borel subsets of X and denote by M(X) the space of finite

non-negative Borel measures on X. For each x ∈ X, we denote by δx, the Dirac delta

measure at x. We let χ be the function from X to X such that χ(x) = x for any

x ∈ X. For any measurable function f : X → (−∞,∞) and B ∈ B(X), we let ‖f‖B =

sup{|f(x)| : x ∈ B}, where this may take the value ∞. Let µ ∈ M(X). For a Borel

measurable function f : X → [0,∞], we denote by 〈f, µ〉, the integral
∫

X f(x)µ(dx),
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which may take the value ∞. Moreover, given another Borel measurable function

g : X → [0,∞) such that min{〈f, µ〉, 〈g, µ〉} <∞, we let 〈f − g, µ〉 = 〈f, µ〉 − 〈g, µ〉
and 〈g − f, µ〉 = 〈g, µ〉 − 〈f, µ〉.

We denote by Cb(X) the set of bounded continuous real-valued functions on X,

by Cu(X) the set of uniformly continuous real-valued functions on X, and by Cc(X)

the set of continuous real-valued functions on X having compact support. Also,

let C+(X) be the space of non-negative continuous functions on X. Then, we let

C+
c (X) = Cc(X)∩C+(X), C+

b (X) = Cb(X)∩C+(X) and C+
b,u(X) = Cb(X)∩Cu(X)∩C+(X).

A random element taking values in X is a measurable function X : Ω → X. For

each such random element X, the distribution of X is the probability measure µ on

(X,B(X)) such that µ(B) = P[X ∈ B] for each B ∈ B(X). Suppose that {Xn}∞n=1

is a sequence of random elements (possibly defined on different probability spaces)

taking values in X, and for each integer n ≥ 1, let µn be the distribution of Xn. Also,

suppose that X0 is a random element that takes values in X, and let µ0 denote the

distribution of X0. The sequence {Xn}∞n=1 converges in distribution to X0 if and only

if for any f ∈ C+
b (X), 〈f, µn〉 → 〈f, µ〉 as k → ∞; in this case, we write Xn ⇒ X0

as n→∞. The random element X0 is said to be a weak limit point of the sequence

{Xn}∞n=1 if there exists a subsequence {Xnk
}∞k=1 of {Xn}∞n=1 such that Xnk

⇒ X0 as

k →∞. The sequence {Xn}∞n=1 is said to be tight if for each ε ∈ (0, 1), there exists

a compact subset Kε of X such that lim infn→∞ µn(Kε) ≥ 1− ε.

We denote by D(X) the set of all functions from [0,∞) into X that are right

continuous on [0,∞) and that have finite left limits on (0,∞) and denote by C(X)

the set of all continuous functions from [0,∞) into X. Unless it is stated otherwise,

the space D(X) will be equipped with the Skorohod J1 topology and the space C(X)

will be equipped with the topology of uniform convergence on compact time intervals.

With these topologies, the spaces D(X) and C(X) are separable metric spaces and we

consider them with the associated Borel σ-algebras. A sequence {ξn}∞n=1 of random

elements taking values in D(X) is said to be C-tight if {ξn}∞n=1 is tight and each weak
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limit point of {ξn}∞n=1 take values almost surely in C(X).

The set M(X) can be equipped either with the topology of weak convergence

or with the topology of vague convergence, and in either case, M(X) is known to

be a separable metric space (cf. Kallenberg [19]). In particular, given a sequence

{νk}∞k=1 in M(X) and a measure ν0 ∈ M(X), the sequence {νk}∞k=1 converges weakly

(i.e., in the topology of weak convergence) to ν0 ∈ M(X) if and only if for any

f ∈ C+
b (X), 〈f, νk〉 → 〈f, ν0〉 as k →∞, but the sequence {νk}∞k=1 converges vaguely

(i.e., in the topology of vague convergence) to ν0 if and only if for any f ∈ C+
c (X),

〈f, νk〉 → 〈f, ν0〉 as k →∞. Unless it is stated otherwise, the (default) topology on

M(X) will be the topology of weak convergence.

A filtration is a collection {Ft : t ∈ [0,∞)} of sub-σ-algebras of F such that

Fs ⊂ Ft for all s and t ∈ [0,∞). A random variable η taking values in [0,∞] is a

stopping time for a filtration {Ft : t ∈ [0,∞)} if {η ≤ t} ∈ Ft for each t ∈ [0,∞).

We let R denote the set of all real numbers, i.e., (−∞,∞), we let R+ denote

[0,∞), and we let Q denote the set of all rational numbers. We will simply write M

for M(R+), and for each integer n ≥ 1, Mn denotes the product space M× . . .×M,

which involves exactly n copies of M. If x and y are in [−∞,∞), then x ∧ y is the

minimum of x and y, and x ∨ y is the maximum of x and y. For any x ∈ [−∞,∞],

x+ = x ∨ 0. For each R, let bxc be the largest integer that is less than or equal

to x. For each B ⊂ R+ and r ∈ R+, we let B + r = {x + r : x ∈ B}. For

each integer n ≥ 1 and x = (x1, . . . , xn) ∈ (−∞,∞)n, ‖x‖ =
∑n

k=1 |xk|. For each

function f defined on R+, we let ‖f‖∞ = ‖f‖R+ . Let C1
b (R+) denote the set of once

continuously differentiable functions on R+ that together with their first derivatives

are bounded on R+. For non-negative finite Borel measures ξ and ξ̃ on R+, we denote

by ξ ∗ ξ̃, the convolution of ξ and ξ̃, and for each integer n ≥ 1, we denote by ξ(∗n) the

convolution of n copies of ξ. For any integer n ≥ 1 and µ ∈ M(Rn
+), we will always

identify the measure µ with the measure µ ∈ M(Rn) such that µ(B) = µ(B ∩ Rn
+)

for each B ∈ B(Rn).
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The phrase “independent and identically distributed” will be abbreviated as i.i.d.,

and the phrase “right continuous with finite left limits” will be abbreviated as r.c.l.l.

1.3 Borel right process and Harris recurrence

Our definition of a Borel right process will follow that in [12], and we begin with

some basic notation and terminology used in the theory of Borel right processes.

Throughout this section, suppose that X is a locally compact space with countable

base and let Ω = D(X). For each t ∈ [0,∞), let Xt be the mapping from Ω to X
given by Xt(ω) = ω(t), where ω(t) is the value of the function ω at t. Next, let

F = σ(Xt : t ∈ [0,∞)). For each t ∈ [0,∞), let Ft = σ (Xs : s ∈ [0, t]), and let

Ft+ = ∩s∈(t,∞)Fs. Then, let F = {Ft : t ∈ [0,∞)} and X = {Xt : t ∈ [0,∞)}.
A Borel Markov kernel on X is a function K : X × B(X) → [0, 1] such that for

each x ∈ X, the function K(x, ·) : B(X) → [0, 1] defines a probability measure on

X, and for each B ∈ B(X), the function K(·, B) : X → [0, 1] is Borel measurable.

For each bounded real-valued Borel measurable function f on X and Borel Markov

kernel K on X, we define a real-valued function Kf on X by letting, for each x ∈ X,

(Kf)(x) =

∫
X
K(x, dy)f(y).

A (homogeneous) Borel Markov semigroup on X is a collection {Pt : t ∈ [0,∞)}
of Borel Markov kernels on X such that for any x ∈ X, B ∈ B(X) and [s, t] ⊂ [0,∞),

Pt(x,B) =

∫
X
Ps(x, dy)Pt−s(y,B). (1.3.1)

A stopping time τ for the filtration {Ft+ : t ∈ [0,∞)} is a non-negative random

variables taking values in [0,∞] such that {τ ≤ t} ∈ Ft+ for each t ∈ [0,∞).

Definition 1.3.1. A Borel Markov semigroup {Pt : t ∈ [0,∞)} on (X,B(X)) is said

to be right if for each probability measure µ on (X,B(X)), there exists a probability
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Pµ on (Ω,F) such that for each B ∈ B(X),

Pµ[X0 ∈ B] = µ(B), (1.3.2)

Pµ[Xt+s ∈ B |Fs ] = Pt(Xs, B), for each s and t ∈ [0,∞), (1.3.3)

and for each stopping time τ for the filtration {Ft+ : t ∈ [0,∞)} and f ∈ C+
b,u(X),

Eµ[f(Xτ+t)1{τ<∞} |Fτ+ ] = Ptf(Xτ )1{τ<∞}, for each t ∈ [0,∞), (1.3.4)

where Eµ denotes the expectation operator for Pµ.

For the rest of this subsection, we fix a collection P = {Pt : t ∈ [0,∞)} of Borel

Markov kernels, and we will say that P is a Borel right semigroup if P is a Borel

Markov semigroup that is right.

Definition 1.3.2. The collection (Ω,F ,F, X,P) is said to be a Borel right process

if the collection P is a Borel right semigroup.

One of the most frequently used concepts of stability for a Borel right process

involves a notion that can be traced back to T. E. Harris [15]. To introduce this, for

the rest of this section, we assume that (Ω,F ,F, X,P) is a Borel right process, and

for each probability measure µ on (X,B(X)), let Pµ be as described in Definition

1.3.1. Then, for simplicity, for each x ∈ X, let Px denote the probability measure

Pδx .

Definition 1.3.3. The Borel right process (Ω,F ,F, X,P) is Harris recurrent if there

exists a σ-finite non-trivial measure ψ on (X,B(X)) such that if B ∈ B(X) and

ψ(B) > 0, then Px [ηB <∞] = 1 for each x ∈ X, where ηB = inf{t ∈ [0,∞) : Xt ∈
B}.

An invariant measure for the Borel right process (Ω,F ,F, X,P) is a non-trivial

σ-finite measure π on (X,B(X)) that satisfies

π(B) =

∫
X
π(dx)Pt(x,B), (1.3.5)
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for each t ∈ [0,∞) and B ∈ B(X). Every Harris recurrent Borel right process has an

invariant measure that is unique up to multiplication by a constant factor. This was

shown initially in Azéma et al. [17] but also later with some simplification in Meyn

and Tweedie [22].

Definition 1.3.4. The Borel right process (Ω,F ,F, X,P) is positive Harris recurrent

if (Ω,F ,F, X,P) is Harris recurrent and there exists a probability measure π on

(X,B(X)) satisfying (1.3.5) for each t ∈ [0,∞) and B ∈ B(X).



Chapter 2

Internet congestion control model

2.1 Network structure, bandwidth sharing policy

and model description

We consider a flow-level model of Internet congestion control introduced by

Massoulié and Roberts [21]. The network has finitely many resources labeled by

j = 1, . . . , J and a finite set of routes labeled by i = 1, . . . , I. A route i is a non-

empty subset of the resources, interpreted as the set of resources used by the route.

Let M be a J × I matrix such that Mji = 1 if resource j is used by route i, and

Mji = 0 otherwise. Since each route is a non-empty subset of {1, . . . , J}, no column

of M is identically zero.

A flow on route i corresponds to the continuous transfer of a document through

the resources used by the route. While the transfer is in progress, the flow takes si-

multaneous possession of each resource on its route. The processing rate allocated to

a flow is the rate at which the document associated with the flow is being transferred.

The bandwidth allocated to route i is the sum of the processing rates allocated to

all flows on route i and it is shared equally amongst the flows on route i. The band-

width allocated through resource j is the sum of the processing rates allocated to

9
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all flows on the routes using resource j. Each resource j has finite capacity Cj > 0,

interpreted as the maximum bandwidth that can be allocated through it.

Our work will focus on the network operating under a certain bandwidth sharing

policy Λ, where the policy Λ dynamically determines the bandwidth allocation to

the routes as a function of the number of flows on all routes. In other words, for a

vector n = (n1, . . . , nI) of non-negative integers, when each coordinate ni represents

the number of flows on route i, then the bandwidth sharing policy Λ associates

with the vector n another vector Λ(n) ∈ RI
+, where the i-th component Λi(n) of

Λ(n) represents the bandwidth allocated to route i, and the allocation respects the

capacity constraints:

I∑
i=1

MjiΛi(n) ≤ Cj, for each resource j. (2.1.1)

The bandwidth sharing policy Λ can be regarded as a measurable function from

the set of vectors of non-negative integers to the set of vectors of non-negative real

numbers. In fact, we shall define Λ so that we can also apply it to scaled flow counts.

We assume that Λ is a Borel measurable function from RI
+ to RI

+ such that

(i) for any r ∈ (0,∞) and n ∈ RI
+, Λ(n) = Λ(rn),

(ii) for each route i and n ∈ RI
+, Λi(n) > 0 if and only if ni > 0,

(iii) for each route i and n ∈ RI
+, Λi is continuous at n whenever ni > 0,

(iv)
∑I

i=1MjiΛi(n) ≤ Cj for each n ∈ RI
+ and resource j.

An important class of bandwidth sharing policies is described below. This family

of policies was introduced by Mo and Warland [24].

Example 2.1.1. Fix α ∈ (0,∞) and w = (w1, . . . , wI) ∈ (0,∞)I. For each n =
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(n1, . . . , nI) ∈ RI
+, let

I0(n) = {i ≤ I : ni = 0},

I+(n) = {i ≤ I : ni > 0},

O(n) = {λ ∈ RI
+ : λi = 0 for all i ∈ I0(n)},

and define a function Fn : RI
+ → [−∞,∞) by letting, for each λ = (λ1, . . . , λI) ∈ RI

+,

Fn(λ) =

{ ∑
i∈I+(n)win

α
i

λ1−α
i

1−α
, α ∈ (0,∞) \ {1},∑

i∈I+(n)wini log(λi), α = 1,
(2.1.2)

where Fn(λ) = 0 if I+(n) = ∅, but Fn(λ) = −∞ if α ∈ [1,∞) and there exists

i ∈ I+(n) such that λi = 0.

Define a function Λ : RI
+ → RI

+ by letting, for each n = (n1, . . . , nI) ∈ RI
+, Λ(n)

to be the unique vector λ = (λ1, . . . , λI) ∈ RI
+ that solves the following optimization

problem:

maximize Fn(λ) (2.1.3)

subject to
∑I

i=1Mjiλi ≤ Cj for each resource j, (2.1.4)

over O(n). (2.1.5)

The function Λ : RI
+ → RI

+ is called a weighted α-fair bandwidth sharing policy. Note

that by (2.1.4), Λ satisfies the condition (iv) in our definition of a bandwidth sharing

policy, and it can also be seen that the other conditions (i)–(iii) in our definition of

a bandwidth sharing policy are also satisfied by Λ (cf. Gromoll and Williams [13]).

When wi = 1 for each route i, the case α = 1 and the limiting cases α → 0 and

α→∞ correspond respectively to a bandwidth sharing policy that is proportionally

fair, achieves maximum throughput, or is max-min fair (cf. Bonald and Massoulié [4],

and Mo and Walrand [24]).

We now return to the case where n is a vector of non-negative integers so that

each Λi(n) represents the bandwidth allocated to route i. If there is only one flow
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on route i, or equivalently, if ni = 1, then the allocated bandwidth Λi(n) is used in

full to process that one flow. On the other hand, if there are multiple flows on route

i, or equivalently, if ni ≥ 2, then the bandwidth Λi(n) allocated to route i is shared

equally amongst all of the flows on route i so that Λi(n)/ni is the processing rate

for each flow on route i. If ni = 0 for route i, then Λi(n) = 0. Once the document

associated with a flow is fully transmitted, the flow is assumed to disappear from the

network.

Every flow is assumed to arrive to the network at some point, and we distinguish

the flows that have arrived prior to or at time zero from the flows arriving to the

network after time zero. In particular, an exogenous flow is any flow that enters the

network after time 0, and an initial flow is any flow already on some route at time

zero.

The exogenous flows are specified by 2I independent sequences of random vari-

ables: {u1k}∞k=1, . . . , {uIk}∞k=1 and {v1k}∞k=1, . . . , {vIk}∞k=1 describing respectively the

interarrival times and document sizes for the exogenous arrivals to the network after

time zero. For each route i, {uik}∞k=1 are i.i.d. strictly positive random variables

with common distribution ϕi satisfying 〈χ, ϕi〉 < ∞, and {vik}∞k=1 are i.i.d. strictly

positive random variables with common distribution ϑi satisfying 〈χ, ϑi〉 <∞. Here,

for each route i and integer k ≥ 1, the random variable uik denotes the time between

the k-th and the (k+ 1)-st arrival to route i after time zero, and vik denotes the size

of the k-th document to arrive to route i after time zero. For future reference, we

let, for each route i,

νi =
1

〈χ, ϕi〉
and ρi =

〈χ, ϑi〉
〈χ, ϕi〉

, (2.1.6)

and then, let

ν = (ν1, . . . , νI) and ρ = (ρ1, . . . , ρI). (2.1.7)

A convenient way to specify an initial state for the network is by identifying a
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suitable element from the set A:

A = Aα1 × . . .× AαI × [0, β1)× . . .× [0, βI), (2.1.8)

where for each route i,

αi = inf{α ∈ [0,∞) : ϑi((α,∞)) = 0},

βi = inf{β ∈ [0,∞) : ϕi((β,∞)) = 0},

Aαi
= {0} ∪

⋃∞
n=1 {

∑n
k=1 δck

: c1, . . . , cn ∈ [0, αi), c1 < c2 < . . . < cn} ;

here, 0 denotes the zero measure on [0, αi). For instance, suppose that at time zero,

for each route i, there are ni flows on route i and the flow on route i with the k-th

smallest completed work has completed work size cik ∈ [0, αi). Also, suppose that

the last time that a flow arrived to route i is ai ∈ [0, βi) units of time ago for each

route i. Then, these can be neatly encoded into an element in A,(
n1∑

k=1

δc1k
, . . . ,

nI∑
k=1

δcIk , a1, . . . , aI

)
, (2.1.9)

where an empty sum is defined to be zero. The topology on A is the topology

induced on A ⊂ MI × RI
+ by the product topology on MI × RI

+, where each M of

MI is equipped with the topology of weak convergence. It is shown in Section B.1

that with this topology, A is locally compact with countable base. We forewarn the

reader here that in Chapter 3, we also consider use of the vague topology for M.

Notice the strict inequalities: “c1 < c2 < . . . < cn−1 < cn” in the definition of

each Aαi
. These strict inequalities reflect the fact that for any two distinct flows that

are being transmitted on the same route at the same time, their completed works

must be different if their arrival times are different. This is because any flow must

be transmitted at a positive rate at any moment while it is in the network and at

any instant, the rate is the same for all flows currently on the route. Hence, in order

for two distinct flows on the same route that are active at the same time to have
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the same completed work size, they must have arrived to their common route at the

same time. However, for each route i, interarrival times of flows to the route i are

strictly positive and so, this coincidence does not occur.

We now return to our discussion of how elements in A can be used as a way

to describe initial states of the network. First, for each route i, α ∈ [0, αi) and

β ∈ [0, βi), let ϑα
i and ϕβ

i be the probability measures on (R+,B(R+)) such that

ϑα
i (B) = ϑi(B + α)/ϑi((α,∞)), (2.1.10)

ϕβ
i (B) = ϕi(B + β)/ϕi((β,∞)), (2.1.11)

for B ∈ B((0,∞)) and ϑα
i ({0}) = 0 = ϕβ

i ({0}). Then, for each route i, α ∈ [0, αi)

and β ∈ [0, βi), ϑ
α
i is the probability measure describing the residual work size for

initial flows on route i whose completed work size at time zero is α, and ϕβ
i is the

probability measure describing the time of the first exogenous route i arrival after

time zero given that at time zero, the last arrival to route i occurred β units of time

ago. Also, note here that ϑ0
i = ϑi and ϕ0

i = ϕi for each route i.

Now, let x be the element that is described in (2.1.9). In our interpretation of

the element x given earlier, while the completed work of the initial flows has been

specified, nothing about the residual work of the initial flows has been said. Similarly,

nothing has been said about the residual time till the first exogenous arrival. These

quantities unspecified by x are specified by families of independent random variables

{ũx
i }I

i=1 and {ṽx
1k}

n1
k=1, . . . , {ṽx

Ik}
nI
k=1 that are independent of {u1k}∞k=1, . . . , {uIk}∞k=1

and {v1k}∞k=1, . . . , {vIk}∞k=1. Here, for each route i, ũx
i is a random variable with

distribution ϕai
i describing the initial residual time till the first exogenous arrival to

route i and for each k ∈ {1, . . . , ni}, ṽx
ik is a random variable with distribution ϑcik

i

describing the initial residual work for the initial flow whose completed work is cik.

Given the sequences

{ũx
i }I

i=1, {ṽx
1k}

n1
k=1, . . . , {ṽ

x
Ik}

nI
k=1, {u1k}∞k=1, . . . , {uIk}∞k=1, {v1k}∞k=1, . . . , {vIk}∞k=1
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and a bandwidth sharing policy Λ, the dynamics of the Internet congestion control

model starting from x and operating under the bandwidth sharing policy can be

described in a discrete event manner.

2.2 Assumptions 2.2.1 and 2.2.2

The main theorem of this thesis shows that under mild assumptions, stability

of the deterministic fluid model implies stability of the stochastic network model.

Assumptions 2.2.1 and 2.2.2 are the two mild assumptions as defined below. These

are assumed to hold for the rest of our discussion.

