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Abstract

Swarming groups of bacteria coordinate their behavior by self-organizing as a population to move 

over surfaces in search of nutrients and optimal niches for colonization. Many open questions 

remain about the cues used by swarming bacteria to achieve this self-organization. While chemical 

cue signaling known as quorum sensing is well described, swarming bacteria often act and 

coordinate on time scales that could not be achieved via these extracellular quorum sensing cues. 

Here, cell-cell contact-dependent protein exchange is explored as a mechanism of intercellular 

signaling for the bacterium Myxococcus xanthus. Detailed biologically calibrated computational 

model is used to study how M. xanthus optimizes the connection rate between cells and maximizes 

spread of an extracellular protein within the population. The maximum rate of protein spreading is 

observed for cells that reverse direction optimally for swarming. Cells that reverse too slowly or 

too fast fail to spread extracellular protein efficiently. In particular, a specific range of cell reversal 

frequencies was observed to maximize the cell-cell connection rate and minimize the time of 

protein spreading. Furthermore, our findings suggest that pre-designed motion reversal can be 

employed to enhance the collective behavior of biological synthetic active systems.
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I. INTRODUCTION

The ability of living organisms to self-organize their movement is seen throughout nature 

from herds of large mammals, to flocks of birds, schools of fish, and swarms of insects. This 

organization emerges from local interactions between individuals within the population. The 

leaderless, self-organized movement, commonly referred to as collective motion, is an active 

area of research that bridges biology, physics, mathematics and computer science (see, 

among others, review [1]). Remarkably, patterns of collective locomotion can be seen even 

in the simplest forms of life such as bacteria. While bacteria are essentially single cell 

containers of DNA that are “wired” to eat, grow, and reproduce, their genetic programming 

allows them to interact with each other by exchanging chemical signals and proteins and 

respond to their environmental changes resulting in the emergence of complicated multi-

cellular behavior crucial to their survival.

While chemical cue signaling known as quorum sensing is well described, swarming 

bacteria often act and coordinate on time scales that could not be achieved via these 

extracellular quorum sensing cues [2]. Cell-cell contact-dependent protein exchange is 

explored in this paper as a possible novel mechanism of bacterial self-organization using 

well-known social bacterium Myxococcus xanthus as an example. Spreading of protein by 

swarming bacteria can be compared to people at a party randomly exchanging information 

with one another in a small group, then moving on to another small group. How long it will 

take to inform everyone depends on the population structure, its density, and the specific 

strategy of the information exchange. We used Shannon entropy [3] to measure the level of 

protein spreading in the population of bacteria. This approach can be applied for 

investigating any molecular exchange between cells which make transient contact with each 

other. For example, Shannon entropy has been previously used for studying biochemical 

signaling between rod-shaped self-propelled bacteria as an information transmission 

problem [6]. Shannon entropy was also used to characterize collective motion of animal 

groups [4, 5], diversity of species [7], diversity in the bacterial and archaeal DNA [8], and, in 

more physical context, for studying interacting non-conservative units such as bubbles in a 

foam [9].

Myxobacteria are common soil bacteria that are among the most “social” bacteria in nature 

[10, 11]. M. xanthus is the most studied of the myxobacteria which were extensively used to 

explore collective behavior. It is known that individual M. xanthus cells regularly reverse 

their direction of motion [12] which has an important impact on the swarming expansion 

rate of the colony [13]. It has been observed that certain outer membrane lipoproteins can be 

transferred from one cell to another by direct contact between cells. This contact-mediated 

transfer is sufficient to restore function in mutants that are deficient for these specific 

proteins [14–18]. Yet a role for protein exchange as a mechanism to stimulate social 

behavior and collective motion has not been determined.

Experimental results on M. xanthus protein exchange can be summarized as follows. It is 

known that cells exchange proteins related to signaling during development of M. xanthus 
fruiting bodies under starvation resulting in some cells differentiating into spores [19–23]. 

