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Abstract 
 
The success of data standards and public databases in biology is the foundation for the 
current and continued success of machine learning in biology and medicine. This 
dissertation explores the interactions between biology, computers, and people in order 
to develop novel machine learning methods to model complex biological problems. Data 
is one of the main resources to do machine learning, and Chapters 1, 2, 3 are explicitly 
about data organization and quality assurance in the protein Nuclear Magnetic 
Resonance (NMR) spectroscopy discipline. Chapters 4 and 5 present new machine 
learning architectures to address learning tasks in genomic site recognition and NMR 
chemical shift prediction. Chapter 1 investigates the manner protein NMR chemical shift 
data is deposited at the Biological Magnetic Resonance Bank (BMRB) in order to build 
simple table look-up models to estimate protein chemical shifts. In Chapter 1, we find 
there is low sequence diversity and data redundancy in the BMRB that was a challenge 
to locate and filter out. Without filtering out BMRB entries with the same sequence, and 
possibly the same chemical shifts, look-up models will be more accurate due to data 
contamination in training and testing sets. Chapter 2 examines approaches to curate a 
large protein sample production and NMR database to create an NMR time-domain 
dataset. Quality assurance tests in this NMR sample/FID database uncovered data 
collisions and redundancies among the database records, which motivated the 
development of new NMR database management tools. Chapter 3 presents a relational 
database schema to archive protein NMR samples and associated time-domain data 
called SpecDB. SpecDB is open source and available at 
https://github.rpi.edu/RPIBioinformatics/SpecDB.git. Chapter 4 explores how deep 
neural networks can recognize genomic splice acceptor and donor sites from sequence 
alone, achieving 97% accuracy for highly used splice donor sites. Chapter 4 also 
investigates neural networks for intron/exon sequence classification, maximally reaching 
77% accuracy. Chapter 5 presents the application of marginalized graph kernels to 
prediction of NMR chemical shifts for small organic molecules. Incorporating chemical 
descriptors to graph kernels reaches a 3.501 ppm mean absolute error for Carbon 
chemical shifts. In total, the following five dissertation chapters explore work in data 
integrity, organization, and learning techniques from data for applications to structural 
biology problems.   
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1. Toolkits in NMR chemical shift dataset generation 

for machine learning 

1.1 Introduction 

The chemical shift is the “milepost” in NMR and is a critical measurement for the 

structural and dynamic studies of proteins(Berjanskii and Wishart, 2017). The chemical 

shift is derived from an atom’s nuclear resonant frequency in an external magnetic 

field(Case, 2013). The chemical shift is a relative frequency measure, where an atom’s 

chemical shift is measured relative to an internal or external standard atomic resonant 

frequency(Case, 2013). In protein NMR, chemical shifts are often utilized as “ledger 

entries” to track NOEs (nuclear Overhauser effects) as distance restraints from 

measured NOEs are a major source of structural information to build NMR structural 

models(Berjanskii and Wishart, 2017). Chemical shifts also can elucidate other 

structural and dynamic properties of biomolecules(Berjanskii and Wishart, 2017), such 

as identifying protein second structure segments(Marsh et al., 2006; Shen and Bax, 

2012; Wishart and Sykes, 1994), estimate torsion angles(Berjanskii et al., 2006; 

Cheung et al., 2010; Shen and Bax, 2013), determine solvent accessible surface 

area(Hafsa et al., 2015), and local chain flexibility(Berjanskii and Wishart, 2013, 2008). 

Chemical shifts can also be used to refine molecular models(Berjanskii et al., 2015). 
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The NMR community has a rich history of developing and applying machine learning at 

all stages in experimental and structure-generation pipelines(Cobas, 2020; Hoch, 2019). 

Specifically, prediction of NMR chemical shifts has been particularly successful with 

numerous methods developed to predict NMR chemical shifts, particularly for proteins. 

For protein chemical shift prediction, the task is typically to predict chemical shifts given 

an input atomic structure and/or from sequence information, like sequence similarity to 

proteins with known chemical shifts. There are three categories of protein chemical shift 

prediction methods, empirical(Han et al., 2011; Kohlhoff et al., 2009; Li et al., 2015, 

2020; Meiler, 2003; Shen and Bax, 2010; Zeng et al., 2013), ab initio(A. Bratholm and 

H. Jensen, 2017; Berjanskii et al., 2015; Moon and Case, 2007; Vila et al., 2009), and 

molecular dynamics(Lehtivarjo et al., 2009; Markwick et al., 2010; Tian et al., 2012). It is 

generally considered that empirical methods produce more accurate shift predictions, 

with ab initio and MD methods generally less accurate but promising. Learning from 

available experimental chemical shifts, protein sequences and structures remains a 

significant goal and challenge in the NMR community. 

 

The Biological Magnetic Resonance Bank (BMRB) is the central public repository 

archiving magnetic resonance data for a vast array of biomolecular studies(Romero et 

al., 2020). The organizing goals of the BMRB is to archive magnetic resonance data 

from scientific studies investigating molecular systems from proteins to complex 

metabolomic samples. The BMRB is also a source of molecular structures derived from 

magnetic resonance data. 
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The NMR chemical shift is the most abundant data type deposited and archived by the 

BMRB, with over 10 million chemical shifts deposited across over 13,000 BMRB entries. 

BMRB entries are typically studies that either resulted in a peer-reviewed study and/or a 

molecular structure determined. A BMRB study may have multiple proteins and samples 

with many sample conditions and many types of NMR data restraints collected. The 

BMRB utilizes a relational schema system to curate and archive NMR data, samples, 

and experiments called NMR-STAR (Self-defining Text Archival and Retrieval)(Ulrich et 

al., 2019). NMR-STAR has nearly 6,500 tags/attributes that are organized to describe 

an NMR study, experiment, and data(Ulrich et al., 2019, p.). Chemical shift lists 

deposited at the BMRB are archived in NMR-STAR format, providing a human-readable 

and interchangeable format to store assigned chemical shifts. 

 

Chemical shift data deposited at the BMRB has been crucial for dataset development 

for many empirical chemical shift prediction methods. The RefDB database is a dataset 

of protein structures and chemical shifts derived from the BMRB, and RefDB is a 

commonly used dataset for chemical shift prediction development(Zhang et al., 2003). 

The RefDB database’s specific purpose is to address the issue of chemical shift 

referencing errors present in an estimated 20%-40% of NMR studies. There remains 

many more chemical shifts available, however, in the BMRB to use for learning. Data is 

an essential resource for machine learning, and for new advancements in biomolecular 

NMR chemical shift prediction new datasets are needed.  
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Datasets for chemical shift prediction have either relied on RefDB, or on individually 

curated datasets. Differences in datasets have been demonstrated to lead to 

differences in performance, particularly in the case between ShifX2 and UCBShift(Li et 

al., 2020). In other machine learning domains, technical and performance progress is 

partly a result of standard datasets(Goodfellow et al., 2016; Halevy et al., 2009; 

“Opportunities and obstacles for deep learning in biology and medicine | Journal of The 

Royal Society Interface,” n.d.). These trends of dataset construction are also being 

applied in the life sciences, particularly in protein structure prediction(AlQuraishi, 2019).  

 

As the Biological Magnetic Resonance Bank (BMRB) represents the central resource of 

chemical shift data, the purpose of this study is to develop a pipeline to harvest 

molecule information and chemical shift assignments from studies deposited at the 

BMRB. As a proof-of-concept for our pipeline, we developed simple look-up models to 

demonstrate the usage of the pipeline and to test the performance of look-up models 

using filtered chemical shift data from the BMRB.  

1.2 Methods 

Our approach was to collect the chemical shift lists from BMRB entries into one file to 

work from. Figure 1.1 illustrates the funnel approach that was used to collect the BMRB 

entries for this study. We were able to collaborate with the BMRB to provide us with a 

list of BMRB entries that was used to generate the summary shift statistics on their 

website, and used those BMRB entries. The characteristics of these entries were of the 

following: 
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1. No aromatic or paramagnetic ligand(s) 

2. No chemical shift outside of eight standard deviations of average calculated from 

full BMRB database 

3. A chemical shift of a carbon bound proton smaller than -2.5 ppm or greater than 

10 ppm 

 

After the BMRB entries are collected and the chemical shifts are gathered, the data is 

organized into a single JSON file formatted as indicated in Figure 1.1. Each BMRB entry 

is a separate record in the JSON file, and the chemical shifts from the entry are split 

across the different atom types in the protein. Each atom type-specific chemical shift list 

is equal to the length of the protein sequence, and where no chemical shift existed for a 

particular atom type and residue, a None placeholder was used. In this way the 

complete chemical shift data of a protein can be captured. 
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Fig. 1.1: Data collection funnel and data organization after collection 

Funnel to collect and organize BMRB entries and their associated chemical shift lists 
into a usable data format. We were provided a list of BMRB entry IDs that were used to 
create the chemical shift statistics tables on the BMRB website to build our dataset. We 
only could process entries with one assembly, one chemical shift list, and entity per 
assembly. We threw out entries that were not proteins, and entries that had errors in 
their chemical shift lists.  
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We performed sequence identity filtering to further filter the BMRB entries collected. We 

used BLAST to align all protein sequences from the BMRB entries together, then used 

single linkage clustering to remove entries with percent sequence identity above a user-

defined threshold. In the case where no sequence filtering is performed, we found cases 

where different BMRB entries had the same exact chemical shifts by simple visual 

inspection. We performed an exhaustive search that performed all pairwise BMRB entry 

comparisons to find pairs of entries with the same underlying chemical shifts. We built 

simple table look-up models for chemical shift prediction using the unfiltered and filtered 

data. Table look-up models are described in Figure 1.2. 
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Fig. 1.2: Pipeline for building and testing chemical shift look-up tables 

A set of chemical shifts are split into training and testing using cross validation. Then, 
the chemical shifts are broken into different classes/types. In the example shown in this 
figure, carbon chemical shifts are classified into atom types groups, for example CA, 
CB, etc. The average chemical shifts within each class constructs the look-up model. 
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1.3 Results 

The first observation we made from analyzing the entries we used to create the 

chemical shift dataset was there is low sequence diversity in BMRB. Table 1.1 

illustrates the low sequence diversity in this dataset. Out of an initial set of 9,458 entries, 

there are 7,923 unique sequences. Then performing a 90% sequence identity filtering 

drops the entries down to 5,646, a ~40% reduction.  

 

Low sequence diversity will have an effect on chemical shift statistics and amino acid k-

mer statistics as illustrated in Table 1.1. However, closer inspection of the BMRB entries 

with shared sequences illustrated that not only were the amino acid sequences the 

same, but also the chemical shifts themselves. We performed an exhaustive all-versus-

all comparison for every entry and chemical shift to find cases where two entries had 

the same exact reported chemical shift values. Out of the 9,458 initial entries, there 

were 1,376 cases of two entries having the same chemical shift information for a 

particular amino acid atom type. This translates to 143 pairs of entries with at least one 

atom type having the same chemical shift data. These data collisions indicate BMRB 

entries that are copies with some unknown differences, but at the reported chemical 

shift level they are the same. Sequence identity filtering past 90% removes these 

collisions as they occur where entries share the same sequence.  
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Percent 
Identity 

Total 
entries 

Unique 
Sequences 

Total shifts Number 
of 
colliding 
dataset 
pairs 

Number 
of Unique 
3-mers 

Number 
of Unique 
5-mers 

None 9,458 7,923 6,691,778 1,376 7,993 454,658 

90% 5,646 N/A 4,567,284 0 7,993 421,521 

80% 5,2866 N/A 4,331,099 0 7,993 408,866 

50% 3,758 N/A 3,016,922 6 7,983 303,989 

10% 2,105 N/A 1,354,777 6 7,902 145,226 

Table 1.1: Protein sequence and data collisions statistics on the BMRB dataset 

We collected 9,458 BMRB entries that passed our criteria. We then searched for entries 
with duplicate chemical shift shifts at different sequence identity thinnings of the original 
dataset. The pairwise sequence alignments were precomputed using BLAST. We also 
record the number of unique 3/5-mers in each slice of the dataset to indicate the effect 
of low sequence diversity on the observable k-mers in the dataset.  
  