Assumption 2.2.1. For each route i,

(i) the document size distribution ϑi has no atoms in R+,

(ii) there exists a subprobability measure Θi on (R+,B(R+)) such that for each f ∈
C+

c (R+),

lim
α↑αi

〈f, ϑα
i 〉 = 〈f,Θi〉, (2.2.1)

(iii)

lim
r→∞

sup
α∈[0,αi)

〈χ1[r,∞), ϑ
α
i 〉 = 0. (2.2.2)

Assumption 2.2.2. For each route i,

(i) for each r ∈ R+, ϕi((r,∞)) > 0; in other words, βi = ∞,

(ii) there exist an integer κi ≥ 1 and a Borel measurable function υi : R+ → R+

such that
∫∞

0
υi(x)dx > 0 and for each B ∈ B(R+),

ϕ
(∗κi)
i (B) ≥

∫ ∞

0

1B(x)υi(x)dx, (2.2.3)
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(iii)

lim sup
r→∞

1

r
sup

β∈[0,r]

〈χ, ϕβ
i 〉 = 0. (2.2.4)

Remarks about Assumptions 2.2.1 and 2.2.2

(a) For each route i, since Assumption 2.2.1 requires that ϑi has no atoms, we have

ϑi({αi}) = 0 and hence, without loss of generality, we may further assume that

for each x ∈ A taking the form in (2.1.9), each random variable in {ṽx
ik}

n1
k=1 ∪

{vik}∞k=1 only takes values in (0, αi) rather than (0, αi]; in fact, for route i such

that ni > 0, each ṽx
ik is a random variable taking values almost surely in the

smaller interval (0, αi − cik).

(b) The condition (iii) in Assumption 2.2.1 relates to tail behavior of ϑi. Roughly

speaking, it says that no ϑi should have a “heavy” tail. For example, on one

extreme, if ϑi is a Pareto distribution or a log-normal distribution, then one

can easily compute that

lim
α→∞

〈χ, ϑα
i 〉 = ∞,

which is inconsistent with (2.2.2). On the other extreme, if ϑi is a probability

distribution with bounded support i.e., αi <∞, then (2.2.2) is clearly satisfied.

Another notable class of distributions satisfying (2.2.2) is the class of finite

mixtures of Erlang distributions with the same intensity; the density of such a

distribution has the form

m∑
`=1

q`λ
n`+1 x

n`

(n`)!
e−λx, x > 0, (2.2.5)

where m ≥ 1, n1, . . . , nm ≥ 0 are integers, λ ∈ (0,∞), and
∑m

`=1 q` = 1 with

each q` > 0. If the distribution ϑi in fact has a density of the form (2.2.5), one

can check that

sup
α∈[0,∞)

〈χ2, ϑα
i 〉 <∞,
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which implies (2.2.2) holds. It is well-known that as well as being a subclass

of the phase type distributions, this class of distributions, approximates any

probability distribution on R+ arbitrarily well in the sense of Theorem 4.2 in

Asmussen [1].

(c) By Alaoglu’s theorem, the set of all subprobability measures on R+ is compact

in the vague topology. Hence, even without the condition (ii) of Assumption

2.2.1, for each route i, the collection {ϑα
i : α ∈ [0, αi)} is relatively compact

in the vague topology. So, the restriction posed by the condition (ii) of As-

sumption 2.2.1 is that for each route i, the collection {ϑα
i : α ∈ [0, αi)} of

probability measures has a unique vague limit point while the limit point can

be a subprobability measure. This uniqueness requirement combined with the

no atoms property of ϑi implies that Θi has no atoms in (0,∞) as shown in

Lemma B.2.1.

(d) For examples satisfying the condition (ii) of Assumption 2.2.1, note that if ϑi is

a probability distribution with αi < ∞, then Θi = δ0, and on the other hand,

if ϑi is a finite mixture of Erlang distributions with intensity λi, then Θi is the

exponential distribution with mean 1/λi.

(e) The condition (ii) of Assumption 2.2.2 requires that each ϕi is a spread-out

distribution. To be precise, a distribution F on R+ is spread-out if there exists

an integer n ≥ 1 and a non-negative non-trivial subprobability measure G

on R+ such that F (∗n) ≥ G and G is absolutely continuous with respect to

Lebegue measure. Use of spread-out distributions is not uncommon. Indeed,

this condition is used in assumptions for ergodicity of renewal processes (cf.

Asmussen [1]) and stability of multi-class queueing networks (cf. Dai [8]).
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2.3 Uniform framework for random variables

To provide a solid footing for studying our network model with differing initial

states, for the rest of this work, we fix a probability space (Ω,F ,P) and then, fix

the random variables

{U1k}∞k=1, . . . , {UIk}∞k=1, (2.3.1)

{V1k}∞k=1, . . . , {VIk}∞k=1, (2.3.2)

{Ũ1, . . . , ŨI}, (2.3.3)

{Ṽ1k}∞k=1, . . . , {ṼIk}∞k=1, (2.3.4)

that are independent, uniformly distributed on (0, 1) and are all defined on (Ω,F ,P).

Then, for each route i and x ∈ A that takes the form in (2.1.9), we assume that

uik = inf{s ∈ (0,∞) : ϕi([0, s]) ≥ Uik}, for each k ≥ 1, (2.3.5)

vik = inf{s ∈ (0,∞) : ϑi([0, s]) ≥ Vik}, for each k ≥ 1, (2.3.6)

ũx
i = inf{s ∈ (0,∞) : ϕai

i ([0, s]) ≥ Ũi}, (2.3.7)

ṽx
ik = inf{s ∈ (0,∞) : ϑcik

i ([0, s]) ≥ Ṽik}, if k ≤ ni. (2.3.8)

2.4 Descriptive processes

For this section, we fix x ∈ A, and we assume that x takes the form in (2.1.9).

Here, we will define various stochastic processes each of which describes some as-

pect of the network with initial state specified by the element x. We shall use the

superscript x to indicate a quantity associated with the network starting at x.

2.4.1 Finite dimensional state descriptors

For each route i and t ∈ [0,∞), let Qx
i (t) be the number of flows on route i at

time t and let W x
i (t) be the sum of the residual document sizes at time t of the flows
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on route i at time t. For the rest of this subsection, we fix route i.

At time t, the bandwidth allocated to route i is Λi(Q
x(t)), and this bandwidth is

shared equally by all Qx
i (t) flows on route i. In other words, each such flow receives

an instantaneous processing rate of Λi(Q
x(t))/Qx

i (t), which equals zero by convention

if Qx
i (t) = 0. Thus, a flow that is on route i during a time interval [t1, t2] ⊂ [0,∞)

receives cumulative service during that interval that is equal to

Sx
i (t1, t2) =

∫ t2

t1

Λi(Q
x(s))

Qx
i (s)

ds. (2.4.1)

Let τx
i (1) = ũx

i , and for each integer k ≥ 1, define inductively τx
i (k + 1) =

uik + τx
i (k). In words, each random variable τx

i (k) specifies the time when the k-th

exogenous arrival to route i occurs. For each t ∈ [0,∞), let Ex
i (t) be the number of

exogenous arrivals to route i by time t:

Ex
i (t) = sup{k ≥ 1 : τx

i (k) ≤ t}, (2.4.2)

where the supremum of an empty set is zero.

For k ≤ ni, consider the k-th initial flow (the k-th largest initial flow) on route i

which arrived to route i at some time at or before time 0; this flow has received total

processing in the amount of cik by time 0. At time 0, there still remains ṽx
ik amount

of work to be completed for the flow, and at time t > 0, the quantity Sx
i (0, t) ∧ ṽx

ik

describes the cumulative bandwidth allocated to this flow during [0, t]. For each

t ∈ [0,∞), let

co,x
ik (t) = cik + (Sx

i (0, t) ∧ ṽx
ik) , (2.4.3)

ro,x
ik (t) = (ṽx

ik − Sx
i (0, t))+ . (2.4.4)

describing respectively the completed work at time t and the residual work at time

t of the k-th initial flow for route i.

Next, consider the k-th exogenous flow to have arrived to route i; this flow arrives

at time τx
i (k) and has initial document size vik. At a time t ≥ τx

i (k), the cumulative
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service received by this flow during [τx
i (k), t] equals Sx

i (τx
i (k), t) ∧ vik. The amount

of work still to be done on the flow at time t equals (vik − Sx
i (τx

i (k), t))+. For

each t ∈ [0,∞), define the completed work and residual work at time t of the k-th

exogenous flow for route i by letting

ce,xik (t) = Si(τ
x
i (k), t) ∧ vik, (2.4.5)

re,x
ik (t) = (vik − Sx

i (τx
i (k), t))+ , (2.4.6)

respectively.

For future reference, we split the processes Qx and W x into parts corresponding

to documents initially in the system and documents that arrived after time zero. We

let Qo,x
i (t) be the number of flows that were on route i at time zero and are still on

route i at time t, and let W o,x
i (t) be the sum of the residual document sizes at time

t for these flows. Then, for each route i and t ∈ [0,∞),

Qo,x
i (t) =

∑ni

k=1 1(0,∞)(r
o,x
ik (t)), (2.4.7)

W o,x
i (t) =

∑ni

k=1 r
o,x
ik (t)1(0,∞)(r

o,x
ik (t)). (2.4.8)

Let Qe,x
i (t) be the number of exogenous flows on route i at time t, and let W e,x

i (t)

be the sum of the residual document sizes at time t for these flows. Then,

Qe,x
i (t) =

∑Ex
i (t)

k=1 1(0,∞)(r
e,x
ik (t)), (2.4.9)

W e,x
i (t) =

∑Ex
i (t)

k=1 re,x
ik (t)1(0,∞)(r

e,x
ik (t)). (2.4.10)

Finally, for each route i and t ∈ [0,∞), we have Qx
i (t) = Qo,x

i (t) + Qe,x
i (t) and

W x
i (t) = W o,x

i (t) +W e,x
i (t).

2.4.2 Infinite dimensional state descriptors

In this subsection, we introduce two processes Ax and Rx. The letters A and R

are mnemonics for “age” and “residual”, respectively.
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First, we let Ax be the random element taking values in D(A) such that for each

t ∈ [0,∞),

Ax(t) = (Ax
1(t), . . . ,Ax

I (t), A
x
1(t), . . . , A

x
I (t)) , (2.4.11)

where

Ax
i (t) =

ni∑
k=1

δco,x
ik (t)1(0,∞)(r

o,x
ik (t)) +

Ex
i (t)∑

k=1

δce,x
ik (t)1(0,∞)(r

e,x
ik (t)), (2.4.12)

Ax
i (t) =

{
t− τx

i (Ex
i (t)), if Ex

i (t) ≥ 1,

ax
i + t, if Ex

i (t) = 0.
(2.4.13)

In words, Ax(t) describes the flows in the network at time t in terms of their com-

pleted work and Ax(t) describes for each route, the time since the last arrival.

Next, we let Rx be the random element taking values in D(MI × RI
+) such that

for each t ∈ [0,∞),

Rx(t) = (Rx
1(t), . . . ,Rx

I (t), R
x
1(t), . . . , R

x
I (t)) , (2.4.14)

for each route i, where

Rx
i (t) =

ni∑
k=1

δro,x
ik (t)1(0,∞)(r

o,x
ik (t)) +

Ex
i (t)∑

k=1

δre,x
ik (t)1(0,∞)(r

e,x
ik (t)), (2.4.15)

Rx
i (t) = τx

i (Ex
i (t) + 1)− t. (2.4.16)

In words, Rx(t) describes the flows in the network at time t in terms of their residual

work, and Rx(t) describes for each route the time until the next arrival to that route

after time t.

For future reference, we split the processes Ax and Rx into parts corresponding

to documents initially in the system and documents that arrived after time zero: for
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each route i and t ∈ [0,∞),

Ao,x
i (t) =

ni∑
k=1

δco,x
ik (t)1(0,∞)(r

o,x
ik (t)), (2.4.17)

Ae,x
i (t) =

Ex
i (t)∑

k=1

δce,x
ik (t)1(0,∞)(r

e,x
ik (t)), (2.4.18)

Ro,x
i (t) =

ni∑
k=1

δro,x
ik (t)1(0,∞)(r

o,x
ik (t)), (2.4.19)

Re,x
i (t) =

Ex
i (t)∑

k=1

δre,x
ik (t)1(0,∞)(r

e,x
ik (t)). (2.4.20)

2.5 Age process

In this work, the centerpiece of our analysis is a Borel right process which we

will name the age process. The age process will be a canonical representation for

{Ax : x ∈ A}. Stability of our network model will be formulated in terms of this

process.

Let Ω† = D(A). For each t ∈ [0,∞), let A†
t be the mapping from Ω† to A given

by A†
t(ω) = ω(t), where for each ω ∈ Ω†, ω(t) is the value of the function ω at t.

Next, let F † = σ(A†
t : t ∈ [0,∞)). For each t ∈ [0,∞), let F †

t = σ
(
A†

s : s ∈ [0, t]
)

and F †
t+ = ∩s∈(t,∞)F †

s . Then, let F† = {F †
t : t ∈ [0,∞)} and A† = {A†

t : t ∈ [0,∞)}.
For each t ∈ [0,∞), define Pt : A × B(A) → [0, 1] by letting, for each x ∈ A and

B ∈ B(A),

Pt(x,B) = P[Ax(t) ∈ B]. (2.5.1)

Then, let P† = {Pt : t ∈ [0,∞)}. For convenience, for each t ∈ [0,∞), we will also

write A†(t) for A†
t .

Theorem 2.5.1. The collection P† is a Borel right semigroup,
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Proof. See Appendix A.

Henceforth, for each probability measure µ on (A,B(A)), we fix a probability

measure Pµ on (Ω†,F †) that has the properties described in Definition 1.3.1 for the

Borel right semigroup P†. In fact, it follows from the proof of Lemma A.3.1 that for

each B ∈ F †, we have

Pµ(B) =

∫
A
P[Ax(·) ∈ B]µ(dx).

We denote by Eµ, the expectation operator for Pµ.

Definition 2.5.1. The age process is the Borel right process

(Ω†,F †,F†,A†,P†). (2.5.2)

Definition 2.5.2. The network model is stable if the age process is positive Harris

recurrent.

2.6 Fluid model solutions

Our main result is that the network model is stable if an associated fluid model is

stable. The fluid model solutions we use are formal functional law of large numbers

approximations to sequences taken from the family {Rx : x ∈ A} associated with

the residual processes.

Definition 2.6.1 (Gromoll and Williams [13]). Given a continuous function ζ :

[0,∞) → MI, the auxiliary functions for ζ are the functions (z, w, τ, u) such that

zi(t) = 〈1, ζi(t)〉, (2.6.1)

wi(t) = 〈χ, ζi(t)〉, (2.6.2)

τi(t) =
∫ t

0

(
Λi(z(s))1(0,∞)(zi(s)) + ρi1{0}(zi(s))

)
ds, (2.6.3)
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for each t ∈ [0,∞) and route i, and

uj(t) = Cjt−
I∑

i=1

Mjiτi(t), (2.6.4)

for each t ∈ [0,∞) and resource j.

For our next definition, we let

C = {f ∈ C1
b (R+) : f(0) = f ′(0) = 0}, (2.6.5)

where f ′ denotes the first derivative of f .

Definition 2.6.2 (Gromoll and Williams [13]). A fluid model solution is a continuous

function ζ : [0,∞) → MI such that the following three properties are satisfied by ζ

and its auxiliary functions (z, w, τ, u):

(i) 〈1{0}, ζi(t)〉 = 0 for each t ∈ [0,∞) and route i,

(ii) uj is non-decreasing for each resource j,

(iii) for each f ∈ C, route i and t ∈ [0,∞),

〈f, ζi(t)〉 = 〈f, ζi(0)〉+

∫ t

0

(
νi〈f, ϑi〉 − 〈f ′, ζi(s)〉

Λi(z(s))

zi(s)

)
1(0,∞)(zi(s))ds.

When the initial fluid workload is finite, the following is also true.

Proposition 2.6.1 (Gromoll and Williams [13]). Suppose that ζ is a fluid model

solution with finite initial workload, i.e., wi(0) = 〈χ, ζi(0)〉 < ∞ for each route i.

Then, the fluid workload function w associated with ζ satisfies the following for each

route i and t ∈ [0,∞):

wi(t) = wi(0) +

∫ t

0

(ρi − Λi(z(s)))1(0,∞)(zi(s))ds (2.6.6)

= wi(0) + ρit− τi(t). (2.6.7)

In particular, the fluid workload wi(t) is finite for each t ∈ [0,∞) and route i.
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Definition 2.6.3. The fluid model is stable if for each r ∈ (0,∞), there exists tr ∈
(0,∞) such that whenever ζ is a fluid model solution with ‖〈1, ζ(0)〉‖∨‖〈χ, ζ(0)〉‖ ≤
r, then ζ(t) = 0 for each t ∈ [tr,∞).

For an illustration of fluid model stability, the reader is encouraged to see Gromoll

and Williams [14] for two examples. There it is shown that, when the underlying

network is either a linear network or a simple tree network, under the nominal con-

dition that the average load placed on each resource is less than its capacity, i.e.,∑I
i=1Mjiρi < Cj for each resource j, the associated fluid model is stable.

2.7 Main theorem

Theorem 2.7.1 (Main theorem). If the fluid model is stable, then the network model

is stable.



Chapter 3

Sequence of states and fluid limits

For each initial state x ∈ A, we define a numerical quantity that corresponds to

a size for x as follows:

|x| =
I∑

i=1

Qx
i (0) +

I∑
i=1

Ax
i (0). (3.0.1)

For instance, for any element x taking the form in (2.1.9), we have

|x| =
I∑

i=1

(ni + ai).

Roughly speaking, for each x ∈ A, the quantity |x| measures a size of the state of

the network. We caution the reader that although we use the | · | notation, | · | is not

a norm on A.

For the rest of this chapter, we fix a sequence {x`}∞`=1 in A such that as `→∞,

|x`| → ∞ and for each integer ` ≥ 1, |x`| > 0 and

x` =

 n`
1∑

k=1

δc`
1k
, . . . ,

n`
I∑

k=1

δc`
Ik
, a`

1, . . . , a
`
I

 , (3.0.2)

where for each route i, n`
i is a non-negative integer, a`

i ∈ R+ and 0 ≤ c`i1 < . . . <

c`ini
< αi. In other words, for the system starting at x`, on route i, there are exactly

26
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n`
i initial flows at time zero, where for each k ∈ {1, . . . , n`

i}, the number c`ik represents

the completed work of the initial flow with the k-th largest completed work among

the n`
i initial flows on route i, and a`

i is the time (measured from time zero) since the

last arrival to route i.

For future use, for each route i, let Ni be the random element taking values in

D(R+) such that for each t ∈ [0,∞),

Ni(t) = max

{
n ≥ 0 :

n∑
k=1

uik ≤ t

}
. (3.0.3)

3.1 Sequence of scaled descriptors

For each integer ` ≥ 1, there is a network starting at x` with size |x`| of x`. We

speed up time by |x`| and scale down the magnitude of the network starting at x` by

|x`| as follows; for each t ∈ [0,∞), let

A
`
(t) = 1

|x`|A
x`

(t|x`|), (3.1.1)

E
`
(t) = 1

|x`|E
x`

(t|x`|), (3.1.2)

Q
`
(t) = 1

|x`|Q
x`

(t|x`|), (3.1.3)

R
`
(t) = 1

|x`|R
x`

(t|x`|), (3.1.4)

W
`
(t) = 1

|x`|W
x`

(t|x`|). (3.1.5)

For each integer ` ≥ 1 and route i, we introduce the random element N
`

i taking

values in D(R+) by letting, for each t ∈ [0,∞),

N
`

i(t) =
1

|x`|
Ni(t|x`|), (3.1.6)

and note that

E
`

i(·) =
1

|x`|
1

[R
`
i(0),∞)

(·) +N
`

i((· −R
`

i(0))
+). (3.1.7)
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For future use, we split the scaled descriptors as follows. First, recall the def-

initions of Ao,x(t), Ae,x(t), Ro,x(t), Re,x(t), Ax(t), Rx(t), Qo,x(t), Qe,x(t), W o,x(t)

and W e,x(t) from Section 2.4. Then, for each integer ` ≥ 1, define the scaled ran-

dom elements Ao,`
, Ae,`

, Ro,`
and Re,`

, taking values in D(MI) by letting, for each

t ∈ [0,∞),

Ao,`
(t) = 1

|x`|A
o,x`

(t|x`|), (3.1.8)

Ae,`
(t) = 1

|x`|A
e,x`

(t|x`|), (3.1.9)

Ro,`
(t) = 1

|x`|R
o,x`

(t|x`|), (3.1.10)

Re,`
(t) = 1

|x`|R
e,x`

(t|x`|), (3.1.11)

and note that

A`
(t) = 1

|x`|A
x`

(|x`|t) = Ao,`
(t) +Ae,`

(t), (3.1.12)

R`
(t) = 1

|x`|R
x`

(|x`|t) = Ro,`
(t) +Re,`

(t). (3.1.13)

Next, for each integer ` ≥ 1, define the scaled random elements Q
o,`

, Q
e,`

, W
o,`

and W
e,`

taking values in D(RI
+) by letting, for each t ∈ [0,∞),

Q
o,`

(t) = 〈1,Ao,`
(t)〉, (3.1.14)

Q
e,`

(t) = 〈1,Ae,`
(t)〉, (3.1.15)

W
o,`

(t) = 〈χ,Ao,`
(t)〉, (3.1.16)

W
e,`

(t) = 〈χ,Ae,`
(t)〉, (3.1.17)

and note that

Q
`
(t) = Q

o,`
(t) +Q

e,`
(t), (3.1.18)

Q
`
(t) = W

o,`
(t) +W

e,`
(t). (3.1.19)



29

3.2 Weak limit points of scaled residual work de-

scriptors

Here, we state a result that plays an important role in our proof of the main

theorem. Recall that for each x ∈ A and t ∈ [0,∞), Rx(t) consists of the first I
elements of Rx(t) and tracks residual work sizes for flows in the network at time t.

Theorem 3.2.1. Let t ∈ (0,∞). Then, the sequence

{R`
(t+ ·) : ` = 1, 2, 3, . . .} (3.2.1)

of random elements taking values in D(MI) is C-tight, and any weak limit point is

almost surely a fluid model solution with finite initial workload.

Corollary 3.2.1. Let t ∈ (0,∞), and let R be a weak limit point of the sequence

(3.2.1). Then, almost surely, for each s ∈ [0,∞)

‖〈1,R(s)〉‖ ≤ I + (t+ s) ‖ν‖ , (3.2.2)

‖〈χ,R(s)〉‖ ≤
(
maxI

i=1 supα∈[0,αi)
〈χ, ϑα

i 〉
)

+ (t+ s) ‖ρ‖ . (3.2.3)

Our proof of Theorem 3.2.1 is broken into six steps, each of which corresponds

to one of the next six subsections, and Corollary 3.2.1 will be proven after our proof

of Theorem 3.2.1 is completed.