Also, lipoproteins related to the motility of cells, such as Tgl, CglB, and CglC, can be 
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exchanged to restore gliding motility under nutrient-rich conditions [17, 18, 24]. M. xanthus 
cells lacking motility genes are able to acquire these proteins when in contact with cells 

expressing them and become motile through a process known as stimulation. At least one of 

the cells (donor, recipient or even another cell that is not directly involved in the outer 

membrane protein exchange) must be motile to facilitate the transfer [2, 25]. Outer 

membrane exchange can also enable predation [26–28] and repair of damaged or deficient 

cell outer membranes [29]. It has been shown that M. xanthus cells with different levels of 

outer membrane material that come into direct contact, efficiently share an equal amount of 

outer membrane material within a relatively short period of time [17, 24, 30–32].

While physical properties of M. xanthus have been partially characterized in experiments 

[34, 35], in vivo modification of flexibility or adhesion strength in a deliberate and 

controlled way in mutants can not be easily done at this time. Changing parameters in 

computer simulations provides one with a fast and efficient way of producing and testing 

different hypotheses. Computational modeling of M. xanthus swarming and collective 

behavior has previously focused on the emergence of cell clusters and patterns within a 

bacterial population [36–39].

This paper demonstrates that newly proposed bacterial mechanism maintaining and 

combining experimentally observed ranges of reversal periods, the flexibility of bacteria and 

slime capsule adhesivity, optimizes protein spreading in Myxobacterial population. This 

mechanism, which evolved as a result of evolution, deter-mines the number and duration of 

cell-cell connections between swarming rod-shaped self-propelled bacteria re-sulting in the 

ability of a colony of swarming bacteria to efficiently spread protein. This benefits the whole 

population through an increase in rescuing non-motile bacteria and coordinating bacteria 

self-organized motion during predation and fruiting body formation. To test the mechanism, 

the Sub-Cellular Element (SCE) model of bacterial swarming [40] was extended by 

incorporating novel submodel simulating cell-cell protein transfer and extensive model 

simulations were conducted. The model was first calibrated using experimental data. In 

order to perform simulations involving large number of cells, computational implementation 

of the extended SCE model has been parallelized on the cluster of Graphical Processing 

Units (GPUs).

II. BIOLOGICALLY CALIBRATED COMPUTATIONAL MODEL

The SCE method has been introduced to study multi-cellular systems [41], and used for 

modeling epithelial cell growth [42], platelets in blood flow [43, 44], and gliding bacteria 

[40]. In this approach, cells are represented as a collection of interconnected subcellular 

elements. The dynamics of each SCE results from the elastic forces in response to changes 

in cell shape or cell-cell and cell-environment interactions. The SCE model of bacterial 

swarming developed in [40] takes into account adhesive forces between cells and the 

substrate they move on as well as the flexibility of individual cells and frequency of 

reversals. The inclusion of adhesion and reversal periods in this computational model sets 

this approach apart from [36–38, 45].
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In this paper, an extended version of our previous model introduced in [40] is used. The 

model is designed for studying A+S− M. xanthus mutants which use only A-(Adventurous) 

motility engine that enables them to move on their own on the surface, but lack S- (Social) 

motility engine which utilizes type IV pili to attach bacteria to neighboring cells and move 

together with them. We model these mutants because it enables us to focus on protein 

exchange between self-propelled bacteria without the interference from the S-motility 

engine.

In the model, cells are represented by 16 interconnected SCEs, and to model the cell motion 

due to slime A-motility on individual SCEs, distributed force engine is used. Distributed 

force engine is implemented by applying force to every fourth element of the cells. We 

assume that each cell interacts with the substrate through an adhesive force representing a 

slime capsule interaction with the substrate. Cells reverse their motion direction by 

switching which cell pole is identified as the head and tail, thus switching the direction of 

the forces (Fs) applies on the elements. The directional change is controlled by an internal 

reversal clock assigned to every cell with the fixed reversal period (tr). The reversal clock 

time increases at every simulation step until it reaches tr. Reflecting boundary conditions are 

implemented in the simulations. Cells in our computational model are assumed, based on 

experimental observations, to be 5 μm in length with an aspect ratio of 10:1. A random noise 

in the direction of cell movement, R(t) = krandζ, is used to model the intrinsic motility 

fluctuation of bacteria gliding on agar. ζ is a normally distributed random vector. Because 

these bacteria glide in a highly viscous slime, we can make the simplifying assumption that 

inertial effects can be neglected, resulting in the following form of the equation of motion

(1)

Biologically calibrated model parameters are provided in the Table I.