 11 

With the presence of data collisions in the data set, we wanted to test the performance 

of simple look-up models with/without sequence identity filtering. There are four levels of 

look-up models. (1) chemical shifts are organized by atomic element, i.e all nitrogen 

shifts grouped together, all carbon shifts grouped together, and all proton shifts grouped 

together. (2) chemical shifts are organized by the specific atom type they are from, i.e 

all backbone amide nitrogens grouped together, backbone amide protons grouped 

together, CA shifts grouped together, etc. (3) chemical shifts are grouped by the atom 

type and identity of the amino acid they are from. (4) chemical shifts are grouped by the 

atom-type and the amino acid 3-mer they are a part of, which takes into account local 

sequence content. We evaluate the look-up models using 10-fold cross validation with 

three different slices of the chemical shift dataset: no sequence identity filtering, 80%, 

and 50%. The performances are recorded in Table 1.2. In the vast majority of cases, if 

no sequence filtering is performed the look-up models perform better as measured by 

lower root-mean square errors (RMSEs) than if sequence filtering is used. 
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Model type Unfiltered BMRB 80% sequence 
identity filtering 

50% sequence 
identity filtering 

element 
 

N 5.2362 

H 4.4809 

HA 0.7272 

CA 18.5593 

CB 38.9796 
 

 

N 5.2293 

H 4.5779 

HA 0.8060 

CA 18.2486 

CB 36.6648 
 

 

N 5.2034 

H 4.5922 

HA 0.8183 

CA 17.8782 

CB 38.6072 
 

Atom type 
 

N 5.2256 

H 0.6212 

HA 0.4810 

CA 4.8825 

CB 12.8111 
 

 

N 5.2170 

H 0.6267 

HA 0.4834 

CA 4.8499 

CB 12.7664 
 

 

N 5.1908 

H 0.6160 

HA 0.4807 

CA 4.8372 

CB 12.7499 
 

Atom type + 
residue 

 

N 3.8523 

H 0.6189 

HA 0.4522 

CA 2.2053 

CB 1.9705 
 

 

N 3.8839 

H 0.6244 

HA 0.4559 

CA 2.2167 

CB 1.9848 
 

 

N 3.8433 

H 0.6138 

HA 0.4530 

CA 2.2153 

CB 1.9835 
 

Atom type + 
residue + 1 
flanking residues 

 

N 3.5614 

H 0.6018 

HA 0.4384 

CA 2.0896 

CB 1.9429 
 

 

N 3.6379 

H 0.6158 

HA 0.4483 

CA 2.2167 

CB 1.9843 
 

 

N 3.6221 

H 0.6097 

HA 0.4499 

CA 2.1399 

CB 2.0043 
 

Table 1.2: Results for look-models across different data set filtering strategies  

We designed four different look-up models that model chemical shifts using different 
levels of information, from the element type all the way to local sequence identity. We 
report the 10-fold cross validation RMSE of look-up models on three different slices of 
the dataset, no sequence filtering (with data collisions), and 80%/50% sequence identity 
filtering (no data collisions). The model with atom type plus 1 flanking residue performed 
the best, and the data set with no sequence filtering had the best performance between 
the other two sequence filtering.  
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1.4 Discussion 

The BMRB is the central repository for magnetic resonance experiments of 

biomolecules. The BMRB is a critical resource for data mining and machine learning 

efforts to improve the prediction and usage of NMR chemical shifts in biomolecular 

NMR experimental and structural studies. The BMRB reports statistics on chemical 

shifts deposited in the repository, and chemical statistics are used in many applications, 

like in the prediction/simulation of HSQC spectra, and knowledge-based approaches to 

NMR sequential assignment. In this study we attempted to organize the chemical shift 

data in the BMRB into a dataset to do machine learning. We found that there are 

challenges to using the chemical shift data deposited at the BMRB. A principle finding of 

this study is that the BMRB is a data resource/repository, not a ready-made dataset for 

data mining or machine learning. This is due to the large number of data collisions 

present in the BMRB, and without careful inspection, data redundancy can pollute 

training and testing datasets used in machine learning projects. Table 1.2 demonstrates 

how without filtering for data redundancy and sequence identity, look-up models will 

consistently perform better than look-up models with sequence identity filtering.  

 

It is difficult to diagnose the source of the data collisions we encountered in this project. 

Perhaps the most prevalent reason why data collisions occur is that experimentalists 

will often deposit the same experimental data for a project twice (or more) into the 

BMRB with slight modifications. Sometimes researchers deposit assigned chemical 

shifts, or partial assignments ahead of a study’s publication for sharing with colleagues. 

However, upon publication, the study is re-deposited as a separate BMRB entry. This 
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does not always happen, and further, the BMRB has processes to handle cases to 

update a previous entry submission. Yet, from the work presented here, these collisions 

happen often enough to make using the BMRB ‘out-of-the-box’ difficult. Sequence 

identity filtering below 90% removes these collisions obviously, and going forward we 

recommend this be a common practice for using protein chemical shift data from the 

BMRB.  

 

The low sequence diversity of entries deposited at the BMRB also highlights the need 

and utility of structural genomic efforts that can grow the sequence diversity of publicly 

available databases. The Northeast Structural Genomics Consortium had this exact 

goal, with target selection partly influenced by a target's ability to serve as a homolog for 

other unknown protein structures in the human genome and other genomes(Wunderlich 

et al., 2004). 

 

There are two limitations to the study presented in this chapter. First, no chemical shift 

re-referencing was implemented in the chemical shifts collected. It is estimated between 

20%-40% of chemical shifts in the BMRB are mis-referenced(Zhang et al., 2003). Re-

referencing is possible if it is known what the original reference was for a chemical shift 

dataset. In future efforts, we will explore how to incorporate chemical shift reference 

information from the BMRB entry into a broad-based re-referencing protocol. Second, 

we only considered easily parse-able BMRB entries, i.e entries with one assembly, one 

entity, and only protein. In the future, we will more fully use the NMR-STAR parser to 

incorporate more complex BMRB entries into our dataset pipelines.  
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Another limitation and future direction is correlation of chemical shift differences to 

experimental sample conditions. Sample conditions are recorded in the BMRB entry, 

and this information can be used to learn how changes to conditions change chemical 

shift measurements. This is an area where the low sequence diversity of BMRB entries 

is an advantage because there are different NMR experiments on the same protein, and 

these cases can be useful case studies for how differences (or lack thereof) in sample 

conditions influence changes in chemical shift measurements.  

 

A final limitation and future direction is the addition of structural information into the 

chemical shift data set. A subset of BMRB entries with chemical shifts have deposited 

structures, or the BMRB entry is linked to a PDB ID. These atomic structural models can 

be harvested together to have a combined chemical shift and structural model data set.  

1.5 Conclusion 

In this study we collected chemical shifts from BMRB entries into a data format 

amenable for machine learning and data mining. Inspection of collected chemical shift 

lists found data collisions, where two different BMRB entries had the same chemical 

shifts. We implemented an all-versus-all comparison across all the BMRB entries we 

used for our study and found 143 pairs of BMRB entries with chemical shift data 

collisions. Filtering for sequence identity removes these collisions. Additionally, building 

simple look-up models with un-filtered data shows better RMSE performance than 

models built from sequence identity filtered datasets. In future directions we will work to 
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incorporate sample condition information into the dataset of chemical shifts, as well 

atomic structural models. Future use of chemical shift statistics from the BMRB should 

include pre-filtering for sequence identity to remove the data collisions observed in this 

study.  
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2. Quality Assessment in the SPINE database 

2.1 Introduction 

The success of machine learning in structural biology over the past 10 years, 

particularly deep learning in the field of protein structure prediction(“Artificial intelligence 

in structural biology is here to stay,” 2021; Baek et al., 2021; Jumper et al., 2021; 

Kryshtafovych et al., 2021), is highlighting new areas where machine learning can aid 

the discovery of biomolecular structures and motions. Protein Nuclear Magnetic 

Resonance (NMR) spectroscopy is a central experimental tool in the structural 

biologists toolkit to measure structural and dynamic information of biomolecules. NMR 

spectroscopy has a rich history of developing and applying machine learning at all 

stages in the experimental pipeline(Cobas, 2020; Hoch, 2019), from predicting protein 

torsion angles(Shen and Bax, 2015), chemical shift prediction(Li et al., 2020), NMR 

spectral peak picking(Klukowski et al., 2018; Li et al., 2021), and reconstruction of non-

uniformly sampled free induction decays (FIDs)(Karunanithy and Hansen, 2021; Luo et 

al., 2020; Qu et al., 2020).  

 

The free induction decay collected from the NMR spectrometer is the raw data that all 

proceeding steps in NMR experimental pipelines rely and build on(Wuthrich, 1986). The 

terms time domain data and free induction decay (FID) data are used interchangeably in 

the community for these raw data. The prospect of automatic analysis of FIDs to 

produce NMR resonance assignments, dynamic information, or even molecular 
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structures, is a long-standing goal and challenge in the NMR spectroscopy field. A large 

set of curated time domain datasets is a critical first step to support such applications. 

Biomolecular NMR time domain datasets are archived in the Biological Magnetic 

Resonance Bank (BMRB)(Romero et al., 2020). However, only a small percentage of 

BMRB entries have associated time domain data. Yet, the NMR community as a whole 

has generated perhaps 100,000s of FIDs over the course of the field’s history. In 

particular, there have been large structural genomic projects that generated large 

amounts of NMR data on diverse protein targets, like the NorthEast Structural 

Genomics (NESG) consortium that collected X-ray and NMR data for hundreds of novel 

protein targets(Wunderlich et al., 2004). The advantage with the NESG project was the 

development and use of a dedicated Laboratory Information Management System 

(LIMS) to record and track the progress of structural genomic targets through screening 

and structure determination pipelines called SPINE (Structural Proteomics in the 

NorthEast). The goal of this chapter is to assess the feasibility of harvesting HSQC 

screening FIDs into a dataset for future data mining and machine learning. Previous 

efforts to build deep neural networks for FID reconstruction, for example, relied on 

synthetically made FIDs for neural network training(Karunanithy and Hansen, 2021; Luo 

et al., 2020). Yet, real FIDs do exist in abundance, and we are making use of the 

database infrastructure in SPINE to explore how to bring real FIDs into a dataset.  
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2.2 Methods and Results 

We were provided a nested hierarchy of folders from the SPINE database that 

represented all the HSQC screening data in SPINE. A major effort in SPINE was to 

track the progress of sample preparation for the structural genomic targets in the NESG. 

These targets had a specific history, starting with the protein/gene the target was of, 

then to the specific construct or domain of the target to be studied, then to the molecular 

sample which was given Protein Sample Tube (PST) ID. The hierarchy of folders 

provided from SPINE reflected this target, construct, PST hierarchy.  

 

We desired to collect all the saved FIDs from these PSTs and store them in a database 

that stored very minimal metadata about the sample and ultimately the FID. We 

computed the MD5 hashing value of the FIDs to be inserted to use as unique identifiers 

for the data being inserted into the new database. This was done to prevent insertions 

of the same FID into the database multiple times. Having duplicate FID records in our 

dataset would hinder the machine learning projects downstream. However, we found 

that most of the data from SPINE broke this constraint; a great deal of FIDs in the 

SPINE set we received had the same MD5 hash key, extremely rare to happen by 

chance, suggesting duplicates exits across the database. Figure 2.1 illustrates the plan 

and structure of the MD5 analysis we choose for this project.  
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Fig 2.1: Overview of data collection and MD5 analysis in SPINE 

(A) We took the collection of FIDs and their associated metadata and inserted it into an 
intermediate database we can use for downstream data mining and machine learning. 
Importantly, the intermediate database had a constraint that no two FIDs can be 
inserted with the same MD5 hash key. (B) In the MD5 analysis, we can take the MD5 
key of every files from SPINE (including all the NMR experimental acquisition files), and 
sorted the MD5 keys into those that were unique and those that were not.  
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We decided to perform a complete MD5 analysis of every file we received to see where 

collisions occurred. Table 2.1 is a summary of that analysis. We found 97,603 unique 

MD5 keys out of an initial set of 342,546 files. There are two file types that hold time 

domain data, fid and ser. Usually, 1-dimensional NMR experiments are recorded in fid 

files, 2-dimensional experiments in ser files. There were a total of 9,238 fids, and out of 

these 1,134 occurred once, and 1,666 occurred multiple times in the SPINE data set.  
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Number of files 
processed 

342546 

Number of unique 
MD5 keys 

97603 

Number of fid files 
present 

9238 

Unique/redundant 
fid files 

1134/1666 

Number of ser files 
present 

7609 

Unique/redundant 
ser files 

1074/1396 

Table 2.1: Summary of results of MD5 analysis of SPINE dataset 
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2.3 Discussion 

Data management systems in biology and science more broadly are important features 

to an experimental set-up that many groups invest considerable time and resources 

into. SPINE helped track the progress of NESG targets through the sample production 

and structure determination pipeline. SPINE is a valuable resource for future data 

mining and machine learning, as there is much more than just structures and NMR 

screening data in SPINE, information that relates to sample production, protein 

purification protocols, and NMR spectral quality scores. The data duplication in time 

domain files across SPINE has unknown sources. Regardless of the source, the MD5 

collisions recorded in this study highlight the need of more quality assurance and 

curation methods in SPINE. One possibility for the MD5 collisions observed is how 

easily NMR experimental directories may be copied and moved in a filesystem. 