3.2.1 Convergence of scaled exogenous flow arrival descrip-

tors

Recall that for each x ∈ A and t ∈ [0,∞), Rx(t) consists of the last I elements of

Rx(t) and for each route i, Rx
i (t) describes the time (measured from time t) till the

next exogenous flow arrival to route i for the network starting at x.
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Lemma 3.2.1. The sequence {(E`
, R

`
)}∞`=1 of random elements taking values in

D(R2I
+) converges in distribution to (E,R), where Ei(t) = νit and Ri(t) = 0 for each

route i and t ∈ [0,∞).

Proof. First, note that (E,R) ∈ C(R2I
+) is deterministic and continuous. Hence, it is

enough to show convergence in distribution for each component (cf. Theorem 11.4.5

in Whitt [28] and Proposition VI.2.2 in Jacod and Shiryaev [18]). In other words, it

suffices to prove that for each route i, as `→∞, E
`

i converges in distribution to Ei

and as `→∞, R
`

i converges in distribution to Ri. For this, fix route i.

Step 1. For each integer ` ≥ 1, note that

1

|x`|
E[Rx`

i (0)] ≤ 1

|x`|
sup

β≤|x`|
〈χ, ϕβ

i 〉.

Then, by (2.2.4) in Assumption 2.2.2, we have

lim
`→∞

E[R
`

i(0)] ≤ lim sup
`→∞

1

|x`|
sup

β≤|x`|
〈χ, ϕβ

i 〉 = 0,

and this shows that lim`→∞ E[R
`

i(0)] = 0. So, by Markov’s inequality, R
`

i(0) con-

verges in distribution to 0 as `→∞.

Step 2. Recall our definition of {N `

i}∞`=1 in (3.1.6). It is well known, by the

functional law of large numbers for renewal processes, that the sequence {N `

i}∞`=1

converges in distribution to Ei as `→∞. It follows using Step 1 that the sequence

{N `

i((· − R
`

i(0))+)}∞`=1 converges in distribution to Ei. Therefore, by the identity in

(3.1.7), as `→∞, the sequence {E`

i}∞`=1 converges in distribution to Ei.

Step 3. Note that for each integer ` ≥ 1 and t ∈ [0,∞),

t+R
`

i(t) =
1

|x`|
τx`

i (Ex`

i (t|x`|) + 1) = R
`

i(0) +
1

|x`|

Ni(|x`|(t−R
`
i(0))

+)∑
k=1

uik. (3.2.4)

The sequence {N `

i((·−R
`

i(0))+)}∞`=1 converges in distribution to Ei and the sequence

{R`

i(0)}∞`=1 converges in distribution to 0. Then, using Lemma 1 in Iglehart and
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Whitt [16], we see that the sequence 1

|x`|

Ni(|x`|(·−R
`
i(0))

+)∑
k=1

uik


∞

`=1

converges in distribution to (1/νi)Ei ∈ C(R+), where (1/νi)Ei(t) = t for all t ∈
[0,∞). Together with (3.2.4), we see that {R`

i}∞`=1 converges in distribution to Ri ≡
0.

3.2.2 Tightness of scaled state descriptors at fixed times

Recall that for each x ∈ A and t ∈ [0,∞), Ax(t) consists of the first I elements

of Ax(t) and describes completed work for flows in the network at time t. Also, for

each x ∈ A and t ∈ [0,∞), Qx(t) = 〈1,Rx(t)〉 = 〈1,Ax(t)〉 counts the number of

flows in the network at time t, and W x(t) = 〈χ,Rx(t)〉 describes the residual work

for flows in the network at time t.

For our next lemma, we define

S = MI × RI
+ × RI

+ ×MI × RI
+ ×MI ×MI × RI

+ × RI
+,

and we equip the product space S with the product topology, where each M in the

first MI is given the topology of vague convergence but any other M is equipped

with the topology of weak convergence.

Lemma 3.2.2. Let t ∈ [0,∞). The sequence

{(A`
(t), E

`
(t), Q

`
(t),R`

(t),W
`
(t),Ro,`

(t),Re,`
(t),W

o,`
(t),W

e,`
(t))}∞`=1 (3.2.5)

of random elements taking values in S is tight.

Proof. We divide our proof into two steps.
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Step 1. Observe that for each integer ` ≥ 1 and route i, almost surely, Q
o,`

i (t) ≤
Q

`

i(0) and W
o,`

i (t) ≤ W
o,`

i (0), and then, note that

Q
`

i(0) ≤ 1, (3.2.6)

E[W
o,x`

i (0)] ≤ supα∈[0,αi)
〈χ, ϑα

i 〉. (3.2.7)

Therefore, for each integer ` ≥ 1,

E[‖Qo,`
(t)‖] =

∑I
i=1 E[Q

o,`

i (t)] ≤ I, (3.2.8)

E[‖W o,`
(t)‖] =

∑I
i=1 E[W

o,`

i (t)] ≤ I maxI
i=1 supα∈[0,αi)

〈χ, ϑα
i 〉. (3.2.9)

Next, note that for each route i, almost surely,

Q
e,`

i (t) ≤ E
`

i(t), (3.2.10)

W
e,`

i (t) ≤ 1
|x`|
∑Ex`

i (|x`|t)
k=1 vik, (3.2.11)

and

lim`→∞ E[E
`

i(t)] = tνi, (3.2.12)

lim`→∞ E[(1/|x`|)
∑Ex`

i (|x`|t)
k=1 vik] = tρi. (3.2.13)

Therefore, we have

lim`→∞ E[‖E`
(t)‖] ≤ ItmaxI

i=1 νi, (3.2.14)

lim sup`→∞ E[‖Qe,`
(t)‖+ ‖W e,`

(t)‖] ≤ ItmaxI
i=1(νi + ρi). (3.2.15)

Step 2. Through Markov’s inequality, one sees that for each integer n ≥ 1, there

exists rn ∈ (0,∞) such that

lim inf
`→∞

P
[
(E

`
(t), Q

o,`
(t),W

o,`
(t), Q

e,`
(t),W

e,`
(t)) ∈ [0, rn/2]5I

]
≥ 1− 1

2n
,

and since each Q
`
(t), (respectively, W

`
(t)) is obtained by adding Q

o,`
(t) to Q

e,`
(t),

(respectively W
o,`

(t) to W
e,`

(t)), this implies that

lim inf
`→∞

P
[
E

`
(t) ∈ [0, rn]I, Q

`
(t) ∈ [0, rn]I,W

`
(t) ∈ [0, rn]I

]
≥ 1− 1

n
. (3.2.16)
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The inequality (3.2.16) implies that for each integer n ≥ 1,

lim inf
`→∞

P
[
(A`

(t),R`
(t),Ro,`

(t),Re,`
(t)) ∈ K̃n ×K3

n

]
≥ 1− 1

n
, (3.2.17)

where

K̃n = {µ ∈ MI :
∑I

i=1〈1, µi〉 ≤ rn},

Kn = {µ ∈ MI :
∑I

i=1〈1, µi〉 ∨ 〈χ, µi〉 ≤ rn}.

For each integer n ≥ 1, by Alaoglu’s theorem, the set K̃n is compact with respect to

the topology of vague convergence and also, the set Kn is compact with respect to

the topology of weak convergence (cf. Theorem 15.7.5 in Kallenberg [19]). So,

K̃n × [0, rn]I × [0, rn]I ×Kn × [0, rn]I ×Kn ×Kn × [0, rn]I × [0, rn]I

is a compact subset of S. Then, the inequalities (3.2.16) and (3.2.17) imply tightness

of the sequence (3.2.5).

3.2.3 Limit points of scaled state descriptors at time zero

For our next lemma, recall the definition of Θ1, . . . ,ΘI in Assumption 2.2.1. The

following lemma shows that the limit points of the scaled initial residual work de-

scriptors can be written in terms of the limit points of the scaled initial completed

work descriptors.

Lemma 3.2.3. Let (A0
, E

0
, Q

0
,R0

,W
0
) be a weak limit point of the sequence

{(A`
(0), E

`
(0), Q

`
(0),R`

(0),W
`
(0)) : ` = 1, 2, . . .}.

Then, for each route i and B ∈ B(R+),

R0

i (B) =

∫
[0,αi)

ϑα
i (B)A0

i (dα) +
(
Q

0

i − 〈1[0,αi),A
0

i 〉
)

Θi(B). (3.2.18)
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Proof. First, note that A0
and Q

0
are deterministic since {A`

(0)}∞`=1 and {Q`
(0)}∞`=1

are deterministic. Next, it is well known that there exists a sequence {fk}∞k=1 in

C+
b (R+) such that for each (µ, µ′) ∈ M2, µ = µ′ if and only if 〈fk, µ〉 = 〈fk, µ

′〉
for each integer k ≥ 1. Hence, to prove (3.2.18), it suffices to show that for each

f ∈ C+
b (R+) and route i, almost surely,

〈f,R0

i 〉 =

∫
[0,αi)

〈f, ϑα
i 〉A

0

i (dα) +
(
Q

0

i − 〈1[0,αi),A
0

i 〉
)
〈f,Θi〉. (3.2.19)

For this, we fix f ∈ C+
b (R+). Our proof consists of five steps.

Step 1. For each route i, define a function Hi : [0, αi) → R+ by letting Hi(α) =

〈f, ϑα
i 〉 for each α ∈ [0, αi). Now, for each route i, we have that for each integer

` ≥ 1,

〈Hi1[0,αi),A
`

i(0)〉 =
∫

[0,αi)
Hi(α)A`

i(0)(dα) = 1
|x`|
∑Qx`

i (0)

k=1 〈f, ϑc`
ik

i 〉, (3.2.20)

E[〈f,R`

i(0)〉] = E

[
1
|x`|
∑Qx`

i (0)

k=1 f(ṽx`

ik )

]
= 1

|x`|
∑Qx`

i (0)

k=1 〈f, ϑc`
ik

i 〉. (3.2.21)

Since 〈f, ·〉 ∈ C+(M), by continuous mapping, it follows that for each route i, the

sequence {〈f,R`

i(0)〉}∞`=1 converges in distribution to 〈f,R0

i 〉 as ` → ∞. Also, since

each Qx`

i (0) ≤ |x`|, we have that

sup
`=1,2,3,...

(〈f,R`

i(0)〉)2 ≤ ‖f‖2
∞ <∞.

For each route i, this implies that the sequence {〈f,R`

i(0)〉}∞`=1 is uniformly integrable

and then, we have that

lim
`→∞

E[〈f,R`

i(0)〉] = E[〈f,R0

i 〉].

Hence, for each route i,

lim
`→∞

〈Hi1[0,αi),A
`

i(0)〉 = lim
`→∞

E[〈f,R`

i(0)〉] = E[〈f,R0

i 〉]. (3.2.22)
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Step 2. We claim that as `→∞,

〈f,R`

i(0)〉 ⇒ E[〈f,R0

i 〉]. (3.2.23)

In view of (3.2.20), (3.2.21) and (3.2.22), it suffices to show that for each route i and

ξ`
i =

1

|x`|

Qx`

i (0)∑
k=1

ξ`
ik,

where each ξ`
ik = f(ṽx`

ik )− 〈f, ϑc`
ik

i 〉, k = 1, . . . , Qx`

i (0), we have that

lim
`→∞

E[(ξ`
i )

2] = 0.

For each route i, by the independence and mean zero property of each sequence

{ξ`
ik}

Qx`

i (0)

k=1 , we have that

lim sup
`→∞

E[(ξ`
i )

2] = lim sup
`→∞

1

|x`|2

Qx`

i (0)∑
k=1

E[(ξ`
ik)

2] (3.2.24)

≤ lim sup
`→∞

1

|x`|
4‖f‖2

∞ = 0, (3.2.25)

and this proves (3.2.23).

Step 3. To prepare for Step 4, for each route i, fix an increasing sequence {bik}∞k=1

in (0, αi) such that for each integer k ≥ 1, A0

i ({bik}) = 0 and

〈1(bik,αi),A
0

i 〉‖f‖∞ +

∫
(bik,αi)

Hi(α)A0

i (dα) ≤ 1

2k
, (3.2.26)

and limk→∞ bik = αi. Next, for each ε ∈ (0, 1) and route i, we fix αi,ε ∈ [0, αi) such

that |〈f, ϑα
i 〉 − 〈f,Θi〉| < ε/4 for each α ∈ [αi,ε, αi), and let ki,ε be an integer so that

biki,ε
≥ αi,ε and 1/(2ki,ε) ≤ ε/4. Hence, for any integer k ≥ ki,ε, we have(
〈1(bik,αi),Ax`

i (0)〉
|x`|

∣∣∣∣∣〈Hi1(bik,αi),Ax`

i (0)〉
〈1(bik,αi),Ax`

i (0)〉
− 〈f,Θi〉

∣∣∣∣∣
)
∨
∣∣∣∣∫

(bik,αi)

Hi(α)A0

i (dα)

∣∣∣∣ ≤ ε

4
,
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where we take 0/0 = 0. Recall that for each route i, the sequences {A`

i(0)}∞`=1 and

{Q`

i(0)}∞`=1 are deterministic, {A`

i(0)}∞`=1 converges to A0

i vaguely, and {Q`

i(0)}∞`=1

converges to Q
0

i . Next, note that for each route i, because ϑi has no atoms in R+,

we have Hi ∈ C+
b ([0, αi)). Since each bik < αi is a continuity point of A0

i ,

lim
`→∞

〈Hi1[0,bik],A
`

i(0)〉 =

∫
[0,bik]

Hi(α)A0

i (dα). (3.2.27)

Step 4. We claim that for each route i,

lim
`→∞

〈Hi1[0,αi),A
`

i(0)〉 = 〈Hi1[0,αi),A
0

i 〉+ (Q
0

i − 〈1[0,αi),A
0

i 〉)〈f,Θi〉. (3.2.28)

First, note that all quantities in (3.2.28) are deterministic so that we can use almost

sure limits (rather than distributional limits). To show (3.2.28), consider ε ∈ (0, 1)

and route i. Then, for each integer k ≥ ki,ε,

lim sup
`→∞

∣∣∣∣〈Hi1[0,αi),A
`

i(0)〉 −
∫

[0,αi)

Hi(α)A0

i (dα)− (Q
0

i − 〈1[0,αi),A
0

i 〉)〈f,Θi〉
∣∣∣∣

≤ lim sup
`→∞

{∣∣∣∣〈Hi1[0,bik],A
`

i(0)
〉
−
∫

[0,bik]

Hi(α)A0

i (dα)

∣∣∣∣
+

∣∣∣∣∫
(bik,αi)

Hi(α)A0

i (dα)

∣∣∣∣+ 〈1(bik,αi),Ax`

i (0)〉
|x`|

∣∣∣∣∣∣
〈
Hi1(bik,αi),Ax`

i (0)
〉

〈1(bik,αi),Ax`

i (0)〉
− 〈f,Θi〉

∣∣∣∣∣∣
+
∣∣∣〈1(bik,αi),A

`

i(0)〉 −
(
Q

0

i −
〈
1[0,αi),A

0

i

〉)∣∣∣ 〈f,Θi〉

}
≤ 0 + ε/4 + ε/4

+ lim sup
`→∞

(∣∣∣Q`

i(0)−Q
0

i

∣∣∣+ ∣∣∣〈1[0,bik],A
`

i(0)〉 − 〈1[0,αi),A
0

i 〉
∣∣∣) ‖f‖∞

≤ ε/2 + 0 + 〈1(bik,αi),A
0

i 〉‖f‖∞ ≤ ε/2 + ε/2 < ε.

Since ε ∈ (0, 1) and route i were arbitrarily chosen, (3.2.28) follows.

Step 5. Combining (3.2.22), (3.2.23) and (3.2.28) together, we obtain (3.2.19).
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3.2.4 Limit points of scaled state descriptors for exogenous

flows

In our proof of Theorem 3.2.1, for each t ∈ (0,∞), we will apply Theorem 4.1 of

Gromoll and Williams [13] to the sequence {R`
(t+ ·)}∞`=1. To do this, among other

things, we must verify that the weak limit points of the sequence {R`
(t)}∞`=1 satisfy

certain properties, and the next lemma is the first step in our verification of these

properties.

Lemma 3.2.4. The sequence {(Re,`
, Q

e,`
,W

e,`
) : ` = 1, 2, . . .} of random elements

taking values in D(MI × RI
+ × RI

+) is C-tight, and if (Re
, Q

e
,W

e
) is a weak limit

point, then almost surely, for each route i and t ∈ (0,∞),

〈1{x},R
e

i (t)〉 = 0, for each x ∈ [0,∞), (3.2.29)

〈χ,Re

i (t)〉 = W
e

i (t) <∞. (3.2.30)

Proof. The same proof technique as used to prove Theorem 4.1 in Gromoll and

Williams [13] can be used to show our claim here. While there are some differences,

they are all minor issues. In particular, the results in [13] are about measure-valued

processes akin to R`
, but Re,`

is only a portion of R`
. Also, dynamics are as if the

system started empty, but bandwidth allocation is determined by Q
`

rather than

Q
e,`

. However, these differences cause no significant difficulty in adapting the proof

of Theorem 4.1 in [13] to our case. In fact, since Re,`
(0) = 0 for each integer ` ≥ 1

the proof of Theorem 4.1 in [13] can be slightly simplified in our case. For example,

Lemma 5.3 and Lemma 5.4 are important steps toward proving Theorem 4.1 in [13],

but the first part of the proof of Lemma 5.3 and Step 1 of the proof of Lemma 5.4

in [13] can be safely omitted in our case. Then, once a version of Lemma 5.4 is

established for our case, an oscillation result similar to Lemma 5.6 of [13] can be

obtained for our case, going through almost identical computations. This is because

the dynamics behind both R`
and Re,`

have the same bandwidth sharing policy and
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for each route i, and so at each time t the point masses of Re,`

i (t) and R`

i(t) move

toward zero at the same rate. For further details, we refer the reader to Gromoll and

Williams [13].

3.2.5 Limit points of scaled state descriptors at fixed times

for initial flows

By combining our main results in this subsection, i.e., Lemma 3.2.5 and Lemma

3.2.6, one can obtain results that apply to initial flows and that are akin to (3.2.29)

and (3.2.30) in Lemma 3.2.4. Also, we point out here that while Lemma 3.2.5 holds

for all t ∈ [0,∞), Lemma 3.2.6 is valid only for all t ∈ (0,∞). We will further explain

this in Remark 3.2.1 which appears after our proof of Lemma 3.2.6.

Lemma 3.2.5. Let t ∈ [0,∞), and let (Ro
(t),W

o
(t)) be a weak limit point of the

sequence {(Ro,`
(t),W

o,`
(t))}∞`=1 of random elements taking values in MI×RI

+. Then,

almost surely, W
o

i (t) <∞ for each route i and

〈χ,Ro
(t)〉 = W

o
(t). (3.2.31)

Proof. Our proof consists of four steps.

Step 1. For convenience of notation, we assume that we have already passed to a

subsequence so that as `→∞,

(Ro,`
(t),W

o,`
(t)) ⇒ (Ro

(t),W
o
(t)). (3.2.32)

Furthermore, by invoking the Skorohod representation theorem (cf. Whitt [28]), we

may assume that the convergence in distribution is replaced by almost sure con-

vergence. Next, to facilitate our computations, for each integer k ≥ 1, we define

fk : R+ → [0, 1] by letting, for each s ∈ R+,

fk(s) = 1− 1 ∧ inf{|s− r| : r ∈ [0, k]}.
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Step 2. For each route i, P[W
o

i (t) <∞] = 1 because

E[ lim
`→∞

W
o,`

i (t)] ≤ lim inf
`→∞

E[W
o,`

i (t)]

≤ lim inf
`→∞

E[W
o,`

i (0)]

≤ lim inf
`→∞

Q
o,`

i (0) sup
α∈[0,αi)

〈χ, ϑα
i 〉

≤ sup
α∈[0,αi)

〈χ, ϑα
i 〉 <∞.

Step 3. Note that fk ∈ C+
b (R+) and 0 ≤ fk(s) ≤ fk+1(s) ≤ 1 for all s ∈ R+ and

integers k ≥ 1. Also, observe that limk→∞ fk(s) = 1 for all s ∈ R+. Then, almost

surely, for each integer k ≥ 1 and route i,

〈χfk,R
o

i (t)〉 ≤ 〈χfk+1,R
o

i (t)〉, (3.2.33)

W
o

i (t)− 〈χfk,R
0

i (t)〉 ≥ W
o

i (t)− 〈χfk+1,R
o

i (t)〉, (3.2.34)

and since χfk ∈ C+
b (R+), almost surely,

W
o

i (t) = lim
`→∞

〈χ,Ro,`

i (t)〉 ≥ lim
`→∞

〈χfk,R
o,`

i (t)〉 = 〈χfk,R
o

i (t)〉, (3.2.35)

so that

W
o

i (t)− 〈χfk,R
o

i (t)〉 = lim
`→∞

〈χ,Ro,`

i (t)〉 − lim
`→∞

〈χfk,R
o,`

i (t)〉 (3.2.36)

= lim
`→∞

〈χ(1− fk),R
o,`

i (t)〉. (3.2.37)

Then, we have that almost surely, for each route i,

0 ≤ W
o

i (t)− 〈χ,Ro

i (t)〉 (3.2.38)

= lim
k→∞

(
W

o

i (t)− 〈χfk,R
o

i (t)〉
)

(3.2.39)

= lim
k→∞

(
lim
`→∞

〈χ(1− fk),R
o,`

i (t)〉
)
, (3.2.40)

where existence of the monotone limit in (3.2.39) is by the inequality in (3.2.34) and

the equality in (3.2.40) is by the equality in (3.2.37).