Reversal periods, length and width of bacteria were measured by tracking M. xanthus cells 

in in vivo experiments. The dynamic curvature analysis algorithm was used to measure 

changes in shapes of cells when they collided with each other. A comparison between these 

measurements for in vivo and in silico experiments was used in [40] to calibrate the values 

of different model parameters determining the level of flexibility, compressibility, cell-cell 

and cell-substrate adhesion as well as the magnitude of the force produced by the A-motility 

engine. The rate of protein exchange is set specifically for motility proteins such as Tgl, 

CglB, and CglC based on reported experimental observations [17, 24, 31, 32].

III. EVALUATION OF PROTEIN SPREADING USING SHANNON ENTROPY

To test how different physical and behavioral properties could affect protein spreading 

within a population of bacteria, in each simulation the level of protein on cells are initialized 

from a uniformly random distribution on the interval [0, 1]. This is done to mimic 

experiments where cells are tagged with a fluorescent protein, and transfer of this protein is 

visualized [17, 24, 31, 32]. Experimental observations show that contacting cells share their 
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protein efficiently within few minutes, and the rate of protein exchange Rp is set accordingly 

in our simulations. Two cells are characterized as being connected in our simulations if the 

smallest distance between their SCEs is less than 0.6 μm. This accounts for the width of a 

cell (0.5 μm) and the slime capsule surrounding the cell (0.1 μm). An exchange of protein is 

carried out when two cells are in contact, with the constant rate from the cell with the higher 

value to the cell with the lower value. Thus, the average value of protein is assumed to 

remain constant throughout the simulation, and the distribution of protein converges to the 

average protein level of the population.

We use in this paper the concept of Shannon entropy from information theory [3] to 

determine the efficiency of the protein exchange in populations of cells with different 

physical properties. Simply put, the closer a pop-ulation gets to the state with each cell 

having the same amount of protein, the larger the entropy of the system becomes. The 

entropy of the population of cells calculated at time t is  where 

 is the distribution of the protein level (nk) normalized by the total amount of 

protein in the population (ntotal). I(t) is always non-negative. In order to see how evenly 

protein is distributed in the popula-tion, we calculate normalized value of the change of the 

entropy . The normalization fac-tor E = I(∞) − I(0) is the change in 

the entropy of the system if it starts with a uniformly random distribution nk ∈ [0, 1] and 

eventually reaches the state where the level of protein in every cell is equal to the average 

value nk = 0.5. (See the Appendices for more details on entropy calculations.)

IV. RESULTS

In what follows we identify a range of reversal frequencies and physical properties of M. 
xanthus optimizing the ability of the population to make cell-cell connections and spread 

proteins. We test in simulations the effect of varying one parameter while keeping the others 

constant to their biologically calibrated values (see Table I.)

Cell-cell connection rate and duration

Distribution of reversal periods observed in experiments was presented in [13] (see Fig. 1). 

Most of the experimentally observed reversal periods were between 4 and 12 minutes 

(~77%) with a skew towards shorter reversal periods in that range even though the average 

reversal period was between 8 and 9 minutes. Very few cells (~6%) reversed in less than four 

minutes while some (~17%) reversals took more than 12 minutes.

Reversal period tr is varied in our simulations from 1 to 30 minutes. The cumulative number 

of cell-cell connections (without repeated connections) is calculated for each cell and is 

averaged over all cells in the population at time t, resulting in the average number of cell-cell 

connections. The rate of cell-cell connections Rc is calculated using linear fit to the average 

number of cell-cell connections as a function of time. The average connection duration 

 is calculated for Ntot = 104 collision events, where w(ev) is the 

weight for each event (the number of occurrences divided by Ntot). D(ev) is the duration of 

each event. Simulations showed that populations with reversal frequencies in the 

experimental range had a maximal rate of cell-cell connections (Fig. 1). For example, 
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population of cells that reversed with a period from the experimentally observed range of 4 

to 12 minutes made connections with the rate Rc =0.65±0.01 min−1 which was 14% more 

than Rc of the population of cells reversing every minute and 41% more than Rc for the 

population of cells that did not reverse at all. Figure 2A shows the average number of cell-

cell connections over t min for different reversal periods. The results showed very similar 

behavior for all the reversal periods within the range from 4 to 12 minutes. Therefore, we 

only show the results for the end points of this range in the Figures 2A and B.