Experimental directories may be over-written unknowingly. The data integrity challenges 

uncovered in this analysis motivated more advanced work in designing light-weight, 

robust databases for the biomolecular NMR research group. We developed SpecDB 

motivated in part from the experiences working with SPINE.  

2.4 Conclusion 

NMR time domain data is a readily measurable NMR observable for biomolecular 

samples. NMR spectroscopists can record a dozen or more FIDs in a single data 

collection session. The abundance of FIDs presents a novel and unused resource for 

sophisticated data mining and machine learning to aid the biomolecular sample 

optimization methods and NMR structure determination pipelines. We found data 
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integrity challenges in the SPINE database that supported the NESG where multiple 

FIDs were copied across the database. Future database development should have built 

in checks to prevent such redundancies from happening for future NMR time domain 

datasets.   
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3.1 Abstract 

NMR is a valuable experimental tool in the structural biologist’s toolkit to elucidate the 

structures, functions, and motions of biomolecules. The progress of machine learning, 

particularly in structural biology, reveals the critical importance of large, diverse, and 

reliable datasets in developing new methods and understanding in structural biology 

and science more broadly. Protein NMR research groups produce large amounts of 

data, and there is renewed interest in organizing this data to train new, sophisticated 

machine learning architectures to improve biomolecular NMR analysis pipelines. The 

foundational data type in NMR is the free-induction decay (FID). There are opportunities 

to build sophisticated machine learning methods to tackle long-standing problems in 

NMR data processing, resonance assignment, dynamics analysis, and structure 
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determination using NMR FIDs. Our goal in this study is to provide a lightweight, broadly 

available tool for archiving FID data as it is generated at the spectrometer, and grow a 

new resource of FID data and associated metadata. This study presents a relational 

schema for storing and organizing the metadata items that describe an NMR sample 

and FID data, which we call Spectra Database (SpecDB). SpecDB is implemented in 

SQLite and includes a Python software library providing a command-line application to 

create, organize, query, backup, share, and maintain the database. This set of software 

tools and database schema allow users to store, organize, share, and learn from NMR 

time domain data. SpecDB is freely available under an open source license at 

https://github.rpi.edu/RPIBioinformatics/SpecDB. 

3.2 Introduction 

The success of machine learning in biology over the past 10 years, particularly deep 

learning in the field of protein structure prediction(“Artificial intelligence in structural 

biology is here to stay,” 2021; Baek et al., 2021; Jumper et al., 2021; Kryshtafovych et 

al., 2021), is leading many communities in the biological and medical sciences to 

reevaluate their data ecosystems(“Opportunities and obstacles for deep learning in 

biology and medicine | Journal of The Royal Society Interface,” n.d.). Data is the key 

resource to train and deploy sophisticated machine learning models(Goodfellow et al., 

2016), and the degree to which well-organized data is available can spur innovation 

across biology, chemistry, and medicine. Modern protein Nuclear Magnetic Resonance 

(NMR) spectroscopy laboratories also require an easy-to-use, lightweight data 

management system for managing NMR time domain data, archiving them locally, and 
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eventually moving these data into public repositories. The goal of this study is to 

advance the data infrastructure and practices for the scientific community to provide 

tools and protocols for archiving NMR time domain data for future data mining and 

machine learning. 

 

NMR spectroscopy has a rich history of developing and applying machine learning at all 

stages in the experimental pipeline(Cobas, 2020; Hoch, 2019). High impact examples 

include predicting protein torsion angles(Shen and Bax, 2015), chemical shift 

prediction(Li et al., 2020), NMR spectral peak picking(Klukowski et al., 2018; Li et al., 

2021), and reconstruction of non-uniformly sampled free induction decays 

(FIDs)(Karunanithy and Hansen, 2021; Luo et al., 2020; Qu et al., 2020). Additionally, 

there have been efforts to organize NMR data into datasets suitable for machine 

learning, like the RefDB dataset with re-referenced chemical shifts(Zhang et al., 2003). 

Designing deep neural network architectures and applications of existing deep learning 

methods to tasks across the NMR data analysis and structure determination pipeline is 

an active area of research. To further develop and engineer sophisticated machine 

learning methods for NMR data analysis requires an accessible data infrastructure to 

collect more and richer datasets. 

 

The free induction decay collected from the NMR spectrometer is the raw data that all 

proceeding steps in NMR experimental pipelines rely and build on(Wuthrich, 1986). The 

terms time domain data and free induction decay (FID) data are used interchangeably in 

the community for these raw data. The prospect of automatic analysis of FIDs to 
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produce NMR resonance assignments, dynamic information, or even molecular 

structures, is a long-standing goal and challenge in the NMR spectroscopy field. A large 

set of curated time domain datasets is a critical first step to support such applications. 

Biomolecular NMR time domain datasets are archived in the Biological Magnetic 

Resonance Bank (BMRB)(Romero et al., 2020). However, only a small percentage of 

BMRB entries have associated time domain data. One way to address this data gap is 

to provide a simple tool to allow organization and archiving of FID data, and associated 

metadata, soon after they are generated at the NMR spectrometer, and to provide a 

simple process for moving these data into the BMRB. In this way, a data resource of 

FIDs will grow in time.  

 

Our approach to addressing the challenges in archiving and distributing raw NMR time 

domain data is a data management tool called Spectral DataBase. SpecDB is a simple 

data management system that individual NMR research groups can install and use to 

create their own archive of organized experimental NMR data. SpecDB also provides 

capabilities to share all, or selected sets, of these data between research groups, and to 

transfer these data to the BMRB. Furthermore, SpecDB should be easily maintained by 

any spectroscopist or NMR spectroscopy research group, without much relational 

database knowledge. 

 

One important goal recommended by the wwPDB NMR Validation Task Force is to 

foster community practices of consistently depositing time domain NMR data into the 

BMRB(Montelione et al., 2013). The need for such large-scale efforts in preserving and 
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disseminating FID data is greatly appreciated in the NMR and structural biology 

communities(McAlpine et al., 2019; Morris, 2018). However, unless these time domain 

data are stored in an organized manner, together with appropriate metadata describing 

the sample and data collection parameters, deposition and retrieval of the underlying 

FID data for biomolecular NMR studies and machine learning is difficult and time 

consuming, and is often not even attempted. SpecDB provides a platform for organizing 

and storing NMR time domain data, together with metadata describing associated data 

collection parameters and samples, in a form suitable for future data mining and 

machine learning. SpecDB also addresses important issues of data reproducibility and 

validation of research results. This software platform is a step forward in developing a 

data infrastructure for learning on NMR time domain data, as well as promoting 

practices of regular deposition of FID data to the BMRB. 

 

SpecDB is related to Laboratory Information Management Systems, or LIMSs. There 

are, and have been, many LIMS developed by the NMR community, and across the 

chemical and biological disciplines. One successful LIMS is the Structural Proteomics in 

the NorthEast (SPINE) database(Bertone et al., 2001; Goh et al., 2003), built to support 

the protein sample production and structure determination efforts of the NorthEast 

Structural Genomics (NESG) Consortium (https://nesg.org/). The SPINE MySQL 

relational database tracks the progress of protein targets and projects through specific 

pipelines for protein sample production, characterization, and structure determination by 

NMR and X-ray crystallography. SPINE is associated with the OracleSQL relational 

database SPINS, Standardized ProteIn NMR Storage(Baran et al., 2006, 2002), the 
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goal of which was to archive each step and associated data necessary to completely 

reproduce a specific protein NMR data analysis pipeline. Other successful LIMSs and/or 

software suites providing some of these same capabilities include ProteinTracker(Ponko 

and Bienvenue, 2012), Sesame(Haquin et al., 2008), PiMS(Morris, 2015), NMRFAM-

SPARKY(Lee et al., 2015), NMRbox(Maciejewski et al., 2017), and CCPN(Vranken et 

al., 2005) to name a few. SPINE and SPINS are specialized to support the pipeline and 

infrastructure of a specific pipeline of a large-scale structural genomics project, and are 

not sufficiently general, light-weight, and portable to support the broader needs for data 

archiving across the biomolecular NMR community. However, they serve as motivations 

and guides for the design of SpecDB, which aims to address the specific data 

management problem of archiving NMR FID data and associated metadata by a small 

research group, needed to archive these FID data in the BMRB. 

 

SpecDB, an FID database suitable for use by a single laboratory or a biomolecular NMR 

facility, was developed with five principal features. (i) The raw time domain data (FID) is 

the centrally tracked entity. (ii) Experimentalists can also archive metadata items 

needed to describe the FID data through text forms. (iii) The system supports 

interchange between database items in SpecDB to database items tracked by the 

BMRB, to allow for BMRB deposition. (iv) The database is searchable with structured 

queries. (v) Query outputs can write FID and associated metadata from the SpecDB 

database into a folder-based hierarchy, to allow users to interact with the FIDs and 

sample information in a filesystem format. 
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In this paper we discuss implementation and system requirements for the SpecDB 

software, the relational schema in SpecDB, the overall workflow for archiving NMR FIDs 

using SpecDB, and some useful query tools. The software is freely available for 

implementation by any laboratory on Linux computer systems through the following 

GitHub code repository: https://github.rpi.edu/RPIBioinformatics/SpecDB. 

3.3 Methods 

SpecDB is a software platform that can archive minimal sample and experimental 

descriptions of FID data obtained from an NMR spectrometer. The NMR spectroscopist 

can provide the appropriate information about the sample and NMR experiment in files 

or in text based forms. The information is then funneled into a relational database. With 

relational databases, data items are stored in tables, or spreadsheets, yet there are 

multiple tables where columns in one table connect or relate to columns in different 

tables. The relationships, or connections between columns in a SQL table is the 

relational aspect we are referring to. SpecDB is a database that NMR research groups 

can construct locally on their laboratory Unix or Linux computer systems. The SpecDB 

software has two overarching components: (i) the relational database that describes an 

NMR experiment data collection process and associated FID data implemented in 

SQLite, (ii) the Python software package of SpecDB that manages the insertion and 

querying of data from the database. 

 

There are three key computational characteristics in SpecDB. First, the SpecDB 

schema and database is built using SQLite, a light-weight and fast implementation of 
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SQL. SQLite powers many websites and scientific applications, and is an important 

industry standard in IT and data science. With SQLite, the entire relational database is a 

single file, which makes managing database read/write/query permissions equivalent to 

managing file permissions in a file system. Sharing within group(s) can be easily set up 

with group permissions. Second, the SpecDB code base is developed in the Python 

language, which is one of the most widely used programming languages, particularly in 

the data science and bioinformatics field. Third, SpecDB utilizes the JavaScript Object 

Notation (JSON) text interchange format(“ECMA-404,” n.d.) to store key NMR 

experimental metadata items that describe an NMR experiment and FID data. JSON 

files are human readable, allowing investigators to easily work with them, and to update 

them interactively. Using JSON forms provides a general solution for representing 

metadata for biomolecular samples and NMR experiments. Various form filling tools can 

be developed and implemented in the future to produce the JSON files needed for 

SpecDB. In our current implementation of SpecDB, we use user-edited Google Sheets 

to create these JSON files. Fourth, SpecDB is developed for Linux operating systems 

as is common and standard in bioinformatics and structural biology.  