40

Step 4. Using Fatou’s lemma,

0 ≤ E
[

lim
k→∞

(
lim
`→∞

〈χ(1− fk),R
o,`

i (t)〉
)]

≤ lim inf
k→∞

E
[
lim
`→∞

〈χ(1− fk),R
o,`

i (t)〉
]

= lim inf
k→∞

lim inf
`→∞

E
[
〈χ(1− fk),R

o,`

i (t)〉
]

≤ lim inf
k→∞

lim inf
`→∞

E
[
〈χ1[k,∞),R

`

i(0)〉
]

≤ lim inf
k→∞

lim inf
`→∞

sup
α∈[0,αi)

〈χ1[k,∞), ϑ
α
i 〉

= lim inf
k→∞

sup
α∈[0,αi)

〈χ1[k,∞), ϑ
α
i 〉 = 0,

by Assumption 2.2.1. Therefore, together with (3.2.38)-(3.2.40), we see that for each

route i, almost surely,

0 ≤ W
o

i (t)− 〈χ,Ro

i (t)〉 = lim
k→∞

lim
`→∞

〈χ(1− fk),R
o,`

i (t)〉 = 0,

proving the identity in (3.2.31).

Lemma 3.2.6. Let t ∈ (0,∞), and let Ro
(t) be a weak limit point of the sequence

{Ro,`
(t))}∞`=1 of random elements taking values in MI. Then, almost surely, for each

route i, Ro

i (t) has no atoms in R+.

Proof. Our proof consists of five steps.

Step 1. For each integer ` ≥ 1, define a random element D
o,`

taking values in

DI(R+) by letting, for each route i and s ∈ [0,∞),

D
o,`

i (s) = Q
o,`

i (0)−Q
o,`

i (s) ≤ 1, (3.2.41)

and note that

Q
`

i(s) = Q
`

i(0)−D
o,`

i (s) +Q
e,`

i (s). (3.2.42)

By Lemma B.7.3, when the product space DI(R+) =
∏I

i=1 D(R+) is given the product

topology, where each D(R+) is given the M ′
1 topology, the sequence {Do,`}∞`=1 is tight.
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Also, by Lemma 3.2.4, when D(RI
+) is given the J1 topology, the sequence {Qe,`}∞`=1

is C-tight. Then, since we have the tightness results of Lemma 3.2.2 (with t = 0), the

tightness of {Do,`}∞`=1 and the C-tightness of {Qe,`}∞`=1 established in Lemma 3.2.4,

we may assume that we have already passed to a subsequence so that as `→∞, the

sequence

{(A`
(0),R`

(0),Ro,`
(t), Q

`
(0), D

o,`
, Q

e,`
)}∞`=1 (3.2.43)

of random elements taking values in

MI ×MI ×MI × [0, 1]I × DI(R+)× D(RI
+) (3.2.44)

converges in distribution to the random element

(A0
,R0

,Ro
(t), Q

0
, D

o
, Q

e
) (3.2.45)

such that Q
e

takes values almost surely in C(RI
+). Here, we cautiously remind the

reader that the product space in (3.2.44) is given the product topology, where each

M associated with {A`
(0)}∞`=1 is given the topology of vague convergence whereas

each M associated with {R`
(0)}∞`=1 or {Ro,`

(t)}∞`=1 is given the topology of weak

convergence. Also, while the set D(RI
+) is given the J1 topology, each D(R+) of the

product space DI(R+) is given the M ′
1 topology.

Then, by invoking the Skorohod representation theorem for random elements

taking values in a separable metric space (cf. Whitt [28]), we may further assume

that the convergence is almost sure rather than in distribution.

Step 2. Let Q
o
(t) = 〈1,Ro

(t)〉 and also define a random element Q by letting, for

each route i and s ∈ [0,∞),

Qi(s) = Q
0

i −D
o

i (s) +Q
e

i (s). (3.2.46)

First, for each route i and integer ` ≥ 1, almost surely,

〈1,Ro,`

i (t)〉 = Q
o,`

i (t) = Q
`

i(0)−D
o,`

i (t),
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whence

Q
o

i (t) ≡ 〈1,Ro

i (t)〉 = lim
`→∞

Q
o,`

i (t) = lim
`→∞

(
Q

`

i(0)−D
o,`

i (t)
)
. (3.2.47)

Next, since Q
e

takes values in C(RI
+) almost surely and {Qe,`}∞`=1 converges almost

surely to Q
e

in the J1 topology, we have that almost surely, {Qe,`}∞`=1 converges to

Q
e

uniformly on compact intervals. Moreover, for each route i and almost every ω,

there exists a sequence {ai
k,ω}∞k=1 ⊂ [0, t] such that, for each s ∈ [0, t] \ {ai

k,ω}∞k=1,

lim
`→∞

D
o,`

i (s, ω) = D
o

i (s, ω)

so that

lim
`→∞

Q
`

i(s, ω) = lim
`→∞

(
Q

`

i(0)−D
o,`

i (s, ω) +Q
e,`

i (s, ω)
)

(3.2.48)

= Q
0

i −D
o

i (s, ω) +Q
e

i (s, ω) (3.2.49)

= Qi(s, ω). (3.2.50)

Therefore, for each route i and almost every ω, if s ∈ [0, t] \ {ai
k,ω}∞k=1, then by

(3.2.47),

Qi(s, ω) = lim
`→∞

Q
`

i(s, ω) ≥ lim
`→∞

(
Q

`

i(0)−D
o,`

i (t, ω)
)

= Q
o

i (t, ω). (3.2.51)

Step 3. For each integer ` ≥ 1, define a random element S
`
(t) taking values in

RI
+ by letting, for each route i,

S
`

i(t) =

∫ t

0

Λi(Q
`
(u))

Q
`

i(u)
du, (3.2.52)

and define a random element S(t) by letting, for each route i,

Si(t) =


∫ t

0
Λi(Q(s))

Qi(s)
ds, if Q

o

i (t) > 0,

0, if Q
o

i (t) = 0.
(3.2.53)
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We caution the reader that for each route i, Si(t) is defined somewhat arbitrarily; in

particular, when Q
o

i (t) = 0, Si(t) is not meant to be the limit of {S`

i(t)}∞`=1.

Now, we claim that for each route i and almost every ω such that Q
o

i (t, ω) > 0,

lim
`→∞

S
`

i(t, ω) = Si(t, ω) ∈ (0,∞). (3.2.54)

To see this, note that for each route i and almost every ω, if Q
o

i (t, ω) > 0, then

for each s ∈ [0, t] \ {ai
k,ω}∞k=1, by (3.2.51) and continuity of Λi at n = (n1, . . . , nI)

satisfying ni > 0, we have that as `→∞,

Λi(Q
`
(s, ω))

Q
`

i(s, ω)
→ Λi(Q(s, ω))

Qi(s, ω)
> 0, (3.2.55)

where the left member is uniformly bounded by 2‖C‖/Qo

i (t, ω) for all ` sufficiently

large (depending on ω). It then follows by bounded convergence that (3.2.54) holds.

Step 4. We claim that for each route i and B ∈ B(R+), almost surely,

Ro

i (t)(B) =

{ ∫
(S

o
i (t),∞)

1B(r − S
o

i (t))R
0

i (dr), if Q
o

i (t) > 0,

0, if Q
o

i (t) = 0.
(3.2.56)

Note that for each f ∈ C+
b (R+), route i and integer ` ≥ 1,

〈f,Ro,`

i (t)〉 =

∫
(S

`
i(t),∞)

f(r − S
`

i(t))R
`

i(0)(dr). (3.2.57)

First, note that by Lemma 3.2.3, R0

i ∈ M is deterministic and since Θi and ϑα
i have

no atoms in (0,∞), Ro

i has no atoms in (0,∞). Next, we also have Si(t, ω) ∈ (0,∞)

for each route i and almost every ω such that Q
o

i (t, ω) > 0. Hence, for almost every

ω such that Q
o

i (t, ω) > 0, we may apply Lemma B.6.2 to see that for each route i

and f ∈ C+
b (R+),

〈f,Ro

i (t, ω)〉 =

∫
(S

o
i (t,ω),∞)

f(r − S
o

i (t, ω))R0

i (dr),
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On the other hand, for almost every ω such that Q
o

i (t, ω) = 0, we see that for each

route i and f ∈ C+
b (R+),

0 ≤ 〈f,Ro

i (t, ω)〉 ≤ ‖f‖∞Q
o

i (t, ω) = 0. (3.2.58)

Since any finite Borel measure on R+ is uniquely determined by its integrals against

functions in C+
b (R+), this implies the results in (3.2.56).

Step 5. We now prove Ro

i (t) has no atoms almost surely for each route i. Recall

that for each route i, ϑi has no atoms in R+ by Assumption 2.2.1, and Θi has no

atoms in (0,∞) by Lemma B.2.1. Therefore, it follows that if Q
o

i (t, ω) > 0, then by

(3.2.56) and Lemma 3.2.3, for each r ∈ R+,

〈1{r},R
o

i (t, ω)〉 =

∫
(S

o
i (t,ω),∞)

1{r}(w − S
o

i (t, ω))R0

i (dw) (3.2.59)

≤
∫

[0,αi)

ϑα
i ({r + S

o

i (t, ω)})A0

i (dα) (3.2.60)

+(Q
0

i − 〈1[0,αi),A
0

i 〉)Θi({r + S
o

i (t, ω)}), (3.2.61)

= 0. (3.2.62)

On the other hand, if ω is such that Q
o

i (t, ω) = 0, then trivially, for each r ∈ R+,

〈1{r},R
o

i (t, ω)〉 = 〈1{r}, 0〉 = 0. This observation completes our proof.

Remark 3.2.1. To see our reason for excluding the initial time in the statement of

Lemma 3.2.6, imagine a case where for some route i, αi < ∞ and the sequence

{A`

i(0)}∞`=1 converges to δαi
. In that case, using Lemma 3.2.3, one can show that

through a subsequence, {R`

i(0)}∞`=1 converges in distribution to qiδ0, where qi is a

limit point of the sequence {Q`

i(0)}∞`=1. So, if qi > 0, then one sees that the conclusion

of Lemma 3.2.6 need not hold for the initial time.

3.2.6 Proof of Theorem 3.2.1 and Corollary 3.2.1

Proof of Theorem 3.2.1. Fix t0 ∈ (0,∞). The statement that the sequence

{R`
(t0 + ·) : ` = 1, 2, 3, . . .} (3.2.63)
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is C-tight and any weak limit point of (3.2.63) is almost surely a fluid model solution,

is equivalent to the statement that each subsequence of the sequence (3.2.63) has a

subsequence that converges in distribution and the weak limit point of this further

subsequence is almost surely a (continuous) fluid model solution. We note that by

Lemma 3.2.2, the sequence

{(Ro,`
(t0),W

o,`
(t0),R

e,`
(t0),W

e,`
(t0),R

`
(t0),W

`
(t0))}∞`=1 (3.2.64)

is tight. Thus, to prove Theorem 3.2.1, we consider a subsequence of (3.2.63), where

by taking a further subsequence, we may assume that (3.2.64) converges in distribu-

tion to

(Ro
(t0),W

o
(t0),R

e
(t0),W

e
(t0),R(t0),W (t0)), (3.2.65)

along the subsequence. Then, it suffices to show that for this subsequence, the

sequence

{(R`
(t0 + ·), Q`

(t0 + ·), T `
(t0 + ·)− T

`
(t0), U

`
(t0 + ·)− U

`
(t0),W

`
(t0 + ·))}∞`=1

is C-tight, and any weak limit point (R, Q, T , U,W ) is such that almost surely, R is

a fluid model solution with auxiliary functions (Q,W, T , U).

The key step in our proof is to verify the assumptions of Theorem 4.1 of [13] from

which the result follows immediately. First, for each route i, and integers k and ` ≥ 1,

let H`
ik be the original size of the document associated with the (Ex`

i (|x`|t0) + k)-th

exogenous flow for route i. Then, for each integer ` ≥ 1, the i.i.d. sequences

{H`
1k}∞k=1, . . . , {H`

Ik}∞k=1

are mutually independent. Moreover, for each route i, the sequence {H`
ik}∞k=1 is

equal in distribution to the sequence {vik}∞k=1, and is independent from the random

elements Rx`
(|x`|t0) and Ex`

(|x`|t0 + ·) − Ex`
(|x`|t0). From this observation, one

sees that the assumptions (4.11)-(4.13) for Theorem 4.1 of Gromoll and Williams
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[13] are trivially satisfied for our case, and also, since maxI
i=1〈1{0}, ϑi〉 = 0 and

maxI
i=1〈χ, ϑi〉 <∞, the assumptions (4.8) and (4.9) for Theorem 4.1 of Gromoll and

Williams [13] are also satisfied.

Next, since by Lemma 3.2.1, as `→∞,

Ex`
(|x`|(t0 + ·))− Ex`

(|x`|t0)
|x`|

⇒ E(t0 + ·)− E(t0) = E(·), (3.2.66)

where E ∈ D(RI
+) such that Ei(t) = νit for each route i, the assumption (4.10) for

Theorem 4.1 of Gromoll and Williams [13] is satisfied.

Lastly, note that for each integer ` ≥ 1,

1

|x`|
Rx`

(|x`|t0 + 0) = R`
(t0) = Ro,`

(t0) +Re,`
(t0),

and therefore, by the assumed convergence of (3.2.64) along the subsequence, we

have

R(t0) = Ro
(t0) +Re

(t0), (3.2.67)

W (t0) = W
o
(t0) +W

e
(t0). (3.2.68)

Furthermore, by Lemma 3.2.4, Lemma 3.2.5 and Lemma 3.2.6, almost surely, for

each route i, we have

〈χ,Ri(t0)〉 = W i(t0) <∞, (3.2.69)

〈1{x},Ri(t0)〉 = 0, for each x ∈ [0,∞). (3.2.70)

This verifies the assumptions (4.14)-(4.16) for Theorem 4.1 of Gromoll and Williams

[13].

In summary, the hypotheses in Section 4.2 of Gromoll and Williams [13] are sat-

isfied and so, the desired conclusion follows by Theorem 4.1 of Gromoll and Williams

[13].
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Proof of Corollary 3.2.1. Fix t0 ∈ (0,∞). By Lemma 3.2.1 and a standard functional

law of large numbers,

(E
`
, Y

`
) ⇒ (E, Y ), (3.2.71)

where Y
`

i(s) =
∑b|x`|sc

i=1 vik/|x`| and Y i(s) = 〈χ, ϑi〉s for each s ∈ R+ and route i, and

so as `→∞,

1

|x`|

Ex(|x`|·)∑
k=1

vik ⇒ Ei(·)〈χ, ϑi〉 = ρi(·),

where ρi(t) = ρit for each t ∈ R+.

Now, let R be a weak limit point of the sequence {R`
(t0 + ·)}∞`=1. Then, it is not

hard to see that (E,R) is a weak limit point of the sequence {(E`
(·),R`

(t0 + ·))}∞`=1.

By taking a subsequence if necessary, assume that as `→∞, the sequence

{(A`
(0), E

`
(0), Q

`
(0),R`

(0),W
`
(0)) : ` = 1, 2, . . .}

converges in distribution to

(A0
, E

0
, Q

0
,R0

,W
0
).

For each route i, fix a sequence {fik}∞k=1 ⊂ C+
c ([0, αi)) such that for each x ∈ [0, αi),

0 ≤ fik(x) ≤ fi(k+1)(x) ≤ 1 for each integer k ≥ 1 and limk→∞ fik(x) = 1, and then,

note that

〈χ,Θi〉 = lim
k→∞

〈χfik,Θi〉

= lim
k→∞

lim
α↑αi

〈χfik, ϑ
α
i 〉

≤ sup
α∈[0,αi)

〈χ, ϑα
i 〉.
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Hence, by Lemma 3.2.3, we have

〈χ,R0

i 〉 =

∫
[0,αi)

〈χ, ϑα
i 〉A

0

i (dα) +
(
Q

0

i − 〈1[0,αi),A
0

i 〉
)
〈χ,Θi〉

≤
(

sup
α∈[0,αi)

〈χ, ϑα
i 〉
)
〈1[0,αi),A

0

i 〉+
(
Q

0

i − 〈1[0,αi),A
0

i 〉
)
〈χ,Θi〉

≤ sup
α∈[0,αi)

〈χ, ϑα
i 〉
(
〈1[0,αi),A

0

i 〉+Q
0

i − 〈1[0,αi),A
0

i 〉
)

=
(

sup
α∈[0,αi)

〈χ, ϑα
i 〉
)
Q

0

i .

Now, note that for each t ∈ [0,∞), integer ` ≥ 1 and route i,

1

|x`|
〈1,Rx`

i (|x`|t)〉 =
1

|x`|
Qx`

i (|x`|t) (3.2.72)

≤ 1

|x`|
Qo,x`

i (0) +
1

|x`|
Qe,x`

i (|x`|t), (3.2.73)

≤ 1

|x`|
Qo,x`

i (0) +
1

|x`|
Ex`

i (|x`|t), (3.2.74)

and

1

|x`|
〈χ,Rx`

i (|x`|t)〉 =
1

|x`|
W x`

i (|x`|t) (3.2.75)

≤ 1

|x`|
W o,x`

i (0) +
1

|x`|
W e,x`

i (|x`|t) (3.2.76)

≤ 1

|x`|
W o,x`

i (0) +
1

|x`|

Ex(|x`|t)∑
k=1

vik. (3.2.77)

Therefore, it follows that almost surely, for each route i and s ∈ [0,∞),

〈1,Ri(s)〉 ≤ 1 + Ei(t0 + s) = 1 + (t0 + s)νi,

and

〈χ,Ri(s)〉 ≤
(

sup
α∈[0,αi)

〈χ, ϑα
i 〉
)
Q

0

i + Ei(t0 + s)〈χ, ϑi〉

≤
(

sup
α∈[0,αi)

〈χ, ϑα
i 〉
)

+ (t0 + s)ρi.



Chapter 4

Proof of the main theorem

Throughout this chapter, we assume that the fluid model is stable. Then, we fix

t0 ∈ (0,∞) such that for each fluid model solution ζ satisfying the condition that

‖〈1, ζ(0)〉‖ ∨ ‖〈χ, ζ(0)〉‖ ≤ (I + ‖ν‖) ∨

((
I

max
i=1

sup
α∈[0,αi)

〈χ, ϑα
i 〉
)

+ ‖ρ‖

)
, (4.0.1)

we have

ζ(t0) = 0. (4.0.2)

Let

t1 = 1 + t0. (4.0.3)

Our proof of the main theorem is divided into three steps, each of which corresponds

to one of the following three sections.

4.1 From fluid model stability to negative mean

drift

Here, we show that (given that the fluid model is stable), a “negative mean drift”

property is satisfied in the sense of the inequality (4.1.15) in Corollary 4.1.1, but
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first, we prove two key lemmas.

Lemma 4.1.1.

lim
r→∞

sup
|x|>r

E

[
1

|x|
‖Qx(|x|t1)‖

]
= 0. (4.1.1)

Proof. For each r ∈ [0,∞) and route i, let

Hi(r) = sup
|x|>r

E

[
1

|x|
Qx

i (|x|t1)
]
.

To prove (4.1.1), it suffices to show that for each route i,

lim
r→∞

Hi(r) = 0. (4.1.2)

For this, fix route i. Now, if r1 ≤ r2, then Hi(r1) ≥ Hi(r2), whence limr→∞Hi(r)

exists, although the limit could be ∞. Fix a sequence {x`}∞`=1 in A so that |x`| > `

for each integer ` ≥ 1 and for each route i,

lim
`→∞

E

[
1

|x`|
Qx`

i (|x`|t1)
]

= lim
r→∞

Hi(r). (4.1.3)

Then, using Theorem 3.2.1, by taking a subsequence if necessary, we assume that

the sequence {
1

|x`|
Rx`

(|x`|(1 + ·)) : ` = 1, 2, 3, . . .

}
(4.1.4)

of random elements taking values in D(MI) converges in distribution as `→∞ to a

random element R which is almost surely a fluid model solution, and by Corollary

3.2.1 with t = 1 and s = 0, we may also assume that almost surely, ζ(0) = R(0)

satisfies the condition in (4.0.1). Then, by our choice of t0 ∈ (0,∞) satisfying

the property described in (4.0.2), we have that almost surely, R(t0) = 0 so that

〈1,R(t0)〉 = 0. Since almost surely, R is continuous, the sequence{
1

|x`|
Rx`

(|x`|(1 + t0)) : ` = 1, 2, 3, . . .

}
(4.1.5)
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converges in distribution to R(t0) = 0. Therefore, by the dominated convergence

theorem combined with the domination established in (3.2.72)-(3.2.74), we have

lim
r→∞

Hi(r) = lim
`→∞

E

[
1

|x`|
〈1,Rx`

i (|x`|t1)〉
]

= E[〈1,Ri(t0)〉] = 0. (4.1.6)

Lemma 4.1.2.

lim
r→∞

sup
|x|>r

E

[
1

|x|
‖Ax(|x|t1)‖

]
= 0. (4.1.7)

Proof. To prove (4.1.7), it suffices to show that for each route i,

lim
r→∞

sup
|x|>r

E

[
1

|x|
Ax

i (|x|t1)
]

= 0. (4.1.8)

For this, we fix route i, and recall our definition of the renewal process Ni in (3.0.3).

For each r ∈ [0,∞), let

Hi(r) = sup
|x|>r

E

[
1

|x|
Ax

i (|x|t1)
]
.