Our simulations also predict (see Figure 2) that, as the reversal period tr increases, two 

important transi-tions occur between the following three different phases: i) non-motile 

state, ii) effective swarming state, and iii) jammed state. Namely, increasing the reversal 

period from a very low value (tr=1min) to the values in the experimentally observed range (tr 
from 4 to 12 min) results in increased ability of bacteria to effectively move in one direction 

which results in an increased rate of cell-cell connections Rc. Further increase of tr above the 

experimental range causes the formation of traffic jams and reduces Rc since the bacteria 

that are stuck in traffic jams can not explore the domain efficiently and make new cell-cell 

connections. A qualitative evidence to support this hypothesis is given in the snapshot of the 

simulations in Figure 3B. The phase transition as a result of varying filling fraction has been 

previously studied for a population of self-propelled rod-shaped bacteria with directional 

reversals [33].

Model simulations also showed that experimentally observed levels of cell flexibility 

maximized the rate of cell-cell connections and spread of protein in the population. Cell 

rigidity was varied from the high level (corresponding to the bending stiffness constant kθ = 

1 fJ[52]) to the very low level (with kθ = 0.01 fJ). The values of the bending stiffness less 

than this range (kθ < 0.01 fJ) caused cells in the simulations to bend to the extent that they 

started forming loops and knots [40]. We consider this as a non-biological behavior since 

cells have not been observed to form loops and knots in the experiments. Us-ing the values 

higher than this range would not change the rigidity of cells any further (see [40] for details 

on model calibration). Figure 2C demonstrates that cells with the experimentally calibrated 

value of flexibility pa-rameter (kθ=0.01 fJ) have connection rate that is 42%bigger than that 

for rigid cells (kθ=1 fJ). This occurs because more flexible cells have slightly higher 

collision cross-section due to bending and they explore space more efficiently than rigid 

cells, resulting in the increased rate of cell-cell connections. Furthermore, the direction of 

mo-tion of more flexible cells can be perturbed (as a result of interaction with the 

environment) more easily due to less cost of energy. Once a cell that is adhered to a cluster 

of cells experiences this change in the direction of motion, it can split from the cluster and 

travel until it reaches to another cluster and start making new connections. Variation of the 

bending rigidity parameter kθ was shown to have a negligible impact on the average 

connection duration (Figs 3C) and clustering behavior (Fig. 3D).

Next, the impact of cell-cell adhesion on the connection rate was investigated. Adhesion 

force between two contacting cells comes from the interaction between capsular 

polysaccharide that covers bacterial bodies. Figure 2E shows that weaker adhesive 

interaction between cells (lower ε) results in considerably higher connection rate. Cells with 

the experimentally calibrated value of cell-cell adhesion parameter (ε =0.01 fJ) make 
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connections at the rate that is 15% less than the rate of less adhesive cells (with ε =0.001 fJ) 

and 2.29 times the connection rate of more adhesive cells (with ε =0.1 fJ). This occurs 

because strong cell-cell adhesion results in cells holding on to each other more effectively, 

sequestering them from the rest of the population. We found that with the increase of value 

of the parameter that controls the strength of cell-cell adhesion from ε = 0.01fJ to ε = 0.03fJ 

the rate of cell-cell connections decreased sharply as a result of significant increase in 

connection duration (Fig. 3E). Namely, duration of a cell-cell con-nection exceeded the time 

it took for them to exchange protein efficiently, resulting in reduction of the number of new 

cell-cell connections.

The average rate of cell-cell connections Rc was also shown to increase as a result of 

increasing the population number density defined as the two-dimensional filling fraction 

(Fig. 2G). This happens because bacteria in populations with higher number density (20%) 

spend considerably less time (approximately 4.4 times less) moving freely before making 

contact with another cell compared to the cells in a population with number density 2%. Fig. 