3.4 Results 

Figure 3.1 illustrates the data ecosystem for protein NMR and the challenges with 

archiving and organizing the raw time domain data. NMR research groups typically use 

laboratory or institute NMR facilities. Within each NMR research group are individual 

investigators working collaboratively on diverse molecular systems and questions. It is 

often the case that the storage and organization of the raw time domain data is left to 
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the individual scientist who collected the data, and this leads to many different practices 

and conventions, even within a single research group, for storing FIDs and the essential 

metadata that describe the experiment. 
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Fig. 3.1 : Data ecosystem for biomolecular NMR  

(A) In general, biomolecular NMR research groups make use of shared NMR facilities 
where many NMR spectrometers are maintained and scheduled to specific users in 
specific research groups. After data is collected, a study is typically published and the 
experimental data to support the study is uploaded to the PDB and BMRB databases. 
The BMRB deposition is based on a specific study, and depositors are not required to 
submit time domain data. (B) Time domain data from NMR experiment is typically 
funneled into a processing phase of the data analysis, using specialized NMR 
processing tools, visualization tools, or other software suites for analysis and 
visualization, such as NMRPipe, SPARKY, CCPN, and NMR-FAM software suite. 
SpecDB provides solutions for some key questions including: how is the raw time 
domain data collected and stored?; how easy is it to find FIDs from a particular study or 
data range?; how do I retrieve the FID together with metadata and organize it for a 
BMRB deposition? 
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On commercial NMR spectrometer systems, the NMR FID data is included in a data 

collection directory that also includes many details of data collection, including the 

actual NMR pulse sequence code, spectrometer shim parameters, specific data 

collection parameters, pulse sequence waveforms, etc. In SpecDB, the “FID data” that 

is stored refers to this entire data collection directory. While most of the data items in 

these parameter files do not have specific representations in the SpecDB schema, they 

are still stored in the SpecDB database as a compressed directory. This allows for 

future development of the SpecDB schema to include specific data collection 

parameters, such as NOESY mixing time values or pulse widths, that are stored in 

these data collection directories. Hence, the initial focus of the SpecDB schema is to 

provide a platform for archiving these data, along with metadata about the NMR sample 

and other data collection parameters that are not included in these FID data directories. 

3.4.1 Process of Developing the SpecDB Schema 

The SpecDB schema developed to describe FID data (actually, the FID data directory), 

NMR sample, and associated metadata is designed to be compatible with both the 

SPINE database schema(Bertone et al., 2001; Goh et al., 2003), and with the NMR-

STAR data ontology(Ulrich et al., 2019) used for archiving NMR data in the BMRB. 

Tables in the SPINE schema provide detailed information about protein samples, 

including information about the protein itself, the protein families it has been classified 

into, information about homologous proteins, disorder predictions, details of cloning, 

expression, crystallization data, and progress in structural characterization by NMR and 

X-ray crystallography. Most of these details are not required for SpecDB. We assessed 

each data item and data table in SPINE to identify a condensed subset that could 
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minimally and routinely describe an NMR FID data collection experiment and the 

corresponding NMR sample. In addition, by inspecting numerous representative NMR-

STAR files from the BMRB, and in consultation with the BMRB developers, we identified 

additional data items that need to be provided for deposition an FID dataset into the 

BMRB, and hence need to be tracked through the SpecDB database. SpecDB thus 

provides direct translation from SpecDB data items to NMR-STAR tags. By using both 

SPINE and NMR-STAR, we were able to arrive at a minimal SQL schema to describe 

an NMR FID dataset sufficiently well to ensure its reproducibility, and to convey it into 

the BMRB. 

 

The schema of SpecDB can be viewed as having two main parts, the database tables 

that describe the NMR sample, and the database tables that describe the FID data. 

Figure 3.2 depicts this two-wing structure of the SpecDB schema. Making a simple 

schema that is general enough for a wide range of applications is a significant 

challenge. Hence, the SpecDB schema is designed to be flexible enough to provide for 

significant modifications needed to support specific data pipelines and query 

requirements. Some examples of information not included in the SpecDB schema 

include details about the DNA cloning protocols used for making protein constructs, 

details of biomolecule purification procedures, detailed information about fermentation 

and expression, and bioinformatics, evolutionary, and gene-family metadata about the 

biomolecular target. These are not essential for the process of archiving the FID data 

and depositing it into the BMRB. However, the schema provides the flexibility for 

expansion to handle these additional data items in the future, which can be guided by, 
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for example, the SPINE schema which includes many of these additional sample 

preparation details. 
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Fig. 3.2: The two wings of the SpecDB schema 

The SQL schema for SpecDB can be considered in two parts, or wings. First is the 
description of the experimental Sample used for NMR data collection (left side). Users 
define Projects, Targets, Experimental Sources, and Samples. A Sample is part of a 
Project, defined by the group using SpecDB. Within Projects are Targets, biomolecules 
that are the subjects of the Project study. Experimental Sources describe aspects of the 
production of the Target. Samples (PSTs) are the actual samples that are analyzed at 
the spectrometer. The second wing of SpecDB relates information about the FID data 
(right side). SpecDB collects information about the Spectrometer, Probe, and Pulse 
Sequence used for collecting a specific FID. On some spectrometry systems, including 
Bruker systems, FIDs are collected in a “Session”, which is a series of related NMR 
experiments. This session hierarchy is preserved in the schema of SpecDB. The right-
hand side of the figure indicates the many-to-one relationship between Sessions and 
FIDs, as there are multiple time domain datasets associated with the Sessions table. 
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3.4.2 SpecDB Tables that Provide Sample Information 

The main table in SpecDB that describes the NMR sample is the Protein Sample Tube 

(PST) table. The Protein Sample Tube refers to a physical tube holding a sample (which 

may be protein, nucleic acid, or other biomolecule or non-biological chemical). It 

includes sample tubes used in preparing a sample (e.g. Eppendorf tubes), or the actual 

NMR tube inserted into the NMR spectrometer. The set of relational tables that specify 

the sample and project are summarized in Figure 3.3. Each Protein Sample Tube is 

assigned a unique text identifier by the user called the pst_id. The pst_id is assigned by 

the user/research group. This identifier must be unique in the database. However, the 

actual id is determined by a lab-specific naming convention. This naming convention 

system is discussed below. 
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Fig. 3.3: Relational diagram for SpecDB tables 

A view of the tables that describe an NMR sample and project. A hierarchy of meta-data 
information is depicted in the nested relationships between PROJECT, TARGET, 
CONSTRUCT, EXPRESSION, PURIFICATION_BATCH, and PST. Across the entire 
SpecDB schema there are 17 tables, 12 of which are displayed above for the 
description and modeling of NMR samples. Some data items (e.g. isotope-enrichment 
tags, shown in Supplementary Table 3.S1) are excluded for clarity. The connectors 
between tables indicate the relationships between tables. All the connectors in the 
diagram indicate a specific type of relationship, many-to-one relationships. 
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A key feature of the sample specific tables presented in Figure 3.3 is the nested nature 

of these tables. A sample description starts with the PROJECT table. Samples are part 

of a project, or cohesive study. The data items in the PROJECT table describe the 

research project, and provide a simple unique name for the project, the project_id. The 

hierarchical flow of information for describing a sample follows PROJECT, TARGET, 

CONSTRUCT, EXPRESSION, PURIFICATION_BATCH, BATCH_COMPONENTS, and 

PST. Multiple samples, each prepared as a “purification batch”, may be combined in a 

single PST to form complexes, as defined by the BATCH_COMPONENTS table. As a  

consequence of this hierarchy, every purification batch is associated with an expression 

experiment (also called a fermentation) run, every expression experiment is associated 

with a construct, every construct is associated with a target, and every target is part of a 

project. This nested hierarchy reflects the SPINE data schema, and in the future will 

allow for archiving NMR spectra from the NESG SPINE and SPINS databases into 

SpecDB for public distribution. 

 

Inspection of the tables in Figure 3.3 illustrates that nearly every table has a text based 

identifier that is unique across the respective table. For example, the PST table has a 

pst_id, which provides a unique name for each protein (or nucleic acid) sample tube. 

SpecDB does not impose a specific convention or nomenclature on the data record 

identifiers (project_id, target_id, pst_id, etc), except that each data record must have a 

unique identifier. The naming convention for these unique identifiers should follow a 

convention set by the research group. For example, assignment of the unique textual 

identifier for a Protein Sample Tube, pst_id, may be chosen by the user who prepared 
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the sample tube. There is no internal SpecDB mechanism to generate identifiers other 

than preserving their uniqueness within their respective table. However, SpecDB checks 

identifiers at data input to prevent using an ID already in the database (unless a user 

specifies with a flag the need to update the associated record).  

 

In the SPINE database, record id’s follow a convention based on the project_id; e.g. HR 

for “human protein project at Rutgers”. At each subsequent level in the organization 

hierarchy (targets, constructs, expressions, purification batches, and PSTs), there is a 

new delimiter that is added to the ID to make the ID unique and convey some 

information about the sample. Accordingly, project_id name HR defines the target_id’s; 

e.g. HR001A (the first domain of 1st protein HR001, in the project HR), which then 

defines the naming of construct_id’s, expression_id’s, purification_batch_id’s, and 

pst_id’s. In this example, the purification_batch_id HR001A.200_345_NTag.NiNTA.004 

is the 4th batch of a construct of target HR001A that comprises residues 200 - 245 with 

an N-terminal hexaHis tag purified by NiNTA affinity purification. The corresponding 

NMR sample tube pst-id’s are assigned abbreviated names based on the target_id (e.g. 

HR001A.001, HR001A.002, etc.), which fit better on NMR tube labels. It should be 

noted that this naming convention is convenient, but does not replace accessing the 

corresponding PST record (and the associated hierarchy of records) to get complete 

and accurate information about the sample. Users of SpecDB may adopt this 

convention, or develop their own unique naming system for record ids.  
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Inspection of the schema for the PST table (see Figure 3.3) highlights the relational 

nature of SpecDB. The PST table links to other tables that describe the sample. For 

example, the user who generated the Protein Sample Tube is recorded in the PST table 

using the pst_preparer column. The value in the pst_preparer indicates the user who 

created the PST. In order to know the many attributes that describe a user, the value 

provided in the pst_preparer column is a key that links back to the USER table where 

the remaining items to describe the user are stored, rather than creating many columns 

within the PST table to record the user’s first name, last name, email address, etc. All 

the user's information is stored in the USER table, and is linked to the necessary rows in 

the PST table through the user_id key. There are four tables that all connect to the PST 

table, as illustrated in Figure 3 through the barbed connectors. The barbed connectors 

indicate that the relationship between the two tables being connected is a many-to-one 

relationship. For instance, many sequence constructs can be made for a single protein 

target.  

 

Next we will describe each table presented in Figure 3.3 and the role each plays in 

describing an NMR sample, following the hierarchy discussed above. A target is 

generally a biomolecule (protein, nucleic acid, polysaccharide, etc), although non-

biological molecule samples can also be described with this schema. The biomolecule 

may come from a natural source, or be artificially designed or synthesized. For natural 

proteins, the protein is defined by the Uniprot(The UniProt Consortium, 2021) protein 

sequence of the full-length protein. A unique target_id is defined for each target, and 

linked back to the corresponding PROJECT table. Following the TARGET table is the 



 44 

CONSTRUCT table. It is often the case that the biomolecules being studied with NMR 

have an amended primary sequence, for purification reasons (e.g., a purification tag), 

resulting from mutations introduced for functional studies, due to truncations to 

suppress aggregation, or for other reasons. Hence, the construct sequence studied by 

NMR is generally different from the target sequence. A construct is assigned a 

construct_id and a link to the target_id from which it was made. Associated with each 

construct are one or more expression (or fermentation) experiments. The 

EXPRESSIONS table, designated by a unique expression_id provides metadata on how 

the expression of the construct in a particular bacterial strain or other organism was 

accomplished. 

 

Following expressions are protein purification batches, described in the 

PURIFICATION_ BATCH table. This table also provides a sample_sequence, which 

may be different from the construct_sequence if purification tags are removed in the 

process of purification. Here, SpecDB also allows users to store the absorbance 

extinction coefficient (e.g., at 280 nm for proteins) expected for the purified 

sample_sequence, which can be estimated relatively accurately from the protein or 

nucleic acid sequence(Gill and von Hippel, 1989; Nwokeoji et al., 2017), and the 

expected molecular weight. If the construct is isotope-enriched, this needs to be 

accounted for when retrieving the expected molecular weight from the sequence. 