Note that if r1 ≤ r2, then Hi(r1) ≥ Hi(r2), and hence, limr→∞Hi(r) exists while the

limit could be ∞. We will show that limr→∞Hi(r) = 0. For this, fix a sequence

{x`}∞`=1 in A so that |x`| > ` for each integer ` ≥ 1 and

lim
`→∞

E

[
1

|x`|
Ax`

i (|x`|t1)
]

= lim
r→∞

Hi(r). (4.1.9)

Note that there is a functional central limit theorem for the sequence {uik}∞k=1 that

give the interevent times of the renewal process Ni, and recall that Rx`

i (0)/|x`| ⇒ 0

as ` → ∞. Then, using the proof of Lemma 6 in [16] (for the last equality below),

we see that

lim sup
`→∞

1

|x`|
E
[
Ax`

i (|x`|t1)1{Rx`
i (0)<|x`|t1}

]
≤ lim sup

`→∞

1

|x`|
E
[
uik1{k=Ex`

i (|x`|t1)}1{Rx`
i (0)<|x`|t1}

]
≤ lim sup

`→∞

1

|x`|
E

[
max

k=1,...,Ex`
i (|x`|t)

uik

]
= 0.
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On the other hand,

lim sup
`→∞

1

|x`|
E
[
Ax`

i (|x`|t1)1{Rx`
i (0)≥|x`|t1}

]
≤ lim sup

`→∞

1

|x`|
E
[
(Ax`

i (0) + |x`|t1)1{Rx`
i (0)≥|x`|t1}

]
≤ lim sup

`→∞

(
(1 + t1)E

[
1{Rx`

i (0)≥|x`|t1}

])
= (1 + t1) lim sup

`→∞
P
[
R

`

i(0) ≥ t1

]
= 0,

where the last inequality is obtained by Markov’s inequality and the last equality

uses Lemma 3.2.1. In summary, we have the desired equality in (4.1.8).

The following claim is the main result of this section.

Theorem 4.1.1.

lim
r→∞

sup
|x|>r

Ex

[
1

|x|
|A†(|x|t1)|

]
= 0.

Proof. For each x ∈ A and t ∈ [0,∞), we have |Ax(t)| = ‖Qx(t)‖+ ‖Ax(t)‖. There-

fore, we see that

lim
r→∞

sup
|x|>r

Ex

[
1

|x|
|A†(|x|t1)|

]
(4.1.10)

= lim
r→∞

sup
|x|>r

E

[
1

|x|
|Ax(|x|t1)|

]
(4.1.11)

= lim
r→∞

sup
|x|>r

E

[
1

|x|
‖Qx(|x|t1)‖+

1

|x|
‖Ax(|x|t1)‖

]
(4.1.12)

≤ lim
r→∞

sup
|x|>r

E

[
1

|x|
‖Qx(|x|t1)‖

]
+ lim

r→∞
sup
|x|>r

E

[
1

|x|
‖Ax(|x|t1)‖

]
(4.1.13)

= 0, (4.1.14)

where we have used Lemma 4.1.1 and Lemma 4.1.2 to see that the terms in (4.1.13)

are zero.
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Corollary 4.1.1. For each ε ∈ (0, 1), there exists r ∈ (0,∞) such that for any x ∈ A
with |x| > r,

Ex
[
|A†(|x|t1)|

]
− |x| ≤ −ε|x|. (4.1.15)

4.2 From negative mean drift to finite mean hit-

ting time

Here, we show that (given that the fluid model is stable), a “finite mean hitting

time” property is satisfied in the sense of Corollary 4.2.1. The main result of this

subsection is Theorem 4.2.1 from which Corollary 4.2.1 follows, and our proof of this

will take the “negative mean drift” property as the starting point. To prove this,

first, we establish two elementary lemmas.

For our next lemma, recall that the topology on A ⊂ MI ×RI
+ is induced by the

product topology on MI × RI
+ where each M of MI is equipped with the topology

of weak convergence.

Lemma 4.2.1. For each r ∈ [0,∞), the set {x ∈ A : |x| ≤ r} is a closed subset of

A.

Proof. Fix r ∈ [0,∞), and consider a sequence {x`}∞`=1 in A such that |x`| ≤ r for

each integer ` ≥ 1. Suppose that there exists x0 ∈ A such that lim`→∞ x` = x0.

Then, we have

lim
`→∞

(Qx`(0), Ax`(0)) = (Qx0(0), Ax0(0)).

so that

|x0| =
I∑

i=1

(Qx0
i (0) + Ax0

i (0)) = lim
`→∞

I∑
i=1

(Qx`
i (0) + Ax`

i (0)) = lim
`→∞

|x`| ≤ r.
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Lemma 4.2.2. For each r ∈ [0,∞),

sup
|x|≤r

E[|Ax(t1)|] <∞. (4.2.1)

Proof. Fix r ∈ [0,∞). Note that if r = 0, then (4.2.1) is clearly true since the set

{x ∈ A : |x| ≤ 0} consists of a single element. So, assume that r > 0. Note that for

each route i, if β ≤ r, then

〈χ, ϕβ
i 〉 =

1

ϕi((β,∞))

∫
(β,∞)

χ(u− β)ϕi(du) ≤
1

ϕi((r,∞))
〈χ, ϕi〉.

Therefore, for each x ∈ A such that |x| ≤ r and route i, we have

E[Ax
i (t1)1{Rx

i (0)≥t1}] ≤ E[Ax
i (0) +Rx

i (0)] ≤ r + 1
ϕi((r,∞))

〈χ, ϕi〉, (4.2.2)

E[Qx
i (t1)1{Rx

i (0)≥t1}] ≤ E[Qx
i (0)] ≤ r. (4.2.3)

Recall our definition of N in (3.0.3). For each route i, we have that E[Ni(t1)] < ∞
(cf. Chung [7]) and that

Ax
i (t1)1{Rx

i (0)<t1} ≤ t1

Qx
i (t1)1{Rx

i (0)<t1} ≤ Qx
i (0) + 1 +Ni((t1 −Rx

i (0))
+) ≤ Qx

i (0) + 1 +Ni(t1).

Therefore, for each x ∈ A such that |x| ≤ r and route i,

E[Ax
i (t1)1{Rx

i (0)<t1}] ≤ t1, (4.2.4)

E[Qx
i (t1)1{Rx

i (0)<t1}] ≤ 1 + E[Qx
i (0) +Ni(t1)] ≤ 1 + E[r +Ni(t1)]. (4.2.5)

Then, (4.2.1) follows from (4.2.2)-(4.2.5).

Theorem 4.2.1. There exist integers r̃ ≥ 1, c̃ ≥ 1 and d̃ ≥ 1 such that for each

x ∈ A,

Ex[τ̃ ] ≤ c̃|x|+ d̃, (4.2.6)

where

τ̃ = inf{t ≥ t1 : |A†(t)| ≤ r̃}. (4.2.7)
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Proof. Using Theorem 4.1.1, we can fix an integer r̃ ≥ 1 such that for each x ∈ A
with |x| > r̃,

Ex
[∣∣A†(|x|t1)

∣∣] ≤ |x|/2. (4.2.8)

and let

γ̃ = sup
|x|≤r̃

Ex[|A†(t1)|],

which is finite by Lemma 4.2.2. Next, for each x ∈ A, define

H(x) = 2t1|x|, (4.2.9)

h(x) =

{
t1, if |x| ≤ r̃,

|x|t1, if |x| > r̃,
(4.2.10)

and observe that

H(x)− h(x) + t1(1 + 2γ̃)1[0,r̃](|x|) =

{
2t1|x|+ 2t1γ̃, if |x| ≤ r̃,

|x|t1, if |x| > r̃.
(4.2.11)

On the other hand,

Ex
[
H(A†(h(x))

]
= Ex

[
2t1|A†(t1)|

]
≤ 2t1γ̃, if |x| ≤ r̃, (4.2.12)

Ex
[
H(A†(h(x))

]
= Ex

[
2t1|A†(|x|t1)|

]
≤ |x|t1, if |x| > r̃. (4.2.13)

Hence,

Ex
[
H(A†(h(x))

]
≤ H(x)− h(x) + t1 (1 + 2γ̃) 1[0,r̃](|x|). (4.2.14)

Let η†(0) = 0 and Φ†
0 = A†(0). Then, for each integer k ≥ 0, we inductively

define η†(k + 1) and Φ†(k + 1) as follows:

η†(k + 1) = η†(k) + h(Φ†(k)), (4.2.15)

Φ†(k + 1) = A†(η†(k + 1)). (4.2.16)
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Note that for each integer k ≥ 0, each η†(k) is a stopping time for F† and then, let

H†
k = F †

η†(k)
.

Also, let

ξ† = inf
{
k ≥ 1 : |Φ†(k)| ≤ r̃

}
, (4.2.17)

η̃† =
∑(ξ†−1)+

k=0 h(Φ†(k)), (4.2.18)

where we let inf ∅ = ∞.

Note that, on the event that {ξ† <∞},

η†(ξ†) =
∑(ξ†−1)+

k=0 h(Φ†(k)), (4.2.19)

|A†(η†(ξ†))| = |Φ†(ξ†)| ≤ r̃. (4.2.20)

Since each sample path of A† is right continuous and the set {x ∈ A : |x| ≤ r̃} is a

closed subset of A, we also have {τ̃ <∞} ⊂ {|A†(τ̃)| ≤ r̃}. Therefore, we have

τ̃ ≤

(ξ†−1)+∑
k=0

h(Φ†(k))

 = η̃†. (4.2.21)

Now, for each x ∈ A, by the inequality (4.2.14) together with the strong Markov

property of A† (see Lemma A.5.2),

Ex[H(Φ†(k + 1))|H†
k]

= EΦ†(k)[H(A†(h(Φ†(k))))]

≤ H(Φ†(k))− h(Φ†(k)) + t1(1 + 2γ̃)1[0,r̃](|Φ†(k)|),

and then, by Proposition 11.3.2 in Meyn and Tweedie [23],

Ex
[
η̃†
]

= Ex
[∑(ξ†−1)+

k=0 h(Φ†(k))
]
≤ H(x) + t1 (1 + 2γ̃) . (4.2.22)

Letting c̃ = d2t1e and d̃ = dt1(1 + 2γ̃)e, we have that for each x ∈ A,

Ex[τ̃ ] ≤ Ex[η̃†] ≤ c̃|x|+ d̃, (4.2.23)
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where the first and the second inequality in (4.2.23) are by (4.2.21) and the third

inequality in (4.2.23) is by (4.2.22).

Corollary 4.2.1. Fix an integer r̃ ≥ 1 as in Theorem 4.2.1, and define τ̃ by (4.2.7).

Then,

Px[τ̃ <∞] = 1 for each x ∈ A, (4.2.24)

sup|x|≤r̃ Ex[τ̃ ] <∞. (4.2.25)

4.3 Proof of positive Harris recurrence

Fix an integer r̃ ≥ 1 as formulated in Theorem 4.2.1, and define τ̃ by (4.2.7).

To prove positive Harris recurrence of the age process, we appeal to Theorem 1.1

and Theorem 1.2 of Meyn and Tweedie [22]. For this, by virtue of Lemma 4.2.1 and

Corollary 4.2.1, the remaining fact to be verified is that the set {x ∈ A : |x| ≤ r̃} is

petite (cf. [22]), i.e., there exist a non-trivial non-negative finite Borel measure µ0 on

A and a Borel probability measure λ0 on [0,∞) such that

inf
{x∈A:|x|≤r̃}

∫
[0,∞)

Pt(x,B)λ0(dt) ≥ µ0(B), for each B ∈ B(A). (4.3.1)

To show existence of the measures λ0 and µ0 satisfying (4.3.1), we will adapt the

proof of Proposition 4.7 in Bramson [6] to our present situation.

Step 1. The condition (i) in Assumption 2.2.2 implies that for each route i, there

exists ι(i) ∈ (r̃,∞) such that ϕi((r̃, ι(i))) > 0. Then, let

ι0 =
I

max
i=1

ι(i), (4.3.2)

and observe that for any β ∈ [0, r̃],

(r̃, ι0) ⊂ (β, β + ι0). (4.3.3)
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Therefore, we have

I
min
i=1

inf
β∈[0,r̃]

ϕβ
i ((0, ι0)) =

I
min
i=1

inf
β∈[0,r̃]

ϕi((β, β + ι0))

ϕi((β,∞))
(4.3.4)

≥
I

min
i=1

inf
β∈[0,r̃]

ϕi((β, β + ι0)) (4.3.5)

≥
I

min
i=1

ϕi((r̃, ι0)) > 0. (4.3.6)

Next, by Theorem VII.1.1 in Asmussen [1], the condition (ii) in Assumption 2.2.2

implies that there exists an integer κ0 ≥ maxI
i=1 κi along with ε0 ∈ (0, 1) and

`1, . . . , `I ∈ (ι0,∞) such that for each route i and interval

[s1, s2] ⊂ [`i − ι0, `i + 3],

we have

ϕ
(∗κ0)
i ([s1, s2]) ≥ (s2 − s1)ε0. (4.3.7)

Also, by the condition (iii) in Assumption 2.2.1, there exists an integer n0 ≥ 1 such

that

I
max
i=1

sup
α∈[0,αi)

〈
χ1[n0,∞), ϑ

α
i

〉
≤ 1/2. (4.3.8)

Now, let

`0 = maxI
i=1(`i + 3), (4.3.9)

γ0 = (r̃ ∨ (κ0 + 1))n0/b0, (4.3.10)

ε1 = minI
i=1 ϕi((r̃, ι0)), (4.3.11)

ε2 = minI
i=1 ϕi((`0 + 2γ0,∞)), (4.3.12)

where

b0 =
I

min
i=1

(
inf
{

Λi(n) : ni ≥ 1, ‖n‖ ≤ r̃ + I(κ0 + 1)
})

> 0; (4.3.13)
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the strict positivity holds since for each route i, the function Λi is continuous and

strictly positive on the compact set {n ∈ RI
+ : ni ≥ 1, ‖n‖ ≤ r̃ + I(κ0 + 1)}. Next,

define H0 : RI
+ → A by letting, for each a = (a1, . . . , aI) ∈ RI

+,

H0(a) = (0, . . . , 0, a1, . . . , aI) .

Finally, for each s ∈ (`0 + γ0, `0 + 2γ0), let

Γs = [s− (`1 + 3), s− `1]× . . .× [s− (`I + 3), s− `I],

and define a non-trivial non-negative subprobability measure µs on (A,B(A)) by

letting, for each B ∈ B(A),

µs(B) = (ε0ε1ε2)
I
(

1

2I

)r̃+(κ0+1) ∫
Γs

1H−1
0 (B)(r1, . . . , rI)dr1 · · · drI.

Step 2. Fix x ∈ A such that |x| ≤ r̃ and fix s ∈ (`0 + γ0, `0 + 2γ0). Let

Ωx
1 =

⋂I
i=1 {τx

i (κ0 + 1) ∈ [`i, `i + 3]} , (4.3.14)

Ωx
2 =

⋂I
i=1 {τx

i (κ0 + 2) ∈ (`0 + 2γ0,∞)} , (4.3.15)

Ωx
3 =

⋂I
i=1

{
maxκ0+1

k=1 vik ≤ n0

}
, (4.3.16)

Ωx
4 =

⋂I
i=1 {W x

i (0) ≤ n0Q
x
i (0)} . (4.3.17)

First, we claim that that

Ωx
1 ∩ Ωx

2 ∩ Ωx
3 ∩ Ωx

4 ⊂ {Ax(s) = 0}. (4.3.18)

This follows because on the event Ωx
1 ∩ Ωx

2 ∩ Ωx
3 ∩ Ωx

4 , for each route i,

Qe,x
i (s) ≤ κ0 + 1,

W e,x
i (s) ≤

∑κ0+1
k=1 vik,

W e,x
i (s) ≤

(∑κ0+1
k=1 vik −

∫ `0+γ0

`0
Λi(Q

x(s))ds
)+

≤ ((κ0 + 1)n0 − γ0b0)
+ = 0,

W o,x
i (s) ≤ (W x

i (0)−
∫ s

0
Λi(Q

x(u))du)+ ≤ (n0Q
x
i (0)− γ0b0)

+ = 0,

〈χ,Rx
i (s)〉 = W x

i (s) = W o,x
i (s) +W x,e

i (s) = 0,
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where we have used the fact that on the set in question, there are no new arrivals

in [`0, `0 + 2γ0] and so if Qx
i reaches zero in [`0, `0 + 2γ0], it stays there until after

`0 + 2γ0.

Next, for each route i and interval [s1, s2] ⊂ [`i, `i + 3],

P[τx
i (κ0 + 1) ∈ [s1, s2]] = P[τx

i (κ0 + 1)− ũx
i + ũx

i ∈ [s1, s2]]

≥ E[ϕ
(∗κ0)
i ([s1 − ũx

i , s2 − ũx
i ])); ũ

x
i ≤ ι0]

≥ (s2 − s1)ε0P[ũx
i ≤ ι0]

≥ (s2 − s1)ε0ε1,

where the first equality is obtained by conditioning on ũx
i and then restricting to the

event {ũx
i ≤ ι0}. So, more generally, for each B ∈ B(R+) and route i, we have

P[τx
i (κ0 + 1) ∈ B] ≥ ε0ε1

∫ `i+3

`i

1B(u)du.

Now, consider B ∈ B(A) such that H−1
0 (B) = B1 × . . . × BI, where B1, . . . , BI ∈

B(R+). Then, we see that for each s ∈ (`0 + γ0, `0 + 2γ0),

P [Ax(s) ∈ B] ≥ P
[
Ax(s) = 0, Ax(s) ∈ H−1

0 (B)
]

(4.3.19)

≥ P [Ωx
1 ∩ Ωx

2 ∩ Ωx
3 ∩ Ωx

4 , A
x(s) ∈ B1 × . . .×BI] (4.3.20)

= P[Ωx
3 ]P[Ωx

4 ]P[Ωx
1 ∩ Ωx

2 , A
x(s) ∈ B1 × . . .×BI], (4.3.21)

where the inequality in (4.3.20) is by (4.3.18) and the equality in (4.3.21) is by

independence. Looking at the first two factors in (4.3.21), note that, by our choice
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of n0, the inequality in (4.3.8) holds so that using Markov’s inequality, we have

P [Ωx
3 ]P [Ωx

4 ] =

(
I∏

i=1

P[
κ0+1
max
k=1

vik ≤ n0]

)(
I∏

i=1

P[W x
i (0) ≤ n0Q

x
i (0)]

)

≥

(
I∏

i=1

κ0+1∏
k=1

P[vik ≤ n0]

) I∏
i=1

Qx
i (0)∏

k=1

P[ṽx
ik ≤ n0]


≥

(
I∏

i=1

1

2κ0+1

)(
I∏

i=1

1

2Qx
i (0)

)

≥
(

1

2I

)r̃+(κ0+1)

.

Next, looking at the third factor of (4.3.21) separately, we have

P [Ωx
1 ∩ Ωx

2 , A
x(s) ∈ B1 × . . .×BI]

= P

[
I⋂

i=1

{s− τx
i (κ0 + 1) ∈ Bi} ; Ωx

1 ∩ Ωx
2

]

=
I∏

i=1

P [s− τx
i (κ0 + 1) ∈ Bi, τ

x
i (κ0 + 1) ∈ [`i, `i + 3], τx

i (κ0 + 2) ∈ (`0 + 2γ0,∞)]

≥ εI
2

I∏
i=1

P [τx
i (κ0 + 1) ∈ s−Bi, τ

x
i (κ0 + 1) ∈ [`i, `i + 3]]

≥ (ε0ε1ε2)
I

I∏
i=1

∫ `i+3

`i

1s−Bi
(u)du

= (ε0ε1ε2)
I

I∏
i=1

∫ s−`i

s−(`i+3)

1Bi
(u)du,

where s − Bi denotes the set {s − r : r ∈ Bi}, and the second equality and the

first inequality are obtained respectively by independence and by conditioning on

the event

I⋂
i=1

{τx
i (κ0 + 2)− τx

i (κ0 + 1) > `0 + 2γ0} ⊂
I⋂

i=1

{τx
i (κ0 + 2) ∈ (`0 + 2γ0,∞)}.
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In summary, we have

P [Ax(s) ∈ B] ≥
(

1

2I

)r̃+(κ0+1)

(ε0ε1ε2)
I

I∏
i=1

∫ s−`i

s−(`i+3)

1Bi
(u)du (4.3.22)

=

(
1

2I

)r̃+(κ0+1)

(ε0ε1ε2)
I
∫

Γs

1H−1
0 (B)(u)du (4.3.23)

= µs(B). (4.3.24)

Thus, we have

P [Ax(s) ∈ B] ≥ µs(B) (4.3.25)

for each B ∈ B(A) such that H−1
0 (B) = B1 × . . . × BI ∈ B(RI

+), and hence, by

Dynkin’s π-λ theorem, we also have the inequality (4.3.25) for each B ∈ B(A).

Step 3. Choose any s ∈ (`0 +γ0, `0 +2γ0), and then, define λ0 = δs, the unit point

mass at s, and let µ0 = µs. Now, by Step 2, the desired property stated in (4.3.1)

is satisfied with these choices for λ0 and µ0. Thus, by Theorem 1.1 and Theorem

1.2 of Meyn and Tweedie [22], the age process is positive Harris recurrent, and so,

Theorem 2.7.1 is proved.



Appendix A

Borel right process

The main goal of Appendix A is to verify that the collection (2.5.2) is a Borel

right process. When a queueing model’s underlying dynamics can be reduced to

a discrete event system, one can often rely on the theory of piecewise deterministic

Markov processes (PDMPs) as described in Davis [9] to produce a Borel right process

describing the queueing model. On the other hand, while it is shown in Davis [9] that

each PDMP as defined in Davis [9] is a Borel right process, there are two reasons

that stop us from simply applying relevant results in Davis [9] to our processes for

the Internet congestion control model.

In our present situation, the first reason is that in order for the age process to

be a PDMP as described in Davis [9], each of ϑ1, . . . , ϑI and ϕ1, . . . , ϕI should be

absolutely continuous with respect to Lebesgue measure, but we do not necessarily

want to assume this. The second reason is that in Davis [9], roughly speaking, when

a PDMP jumps to a new state, the state to which the PDMP jumps depends on

the state of the PDMP just prior to the jump time whereas for the age process, the

relationship between times between jumps and states to which the age process jumps

are slightly more intertwined.