3G demonstrates that varying the filling fraction does not have a significant impact on the 

duration of connec-tions and that improved efficiency of protein spreading is mainly due to 

increased rate of cell-cell connections.

Evaluation of protein spreading efficiency

To quantify the efficiency of protein transfer, we used the Shannon entropy as a metric 

indicating the amount of uncertainty in the level of protein in each cell in the population. 

The simulations results are represented for different reversal periods (Fig. 2B), levels of 

flexibility (Fig. 2D) and adhesion (Fig. 2F), while all other parameter values were fixed to 

their experimentally calibrated values listed in Table I. The entropy of the population 

eventually approached the same maximum value in all simulations, but over different time 

intervals. Therefore the time required for a system to reach half the maximum entropy was 

used as a measure of the efficiency of protein spreading.

The optimal efficiency of protein transfer was obtained for reversal periods in the range 

observed in experiments from 4 to 12 minutes. In extreme cases of non-reversing cells or 

cells reversing very frequently, protein spreading efficiency drops dramatically (see Fig. 2B). 

This happens because cells that reverse with periods less than the experimental range move 

back and forth frequently, hence they are not able to move on the substrate efficiently to 

make new cell-cell connections and exchange protein with new cells. On the other hand, if 

cells reverse with periods that are larger than the values of the experimental range, they get 

stuck in traffic jams which reduces their ability to swarm efficiently, make new cell-cell 

connections and spread the protein within the population. Our simula-tion results show that 

for the population of cells that reverse with periods in the experimentally observed range, the 

time required to reach half the maximum entropy is 84% less than that for the populations 

that reverse every minute, and 49% less than that for the population of cells that do not 

reverse at all.

Figure 2D shows that simulations with higher cell flexibility have faster entropy increase in 

comparison with simulations with more rigid cells. The time it takes the population with 

experimentally calibrated cell flexibility to reach half the maximum entropy was shown to 
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be 33% less than that for rigid cells (kθ=1 fJ). Changing adhesion strength between cells in 

the range from ε = 0.001 fJ (negligible adhesion force between two neighboring cells) to ε = 

0.1 fJ (resulting in cells sticking together after they get connected) did not have a significant 

impact on the efficiency of protein transfer (Fig. 2F), although it was shown to significantly 

impact the rate of cell-cell connections. As the strength of cell-cell adhesion increases, 

duration of cell-cell connections increases monotonically and, as a result, stable clusters of 

cells are formed (Fig. 3F). This suggests existence of a balance between the rate of making 

cell-cell connections and the duration of the connection between two contacting cells. 

Relatively short cell-cell connection due to weak cell-cell adhesion leads to a higher rate of 

cell-cell connections with new cells, but protein can not be exchanged efficiently be-cause of 

the short connection time.

The efficiency of the protein spreading was also stud-ied for different values of the filling 

fraction. Figure 2H shows that monotonic increase in the filling fraction re-sults in the 

monotonic increases of the efficiency of the protein spreading. This results from formation 

of bacte-rial clusters (Fig. 3H) leading to increased rate of cell-cell connections (Fig. 2G). 

The time it takes the population with filling fraction 2% to reach half the maximum entropy 

is about 5 times bigger than that for the population with filling fraction 20%.

V. CONCLUSIONS

Previous studies have demonstrated the important role of cell reversals and cell physical 

properties in optimizing the swarming expansion rate of a M. xanthus population. We 

studied in this paper, by using a detailed biologically calibrated computational model and 

Shannon entropy, their impact on the rate of cell-cell connections and spread of proteins in 

the population.

It has been shown experimentally that exchange of outer membrane proteins can be 

beneficial to the bacterial population in several ways such as rescuing the gliding motility of 

motility mutants under nutrient-rich conditions [16–18, 24, 25], predation [26–28], and 

genetic repair of damaged cells [29]. It is not currently possible to control flexibility or 

adhesion strength in vivo with an isogenic M. xanthus mutant strain. Therefore, a detailed 

computational model was used to study how quickly outer membrane (OM)-protein could 

spread throughout the populations of M. xanthus A+S− mutants with different physical and 

behavioral properties of individual cells at the swarm edge. Cells at the swarm edge are 