Within the PURIFICATION_BATCHES table is a recording of the isotopic-labeling 

actually achieved for the biomolecule. The isotope-labeling may be that expected based 

on the isotope-enrichment strategy used, or that determined by experimental data such 
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as NMR or mass spectrometry. Not all the isotopic labeling schemes tracked in the 

SpecDB schema are listed Figure 3.3; additional schemes are listed and described in 

Table 3.S2. Currently, eleven common types of isotope labeling can be tracked in the 

PURIFICATION_BATCH table and more can be added as needed in future versions. 

The isotope_labeling_remark is a free-text field that allows the user to record labeling 

methods not captured by the isotope-enrichment strategies currently supported for the 

PURIFICATION_BATCH table. A PST may come from a single purification batch, or (in 

the case of complexes) multiple purification batches. The one or more batches combine 

to form a PST are tracked by the BATCH_COMPONENTS table. 

 

The PST table also provides a description of the protein sample tube itself using a 

controlled vocabulary of common sample and NMR tubes, including conventional NMR 

tubes and Shegemi NMR of various diameters (i.e. 1-mm, 1.7-mm, 3-mm, 4-mm, 5-mm, 

8-mm, 10-mm). In the case of solid-state NMR, a PST tube can be a rotor of various 

sizes. The PST also tracks the actual sample pH (or the expected pH based on the 

buffer used), who prepared the sample tube, and the physical location of the protein 

sample tube, the solvent, the buffer, as well as the the sample volume and 

concentration of the target molecule(s) in the sample tube. 

 

Associated with the PST table is the BUFFER table. The BUFFER table records all the 

buffers used in the database, and each buffer is provided a buffer_id. A buffer_ph is 

recorded, which may be different from actual sample_ph recorded in the PST table. In 

order to describe the contents of a buffer, SpecDB also has a 



 46 

BUFFER_COMPONENTS table. Each row of the BUFFER_COMPONENTS table is a 

different component used to make buffers, where the buffer is associated with this 

component through the buffer_id. A buffer component requires three items to complete 

its description: the name of the component, the concentration of that component, and 

the unit of concentration. Buffers can be very complex, and having a simple table 

structure to record all the buffer components of a particular buffer may be tedious in the 

short term, but highly valuable due to accuracy in archiving the sample, reproducibility, 

and for future data mining.  

The last table to highlight in Figure 3.3 is the USER table. Here, the investigators in the 

research group are recorded, their names, emails, department and institution, etc. The 

USER table is important for many reasons. In particular it is helpful for trouble-shooting 

a project when it is known who made a particular sample, or recorded a specific 

spectrum. User information is also required for creating a BMRB deposition, and for 

documenting credit for publication.  

 

Elements of the SpecDB schema not illustrated in Figure 3.3 are the controlled 

vocabularies on the SpecDB data items, or the text strings or values allowed to be 

inserted into the database. Not every data item has a controlled vocabulary, but several 

require controlled vocabulary to ensure consistency in what users input as information 

across the schema. Table 3.1 presents a representative sample of the data items that 

have a controlled vocabulary in the SpecDB schema. As an example, items such as 

volume_unit cannot take any text string, there are only certain text strings (i.e., units of 
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volume) allowable to be used for the volume_unit value. This helps maintain 

consistency in the database.  
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SpecDB data type Description 
Controlled 
Vocabulary 
Description 

structural_genomics 
Optional for BMRB deposition. 
Indicate if project is part of a 
structural genomics effort. 

( ‘yes’ OR ‘no’) 

iso_13c_enrichment 
Describe the carbon-13 isotopic 
enrichment.  

Must have substring 
( “ % 13C “ ) 

buffer_component_unit 
Record the unit the buffer 
component exists in the buffer. 

( ‘mM’ OR ‘% (v/v)’ 
OR ‘mg/ml’ ) 

sample_type 
Record the type of PST sample.  ( ‘solution’ OR 

‘solid’ ) 

volume_unit 
Unit of volume for protein 
component of PST. 

( ‘nL’ OR ‘μL’ OR 
‘mL’ OR ‘L’ ) 

conc_unit 
Concentration unit for protein 
component of PST 

( ‘μg/ml’ OR ‘mg/mL’ 
OR ‘nM’ OR ‘μM’ OR 
‘mM’ ) 

nus 
Indicate if non-linear sampling 
was employed 

( ‘yes’ OR ‘no’ ) 

Table 3.1: Controlled vocabularies across the SpecDB relational schema 

These are representative examples of the controlled vocabularies used by SpecDB. 
Indicated are the SpecDB data types where a controlled vocabulary exists, a description 
of the data modeled for each data item, and the exact expression that controls the 
allowable values for each SpecDB column. Not every column with a controlled 
vocabulary is presented in this table. The allowable tube type names are listed in Table 
S1, and controlled vocabularies for different isotopic labeling is described in Table 3.S2. 
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3.4.3 SpecDB SQL Tables to Archive FIDs 

The second wing to the SpecDB schema are the tables that describe FID data sets 

(Figure 3.4). An FID is recorded on a spectrometer, so there is a SPECTROMETER 

table that records the names of the spectrometer used, the spectrometer model, and the 

field strength.  
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Fig. 3.4: Relational diagram for SpecDB tables that describe NMR FID data 
The relationship diagram depicted in this figure are for the tables in the SpecDB schema 
that describe NMR experiments and the data collected at the NMR spectrometer. Inside 
the diagram are callbacks to the PROJECT, USER, and PST tables in Fig. 3. The 
complete FID subdirectories are stored as Binary Large Objects (BLOBS) in the 
zipped_dir column of the Time_Domain_Datasets table, allowing other auxiliary files 
such as acquisition/acquisition status files needed to reproduce the experiment to be 
archived along with the time domain NMR data.  
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The next level of this hierarchy is SESSIONS, which are sets of FIDs collected together 

in a data collection session. A session could be a single FID data set (as for example 

data collected on Varian spectrometers using VNMR software), or a directory containing 

subdirectories with a single FID in each (as is the case on Bruker spectrometer 

systems). The concept of a session stems from the management of FIDs on Bruker 

spectrometers using TopSpin software. Here, the NMR spectroscopist may queue up 

several pulse sequences to be run in succession at the spectrometer. The FIDs from 

these pulse sequences are placed into different subdirectories of a session directory. 

This subdirectory structure is reflected in the SpecDB SESSIONS table. In the SpecDB 

SESSIONS table, the spectrometer that is being used is recorded, the data collection 

dates, the number of FIDs to be collected in the session, the project associated with the 

session, along with the user running the session. Internally to SpecDB, each session is 

given a session_id, which is simply a row integer counter, and is an item that the user 

does not set. The session directory contains the specdb.json JSON file, with metadata 

provided by the user, as well as the sub-directories with the recorded FID data and 

spectrum-specific acquisition parameters. In this way all of the metadata describing all 

of the FID data collected in the session, including information about the user, sample, 

and other aspects of the data collection are all stored together in the JSON text file at 

the session directory level. 

 

The SESSIONS table is a useful LIMS concept for NMR data management. Sessions 

reflect the fact that some FIDs are related to other FIDs. The SESSIONS table also 

highlights that SpecDB is more than a database of FIDs, it describes the samples the 
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FIDs are recorded from, and also maintains information about relationships between 

FIDs. 

 

Ultimately, the recorded FIDs (i.e. FID data directories) themselves are stored in the 

zipped_dir column of the TIME_DOMAIN_DATASETS table. The zipped_dir data item is 

a compressed data directory containing the FID and the associated vendor-specific data 

collection metadata. The zipped_dir is stored in the database as a Binary Large Object 

(BLOB). To ensure that every stored FID in SpecDB is unique, we perform a MD5 

hashing function on the raw FID data file to be inserted to SpecDB, and the hashed 

string is stored in the TIME_DOMAIN_DATASETS table in the md5checksum data item.  

Also included in the TIME_DOMAIN_DATASETS table is the probe_id, which links back 

to the PROBES table that describes the NMR probe used in the collection of the FID. 

The probe information is stored at the level of the FID instead of the session in the 

SpecDB schema because it is possible that within the same session, users may switch 

out probes for different applications. The probe information collected in the PROBES 

table displayed in Figure 3.4 contains items that relate to probes for both solution and 

solid-state NMR. 

 

The TIME_DOMAIN_DATASETS table also includes a name of the pulse sequence 

used to collect the corresponding FID, and the pst_id for the sample being analyzed. 

The pulse sequence name is a nickname (e.g. 2D NOESY) used for queries or BMRB 

deposition; the actual pulse sequence miniprogram is included in the FID data directory 

associated with the TIME_DOMAIN_DATASETS table. Like the probe information 
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described above, the pst_id is modeled at the level of the FID instead of session 

because spectroscopists might change the sample, or use different samples over the 

course of a session. For instance, spectroscopists might perform a pH titration by 

adjusting the pH in the sample tube and recording a new FID on the adjusted sample 

tube. In this case, each time the pH is changed results in a new pst_id. The 

spectroscopist records the path of sample changes using the  prev_pst_id data item in 

the PST table, allowing protein sample tubes to inherit and trace information from each 

other. 

 

There are two remaining tables that are not represented in Figures 3 and 4 and do not 

necessarily fit the two-wing structure used to describe the SpecDB schema. The first is 

the STAR_CONVERSION table. This table is not intended to be modified by users as it 

contains a translation between the SpecDB data items to NMR-STAR tags. This helps 

the SpecDB applications for writing database contents into NMR-STAR formats. The 

second table, discussed below, is the SUMMARY table for queries, which is a subset of 

commonly searched data items in SpecDB in one flat table.  

3.4.4 SpecDB Workflow 

The intended workflow with SpecDB is illustrated in Figure 3.5, which depicts an NMR 

spectrometer with the associated computer workstation where the FID is initially 

recorded. Typically, these FIDs cannot be stored indefinitely at these NMR 

workstations, and are moved to a laboratory server where SpecDB is installed, using 

rsync or other mirroring operation. SpecDB is run and queried on this laboratory server.  
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Fig. 3.5: Movement of NMR time domain data from NMR spectrometer to SpecDB 

FIDs are generated at the spectrometer and stored on the associated computer 
workstation. Typically the collected data from the NMR spectrometer workstation is then 
transferred, either through an rsync, a mirror, or manual copying to a different, more 
stable filesystem. The NMR spectroscopist will typically store the FIDs they collect in a 
directory somewhere in the shared file system. These directories are highlighted with 
the indicated Session 1 and Session 2 directory structures. From both Session 1 and 2, 
there are two or more sub directories with FID data (denoted here as fid for 1D NMR 
data and ser for multidimensional NMR data). At the top level of these sessions sits a 
specdb.json JSON file. The specdb.json describes the data collection session. Once the 
spectroscopist enters the required metadata information into the JSON file, the specdb 
insert command is used to insert the specdb.json file into the database. 
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The JSON file (specdb.json) is located in the main directory of a data collection session, 

and contains information about each FID data set in the subdirectories under that 

session. The structure of the JSON file defines which sample, pulse sequence, etc. is 

associated with each subdirectory FID data set (Figure 3.5). The JSON file may be 

edited either before data collection (e.g, entering sample data prior to data collection), at 

the spectrometer (e.g. designating which NMR experiment is being collected in each 

subdirectory), or after moving the data to the database server (e.g. completing metadata 

information prior to submitting the data to the database).  Once the JSON file metadata 

is complete, the SpecDB command line tool can be run by the user to insert the FID 

data sets and metadata for the session into the SpecDB database.  

3.5 SpecDB Sub Commands 

There are six subcommands in SpecDB: create, backup, restore, insert, forms, 

summary, and query. Table 3.2 lists each SpecDB subcommand, the arguments each 

takes, and an example command as potentially run at the command line. The SpecDB 

subcommands create, backup, and restore are designed to be used by a research 

group’s SpecDB manager. A new SpecDB database is created with the command 

specdb create. The location where the SpecDB SQLite database resides, and the 

backup SQLite database file are command line arguments to the create subcommand. 