Nonetheless, our proof here takes numerous hints from the discussion of PDMPs

63
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in Davis [9], and is broken into six stages in six sections below. In these six sections,

the terminology developed up to Section 2.5 will be adopted.

A.1 Umbrella states

We introduce here the set U whose elements describe both residual quantities as

well as age quantities, and hence, we use the symbol “U” for “umbrella”. For each

route i, let Ui,0 = {0} and for each integer ` ≥ 1, let

Ui,` =

{∑̀
k=1

δ(cik,rik) :
`

max
k=1

(cik + rik) < αi, 0 ≤ ci1 < . . . < ci`, 0 <
`

min
k=1

rik

}
,

and then, let

U = U1 × . . .× UI × (R+ × (0,∞))I, (A.1.1)

where Ui = ∪∞`=0Ui,` for each route i.

We can use each element of U to describe the network at time zero. For instance,

suppose that at time zero, for each route i, there are ni flows on route i and the

flow on route i with the k-th smallest completed work has completed work cik. Also,

suppose that the last time that a flow has arrived to route i is ai units of time ago

for each route i. Then, when

x = (
∑n1

k=1 δc1k
, . . . ,

∑nI
k=1 δcIk , a1, . . . , aI) , (A.1.2)

we can describe the network starting at x with the following random element of U:(∑n1

k=1 δ(c1k,ṽx
1k), . . . ,

∑nI
k=1 δ(cIk,ṽx

Ik), (a1, ũ
x
1), . . . , (aI, ũ

x
I )
)
, (A.1.3)

where any summation involving
∑0

k=1 is taken to be the zero measure.

For each route i, the topology on Ui is the topology induced by the topology

on M(R+ × R+), i.e., the topology of weak convergence of non-negative finite Borel
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measures on R+ × R+. Then, the set U is given the product topology. It can be

shown that U is locally compact with countable base (cf. Appendix B.1), and in

fact, the topology on U can be characterized by sequential convergence as described

below.

Remark A.1.1. Consider a sequence {y`}∞`=1 in U and y0 ∈ U such that

y0 =
(∑n0

1
k=1 δ(c01k,r0

1k), . . . ,
∑n0

I
k=1 δ(c0Ik,r0

Ik), (a
0
1, r

0
1), . . . , (a

0
I , r

0
I )
)
, (A.1.4)

and for each integer ` ≥ 1,

y` =
(∑n`

1
k=1 δ(c`

1k,r`
1k), . . . ,

∑n`
I

k=1 δ(c`
Ik,r`

Ik), (a
`
1, r

`
1), . . . , (a

`
I, r

`
I)
)
. (A.1.5)

Here, we caution the reader that superscripts in (A.1.4) and (A.1.5) are only meant

to be “labels” as opposed to being “exponents”. Then, it can be shown that

y0 = lim
`→∞

y`

if and only if the following three conditions (i)-(iii) are satisfied:

(i) for each route i, there exists an integer `i ≥ 1 such that for each integer ` ≥ `i,

n0
i = n`

i , (A.1.6)

(ii) for each route i such that n0
i ≥ 1, if k is an integer such that 1 ≤ k ≤ n0

i , then

(c0ik, r
0
ik) = lim

`→∞
(c`ik, r

`
ik), (A.1.7)

(iii) for each route i,

(a0
i , r

0
i ) = lim

`→∞
(a`

i , r
`
i ). (A.1.8)



66

For each y ∈ U, we let

I+(y) = {i ∈ {1, . . . , I} : ni > 0}, (A.1.9)

where

y =
(∑n1

k=1 δ(c1k,r1k), . . . ,
∑nI

k=1 δ(cIk,rIk), (a1, r1), . . . , (aI, rI)
)
. (A.1.10)

For future use in Appendix A.2, we define functions ∆ : U → (0,∞) and Ψ :

R+ × U → U by letting, for each t ∈ R+, y ∈ U and route i,

∆(y) =

 (minI
ι=1 rι) ∧minι∈I+(y)

(
minnι

k=1
rιk

Λι(n)/nι

)
, if I+(y) 6= ∅,

minI
ι=1 rι, if I+(y) = ∅,

Ψi(t, y) =

{ ∑ni

k=1 δ(cik+Λi(n)t/ni,rik−Λi(n)t/ni)1(0,αi)(rik − Λi(n)t/ni), if i ∈ I+(y),

0, otherwise,

ΨI+i(t, y) = (ai + t, ri − t)1(0,∞)(ri − t).

where y is assumed to take the form in (A.1.10). Also, define a function ψ : U → A
such that for each y ∈ U,

ψ(y) =

(
n1∑

k=1

δc1k
, . . . ,

nI∑
k=1

δcIk , a1, . . . , aI

)
, (A.1.11)

where y takes the form in (A.1.10).

Lemma A.1.1. The functions ∆, ψ and Ψ are Borel measurable.

Proof. Our proof is broken down to four steps.

Step 1. For each integer m ≥ 1, define a function fm : R → [0, 1] by letting, for

each s ∈ R,

fm(s) =
(
1− inf{m|s− r| : r ∈ [1/m,∞)}

)+

,
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and then, define a function Ψm : R+ × U →
(
M(R2

+)
)I ×

(
R2

+

)I
by letting, for each

(t, y) ∈ R+ × U and route i,

Ψm
i (t, y) =

{ ∑ni

k=1 δ(cik+Λi(n)t/ni,rik−Λi(n)t/ni)fm(rik − Λi(n)t/ni), if ni > 0,

0, otherwise,

Ψm
I+i(t, y) = (ai + t, ri − t)fm(ri − t),

where y is assumed to take the form in (A.1.10). Note that as m → ∞, we have

limm→∞ fm(s) = 1(0,∞)(s) for each s ∈ R, and from this, it follows that for each

(t, y) ∈ R+ × U, as m→∞, the sequence {Ψm(t, y)}∞m=1 converges to Ψ(t, y).

Step 2. Fix a sequence {y`}∞`=0 in U such that lim`→∞ y` = y0. Assume that

y0 ∈ U takes the form in (A.1.4) and also assume that for each integer ` ≥ 1, y` ∈ U
takes the form in (A.1.5). Also, fix a sequence {t`}∞`=0 in R+ such that t0 = lim`→∞ t`.

Note that for all sufficiently large integers ` ≥ 1, we have n` = n0 so that by taking

re-indexing if necessary, we assume that n` = n0 for all integer ` ≥ 1.

Step 3. For each integer m ≥ 1, note that fm ∈ C+
b (R+). Then, for each route i,

since lim`→∞(a`
i + t`, r

`
i − t`) = (a0

i + t0, r
0
i − t0),

lim
`→∞

(a`
i − t`, r

`
i − t`)fm(r`

i − t`) = (a0
i − t0, r

0
i − t0)fm(r0

i − t0),

and moreover, if n0
i ≥ 1, then for each integer m ≥ 1 and positive integer k ≤ n0

i ,

lim
`→∞

δ(c`
ik+Λi(n`)t`/n`

i ,r
`
ik−Λi(n`)t`/n`

i)
fm(r`

ik − Λi(n
`)t`/n

`
i)

= δ(c0ik+Λi(n0)t0/n0
i ,r0

ik−Λi(n0)t0/n0
i )
fm(r0

ik − Λi(n
0)t0/n

0
i ).

Therefore, it follows that for each integer m ≥ 1,

lim
`→∞

Ψm(t`, y`) = Ψ(t0, y0). (A.1.12)

Next, if I+(y0) = ∅, then from (A.1.8), it follows that lim`→∞ ∆(y`) = ∆(y0).

On the other hand, if I+(y0) 6= ∅, then using (A.1.6)-(A.1.8), we also see that

lim`→∞ ∆(y`) = ∆(y0). Similarly, we also see that lim`→∞ ψ(y`) = ψ(y0).
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Step 4. Since the sequences {y`}∞`=1 and {t`}∞`=1 are chosen arbitrarily in Step 2,

our computations in Step 3 show that the functions ∆ and ψ are continuous and for

each integer m ≥ 1, Ψm is a continuous function from R+×U to
(
M(R2

+)
)I×

(
R2

+

)I
.

Also, recall from Step 1 that Ψ is the pointwise limit of the sequence {Ψm}∞m=1. There-

fore, it follows that Ψ is a Borel measurable function from R+ × U to
(
M(R2

+)
)I ×(

R2
+

)I
. Now, the function Ψ takes values only in the set U, which is a Borel mea-

surable subset of
(
M(R2

+)
)I ×

(
R2

+

)I
, and from this, it follows that Ψ is also a Borel

measurable function from R+ × U to U.

A.2 Umbrella processes

We will define here a collection {Ux(t) : x ∈ A, t ∈ [0,∞)}, where for each

t ∈ [0,∞) and x ∈ A, the random element Ux(t) describes the network at time t

that starts at x. Our definition will be inductive. First, for each x ∈ A, we let

Ux(0) =
(∑n1

k=1 δ(c1k,ṽx
1k), . . . ,

∑nI
k=1 δ(cIk,ṽx

Ik), (a1, ũ
x
1), . . . , (aI, ũ

x
I )
)
, (A.2.1)

where x takes the form in (A.1.2), and set σx
0 = 0. Now, let x ∈ A, and to proceed

inductively, suppose that for an integer k ≥ 0, σx
k and Ux(σx

k) are well defined. Then,

we let σx
k+1 = σx

k + ∆(Ux(σx
k)) and then, for each t ∈ (σx

k , σ
x
k+1], define

Ux(t) = Ψ(t− σx
k ,U

x(σx
k)) + Lx(t), (A.2.2)

where each route i,

Lx
i (t) =

∑∞
k=1 δ(0,vik)1{t}(τ

x
i (k)), (A.2.3)

Lx
I+i(t) =

∑∞
k=1(0, uik)1{t}(τ

x
i (k)). (A.2.4)

Next, define a function L : [0,∞) × A × Ω → U by letting L(t, x, ω) = Lx(t, ω)

for each (t, x, ω) ∈ [0,∞) × A × Ω, where Lx(t, ω) denotes the value of Lx(t) at ω.

Similarly, define a function U : [0,∞)×A×Ω → U by letting U(t, x, ω) = Ux(t, ω)
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for each (t, x, ω) ∈ [0,∞)× A× Ω, where Ux(t, ω) denotes the value of Ux(t) at ω.

Lastly, define a function A : [0,∞)× A× Ω → A by letting A = ψ ◦U.

The following observation is the main result of this section.

Lemma A.2.1. The functions U : [0,∞)×A×Ω → U and A : [0,∞)×A×Ω → A
are B([0,∞)) × B(A) × F-measurable, and for each (t, x, ω) ∈ [0,∞) × A × Ω,

Ax(t, ω) = A(t, x, ω).

Proof. Since the function Ux(·, ω) is right continuous for each (x, ω) ∈ A × Ω, for

our proof for B([0,∞)) × B(A) × F -measurability of U, it suffices to show that for

each t ∈ [0,∞), the function U(t, ·, ·) is B(A) × F -measurable, and this will follow

essentially from the discrete event system dynamics of the network together with an

observation that the random variables describing the initial flows depend “nicely”

on initial states of the network.

For each route i, define Fi : [0, αi) × (0, 1) → [0, αi) and Gi : R+ × (0, 1) → R+

by letting

Fi(α, s) = inf{t ≥ 0 : ϑα
i ([0, t]) ≥ s}, (A.2.5)

Gi(β, s) = inf{t ≥ 0 : ϕβ
i ([0, t]) ≥ s}. (A.2.6)

Next, for each route i and integer k ≥ 1, define functions Hik : A×Ω → [0, αi)×(0, 1)

and Ki : A× Ω → R+ × (0, 1) by letting,

Hik(x, ω) =

{
(cik, Ṽik(ω)) if k ≤ ni,

(0, Ṽik(ω)) otherwise,
(A.2.7)

Ki(x, ω) = (ai, Ũi(ω)), (A.2.8)

where x is assumed to take the form in (A.1.11).

By Lemma B.3.1, for each route i, Fi is B([0, αi) × (0, 1))-measurable and Gi is

B(R+× (0, 1))-measurable; note that to use Lemma B.3.1, we are exploiting the fact
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that for each route i, by definition,

ϑα
i ([0, t]) = ϑα

i ((0, t]), (A.2.9)

ϕβ
i ([0, t]) = ϕβ

i ((0, t]), (A.2.10)

for each α ∈ [0, αi), β ∈ R+ and t ∈ [0,∞). Also, note that Hik and Ki are B(A)×F -

measurable. From this, we see that U(0, ·, ·) : A × Ω → U is B(A) × F -measurable

and L : [0,∞)×A×Ω → U is B([0,∞))×B(A)×F -measurable by noting that for

each (x, ω) ∈ A× Ω, route i and positive integer k ≤ ni,

ṽx
ik(ω) = Fi(Hik(x, ω)), (A.2.11)

ũx
i (ω) = Gi(Ki(x, ω)), (A.2.12)

vik(ω) = Fi(0, Vik(ω)), (A.2.13)

ui(ω) = Gi(0, Uik(ω)). (A.2.14)

Now, we fix t ∈ (0,∞). First, it is clear from our construction of {Ux : x ∈ A}
that for each x ∈ A and ω ∈ Ω,

Ux(t, ω) = Lx(t, ω) +
∞∑

k=0

Ψ(t− σx
k(ω),Ux(σx

k(ω), ω))1(σx
k (ω),σx

k+1(ω)](t). (A.2.15)

Hence, to prove that the function U(t, ·, ·) is B(A) × F -measurable, it is enough to

show that each term of the infinite sum in (A.2.15) defines a measurable function

from A × Ω to U when both x and ω are variables. In fact, it suffices to show that

for each integer k ≥ 0, when both x and ω are variables,

(σx
k(ω),Ux(σx

k(ω), ω)) (A.2.16)

induces a measurable function from A × Ω to [0,∞) × U, and we prove this by

induction.

The initial step k = 0 for our induction is already done since σx
0 = 0 for each

x ∈ A and we have already proved B(A)×F -measurability of the function U(0, ·, ·) :
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A×Ω → U. Next, for our induction step, suppose that our claim for (A.2.16) holds

for an integer k ≥ 0. Now, note that for each (x, ω) ∈ A× Ω,

σx
k+1(ω) = σx

k(ω) + ∆(Ux(σx
k(ω), ω))

Ux(σx
k+1(ω), ω) = Lx(σx

k+1(ω), ω) + Ψ(∆(Ux(σx
k(ω), ω)),Ux(σx

k(ω), ω)).

Since the functions ∆ and Ψ are measurable by Lemma A.1.1, we then have that our

claim in (A.2.16) holds true for k + 1, and This completes our induction step.

Next, measurability of the function A follows from measurability of U because

the function ψ is measurable. Lastly, the fact that Ax(t, ω) = A(t, x, ω) for each

(t, x, ω) ∈ [0,∞) × A × Ω follows from the fact that Ux(t, ω) = U(t, x, ω) and our

construction of Ux.

A.3 Probability measures

Let Ω′ = D(U). For each t ∈ [0,∞), let U′
t be the mapping from Ω′ to U given by

U′
t(ω) = ω(t), where for each ω ∈ Ω′, ω(t) is the value of the function ω at t. Next,

let F ′ = σ(U′
t : t ∈ [0,∞)) and define ψ̃ : Ω′ → Ω† by letting, for each ω ∈ Ω′, ψ̃(ω)

to be the element ω̃ of Ω† such that for each t ∈ [0,∞), ω̃(t) = ψ(ω(t)).

By Lemma A.2.1, the function U is a measurable function from [0,∞) × A × Ω

into U, and for each t ∈ [0,∞), x ∈ A and ω ∈ Ω, Ux(t, ω) = U(t, x, ω). Then, it

follows that the function U : A×Ω → D(U) obtained by letting U(x, ω) = U(·, x, ω),

for each (x, ω) ∈ A × Ω, is Borel measurable; the measurability of U follows from

the measurability of U since U(x, ω)(t) = U(t, x, ω) and B(D(R+)) is generated by

the coordinate projection mappings. In particular, for each x ∈ A, Ux = U(x, ·) is a

random element taking values in D(U). Therefore, for each x ∈ A, we may define a

probability measure Px on (Ω′,F ′) by letting, for each B ∈ F ′,

Px [B] = P [Ux ∈ B] . (A.3.1)
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Also, recall the definition of Ω† and F † from Section 2.5. Then, for each probability

measure µ on (A,B(A)), we may define a probability measure Pµ on (Ω†,F †) by

letting, for each B ∈ F †,

Pµ [B] =

∫
A
µ(dx)Px[ψ̃−1(B)], (A.3.2)

where the measurability in x is by Fubini’s theorem.

For each x ∈ A, we denote by Ex, the expectation operator for Px, and for each

probability measure µ on (A,B(A)), we will denote by Eµ, the expectation operator

for Pµ. For simplicity, for each x ∈ A, we denote by Px the probability measure Pδx ,

and denote by Ex the expectation operator Eδx .

Lemma A.3.1. For each B ∈ B(A) and probability Borel measure µ on A,

µ(B) = Pµ[A†(0) ∈ B]. (A.3.3)

Proof. Note that for each x ∈ A, we have Ax = ψ̃(Ux). Therefore, we have

Pµ[A†(0) ∈ B] = Pµ[{ω† ∈ Ω† : ω†(0) ∈ B}]

=

∫
A
µ(dx)Px[{ω′ ∈ Ω′ : ψ̃(ω′)(0) ∈ B}]

=

∫
A
µ(dx)P[Ux ∈ {ω′ ∈ Ω′ : ψ̃(ω′)(0) ∈ B}]

=

∫
A
µ(dx)P[ψ̃(Ux)(0) ∈ B]

=

∫
A
µ(dx)P[Ax(0) ∈ B]

= µ(B).

A.4 Semigroup property

In this section, we will prove that the collection P† = {Pt : t ∈ [0,∞)} is a Borel

Markov semigroup. To facilitate our discussion, we define a function Ψ† : R+ ×A →
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MI × RI
+ by letting, for each t ∈ [0,∞) and x ∈ A,

Ψ†(t, x) =

(
n1∑

k=1

δc1k+Λ1(n)t/n1 , . . . ,

nI∑
k=1

δcik+Λi(n)t/nI , a1 + t, . . . , aI + t

)
, (A.4.1)

when x takes the form in (A.1.11) and any summation involving
∑0

k=1 is taken to

be the zero measure. Also, for each x ∈ A and integer m ≥ 0, let

Hx
m = σ(Ax(σx

0 ),Ax(σx
1 ), . . . ,Ax(σx

m)).

Lemma A.4.1. Let x ∈ A and t ∈ [0,∞). For each B ∈ F ′, P-almost surely,

P[Ux(t+ ·) ∈ B|σx
1 > t]1{σx

1 >t} = PAx(t)[B]1{σx
1 >t}. (A.4.2)

Proof. Assume that x takes the form in (A.1.11). LetX1, . . . , Xm0 be an enumeration

of the following random variables:

{ũx
1 , . . . , ũ

x
I } ∪

{
ṽ1k

Λ1(n)/n1

}n1

k=1

∪ . . . ∪
{

ṽIk

ΛI(n)/nI

}nI

k=1

, (A.4.3)

and let Se be the collection of random variables listed in (2.3.1)-(2.3.2). Note that

{σx
1 > t} =

m0⋂
`=1

{X` > t}.

On the event {σx
1 > t}, the random element Ux(t) is determined by Ax(t) =

Ψ†(t, x) and {X1 − t, . . . , Xm0 − t}. Then, for each B1, . . . , Bm0 ∈ B(R+) and Be ∈
σ(Se),

E[σx
1 > t,X1 − t ∈ B1, . . . , Xm0 − t ∈ Bm0 ;B

e]

= P [Be]
∏

`=1,...,m0

P[X` − t ∈ B`, X` > t]

= P [Be]
∏

`=1,...,m0

E
[
P [X` − t ∈ B` |X` > t ] 1{X`>t}

]
= E

[
1{σx

1 >t}P[Be]
∏

`=1,...,m0

P [X` − t ∈ B` |X` > t ]
]
.
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Now, when X` corresponds to ṽx
ik/(Λi(n)/ni) for some route i and a positive integer

k ≤ ni, note that for each r ∈ [0,∞),

P[X` − t > r/(Λi(n)/ni)|X` > t] =
P[ṽx

ik − tΛi(n)/ni > r]

P[ṽx
ik − tΛi(n)/ni > 0]

=
ϑi((cik + r + tΛi(n)/ni,∞))/ϑi((cik,∞))

ϑi((cik + tΛi(n)/ni,∞))/ϑi((cik,∞))

= ϑ
cik+tΛi(n)/ni

i ((r,∞)).

Similarly, when X` corresponds to ũx
i for some route i,

P[X` − t > r|X` > t] =
P[ũx

i − t > r]

P[ũx
i − t > 0]

=
ϕi((ai + r + t,∞))/ϕi((ai,∞))

ϑi((ai + t,∞))/ϑi((ai,∞))

= ϕai+t
i ((r,∞)).

Therefore, P-almost surely, for each f ∈ C+
b (U), we have that

E [f(Ux(t));Be |σx
1 > t ] 1{σx

1 >t} = E[f(UAx(t)(0));Be]1{σx
1 >t}.

Moreover, on the event {σx
1 > t}, the random element Ux(t+·) taking values in D(U)

is determined by Ux(t) and the random variables in Se. So, we have the desired

result.

The next lemma will be used to show that the age process has, roughly speaking,

the strong Markov property at the first jump time σx
1 .

Lemma A.4.2. Let x ∈ A and B ∈ F ′. Then, P-almost surely,

P[Ux(σx
1 + ·) ∈ B|Ax(σx

1 )] = PAx(σx
1 )[U′ ∈ B]. (A.4.4)

Proof. Assume that x takes the form in (A.1.11).