monolayered, exposed to a maximum level of nutrient and oxygen and behave distinctively 

compared to the interior cells [13, 46, 47]. The optimal rate of cell-cell connections and 

efficiency of protein transfer was obtained for reversal periods in the range from 4 to 12 

minutes observed in experiments. This range has also been reported to optimize the 

expansion rate of the swarming M. xanthus population [13]. This suggests that swarm 

expansion and the efficiency of the protein spreading could be related to each other. For 

example, optimized protein exchange and connection rate may result in more efficient 

motility recovery that enhances the expansion rate of the swarm, or they could be linked to 

the increase in the orientation correlation between bacteria [13]. However, this remains a 

very important open question to be investigated in fu-ture studies.
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Higher cell-cell connection rates were also obtained for populations with more flexible cells. 

Tracking cells from in vivo experimental movies confirmed cells to be very flexible. 

Although it was shown that decreasing the strength of cell-cell adhesion considerably 

increased the rate of cell-cell connections, it had a negligible effect on the protein spreading. 

Fig. 3 shows that this happens because cells in a population with high strength of cell-cell 

adhesion (ε = 0.1 fJ) on average make connections that last 6.4 minutes, while cells in a 

population with low strength of cell-cell adhesion (ε = 0.001 fJ) on aver-age stay connected 

for about 2 minutes. Therefore, al-though longer connection duration enables two connected 

cells to efficiently exchange their proteins, the efficiency of the protein spreading at the 

population level is penal-ized by reduction of the average rate of cell-cell connec-tions.

Consequently, the positive effect of longer connec-tion duration between cells is reduced by 

the decrease of the average rate of the cell-cell connections. As a result, the efficiency of the 

protein spreading does not depend significantly on the strength of the cell-cell adhesion.

The rate of collisions between rod-shaped particles such as M. xanthus can be estimated as 

follows by using analogy with molecular gases: rc = fV σ/v0, where f is the volume fraction, 

V is the average particle speed, σ is the collision cross-section, and v0 is the particle volume. 

In two dimensions σ ≈ L, where L particle length, and v0 ≈ dL, d is particle width. For 

typical simulation conditions of L = 5 μm, d = 0.5 μm, f = 0.128, and V = 4.3 μm/min, we 

obtain the collision rate rc ≈ 1.1 min−1. This value has the same order of magnitude as the 

experimentally measured connection rate Rc (see Fig. 1). It implies that under the 

assumption that M. xanthus bacteria do not follow slime trails left by other bacteria, the 

mechanism based on mostly uncorrelated collisions between bacteria is primarily 

responsible for forming connections and protein spreading.

Figure 1 shows a large increase in value of Rc from tr=3 minutes to tr=4 minutes which can 

be explained as follows. Cells need some minimal some time to move in one direction 

before they reverse, in order to make enough physical connections with different cells in the 

population to spread protein. Sum of the estimated time that two cells stay in contact 

(2.2±0.07 minutes) with the time that is required for a cell to move freely before reach-ing 

another cell (1.1±0.05 minutes) is approximately 3.3 minutes which is very close to the time 

of the sharp increase in the value of Rc in Fig. 1.

Most bacteria grow in a mixed (and potentially hostile) environment. Many bacteria use 

extracellular signals via a variety of quorum sensing mechanisms to coordinate actions at the 

species level. However, the chemical signals for most of these quorum sensing systems are 

insufficient to coordinate action on time scales that lead to collective motion and swarming 

on surfaces. Thus the ability to use protein cues to coordinate collective actions is very 

appealing. In this paper, we have demonstrated that experimentally observed physical 

properties and multi-cellular behavior of M. xanthus favor population with an efficient 

spread of protein. Our findings suggest that organisms with accelerated protein spreading 

should have a competitive advantage in a swarm environment. Periodic reversals of 

movement have been reported for several bacterial species besides M. xanthus [48–51]. 

Therefore, given the importance of reversals for M. xanthus swarming and potential 

mechanism of extracellular signaling that is investigated here, we suggest that more species 
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might utilize periodic reversal strategies to optimize their collective behavior. Furthermore, 

our findings suggest that predesigned motion reversal can be employed to enhance the 

collective behavior of biological synthetic active systems.