Together, specdb backup and specdb restore perform the incremental backup 

operations for SpecDB. The subcommands insert, forms, summary, and query are 

intended to be routinely used by individual researchers. The SpecDB command-line tool 
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allows users to interact with the database in a shell environment, but we are also 

developing graphical applications to make these commands more user-friendly. 

Once the user has completed a specdb.json file for their data collection session, these 

data are inserted into SpecDB database using specdb insert. Inserts that would override 

data already present are not allowed by default: SpecDB warns the user and forces the 

user to confirm if editing of previous values is intentional. specdb forms can be used to  

generate template JSON forms for any data item/table in the database, to provide a 

guide to assist users in creating a JSON file of metadata.  
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SpecDB 
Command 

Arguments Example 

create 

 

db Name and path where 
SpecDB database to be 
built 

backup Path and name where 
incremental backup will be 
maintained 

 

 

$ specdb create 
 --db lab/data/lab.specdb.db  
 --backup lab/backups/backup.db 

 

insert 

 

json Path to JSON file to 
process for insertion 

db SpecDB database to 
insert into 

overwrite On conflicts between 
the JSON file and 
SpecDB, update the 
corresponding SpecDB 
row with data from the 
JSON file 

 

 

$ specdb insert 
 --json lab/data/new/lab.specdb.json 
 --db lab/data/lab.specdb.db 
 --ovewrite  

 

forms 

 

table SpecDB table to create a 
filled text form for 

num Number of forms to make for 
the requested table 

 

 

$ specdb forms --table user --num 3 
 

backup 

 

db SpecDB database to be 
backed up 

backup Database to backup to 
 

 

$ specdb backup 
 --db lab/data/lab.specdb.db 
 --backup lab/backups/backup.db 

 

summary 

 

env SpecDB environment file 

table SpecDB table to view a 
summary report of 

 

 

$ specdb summary psts 
 --env lab/data/lab.specdb.env  

 

query 

 

sql Raw SQL query on the 
summary table 

output Process results into 
either a directory 
structure or STAR files 

env SpecDB environment file 
 

 

$ specdb query 
 --sql “SELECT user_id FROM summary” 
 --output dir 
 --env lab/data/lab.specdb.env 

 

Table 3.2: Description of SpecDB subcommands 

The above table lays out all the commands within the SpecDB library that are used to 
manage NMR FID data in a filesystem and a SQLite database. The left column provides 
each sub command name. The middle column provides documentation on the 
command line arguments for each sub command. The right most column provides 
illustrative examples of how each SpecDB sub command could be executed in a 
general shell environment.  
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The specdb summary subcommand provides a summary of any table in the subject 

SpecDB database instance. Using specdb summary the contents of the requested table 

is printed in a formatted table. For example, specdb summary users will display a 

formatted table in the terminal session with table columns user_id, given_name, 

last_name, etc, and rows be the users that have been entered into the database. This 

allows users to review the data items and their values  already inserted into the 

database, which can help users complete their specdb.json files and to assess 

inconsistencies.   

 

Lastly, specdb query command allows users to perform queries against a SpecDB 

database and retrieve the subset of FIDs data sets that satisfy the query. These data 

are output in one of two formats, either a directory hierarchy of the data or NMR-STAR 

files for each FID. Building a SQLite database for NMR FIDs and sample information 

allows researchers to utilize the SQL language to extract data from the database using 

diverse and complex queries using SQL. The specdb query tool is designed to give 

researchers a way to make queries against a SpecDB database without using a 

sophisticated SQL query. With specdb query, users submit a SQL SELECT statement 

to be run against a SpecDB database. The specdb query tool will return all FIDs 

captured in the provided SQL SELECT statement. However, specdb query will only 

accept queries of data items listed in the SUMMARY table. SUMMARY is a SQL view of 

the SpecDB database, where columns from different tables are stitched together into a 

2-dimensional table that is compatible with spreadsheets. More complex queries can be 

accomplished by connecting directly to the SpecDB SQLite database file. Table 3.3 lists 
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out the exact terms incorporated into the SpecDB SUMMARY view, as well as 

examples of each data item.  
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Column Name Description Example data 

id 
Row counter that assigns a unique integer to 
every FID collected 

12 

experiment_date Data FID was collected 2022-01-11 

user_id The user_id of the user that collected the FID KJF 

project_id Project_id for the project the FID is a part of SPIKE Project 

structural_genomi
cs 

Whether the FID is part of a structural genomics 
project 

no 

temperature Temperature FID was collected at 25 C 

buffer_id Buffer identifier that sample was in NMR-Buffer-17 

pst_id 
Protein Sample Tube identifier for the sample 
the FID was recorded of 

SPIKE.2022 

batch_id Identifier for purification batch SPIKE.2022.b 

expression_id Identifier for expression run SPIKE.2022.e 

construct_id Identifier for construct SPIKE.102-450 

target_id Identifier for target SPIKE 

target_sequence Protein sequence of target MGHSSSTVLAM… 

construct_sequen
ce 

Protein sequence of construct HHHHHHLEMGHSSSTV
… 

pulse_sequence_i
d 

Name of pulse sequence 
1H-NOESY 

spectrometer_id Identifier of spectrometer FID was measured at Hu800 

field_strength Field strength of spectrometer 800 MHz 

probe_id Identifier for the probe used in FID acquisition Avance_2033478 

tube_type Type of tube PST was in 4-mm Shigemi tube 

nus 
Whether non-linear sampling was employed in 
FID acquisition 

no 

zipped_dir 
Binary object of the zipped Bruker directory that 
contains the FID 

(BINARY) 

Table 3.3: Schema description of SpecDB Summary View 

This table presents the specific items tracked in Summary View in the SpecDB schema. 
Users can make structured queries against these columns and elect to have the query 
results be formatted into a directory structure or into NMR-STAR files. Left column 
indicates the names of the columns in the SpecDB summary view. Middle column is a 
description of each column in the summary view. Right column provides an example of 
the data types stored in each of the columns.  



 61 

 
 

Figure 3.6 illustrates a specdb query and shows condensed examples of the two output 

format types. NMR researchers are often expecting a directory structure when they are 

working with their data, so outputting query results as a directory hierarchy is a natural 

format option. One goal of SpecDB is to also generate FID data sets and metadata in 

NMR-STAR format by a query against the database. Using the STAR_CONVERSION 

table, every SpecDB data item can be translated to NMR-STAR save frames and tags. 

These NMR-STAR files can be used for deposition to the BMRB, or for sharing 

experiments between researchers and labs.  
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Fig. 3.6: Overview for the SpecDB query system 

(A) The list on the left of the figure above is a condensed version of the SpecDB 
Summary table; the complete list of columns supported in the Summary view is 
provided inTable 3 Supplementary Table X.. (B) A link to the raw binary data for each 
free induction decay (FID) is included in the Summary view. (C) SpecDB restricts SQL 
queries to data items in the Summary view. More complex queries can be handled 
directly through sqlite3. Queries generate FID data collection directories, formatted 
either in a filesystem folder hierarchy or as a set of NMR-STAR files.  
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3.6 Discussion 

SpecDB introduced in this study is a lightweight, flexible, robust LIMS for organizing and 

archiving NMR FID data generated in a small NMR research group or a large NMR 

facility center. In this first iteration of SpecDB, we had five goals: (i) Archive time domain 

FID data and key associated metadata, (ii) harvest user-supplied metadata that 

describes an FID experiment in human read-able JSON files, (iii) provide tools to allow 

queries of FID data sets in the database, (iv) allow records in SpecDB to be queried, 

organized, and formatted in NMR-STAR format for automatic deposition to the BMRB, 

(v) allow users to query, organize, and output SpecDB contents in a user-friendly 

hierarchical directory structure. All five goals are successfully implemented in version 

1.0 of SpecDB. The SpecDB schema, based on the SPINE and NMR-Star schemas, 

was developed to describe an NMR sample and FID data set. Although focused on 

supporting descriptions of biomolecular (e.g. proteins and nucleic acids), the schema  

will also support non-biological NMR sample descriptions. SpecDB also includes 

command line tools that manage the insertion of new data into the SpecDB database, 

incremental backup of the database, and querying and retrieval of data from the 

database. 

 

SpecDB falls under the general umbrella of a Laboratory Information Management 

System (LIMS). There are several LIMS systems for NMR studies, and for many other 

domains of science. The diversity of LIMS systems is driven by the unique needs of a 

scientific discipline and community data standards. Dedicated LIMS have been 



 64 

developed for individual research groups that have specific workflows. The challenge 

with any LIMS system is the balance between complete control over data tags/items to 

be collected from users, vs complete flexibility where software is intelligent enough to 

handle what a user is providing or requesting. Designing too much control makes the 

utility ”brittle” and incapable of handling slight deviations from the original data 

management pipeline, posing challenges to users who want to use the LIMS system but 

are frustrated by strict data management policies imposed by the structure of the 

system. On the other hand, designing a highly flexible system that is sufficiently light-

weight for general distribution is very challenging.  

 

LIMS or data curation software employed across the NMR data ecosystem can be 

organized into three main groups. First, there are LIMS that seek to archive and track 

sample production. Examples include SPINE(Bertone et al., 2001), 

ProteinTracker(Ponko and Bienvenue, 2012), Sesame(Haquin et al., 2008), and 

PiMS(Morris, 2015) to name a few. Across these sample production specific LIMS, the 

schemas are quite different from each other as they serve different needs, processes, 

and communities. 

 

Second, are data/software communities and packages that organize the software 

needed to record and process NMR data, and to track intermediate and final results of a 

data analysis pipeline. Examples of these include SPINS(Baran et al., 2006, 2002), 

CCPN(Vranken et al., 2005), NMRFAM-SPARKY(Lee et al., 2015) and 

NMRbox(Maciejewski et al., 2017). The applications and packages that make up this 
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second set are not databases that store FIDs or processed NMR spectra in a relational 

database. They represent software suites where software conventions, versions, and 

data input and output formats are standardized. 

 

The third group of data organization and curation software in the NMR field is the global 

community standards for making NMR data and structures publicly available. The 

BMRB is the main public data repository for magnetic resonance data types and 

molecular structures. The BMRB schema also organizes sample details, spectrometer 

and probe information, pulse sequence and experimental details, and is the 

international  archive for many different NMR data types. The BMRB schema also has a 

textual-based archive format called NMR Standard Text Archival and Retrieval (NMR-

STAR) format(Ulrich et al., 2019). Using NMR-STAR, NMR experiments can be 

recorded in a text based, machine-readable format for deposition to the BMRB, as well 

as storage of NMR data and experiments in a standard, well-defined ontology. 

Alongside NMR-STAR is the NMR Exchange Format(Gutmanas et al., 2015) (NEF), a 

different textual ontology to describe NMR experiments and data. NEF has particular 

value as a light-weight NMR restraint exchange format. NMR-STAR and NEF are 

standard ontologies and schema to archive and/or share NMR data and experiment 

descriptions, but they are not databases designed to save reproducible descriptions of 

NMR experiments and the collected FIDs from an experiment. Researchers will typically 

utilize NEF only well into a NMR study (e.g. for structural modeling) and interact with the 

BMRB only at a late stage of a project, after most of the study has been completed.  
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SpecDB is designed to allow archiving of NMR FID data immediately after data 

collection at the spectrometer. It does not handle any stage of post-processing of NMR 

FIDs, so SpecDB does not fit into the second grouping of software packages for NMR 

analysis described above. NMR FID data are an important data resource that will serve 

as input into future data mining and machine learning efforts. SpecDB fulfills the timely 

need for a light-weight database that can reliably organize NMR experiments as they 

are being collected, where the raw FID data is the central data item in the database 

along with experiment and sample metadata. SpecDB also supports data interchange 

into other FID deposition formats, like NMR-STAR. 

 

The FID as a data item in the SpecDB schema represents a significant shift in the 

understanding of LIMS for NMR data. Historically, FID binary files presented a 

challenge for digital storage due to their size and limits on available storage. Dedicated 

servers or archival media (e.g.removable disks, tapes) are usually used to store FIDs. 