Step 1. We partition the outcome space Ω into smaller pieces, each of which

corresponds to a reason why there was a jump in the number of flows in the network

at time σx
1 .
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Let Ωe be the event that at time σx
1 , there is no departure of initial flows and an

exogenous flow has arrived to some route. Next, let Ωo be the event that at time σx
1 ,

there is no arrival of an exogenous flow and an initial flow has departed from some

route. Then, Ωe∩Ωo = ∅, and since ϑi has no atoms for each route i, P [σx
1 <∞] = 1

and the random variables in (2.3.1)-(2.3.4) are mutually independent, we have P-

almost surely, 1 = 1Ωe + 1Ωo .

Then, for each route i and k ∈ {1, . . . , ni}, let Ωo
ik be the event that at time

σx
1 , there is no arrival of any exogenous flow and the k-th initial flow on route i

is the only flow that has departed from the network. Then, the sets in ∪I
i=1{Ωik :

k = 1, . . . , ni} are mutually disjoint, and again, since ϑi has no atoms for each

route i, P [σx
1 <∞] = 1 and the random variables in (2.3.1)-(2.3.4) are mutually

independent, P-almost surely, 1Ωo =
∑I

i=1

∑ni

k=1 1Ωo
ik
.

Next, we partition Ωe into (2I − 1) disjoint events according to patterns in which

exogenous flows can arrive at time σx
1 . In other words, for each k = (k1, . . . , kI) ∈

{0, 1}I such that k 6= (0, . . . , 0), let Ωe
k be the event that at time σx

1 , there is no

departure of initial flows and the routes with an exogenous arrival are exactly the

routes whose corresponding coordinate of k is 1. Let {k`}2I−1
`=1 be an enumeration of

elements of {0, 1}I \ {(0, . . . , 0)}, and note that P-almost surely, 1Ωe =
∑2I−1

`=1 1Ωe
k`
.

Let m∗ = 2I − 1 +
∑I

i=1 ni and then, let Ω1, . . . ,Ωm∗ be an enumeration of the

sets

{Ωe
k1
, . . . ,Ωe

k
2I−1

,Ωo
11, . . . ,Ω

o
1n1
,Ωo

1nI
, . . . ,Ωo

InI
}.

Step 2. We claim that Ω` ∈ σ(Ax(σx
0 ),Ax(σx

1 )) for each ` ∈ {1, . . . ,m∗}. For

arrivals, note that the completed work of a flow is zero if and only if it just arrived;

in other words, for route i, there is an exogenous flow arrival to route i at time σx
1

if and only if Ax
i (σ

x
1 ) has a point mass at 0. Next, to see how a departure of a flow

can be described by events in σ(Ax(σx
0 ),Ax(σx

1 )), recall our discussion regarding the

strict inequalities in “0 ≤ ci1 < ci2 < . . . < αi” for x ∈ A taking the form in (2.1.9)

in Section 2.1. In particular, recall that for each route i, there can be either one or
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no exogenous flow arrival at σx
1 , and if ni ≥ 1, then as time progresses, the point

masses located initially at {cik}ni
k=1 move at the same rate Λi(n)/ni during the time

interval [0, σx
1 ). Then, for route i such that ni ≥ 1, there is no departure from route

i if and only if Ax
i (σ

x
1 ) is one of the following:

δ0 +

ni∑
k=1

δcik+Λi(n)/ni
or

ni∑
k=1

δcik+Λi(n)/ni
. (A.4.5)

Step 3. Let X1, . . . , Xm0 be an enumeration of the following random variables:

So = {ũx
1 , . . . , ũ

x
I } ∪

{
ṽ1k

Λ1(n)/n1

}n1

k=1

∪ . . . ∪
{

ṽIk

ΛI(n)/nI

}nI

k=1

. (A.4.6)

Let Se be the collection of random variables listed in (2.3.1) and (2.3.2).

First, consider the event Ω̃ that at time σx
1 , route 1 is the only route with an

arrival of an exogenous flow and this occurs prior to the departure of any initial flow.

Then,

Ω̃ =

{
ũx

1 <
I

min
i=2

ũx
i ∧

I
min
i=1

ni

min
k=1

ṽx
ik

Λi(n)/ni

}
⊂ {ũx

1 = σx
1},

where as a convention, if ni = 0, then we take minni
k=1 ṽ

x
ik/Λi(n)/ni = ∞. More

generally, for each ` ∈ {1, . . . ,m∗}, there exist X1
` , . . . , X

k`
` ∈ So such that

{X1
` = . . . = Xk`

` < T`} = Ω` ⊂ {η` = σx
1}, (A.4.7)

where η` = maxk`
k=1X

k
` , and T` = min{X : X ∈ So \ {X1

` , . . . , X
k`
` }}, and moreover,

the random element Ux(η` + ·)1Ω`
is determined by η`, 1Ω`

, the collection of random

elements Se and the collection of random elements So\{X1
` , . . . , X

k`
` }. For instance,

on the event Ω̃, for each route i,

Ax
i (σ

x
1 ) =

{
δ0 +

∑ni

k=1 δcik+σx
1Λi(n)/ni

, if i = 1,∑ni

k=1 δcik+σx
1Λi(n)/ni

, if i 6= 1,

Ax
i (σ

x
1 ) =

{
0, if i = 1

ai + σx
1 , if i 6= 1,
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where any summation involving
∑0

k=1 is the zero measure. Therefore, for each B ∈
F ′ and f ∈ C+

b (A),

E [1B(Ux(σx
1 + ·))f(Ax(σx

1 ))] (A.4.8)

=
m∗∑
`=1

E [1B(Ux(σx
1 + ·))f(Ax(σx

1 ))1Ω`
] (A.4.9)

=
m∗∑
`=1

E [E [1B(Ux(η` + ·)) |η`, 1Ω`
] f(Ax(η`))1Ω`

] (A.4.10)

=
m∗∑
`=1

E
[
PAx(η`) [U′ ∈ B] f(Ax(η`))1Ω`

]
(A.4.11)

=
m∗∑
`=1

E
[
PAx(σx

1 ) [U′ ∈ B] f(Ax(σx
1 ))1Ω`

]
(A.4.12)

= E
[
PAx(σx

1 ) [U′ ∈ B] f(Ax(σx
1 ))
]
, (A.4.13)

where the equality in (A.4.10) is by (A.4.7) and the equality in (A.4.11) can be seen

arguing as in our proof of Lemma A.4.1 using Lemma B.4.1 and Lemma B.5.1.

Corollary A.4.1. For each x ∈ A, B ∈ F ′ and integer m ≥ 1, P-almost surely,

P[Ux(σx
m + ·) ∈ B|Hx

m] = PAx(σx
m)[U′ ∈ B]. (A.4.14)

Proof. Our proof is by induction. The case m = 1 follows immediately from Lemma

A.4.2. Next, for our induction step, suppose that for an integer m ≥ 1, the equality

(A.4.14) holds true for each x ∈ A and B ∈ F ′. Now, fix x ∈ A and B ∈ F ′. Consider

Bm ∈ Hx
m and B+

m ∈ B(A). To facilitate our discussion, we let A′(t) = ψ(U′(t)) for
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each t ∈ [0,∞) and let σ′ = inf{t > 0 : A′(t−) 6= A′(t)}. We observe that

E[1B(Ux(σx
m+1 + ·))1B+

m
(Ax(σx

m+1));Bm]

= E[E[1B(Ux(σx
m + (σx

m+1 − σx
m) + ·))1B+

m
(Ax(σx

m + (σx
m+1 − σx

m)))|Hx
m]1Bm ]

= E[PAx(σx
m)[1B(U′(σ′ + ·))1B+

m
(A′(σ′))]1Bm ]

= E[PAx(σx
m)[PA′(σ′)[U′ ∈ B]1B+

m
(A′(σ′))]1Bm ]

= E[E[PAx(σx
m+(σx

m+1−σx
m))[U′ ∈ B]1B+

m
(Ax(σx

m + (σx
m+1 − σx

m)))|Hx
m]1Bm ]

= E[PAx(σx
m+1)[U′ ∈ B]1B+

m
(Ax(σx

m+1));Bn],

where we have used the induction hypothesis for the second and fourth equality, and

Lemma A.4.2 for the third equality.

Also, we see that Hx
m+1 = Hx

m∨σ(Ax(σx
m+1)). Therefore, for each Bm+1 ∈ Hx

m+1,

we have

E[1B(Ux(σx
m+1 + ·));Bm+1] = E[PAx(σx

m+1)[U′ ∈ B];Bm+1].

This completes our induction step.

The following is the main result of this subsection and it figures in our proof of

the claim that P† satisfies the second requirement (1.3.3) for a Borel right semigroup

in Definition 1.3.1.

Lemma A.4.3. Let x ∈ A, B ∈ B(A) and s, t ∈ [0,∞). Then, Px-almost surely,

Px[A†(t+ s) ∈ B|F †
t ] = Ps(A

†(t), B). (A.4.15)

Proof. Define σ† = inf{t > 0 : A†(t−) 6= A†(t)}. Then, fix x ∈ A, t ∈ [0,∞) and

Fx
t -measurable bounded non-negative random variable H, where Fx

t = σ(Ax(s) :

s ∈ [0, t]). First, note that P-almost surely,

1 =
∞∑

m=0

1[σx
m,σx

m+1)(t).
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Next, note that for each integer m ≥ 0, since 1[σx
m,σx

m+1)(t) and H are Fx
t -measurable,

there exists an Hx
m-measurable bounded non-negative random variable Hm such that

1[σx
m,σx

m+1)(t)Hm = 1[σx
m,σx

m+1)(t)H;

this is because each random element in {Ax(s) : s ≤ t} is determined by the random

elements Ax(σx
0 ) = x,Ax(σx

1 ), . . . ,Ax(σx
m) when σx

m ≤ t < σx
m+1. Therefore, we see

that for each s ∈ [0,∞) and B ∈ B(A),

E[1B(Ax(s+ t))H]

=
∞∑

m=0

E[1B(Ax(s+ t))1[σx
m,σx

m+1)(t)H]

=
∞∑

m=0

E[E[1B(Ax(s+ t))1[σx
m,σx

m+1)(t)Hm |Hx
m ]]

=
∞∑

m=0

E[E[1B(Ax(s+ (t− σx
m) + σx

m))1[0,σx
m+1−σx

m)(t− σx
m) |Hx

m ]Hm]

=
∞∑

m=0

E[EAx(σx
m)[1B(A†(s+ (t− σx

m)))1[0,σ†)(t− σx
m)]Hm]

=
∞∑

m=0

E[EAx(σx
m)[Ps(A

†(t− σx
m), B)1[0,σ†)(t− σx

m)]Hm]

=
∞∑

m=0

E[E[Ps(A
x(t− σx

m + σx
m), B)1[0,σx

m+1−σx
m)(t− σx

m) |Hx
m ]Hm]

=
∞∑

m=0

E[E[Ps(A
x(t), B)1[σx

m,σx
m+1)(t)H |Hx

m ]]

= E[Ps(A
x(t), B)H],

where the fourth equality is by Corollary A.4.1 together with Lemma A.4.1.

A.5 Strong Markov property

The main result in this subsection is Lemma A.5.2 and it contributes to showing

that the third requirement (1.3.4) for a Borel right semigroup in Definition 1.3.1 is
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satisfied by P†. Our computations here take hints from the discussion of backward

recurrence processes for renewal processes in Asmussen [1], and the discussion of

piecewise deterministic Markov processes in Davis [9].

For our next lemma, recall that by Lemma A.2.1, for each B ∈ B(A),

Pt(x,B) = P[Ax(t) ∈ B] =

∫
A

1B(A(t, x, ω))P[dω],

for each t ∈ [0,∞) and x ∈ A, and since the function A is jointly measurable, by

Fubini’s theorem, the function ∫
A

1B(A(·, ·, ω))P[dω]

is a measurable function from [0,∞) × A into [0, 1]. For each f ∈ C+
b (A) and t ∈

[0,∞), recall that we denote by Ptf the function from A into R+ such that for each

x ∈ A, (Ptf)(x) = E[f(Ax(t))].

Lemma A.5.1. Let x ∈ A, f ∈ C+
b (A) and α ∈ (0,∞). For each t ∈ [0,∞), let

X(t) be the random variable defined on (Ω†,F †) such that

X(t) =

∫ ∞

0

(Psf)(A†(t))e−αsds. (A.5.1)

Then, Px-almost surely, for each t ∈ [0,∞),

lim
r↓0

X(t+ r) = X(t). (A.5.2)

Proof. Let σ† = inf{t > 0 : A†(t−) 6= A†(t)}. Fix f ∈ C+
b (A). Then, for each

s ∈ [0,∞), define a function Hs : A → R+ by letting Hs(x) = Ex[f(A†(s))] for each

x ∈ A.

Step 1. We claim that for each x ∈ A and s ∈ [0,∞),

Hs(x) = lim
r↓0

Hs(Ψ
†(r, x)).
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To see this, let x ∈ A and s ∈ [0,∞). Note that Px[σ† > 0] = 1 and by right

continuity of A†, we have Hs(x) = limr↓0 Ex[f(A†(s+ r))]. Then, for each ε ∈ (0, 1),

there exists rx
ε ∈ (0,∞) such that if r ∈ [0, rx

ε ), then Ψ†(r, x) ∈ A and

|Hs(x)− Ex[A†(s+ r)]| ∨ (‖f‖∞Px
[
σ† ≤ r

]
) ≤ ε.

Now, for each ε ∈ (0, 1), if r ∈ [0, rx
ε ), then

|Hs(x)−Hs(Ψ
†(r, x))|

≤ |Hs(x)− Ex[f(A†(s+ r))]|+ |Ex[f(A†(s+ r))]− EΨ†(r,x)[f(A†(s))]|

≤ ε+ Ex[Ex[f(A†(s+ r))|F †
r ];σ

† ≤ r]

+
∣∣∣Ex[Ex[f(A†(s+ r))|F †

r ];σ
† > r]− EΨ†(r,x)[f(A†(s))]

∣∣∣
≤ ε+ ‖f‖∞Px[σ† ≤ r]

+
∣∣∣Ex[EΨ†(r,x)[f(A†(s))];σ† > r]− Ex[EΨ†(r,x)[f(A†(s))];σ† > r]

∣∣∣
+Ex[EΨ†(r,x)[f(A†(s))];σ† ≤ r]

≤ 2ε+ 0 + ‖f‖∞Px[σ† ≤ r] ≤ 3ε,

where the third inequality uses Lemma A.4.3.

Step 2. Let x ∈ A. Then, for each t ∈ [0,∞), let

τ(t) = inf{s ∈ (0,∞) : A†(t+ s) 6= A†((s+ t)−)}.

Now, if r ∈ [0, τ(t)), then A†(t + r) = Ψ†(r,A†(t)). Also, note that Px-almost

surely, we have τ(t) > 0 for each t ∈ [0,∞); this is because P-almost surely, we have

1 =
∑∞

k=0 1[σx
k ,σx

k+1)(t) and σx
k < σx

k+1 for each integer k ≥ 0. Therefore, Px-almost

surely,

lim
r↓0

Hs(A
†(t+ r)) = lim

r↓0
Hs(Ψ

†(r,A†(t))) = Hs(A
†(t)).

Then, since ‖Hs‖∞ ≤ ‖f‖∞ for each s ∈ [0,∞), by the dominated convergence
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theorem, we have that for each x ∈ A, Px-almost surely, for each t ∈ [0,∞),

lim
r↓0

X(t+ r) = lim
r↓0

∫ ∞

0

e−αsHs(A
†(t+ r))ds

=

∫ ∞

0

lim
r↓0

e−αsHs(A
†(t+ r))ds

=

∫ ∞

0

e−αsHs(A
†(t))ds = X(t).

For our next result, recall that a non-negative random variable τ on (Ω†,F †) is a

stopping time for {F †
t+ : t ∈ [0,∞)} if {τ ≤ t} ∈ F †

t+ for each t ∈ [0,∞), and recall

also that a stopping time may take on the value ∞.

Lemma A.5.2. Let τ be a stopping time for {F †
t+ : t ∈ [0,∞)}. Then, for each

(x,B) ∈ A× B(A),

Px[A†(τ + t) ∈ B, τ <∞|F †
τ+] = Pt(A

†(τ), B)1 {τ <∞} , (A.5.3)

where

F †
τ+ = {B ∈ F † : {τ ≤ t} ∩B ∈ Ft+, for each t ∈ [0,∞)}.

Proof. For each t ∈ [0,∞), let θ†t be the function from Ω† to Ω† such that for

each ω ∈ Ω†, θ†t (ω) is the element ω̃ of Ω† such that ω̃(s) = ω(t + s) for each

s ∈ [0,∞). Then, let θ† = {θ†t : t ∈ [0,∞)}. Also, let M = {Px : x ∈ A}. Then,

in the terminology of Blumenthal and Getoor [3], Axiom R (Regularity Condition)

is satisfied by Lemma A.2.1, Axiom H (Homogeneity) is satisfied by definition of

A† and θ†, and Axiom M (Markov Property) is satisfied by Lemma A.4.3, whence

the collection (Ω†,F †,F†,A†, θ†,M) is a right continuous Markov process with state

space (A,B(A)). Also, since A is locally compact with countable base, for each open

subset B of A, there exists a sequence {f`}∞`=1 in C+
b (A) such that for each x ∈ A,

f`(x) ≤ f`+1(x) for each integer ` ≥ 1 and lim`→∞ f`(x) = 1B(x).

Then, by Lemma A.5.1, (A.5.3) follows from Theorem I.8.11 of Blumenthal and

Getoor [3].
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A.6 Proof of Theorem 2.5.1

For each t ∈ [0,∞), by Lemma A.2.1 together with our definition of Pt, Pt is a

Borel Markov kernel. Also, by Lemma A.4.3, P† is a Borel Markov semigroup. Now,

to show that the Borel Markov semigroup P† is right, we fix a probability measure

µ on (A,B(A)). First, as we have observed in Lemma A.3.1, for each B ∈ B(A), we

have Pµ[A†(0) ∈ B] = µ(B). Next, for each B ∈ B(A), s and t ∈ [0,∞), we have

Pµ[A†(t+ s) ∈ B|F †
t ] = Ps(A

†(t), B)

since by Lemma A.4.3, for each F †
t -measurable bounded random variable Z,

Eµ[1B(A†(t+ s))Z] =

∫
A
µ(dx)Ex[1B(A†(t+ s))Z]

=

∫
A
µ(dx)Ex[Ps(A

†(t), B)Z]

= Eµ[Ps(A
†(t), B)Z].

Finally, consider a stopping time τ for the filtration {F †
t+ : t ∈ [0,∞)}. Then, for

each f ∈ C+
b,u(A), s ∈ [0,∞), we have

Eµ[f(A†(τ + s))1{τ<∞}|F †
τ+] = Ps(A

†(τ), f)1{τ<∞},

since by Lemma A.5.2, for each F †
τ+-measurable bounded random variable Z,

Eµ[f(A†(τ + s))1{τ<∞}Z] =

∫
A
µ(dx)Ex[f(A†(τ + s))1{τ<∞}Z] (A.6.1)

=

∫
A
µ(dx)Ex[Ps(A

†(τ), f)1{τ<∞}Z] (A.6.2)

= Eµ[Ps(A
†(τ), f)1{τ<∞}Z]. (A.6.3)

Thus, the properties (1.3.2)-(1.3.4) are satisfied. In summary, P† is a Borel right

semigroup.



Appendix B

Elementary lemmas

B.1 Locally compact with countable base state

space

The lemma proved in this section contributes to verifying that the age process is

a Borel right process with a locally compact with countable base state space. We

do this by showing that A is homeomorphic to a space that is known to be locally

compact with countable base. It follows that A is a Polish space (cf. Theorem 7.6.1

of Bauer [2].)

Fix γ0 ∈ [0,∞) ∪ {∞}. For each integer n ≥ 1, let

Xn = {(r1, . . . , rn) ∈ [0, γ0)
n : r1 < r2 < . . . < rn}

and let X0 = {∅}. Then, let X =
⋃∞

n=0 Xn. Define a function d : X → [0,∞] as

follows: for each x = (x1, . . . , xn) and y = (y1, . . . , ym) in X \ {∅},

d(x, y) =

{
∞, if n 6= m;∑n

k=1 |xk − yk|, otherwise,

and d(x,∅) = ∞. Now, it is not hard to see that d is a metric on X and the topology

on X induced by the metric d is locally compact with countable base; to see the local

84
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compact property, note that {∅} is a compact neighborhood of ∅ and for each x ∈ X,

where x = (r1, . . . , rn) for some integer n ≥ 1 and ε = mink=1,...n−1 rk+1 − rk > 0, a

compact neighborhood of x is {y ∈ X : y = (y1, . . . , yn), d(x, y) ≤ ε/4}.
Next, for each integer n ≥ 1, let

En =

{
n∑

k=1

δrk
: (r1, r2, . . . , rn) ∈ Xn

}
,

and let E0 = {0}, where 0 denotes the zero measure on [0, γ0). Then, let E =⋃∞
n=0En, and we equip the space E ⊂ M([0, γ0)) with the topology of weak conver-

gence of finite non-negative measures; a sequence {µn}∞n=1 in E converges to µ ∈ E if

and only if for any bounded continuous function f on [0, γ0), limn→∞〈µn, f〉 = 〈µ, f〉.

Lemma B.1.1. The topological spaces E and X are homeomorphic. In particular,

E is locally compact with countable base.

Proof. Define a function H : X → E by letting

H(x) =

{ ∑n
k=1 δrk

, if x = (r1, . . . , rn) ∈ X \ {∅}
0, otherwise.

It is clear that H is one-to-one and onto. Now, for each sequence {xk}∞k=1 in X and

x0 ∈ X, it is straightforward to check that the following statements are equivalent:

(i) as k →∞, d(xk, x0) → 0.

(ii) as k →∞, H(xk) converges weakly to H(x0).

In other words, H is a bijective continuous function from X to E.

B.2 No atoms property

The result in this section shows that as a consequence of Assumption 2.2.1, the

subprobability measure Θi has no atoms in (0,∞) for each route i, and this ob-

servation is used crucially in proving Theorem 2.7.1 through our proof of Lemma

3.2.6.
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Let µ be a probability measure on R+ that has no atoms in R+, and let

bµ = inf{x ∈ R+ : µ((x,∞)) = 0}.