VI. APPENDICES

SHANNON ENTROPY CALCULATION

Initially N cells are randomly distributed in a 2D simulation domain of the size Lx×Ly. The 

kth cell (1 ≤ k ≤ N) is initially assigned level of protein nk(t = 0) ∈ [0, 1] using uniformly 

random distribution. The initial config-uration of cells in the domain is shown in Figure 4. 

For a system of N cells the total amount of protein in the population is . The 

protein distribution is normalized by the total amount of protein in the population and is 

given by:

(2)

The entropy of the normalized protein distribution ñ(k, t) in a population at time t is defined 

as follows

(3)

The time evolution of the normalized protein distribution is shown in Figure 5 for a 

population of 512 cells. The initial value of entropy in a population of N cells is as follows:

(4)

Cells in model simulations establish physical connections with each other and exchange 

protein at rates observed in experiments [32]. As a result of protein exchange, the entropy of 

the system increases with time because mixing of protein in the population increases the 

uncertainty of knowing which cell has specific level of the protein. Entropy provides a 

measure of uncertainty in a system. Every cell in the population will end up with the same 

level of protein nk=0.5 over long enough period of time (Fig. 5). Therefore, given enough 

time, the normalized protein distribution of the population approaches the value ñ(k) = 1/N. 

As a result, the entropy of the system will reach its maximum value

(5)
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Therefore, in a system with N cells, the normalized entropy change from the start of the 

simulation (at t=0) to time t is equal to . Nnormalization factor E = 

I(∞) − I(0) is the maximum amount by which the entropy of the system could be increased.

VII. SUB-CELLULAR ELEMENT (SCE) MODEL IMPLEMENTATION

Cell representation and SCE forces

Basic SCE cell representation is a modification of the one used in the model described in 

detail in [40]. Each cell is composed of 16 SCEs which are bonded together into a string (see 

Fig. 6). The string consists of 15 segments and each cell is also characterized by 14 angles 

between all sets of three SCEs. Segments and angles have equilibrium values 

 and θeq = π and are modeled as harmonic springs with assigned 

stretching (kbond) and bending (kθ) coefficients. Compressibility and flexibility of a cell is 

determined by the values of these coefficients. The following formulas are used for 

describing intracellular SCE interactions

Parameters were calibrated using experimental data from [40]. The interactions between 

neighboring cells are governed by volume exclusion principle and adhesive interactions 

between individual inter-cellular SCEs. Interactions between the SCEs from two 

neighboring cells are represented by the Lennard-Jones type potential that are repulsive 

when SCEs overlap, attractive when SCEs are close but non-overlapping, and zero when 

SCEs are sufficiently far apart. The strength of the interaction between the ith and jth SCEs 

separated by the distance xij is defined by the parameter ε, the strength of the adhesion 

interaction between slime capsules of the cells. Transition from repulsion to attraction takes 

place at the distance λij. The value of λij is chosen based on the known width of bacteria 

cells and is set to 0.5μm. There is a cutoff distance (LJcutoff) which determines the maximum 

distance at which two SCEs interact via the non-bonded interaction potential. The SCE non-

bonded interaction is described by the equation

(6)

The default values of the parameters used in the model are given in Table I.

Equations of motion

In what follows second term in Eq. 1 describing potential in the paper is explained in detail. 

Let ri be the vector pointing from SCE i to SCE j. Then the force F(xi) acting on SCE i at 

position xi is described by
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where

(7)

and

(8)

The sum in Eq. 7 is over all bonded neighboring SCEs. All SCEs have two bonded 

neighbors except for the SCEs at the ends of the string representing a cell, which only have 

one. The list of “non-bonded SCE” in the sum of Eq. 8 includes all SCEs within the LJcutoff 

distance of SCE i.

In previous version of the model [40] slime propulsion was represented by the force applied 

to the tail SCE of a cell. In the current model the slime propulsion is distributed in such a 

way that four equally spaced SCEs experience a force equal to 1/4Fs where 

(direction pointing from the tail SCE to the second to last SCE). This allowed for greater 

flexibility of cells because in highly flexible cells a single lagging force applied to one of the 

poles can cause flailing motion. The distributed engine model is also amenable to different 

models of A-motility including focal adhesion.