Although a separate database might be available to organize the metadata for the 

experiment, in most cases the connection between the FID data and the sample 

metadata is provided only through a physical laboratory notebook. In some LIMS 

systems, FID datasets are accessed through a filesystem path designating where the 

FID is located on the filesystem or archival media. For instance, in SPINE and SPINS, 

NMR data was recorded and tracked, but the FIDs sit in hierarchical directories linked to 

these metadata via filesystem paths. SPINE stores a wide range of experimental data 

and valuable information, yet the raw NMR experimental data is outside the relational 

nature of SPINE, leaving it vulnerable to separation from the metadata, data loss, and 
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security issues. Presently, storage and memory resource limitations are not as much of 

a concern as they were a few decades ago, and relational databases can directly 

archive several hundred or thousands of binary files from multidimensional NMR 

experiments. Storing FIDs directly into the database also protects against data loss as 

the FIDs are internal to the database and associated with their metadata descriptions. 

SpecDB provides storage of FID data directly into a relational database as data items 

themselves. 

 

SpecDB does not make an effort at this time to store processed frequency-domain NMR 

spectra. Since processed spectra files are much larger than the FID data from which 

they are generated, they present larger memory and storage challenges. However, it is 

possible to archive processing scripts in SpecDB (e.g. NMRPipe(Delaglio et al., 1995) 

processing scripts), allowing regeneration of specific frequency-domain processed 

spectra. It would also be useful to have a database of such processed spectra (or 

scripts), prepared by NMR processing experts, for machine learning applications, but 

this is beyond the scope of the current version of SpecDB. 

 

Using the Structured Query Language (SQL) to construct a relational database allows 

for structured queries to be completed by the NMR experimentalist, and ultimately data 

scientists analyzing these data post data collection. In the biomolecular NMR 

community FID data (as well as processed spectra) are typically stored in a file system. 

These data are often left to be organized by the specific researcher for a particular 

project. The standards/conventions employed by one researcher to organize their data 
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collection may not be consistent across the community, or even within a research team. 

For example, if it were necessary to collect FID data generated in a specific date range 

without a database, relational or otherwise, custom software would be needed to 

accomplish the task. These issues are addressed by SpecDB, which provides a uniform 

and query-able platform for organizing NMR FID data within a research laboratory or 

NMR facility, and a path to sharing these data across the scientific community.  

SpecDB uses JSON files to record metadata information about an NMR experiment. 

Data items in JSON files can be used in SQL queries. When an FID is collected at the 

NMR spectrometer system, other auxiliary files are also created by the data collection 

software, including data collection parameter files, the pulse sequence mini-program, 

and various spectrometer-specific acquisition files including waveform and shim files. 

These auxiliary files are critical to allow reproducibility of an NMR experiment. For this 

reason, the entire data collection directory needs to be captured and stored in the 

SpecDB database. To allow for queries on these data items in spectrometer files, some 

of them, such as the date(s) when the data were collected, and the temperature of data 

collection, are automatically pulled from the data collection files into JSON files, and 

then archived in tables of the relational database. Future query requirements can be 

supported by adding additional data items (e.g. NOESY mixing time) to the set of items 

pulled from the data collection parameter files and supported by the JSON files and 

SpecDB. 

 

The command line tool of SpecDB has features similar to git, the command line tool to 

manage software projects involving many developers. In git, there are subcommands 
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like status, add, commit, etc that are all particular steps in the tracking and maintaining 

a software codebase with many collaborators. In git, new files are added and committed 

to the repository at the discretion of the developer. Similar to git, the NMR 

experimentalist inserts FIDs into a SpecDB database when they determine they have 

recorded a complete set of metadata items for the session in the JSON file. In essence, 

SpecDB command line tools track the status of JSON files that contain the same data 

items and tables as the relational schema, and insert all the corresponding information 

correctly into the database. 

 

JSON files also allow for innovative approaches for harvesting metadata for SpecDB. 

The initial distribution of SpecDB includes tools for using Google Sheets for metadata 

entry and conversion to JSON files. In our own lab, we are also exploring Microsoft 

Excel files, WordPress forms, and the commercial LabArchive electronic laboratory 

notebook tools for this purpose. We intentionally reserve judgment on recommending 

the “best solution” to this data harvest problem, since this will be laboratory dependent. 

The input to SpecDB is, ultimately, the JSON files, and various approaches can be 

taken to create these files. 

 

SpecDB provides a lightweight, flexible, and robust schema and tools to archive time 

domain data of NMR experiments. As mentioned in the Introduction, there is a 

community-wide effort to expand the manner and standards for NMR researchers to 

deposit the raw FIDs that support their studies. Deposition of time-domain data is a 

major recommendation and goal of the wwPDB NMR Validation Task force for rigor and 
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reproducibility in biomolecular NMR studies. The BMRB is collecting time-domain data, 

and using SpecDB able to produce NMR-STAR files for an FID is an important next step 

for wide-adoption of policies and practices for deposition of raw FID data. 

3.7 Conclusion 

The goal of SpecDB was to build a relational schema and software to collect and track 

data items about biomolecular NMR samples and FID data sets, with the primary 

purpose of archiving and sharing these NMR time domain data. Standardized 

approaches for archiving FID data in relational databases provides the opportunity to 

develop rich datasets needed to learn new approaches for NMR data analysis. Although 

developed primarily using solution NMR data for proteins and nucleic acids recorded on 

Bruker NMR spectrometer systems, SpecDB can be easily generalized for archiving 

also solid-state NMR data, NMR data for oligosaccharides or small molecules, and data 

obtained on Varian, Agilent, JOEL, or Q-One NMR spectrometer systems. Broad use of 

SpecDB has the potential to create a rich data resource for a wide range of machine 

learning applications for biomolecular NMR. SpecDB is publicly available under the MIT 

open source license at the following GitHub repository: 

https://github.rpi.edu/RPIBioinformatics/SpecDB. The repository comes with installation 

instructions and tutorials to get started with SpecDB. 
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Allowed NMR 
tube type names 

 

“0.5 mL Eppendorf” 

“1.7 mL Eppendorf” 

“15 mL cent. tube” 

“50 mL cent. tube” 

“1 L cent. tube” 

“8-well PCR strip” 

“NMR tube” 

“plate well” 

“1-mm NMR tube” 

“1.7-mm NMR tube” 

“3-mm NMR tube” 

“3-mm Shigemi tube” 

“4-mm NMR tube” 

“4-mm Shigemi tube” 

“5-mm NMR tube” 

“5-mm Shigemi tube” 

“8-mm NMR tube” 

“8-mm Shigemi tube” 

“10-mm NMR tube” 

“10-mm Shigemi tube” 
 

Table 3.S1: Controlled vocabulary for the allowed tube types in SpecDB  

The table above lists the allowed tube types for SpecDB. If a user attempts to indicate a 
tube type different from the tube name in this list, then insertion into the database will be 
prevented and the problem  logged into the SpecDB log file. Users can edit the 
controlled vocabulary for the tube names in their own SpecDB instances by amending 
the Tubes table.  
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SpecDB data type Description 
Controlled Vocabulary 
Description 

iso_13c_enrichment 
Describe the Carbon-13 isotopic 
enrichment  

Must have substring 
( “ % 13C “ ) 

iso_15n_enrichment 
Describe the Nitrogen-15 isotopic 
enrichment  

Must have substring 
( “ % 15N “ ) 

iso_2h_enrichment 
Describe the Deuterium isotopic 
enrichment  

Must have substring 
( “ % 2H “ ) 

iso_19f_Trp_enrichment 

Describe the Fluorine-19 isotopic 
enrichment on Tryptophan amino 
acids  

Must have substring 
( “ % 19F-Trp “ ) 

iso_19f_Phe_enrichment 

Describe the Fluorine-19 isotopic 
enrichment on Phenylalanine 
amino acids  

Must have substring 
( “ % 19F-Phe “ ) 

iso_1hd1_Leu_methyl_ 
enrichment 

Describe the Deuterium isotopic 
enrichment for Leu-HD1 protons 

Must have substring 
( “ % 1HD1-Leu “ ) 

iso_1hd2_Leu_methyl_ 
enrichment 

Describe the Deuterium isotopic 
enrichment for Leu-HD2 protons 

Must have substring 
( “ % 1HD2-Leu “ ) 

iso_1hd_Ile_methyl_ 
enrichment 

Describe the Deuterium isotopic 
enrichment for Ile-HD protons 

Must have substring 
( “ % 1HD-Ile “ ) 

iso_1hg1_Val_methyl_ 
enrichment 

Describe the Deuterium isotopic 
enrichment for Val-HG1 protons 

Must have substring 
( “ % 1HG1-Val “ ) 

iso_1hg2_Val_methyl_ 
enrichment 

Describe the Deuterium isotopic 
enrichment for Val-HG2 protons 

Must have substring 
( “ % 1HG2-Val “ ) 

iso_1hb_Ala_methyl_ 
enrichment 

Describe the Deuterium isotopic 
enrichment for Ile-HD protons 

Must have substring 
( “ % 1HD-Ile “ ) 

Table 3.S2: Controlled vocabulary for different isotope labeling methods 

The isotopic labeling terms are data types described in the Purification Batch table. 
Protein samples can contain various isotope labeling schemes, and the terms above 
captures several common isotope labeling schemes. For isotope labeling that does not 
fit in these isotope labeling terms listed above, there is a separate 
isotope_labeling_remark in the Purification Batch table supporting isotope labeling 
methods not modeled across these columns.  
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4. Predicting Genomic Signals from DNA Sequence 

Alone with Deep Neural Networks 

4.1 Abstract 

One of the foundations of modern biology is structural genome annotation, which labels 

genomic subsequences with categorical information such as repeat, exon, intron, 

promoter, or variant. Industries from health to agriculture to synthetic biology rely on the 

structural annotation, so it is important that these features are annotated as accurately 

as possible. Much of what has been labeled in the past has relied on classical models 

such as position weight matrices. Years ago, when sequence data was sparse, it was 

not possible to train more sophisticated models, but today, with the advent of high 

throughput sequencing, data is no longer scarce and we can now employ more 

sophisticated models. This chapter explores the use of deep neural networks for the 

recognition of genomic features. 

4.2 Introduction 

Identifying the exon-intron structure of protein-coding genes in genomes is an important 

challenge in bioinformatics(Salzberg, 2019). Improvement in sequencing technologies 

has led to higher-quality genome assemblies at a decreasing financial cost. The 

annotation of assembled genomes is thus a critical bottleneck for discovering new 

biological and evolutionary mechanisms(Ejigu and Jung, 2020). In general, there are 
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two levels of genome annotation: structural and functional annotation(Ejigu and Jung, 

2020; König et al., 2018). Structural annotation refers to identifying the specific genomic 

structures, like promoters, protein coding regions, exons, introns, transposons, 

repetitive elements, transcription factor binding sites, etc. Functional annotation refers to 

describing the functions of the various structurally annotated elements in a genome, for 

example the function of a particular gene, or the phenotype of a specific single 

nucleotide polymorphism. Functional annotation and other downstream studies such as 

evolutionary comparison require structural annotation. For this reason, it is critically 

important for the structural annotation to be as accurate as possible. 

 

Genome annotation often utilizes comparative approaches between evolutionarily-close 

pre-annotated genomes to annotate or re-annotate a genome(König et al., 2018). Using 

conservation and comparative approaches has advantages and disadvantages, and 

ultimately with the production of high-quality genomes at faster rates requires ab-initio 

methods that annotate genomes from the sequence content of genomes(Ejigu and 

Jung, 2020; Salzberg, 2019). Furthermore, comparative annotation approaches are 

vulnerable to error propagation between annotation versions, particularly when 

estimates for misannotation in genomes range from 5% to as larger as 80%(Jones et 

al., 2007; Schnoes et al., 2009). 

 

Identifying genes and gene structure is a central problem in annotation. Scallzitti et al 

performed an assessment of the top five gene prediction methods using a curated 

benchmark set of 1793 genes across 147 species(Scalzitti et al., 2020). The top 
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performing gene predictor achieved an F1 measure of 0.52 for predicting whether each 

nucleotide in the benchmark genes are part of an exon or intron. Scalzitti and 

collaborators performed other evaluations across the five gene predictors and found 

that ultimately ab-initio gene prediction is a challenging problem with substantial room 

for improvement(Scalzitti et al., 2020).  