Then, for each x ∈ [0, bµ), let µx be the probability measure on R+ such that

µx({0}) = 0 and for each B ∈ B((0,∞)),

µx(B) =
µ(x+B)

µ((x,∞))
,

where x+B = {x+ y : y ∈ B}. Note that µ0 = µ.

Lemma B.2.1. Suppose that there exists µ ∈ M such that for each f ∈ Cc(R+),

limx→bµ〈f, µx〉 = 〈f, µ〉. Then, the measure µ has no atoms in (0,∞), i.e., µ({x}) =

0 for each x ∈ (0,∞).

Proof. If bµ <∞, then µ = δ0 so that in particular, the measure µ has no atoms in

(0,∞). Next, assume that bµ = ∞. Suppose that there exists a ∈ (0,∞) such that

Θi({a}) > 0.

Aiming for a contradiction, we will show that µ({a− r}) > 0 for each r ∈ (0, a).

For this, consider r ∈ (0, a). First, for each ε ∈ (0, 1), fix fε ∈ C+
c (R+) such that

(i) fε(a) = 1,

(ii) fε(x) = 0 for each x ∈ R+ such that |x− a| > ε ∧ (r/2),

and then, define a function fε,r : R+ → R+ by letting, for each x ∈ R+, fε,r(x) =

fε(x+ r) so that

(iii) fε,r(a− r) = fε(a) > 0,

(iv) fε,r(x) = 0 for each x ∈ R+ such that |x− (a− r)| > ε ∧ (r/2)

We will further assume that the family {fε : ε ∈ (0, 1) of functions is fixed so that for

each ε and ε′ ∈ (0, 1) such that ε ≤ ε′, fε′(x) ≤ fε(x) for each x ∈ R+. In particular,

this implies that for each x ∈ R+, limε→0 fε(x) = 1{0}(x).
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Then, note that for each ε ∈ (0, 1) and integer k ≥ 1, we have

〈fε,r, µ
r+k〉 =

1

µ((r + k,∞))

∫ ∞

0

fε,r(x)µ(r + k + dx) (B.2.1)

≥ 1

µ((k,∞))

∫ a−r/2

a−3r/2

fε(x+ r)µ(r + k + dx) (B.2.2)

=
1

µ((k,∞))

∫ a+r/2

a−r/2

fε(u)µ(k + du) (B.2.3)

= 〈fε, µ
k〉. (B.2.4)

Now, using the fact that µ is the unique vague limit point of {µx : x ∈ [0, bµ)},
we see that

µ({a− r}) = lim
ε↓0
〈fε,r, µ〉 (B.2.5)

= lim
ε↓0

(
lim
k→∞

〈fε,r, µ
r+k〉

)
(B.2.6)

≥ lim
ε↓0

(
lim
k→∞

〈fε, µ
k〉
)

(B.2.7)

= lim
ε↓0
〈fε, µ〉 (B.2.8)

= µ({a}) > 0. (B.2.9)

In summary, we have shown that if there exists a ∈ (0,∞) such that µ({a}) > 0,

then for each r ∈ (0, a), µ({a}) > 0 but this contradicts the fact that any non-

negative Borel measure on R+ can have at most countably many atoms.

B.3 Joint measurability

The lemma proved in this section contributes to verifying that the age process is

a Borel right process.

Lemma B.3.1. Let F be a probability distribution function on R+. Then, the func-

tion H : [0, b)× (0, 1) → [0, b) given by letting

H(c, u) = inf {x ∈ [0, b) : Fc(x) ≥ u}
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is Borel measurable, where b = inf{x ∈ [0,∞) : 1− F (x) = 0} and

Fc(x) =
F (x+ c)− F (c)

1− F (c)
.

Proof. Let {bk}∞k=1 be a subset of [0, b) such that F (c) = F (c−) for each c ∈ [0, b) \
{bk}∞k=1, and then let Ξ = [0, b) \ {bk}∞k=1. Let F−1

c (·) = H(c, ·).
Step 1. We claim that for each c ∈ Ξ and u ∈ (0, 1), the function H(·, u) is lower

semi continuous at c. For this, we fix u0 ∈ (0, 1) and a sequence {cn}∞n=1 in [0, b)

such that limn→∞ cn = c0 ∈ Ξ. Since F is right continuous on R+, by the definition

of F−1
cn

(u0), we have that Fcn(F−1
cn

(u0)) ≥ u0. Let

x0 = lim inf
`→∞

F−1
c`

(u0).

Then, since c0 + x0 = lim inf`→∞
(
c` + F−1

c`
(u0)

)
, we have

F (c0 + x0) ≥ lim inf
`→∞

F (c` + F−1
c`

(u0)) (B.3.1)

≥ lim inf
`→∞

(F (c`) + (1− F (c`))u0) (B.3.2)

= F (c0) + (1− F (c0))u0, (B.3.3)

where the last equality follows because c0 ∈ Ξ, the second inequality is by the

definition of F−1
c`

(u0), and the first inequality uses the fact that the function F is

non-decreasing, right continuous on R+ and has left limits on (0,∞). So, by the

definition of F−1
c0

(u0), we have x0 ≥ F−1
c0

(u0); in other words,

lim inf
`→∞

F−1
c`

(u0) ≥ F−1
c0

(u0).

Step 2. We claim that for each u ∈ (0, 1), H(·, u) is measurable. For this, fix

u0 ∈ (0, 1), and for each c ∈ [0, b), define K0 : [0, b) → [0, b) and G0 : [0, b) → [0, b)

by letting, for each c ∈ [0, b),

G0(c) = F−1
c (u0)−

∑∞
k=1 F

−1
bk

(u0)1{bk}(c),

K0(c) =
∑∞

k=1 F
−1
bk

(u0)1{bk}(c).
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Since the function K0 is identically zero on Ξ and the set [0, b) \ Ξ is countable, it

follows that K0 is Borel measurable. On the other hand, since K0 is identically zero

on Ξ, it follows from Step 1 thatG0 is lower semi continuous at each c ∈ Ξ. Also, since

the function G0 is identically zero on [0, b) \ Ξ, G0 is lower semi continuous at each

c ∈ [0, b)\Ξ. In summary, G0 is Borel measurable. Note thatH(·, u0) = K0(·)+G0(·),
and hence, H(·, u0) is also Borel measurable.

Step 3. For each c ∈ [0, b), it is well known (cf. Section 2.5.2 in Resnick [26])

that the function H(c, ·) = F−1
c (·) is left continuous on (0, 1). Also, from Step 2, the

function H(·, u) is measurable for each u ∈ (0, 1). From these observations, it follows

that the function H is jointly measurable.

B.4 Conditional distribution

The lemma proved in this section contributes to verifying that the age process is

a Borel right process.

Let X and Y be F -measurable random variables, and let H ⊂ F be a σ-algebra

on Ω. Denote by FX , the distribution function of X and let

H′ = σ
(
1{X>Y }

)
∨H.

Lemma B.4.1. Suppose that X is independent of H and that Y is measurable with

respect to H. For any r ∈ [0,∞),

E
[
1{X>Y +r} |H′ ] =

1− FX(Y + r)

1− FX(Y )
1{X>Y }.

Proof. First, since X is independent of the σ-algebra H, for any H-measurable non-

negative bounded random variable Z, we have P [X > Z |H ] = 1− FX(Z).

Next, we claim that for any H-measurable non-negative bounded random variable

Z and r ∈ [0,∞),

E

[
1− FX(Y + r)

1− FX(Y )
1{X>Y }Z

]
= E

[
1{X>Y +r}1{X>Y }Z

]
.
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For this, fix an H-measurable non-negative bounded random variable Z and note

that since X and Y are independent, we have

1− FX(Y + r)

1− FX(Y )
1(0,∞)(X − Y ) =

P [X > Y + r |Y ]

P [X > Y |Y ]
1(0,∞)(X − Y ),

where we take 0/0 = 0 as a matter of notational convention. Now, we see that

E

[
1− FX(Y + r)

1− FX(Y )
1{X>Y }Z

]
= E

[
E

[
1− FX(Y + r)

1− FX(Y )
1{X>Y }Z |H

]]
= E

[
E
[
1{X>Y } |H

] 1− FX(Y + r)

1− FX(Y )
Z

]
= E

[
(1− FX(Y ))

1− FX(Y + r)

1− FX(Y )
Z

]
= E [(1− FX(Y + r))Z]

= E [P [X > Y + r |H ]Z]

= E
[
1{X>Y +r}Z

]
,

and

E
[
1{X>Y +r}1{X≤Y }Z

]
= E

[
1− FX(Y + r)

1− FX(Y )
1{X>Y }1{X≤Y }Z

]
.,

where the equality follows since both sides are trivially zero.

Next, let

S′ =
⋃

B∈H

{B, {X > Y } ∩B, {X ≤ Y } ∩B},

S =

{
B ∈ H′ : E

[
1{X>Y +r}1B

]
= E

[
1− FX(Y + r)

1− FX(Y )
1{X>Y }1B

]
for all r ≥ 0

}
Then, from our definition of H′, it is immediate that S′ ⊂ H′, and moreover, S′ is a

π-system such that σ(S′) = H′. Also, our computation shows that S is a λ-system

such that S′ ⊂ S, whence by Dynkin’s π-λ theorem, we have σ(S′) = σ(S) =

H′.
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B.5 Conditional independence

The lemma proved in this section contributes to verifying that the age process is

a Borel right process.

Fix integers ` and `∗ ≥ 1. Suppose that X1, . . . , X` and Y1, . . . , Y`∗ are F -

measurable mutually independent random variables, each of which is strictly positive

P-almost surely. For each m ∈ {1, . . . , `}, denote by Fm the distribution function of

Xm. Then, let

η∗ = max`∗
k=1 Yk, (B.5.1)

Ω∗ = {Y1 = . . . = Y`∗ < mink=1,...,`Xk}, (B.5.2)

H∗ = σ(η∗, 1Ω∗). (B.5.3)

Lemma B.5.1. For each r1, . . . , r` ∈ R+,

E

[ ∏̀
m=1

1{Xm−η∗∈(0,rm]}

∣∣∣∣∣H∗

]
=
∏̀
m=1

Fm(η∗ + rm)− Fm(η∗)

1− Fm(η∗)
1{Xm>η∗}. (B.5.4)

Proof. For each m ∈ {1, . . . , `}, let

Hm = H∗ ∨ σ(Xk : k ∈ {1, . . . , `}, k 6= m),

ξm = E
[
1{Xm−η∗∈(0,rm]} |Hm

]
.

First, note that

E

[∏̀
m=1

1{Xm−η∗∈(0,rm]}

∣∣∣∣H∗

]
= E

[
E

[∏̀
m=1

1{Xm−η∗∈(0,rm]}

∣∣∣∣H1

] ∣∣∣∣H∗

]

= E

[
ξ1
∏̀
m=2

1{Xm−η∗∈(0,rm]}

∣∣∣∣H∗

]

= ξ1E

[∏̀
m=2

1{Xm−η∗∈(0,rm]}

∣∣∣∣H∗

]
,
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where the second equality follows since for each m ∈ {2, . . . , `}, Xm ∈ H1. Proceed-

ing inductively, we then have

E

[∏̀
m=1

1{Xm−η∗∈(0,rm]}

∣∣∣∣H∗

]
=
∏̀
m=1

ξm. (B.5.5)

Next, by Lemma B.4.1, for each m ∈ {1, . . . , `}, we have

ξm = E
[
1{Xm−η∗∈(0,rm]} |Hm

]
= E

[
1{Xm−η∗>0} |Hm

]
− E

[
1{Xm−η∗>rm} |Hm

]
=

Fm(η∗ + rm)− Fm(η∗)

1− Fm(η∗)
1{Xm>ηm}

so that together with (B.5.5), we have

E

[∏̀
m=1

1{Xm−η∗∈(0,rm]}

∣∣∣∣H∗

]
=
∏̀
m=1

ξm =
∏̀
m=1

(
1{Xm>η∗}

Fm(η∗ + rm)− Fm(η∗)

1− Fm(η∗)

)
.

B.6 On weak convergence

The lemmas proved in this section justify our application of Theorem 4.1 in

Gromoll and Williams [13] in our proof of Lemma 3.2.6.

Define a function H : R+ ×M → M by letting, for each t ∈ R+ and µ ∈ M,

H(t, µ)(B) =

∫
(t,∞)

1B(s− t)µ(ds),

where M is given the topology of weak convergence.

Lemma B.6.1. The function H is B(R+)× B(M)-measurable.

Proof. For each integer k ≥ 1, define a function gk : R+ → [0, 1] by letting, for each

s ∈ R+,

gk(s) = max{0, 1− k inf{|r − s| : r ∈ [1/k,∞)}}.
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Note that gk ∈ C+
b (R+) and for each s ∈ R+,

lim
k→∞

gk(s) = 1(0,∞)(s).

Now, for each integer k ≥ 1, define a function Hk : R+ × M → M by letting, for

each t ∈ R+ and µ ∈ M,

Hk(t, µ)(B) =

∫
R+

gk((s− t)+)1B(s− t)µ(ds),

First, we claim that for each integer k ∈ R+, Hk is Borel measurable. For this, fix

integer k ≥ 1, and consider a sequence {µn}∞n=1 in M that converges to µ0 ∈ M and

a sequence {tn}∞n=1 in R+ that converges to 0. For each t0 ∈ R+ and f ∈ C+
b (R+),

since gk((· − t)+)f(· − t) ∈ C+
b (R+),

lim
n→∞

〈f,Hk(t0, µn)〉 = lim
n→∞

∫
R+

gk((s− t0)
+)f(s− t0)µn(ds)

=

∫
R+

gk((s− t0)
+)f(s− t0)µ0(ds)

= 〈f,Hk(t0, µ0)〉,

and then, by the bounded convergence theorem,

lim
n→∞

〈f,Hk(t0 + tn, µ0)〉 = lim
n→∞

∫
R+

gk((s− t0 − tn)+)f(s− t0 − tn)µ0(ds)

=

∫
R+

gk((s− t0)
+)f(s− t0)µ0(ds)

= 〈f,Hk(t0, µ0)〉,

In other words, for each t ∈ R+, Hk(t, ·) is continuous and then, for each µ ∈ M,

Hk(·, µ) is right continuous. Therefore, Hk is Borel measurable.

Now, note that for each t ∈ R+ and µ ∈ M, by the bounded convergence theorem,

for each f ∈ C+
b (R+),

lim
k→∞

〈f,Hk(t, µ)〉 = lim
k→∞

∫
R+

gk((s− t)+)f(s− t)µ(ds)

=

∫
R+

1(0,∞)((s− t)+)f(s− t)µ(ds)

= 〈f,H(t, µ)〉.
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This shows that H is the limit of Borel measurable functions {Hk}∞k=1, and there-

fore, this shows that H is also Borel measurable.

The following lemma shows that H is jointly continuous at certain points having

suitable properties.

Lemma B.6.2. Let {µ`}∞`=1 be a sequence in M and {s`}∞`=1 be a sequence in R+.

Suppose that as `→∞, {µ`}∞`=1 converges weakly to µ0 ∈ M and {s`}∞`=1 converges

to s0, where s0 ∈ (0,∞) and µ0({s0}) = 0. Then, for each f ∈ C+
b (R+),

lim
`→∞

〈f,H(s`, µ`)〉 = 〈f,H(s0, µ0)〉. (B.6.1)

Proof. Our claim is trivial if ‖f‖∞ = 0, and so, we assume that ‖f‖∞ > 0. Since

s0 > 0, by re-indexing if necessary, we assume that s` > 0 for each integer ` ≥ 1. Let

ε ∈ (0, 1). First, fix K ∈ [s0 + 1,∞) and an integer kε ≥ 1 such that

s0 − 1/kε > 0, (B.6.2)

µ0([s0 − 1/kε, s0 + 1/kε]) < ε/‖f‖∞, (B.6.3)

µ0([K,∞)) < ε/(2‖f‖∞), (B.6.4)

and an integers `ε ≥ 1 such that for each integer ` ≥ `ε,

supw∈[s0−1/kε,K] |f(w − s`)− f(w − s0)| ≤ ε/(µ0((s0,∞)) + 1), (B.6.5)

|µ`([s0,∞))− µ0([s0,∞))| ≤ ε/‖f‖∞, (B.6.6)

µ`([s0 − 1/kε, s0 + 1/kε]) ≤ µ0([s0 − 1/kε, s0 + 1/kε]) + ε/‖f‖∞, (B.6.7)

µ`((s0,∞)) < µ0((s0,∞)) + 1, , (B.6.8)

µ`([K,∞)) < ε/(2‖f‖∞), (B.6.9)∣∣∣∫(s0,∞)
f(w − s0)µ`(dw)−

∫
(s0,∞)

f(w − s0)µ0(dw)
∣∣∣ ≤ ε, (B.6.10)

where existence of `ε and kε satisfying respectively (B.6.6) and (B.6.3) follows from

the fact that µ0({s0}) = 0, existence of kε satisfying (B.6.5) follows from uniform
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continuity of f on compact sets, and (B.6.9) follows by weak convergence and the fact

that µ0({s0}) = 0. Now, for each integer ` ≥ `ε such that s` ∈ (s0− 1/kε, s0 + 1/kε),

we have ∣∣∣∣∫
(s`,∞)

f(w − s`)µ`(dw)−
∫

(s0,∞)

f(w − s0)µ0(dw)

∣∣∣∣
≤

∫
(s0−1/kε,s0+1/kε)

‖f‖∞µ`(dw)

+

∣∣∣∣∫
(s0,∞)

f(w − s`)µ`(dw)−
∫

(s0,∞)

f(w − s0)µ0(dw)

∣∣∣∣
≤ 2ε+

∫
(s0,∞)

|f(w − s`)− f(w − s0)|µ`(dw)

+

∣∣∣∣∫
(s0,∞)

f(w − s0)µ`(dw)−
∫

(s0,∞)

f(w − s0)µ0(dw)

∣∣∣∣
≤ 2ε+

∫
(s0,K)

|f(w − s`)− f(w − s0)|µ`(dw)

+

∫
[K,∞)

|f(w − s`)− f(w − s0)|µ`(dw) + ε

≤ 2ε+
ε

µ0((s0,∞)) + 1
µ0((s0,∞)) + 2‖f‖∞

ε/2

‖f‖∞
+ ε

≤ 5ε.

B.7 On the M ′
1-topology

While we refer the reader to Section 2 of [25] and Section 13.6.2 of [28] for the

definition of the M ′
1 topology on D(R+), we will review a few relevant facts here.

The space D(R+) with the M ′
1 topology is a separable metric space [25]. Also, as

mentioned in [25], the M ′
1 topology is weaker than both the J1 topology and the M1

topology so that in particular, any sequence that converges either in the J1 topology

or in the M1 topology also converges in the M ′
1 topology. The key difference between
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the M1 topology and the M ′
1 topology is that with the M ′

1 topology, convergence of a

sequence {x`}∞`=1 in D(R+) to x ∈ D(R+) does not require that lim`→∞ x`(0) = x(0)

but with the M1 topology, it does. On the other hand, the Borel σ-algebra generated

by the M ′
1 topology coincides with the Borel σ-algebra generated by the M1 topology

and the J1 topology, and in fact, it is the Kolmogorov σ-algebra generated by the

coordinate projections (cf. Lemma 2.7 of Whitt [27]).

For our next lemma, let K+ be the σ-algebra on D(R+) generated by the co-

ordinate projection maps, i.e., the Kolmogorov σ-algebra. Also, define a function

H : R+ × D(R+) → R+ by letting, for each t ∈ R+ and g ∈ D(R+),

H(t, g) =

∫ t

0

g(s)ds.

Lemma B.7.1. The function H : R+ × D(R+) → R+ is B(R+)×K+-measurable.

Proof. Fix t ∈ R+ and equip D(R+) with the J1 topology. It is easy to see that H(t, ·)
is a continuous function from D(R+) to R+ (cf. Theorem 11.5.1 in Whitt [28]). On

the other hand, by Theorem 11.5.2 in Whitt [28], the Borel σ-algebra generated by

the J1 topology coincides with the σ-algebra K+. Hence, H(t, ·) is K+-measurable.

On the other hand, for each g ∈ D(R+), since ‖g‖[0,t] <∞ for each t ∈ R+, it is clear

that H(·, g) is continuous. Therefore, H is B(R+)×K+-measurable.

For our next two lemmas, let H ⊂ D(R+) be the set of all r.c.l.l. functions that

are non-negative and non-decreasing.

Lemma B.7.2. Let {g`}∞`=1 be a sequence in H and let g0 ∈ H. Then, the sequence

{g`}∞`=1 converges to g0 in the M ′
1-topology if there exists a dense subset G of (0,∞)

such that for each s ∈ G, lim`→∞ g`(s) = g0(s).

Proof. See the proof of Theorem 13.6.3 in [28].

Lemma B.7.3. The set H1 = {h ∈ H : ‖h‖∞ ≤ 1} is a compact subset of D(R+),

when D(R+) is equipped with the M ′
1 topology.
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Proof. Since with the M ′
1-topology, the space D(R+) is a separable metric space, it is

sufficient to show that H1 is sequentially compact (cf. page 130 in Folland [10]). For

this, fix a sequence {hk}∞k=1 in H1. Then, by Helly’s selection principle (cf. Theorem

4.3.3 in Chung [7]), there exist g0 ∈ H and a subsequence {g`}∞`=1 of {hk}∞k=1 such

that ‖g0‖∞ ≤ 1 and g0(t) = lim`→∞ g`(t) for each continuity point t of g0. Note here

that t = 0 need not be a continuity point of g0. Also, since g0 ∈ D(R+), the set of

points at which g0 is discontinuous is at most countable. Therefore, by Lemma B.7.2,

the sequence {g`}∞`=1 converges to g0 in the M ′
1-topology as n→∞. This shows that

H1 is compact.
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