Angles between neighboring segments are calculated as follows. For SCEs i, j, k, where i is 

the SCE between j and k, r1 = xj − xi = (dx1, dy1, dz1) is the vector pointing from i to j and 

r2 = xk − xi = (dx2, dy2, dz2) is the vector pointing from i to k. Three components of the 

bending force Fbend acting on the SCEs i, j, k are as follows

where

Three components refer to the x,y,z components of the vectors, so that , , etc. 

These expressions are obtained by taking derivative of θ(r1, r2) with respect to xi. The 
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forces acting on all SCEs are then determined and Eq. 1 is integrated using the forward-

Euler method

(9)

Protein Exchange Sub-model

As cells i and j with protein levels n(i) and n(j) come into physical contact, they start 

exchanging protein with each other with exchange rate Rp, as described by the following 

equations

(10)

where, −n = (n(i)+n(j))/2 is the average of protein levels of cells i and j, and dt is the size of 

simulation time step. The protein level on the cells is updated as long as they stay connected.
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FIG. 1. 
Dependence of the Rc on reversal periods. Solid circles represent Rc for populations in 

simulations with different reversal periods. Rc for the population of non-reversing cells was 

measured to be of the order of 0.46 connections/min. The filling fraction in the simulations 

was set at 12.8% close to the average fraction observed in experiments at the swarm edge. 

Solid squares display the distribution of reversal peri-ods within a population of bacteria in 

an experiment obtained by calculating the fraction of observed bacteria N(tr) that reverse 

with period tr (adopted from [13]).
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FIG. 2. 
A), C), E), G) Dependence of the average number of cell-cell connections on reversal 

frequency, flexibility, adhesion and filling fraction, respectively. B), D), F), H) Change of the 

normalized Shannon entropy  characterizing distribution of protein over time in 

bacterial populations with different reversal frequencies, cell flexibilities, cell-cell adhesions 

and filling fraction, respectively. (See the Appendices for details about measurement and 

normalization of the entropy.)
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FIG. 3. 
A, C, E, G) Dependence of the average connection duration on the reversal period, bending 

rigidity, adhesion strength, and number density, respectively. B, D, F, H) Clustering behavior 

for different (low, calibrated with experiments and high) values of reversal period, bending 

rigidity, adhesion strength, and number density, respectively.
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FIG. 4. 
Initial cell distributions in simulations of the populations with densities 6.4% (A), 12.8% (B) 

and 20%(C). The size of simulation domain is set to 100×100 μm2 and the length of cells is 

5 μm. The color scale shows the level of the protein on each cell that is chosen randomly 

from a uniform distribution from [0, 1].
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FIG. 5. 
Normalized protein distribution at time t. Initial protein levels of cells are chosen from a 

uniform random distribution. Over time cells make connections and exchange protein with 

each other. The level of protein on all cells approaches the same value nk = 0.5 assuming that 

enough time is given. Population consists of 512 cells moving inside a 2D simulation 

domain of the size 100×100 μm2.
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FIG. 6. 
Representation of cells with SCEs. White spheres and segments indicate positions and bonds 

of SCEs. The green (outer) shell represents the boundary for the zone of attraction, the cyan 

(inner) shell represents the boundary of the repulsive force. (Repulsion and attraction zones 

are not to exact scale). Red SCEs highlight stretching interactions between SCEs. Blue SCEs 

represent the bending interaction between SCEs.
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TABLE I

Default values of the parameters used in simulations.

Parameter Value

Cell width 0.5 μm

Cell length 5 μm

Compressibility kb 148.0 fJ μm−2

Flexibility kθ 0.01 fJ

Friction Coefficient γ 1.0e5 nN μsμm−1

Cell-cell Adhesion ε 0.01 fJ

Repulsion Distance λij 0.5 μm

Adhesion Distance LJcutof f 0.6 μm

Reversal Period tr 480 s

Slime Force Fs 120 pN

Head Noise krand 0.1

Protein Exchange Rate Rp 0.003 sec−1

Number of cells N 512

Size of domain Lx×Ly 100×100 μm
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