 

The advance of artificial intelligence in many computational tasks(Goodfellow et al., 

2016), from computer vision, natural language processing, protein structure 

prediction(Pearce and Zhang, 2021), and much more presents new opportunities to 

improve gene prediction algorithms. Specifically, the prospect of designing and training 

deep neural network architectures for biology and medicine is an active area of 

research(“Opportunities and obstacles for deep learning in biology and medicine | 

Journal of The Royal Society Interface,” n.d.). This chapter explores the extent to which 

deep neural networks can be trained to classify genomic sequences. Figure 1 illustrates 

the machine learning tasks tackled in this chapter.  
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Fig. 4.1: Overall schematic of the learning task tackled in this study 

(A) A genomic region is presented with multiple splicing isoforms. A specific splice 
donor site is highlighted in the gray box. This sequence can be one-hot encoded to 
represent the sequence numerically. (B) The general learning task pipeline is 
presented. First an input sequence is provided, then one-encoding is implemented if 
prediction is being performed with a neural network, the sequence is then scored, and 
the prediction is evaluated if the respective model produced the correct label for this 
input sequence.  
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Deep neural networks are computational architectures with nodes, or neurons, that are 

wired together in non-trivial ways to process input information in a hierarchical 

fashion(Goodfellow et al., 2016; LeCun et al., 2015). The wires, or connections, 

between nodes across different layers of a deep neural network have weights 

associated with them, indicating the strength of the connection between the pairs of 

nodes. The weights are learnable parameters, and the numerical value of the weights 

are optimized relative to a specific learning task. In our case, the task is to learn from 

the patterns present in genomic sequences what determines a sequence to be a splice 

donor or acceptor site. We also built and trained neural networks for exon and intron 

classification. 

 

To date, there are three deep neural networks trained for splice site prediction: 

DeepSplice(Zhang et al., 2018), Splice2Deep(Albaradei et al., 2020), and 

DASSI(Moosa et al., 2021). Each architecture was trained on different datasets, but 

each presented >94% accuracy for splice site predictions. Each study utilized 

convolutional neural networks (CNNs), a specific type of deep neural network 

architecture that is well established on a variety of tasks(Sercu et al., 2015; Zhang et al., 

2018). CNNs in the context of learning from DNA sequences in principle find local 

sequence motifs that correlate with the class label assigned to the sequence. To use 

CNNs, DNA sequences must be represented in a numeric fashion. Each method above 

employed one-hot encoding to represent each sequence in their training and testing 

datasets. In one-hot encoding, each nucleotide in a sequence is represented by a 

binary vector, where only entry is non-zero which indicates the letter type at that 
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position of the sequence. Examples of one-hot encoded sequences are presented in 

Figure 1A. 

When crafting a CNN for a task such as splice site recognition, care must be taken in 

how the CNN is constructed (e.g number of layers, sizes of convolution filters, number 

of pooling layers, etc) and also how it is trained. The sequences in the training set must 

be high quality and free of errors. 

 

Choosing the training set for modeling splice sites is much more difficult than it may 

appear. Most of the time, people treat splice sites as if they were Boolean values. E.g. a 

particular GT corresponds to a real splice donor site or it does not. However, in reality, 

some sites are used frequently while others are not. It wasn't until the advent of 

massively parallel sequencing that we were able to observe thousands or even millions 

of splicing events per gene. Today, RNA-seq data shows us how often various splice 

sites are used. The number of splice sites one observes is partly a function of how 

deeply one sequences and how highly expressed the gene is. It is a complex picture 

and decidedly not Boolean. 

 

In our studies, we don't simply consider splice sites to be True or False. Instead, we 

categorize them as highly or poorly expressed. This is a significant break with other 

studies that attempt to model splice sites in a Boolean manner. We take the same 

approach to exons and introns. That is, we segment them into categories of highly and 

poorly expressed. 
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The overall goals of the project are as follows: 

1. Evaluate if expression level has any bearing on splice site, exon, or intron 

recognition. 

2. Compare deep neural networks to position weight matrices (PWMs) for splice 

site recognition. Neural networks should be able to find patterns that PWMs 

cannot. 

3. Compare deep neural networks to Markov models for exon and intron 

recognition. 

4.3 Materials and Methods 

4.3.1 Data Collection 

The data used in this study are described in Tables 1 and 2. Table 1 contains the 

datasets collected from real genomic sequences, the splice donor/acceptor sites and 

the exon/intron sequences. Table 2 describes the different fabricated sequences 

generated to test the effect of positional/compositional dependencies on neural network 

performance.  
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Genomic 
Signal 

Example Levels 

Splice 
donor site 

ATCGAAAATACGATGATTTGGTGAGTTTTTTGGGGTTCT
CAA 

CTCGAATAAAACCACAGAAGGTTAATTAATTGTTGTGAC
AAT 

TGGATGGGAAAACTGTTTCGGTGCGTTCACTATTTTTA
GAGA 

TTTTCAATACCGAATCCAGGGTGAGTTTGAATTGTTTTT
TTT 

AACAAGCACTACAATTGGGTGTAAGTTTCACTTTTGGTT
ATT 

GATTAGTGATATGGAAATTGGTGAGTGGCTTCAGGAAA
ACAG 

 

hi 8215 

lo 8708 

fake 172559 
 

Splice 
acceptor 
site 

TCTAAATTGTGAAACTTTTCAGCTCCCCGGTCCACCTG
CTCA 

AACAAAATTAATAAAATTTCAGAAATATTCCAAGCTCTG
CGT 

TTTTAAAGTTTTTTTTTTTCAGAAAATTCTGGAATCCACA
AC 

TAGAAATCCAAAAAAAATTCAGGTTGTGGTAGACTGCC
TGGA 

TTTTTTATGTTTTTATATTCAGGTGCTATACGCGATGAA
CCC 

AACTCATTAAAAAAATTTTCAGGTGGTGTGCTCATCCC
AGCT 

 

hi 8193 

lo 9148 

fake 186671 
 

Exons GAGTATCCCGACAGATATCGATTCAAAAGACACACCGTTGCTC
GATATAT 

AAGCGATGGCCCGCAGCCGCACACGATTCTTCTAGAATTCCAG
AAAAAGA 

TTTTCCGTCAAACACAAACATTCAACGAGCCCCAGGGATGGAC
ATTTATC 

TCCCGATAAAAATATCACTAATTTCGACGACGAGGATTTTGCCA
ATTTTA 

TCACCTGTAAACTGTCAGTTTTTGGAAATATTTGGTTTGTCTACT
GGAGA 

TCAATCGGTCGGTCTCATGAAATACCTGCAAACAGTGCAGAAG
AATCCAG 

 

total 33578 

hi 16781 

lo 16797 

total.fake 33578 

hi.fake 16781 

lo.fake 16797 
 

Introns AAAAATCGAAATTACTTCTTAAAAATCTCGTAAAAATCGAATTCT
TTCAG 

TAAAGGAAAAACATGAATTTCTAGCTTTTTCAGAGGTTTTCTATT
AAAAA 

TCCATTTTGTGGTGGGGCTTATTCCGAAAAATCGTTGTTTTTTTT
TTCAA 

GGTTGACAAAAGTATTTATGCATCGTGACTGCTTTTTTAGTCGG
TTCTAC 

TAATGCTGTCTTAGTTTTTAATAGAGTGTATTTAAATTTTTTAAAT
ATTC 

CTGTTTCAAATCAACCTTACAAAAGTTAGAAAAAACCAAAAGAG
TATGAA 

 

total 19389 

hi 9691 

lo 9698 

total.fake 19389 

hi.fake 9691 

lo.fake 9698 
 

Table 4.1: Summary of collected sequence dataset sizes from the C. elegans genome 
(WS282)  
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We used the C. elegans reference genome (WS282) from WormBase to collect DNA 

sequences for training and testing. We collected the reference genomes annotation and 

found all genes in the dataset. We removed genomic regions where multiple genes 

overlapped each other, or genes had converging promoters, or genes that were not well 

validated/expressed/misannotated. 

 

We constructed two separate classification tasks, one for classifying whether 42 bp 

segments is a splice donor site and one for classifying whether 42 bp segments is a 

splice acceptor site. In each donor/acceptor classification task, the 42 bp is the 

consensus site with 20 bp flanking up and down stream. The negative label in each of 

these tasks were 42 bp segments inside genes that have a central AG/GT but had no 

evidence of being used for splicing.  

 

We also collected full length exons and introns from the set of “normal” genes. We 

removed exons and introns above/below the 90%/10% percentile for read depth to 

remove outliers. We then used the median expression depth to split exons/introns into 

highly expressed sequences and lowly expressed sequences. From these sets, we 

sampled a single random 50 bp window within the full length exon/intron. These 50 bp 

windows were used for training and testing. The null/fake exon/intron sequences were 

random sequences with the same base frequencies as the real exon/intron sequences. 

For classification tasks involving high/low read depth exons/introns, the fake sequences 

were made with corresponding high or low read depth exons/introns.   
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Name Experiment 

don.obs NNNNNNNNNNNNNNNNNNNNGTrrgNNNNNNNNNNN
NNNNN 

don.ex1 NNNNNNNNNNNNNNNNNNNNGTAAgNNNNNNNNNN
NNNNNN 

NNNNNNNNNNNNNNNNNNNNGTGGgNNNNNNNNNN
NNNNNN 

don.ex2 NNNNNNNNNNNNNNNNNNNNGTaagNNNNNNNNNN
NNNNNN 

NNNNNNNNNNNNNNNNNNNNGTgggNNNNNNNNNN
NNNNNN 

acc.obs NNNNNNNNNNNNNNNNtttcAGNNNNNNNNNNNNNNN
NNNN 

acc.ex3 NNNNNNNNNNNNNNNNTTTCAGNNNNNNNNNNNNN
NNNNNN 

NNNNNNNNNNNNNNNNCTTTAGNNNNNNNNNNNNN
NNNNNN 

acc.ex4 NNNNNNNNNNNNNNNNtttcAGNNNNNNNNNNNNNNN
NNNN 

NNNNNNNNNNNNNNNNctttAGNNNNNNNNNNNNNNN
NNNN 

acc.ex5 NNNNNNNNNNNNNNNNTTNCAGNNNNNNNNNNNNN
NNNNNN 

NNNNNNNNNNNNNNNNNTTCAGNNNNNNNNNNNNN
NNNNNN 

acc.ex6 NNNNNNNNNNNNNNNNttNcAGNNNNNNNNNNNNNN
NNNNN 

NNNNNNNNNNNNNNNNNttcAGNNNNNNNNNNNNNN

NNNNN 

 

Table 4.2: Descriptions of the eight fabricated sequence experiments 

Capital letters for the four nucleotides indicate 100% frequency for that nucleotide to be 
generated at its particular position. Lower-case letters indicate an 85% frequency for the 
nucleotide to be produced at the position, and the remaining 15% equally split among 
the three remaining nucleotide types. Each fabricated sequence experiment was 
generated 10,000 times.   
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To test the ability of neural networks to detect dependence between positions flanking a 

donor/acceptor site, we designed eight sets of fabricated donors/acceptors. These eight 

fabricated sets are listed in Table 2. We implemented three fabricated donor 

experiments, (1) all random sequence except for the consensus GTRRG motif, (2) 

sequences where all position are except the consensus is either GTAAG or GTGGG, 

representing a case where the +1/+2 positions after the GT are dependent on each 

other, (3) same as experiment 2, but the +1/+2 positions emit A/G 90% of the time 

instead of 100% as in experiment (2) Experiment (3) is experiment (2), but with random 

exceptions. 

 

The remaining five fabricated experiments are all variations on the TTTCAG acceptor 

consensus sequence. (1) The TTTCAG consensus sequence is produced, but each 

position has 85% chance of producing the canonical base, remaining 15% is random 

errors. (2) Two flavors of the consensus: TTTCAG versus CTTTAG. (3) Same as (2) but 

the TTTC/CTTT are produced correctly 85% of the time per position. (4) Two flavors of 

the consensus: TTNCAG or NTTCAG. This is a case where sequence dependence 

skips a position. (5) same as (4) but with the pattern produced imperfectly, like in 

experiment (3).  

4.3.2 Model architectures 

There are five different machine learning models we built and trained for our 

classification tasks. First are position weight matrices (PWMs). PWMs model DNA 
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sequences as a series of independent positions and record the base frequencies per 

position in the sequence. PWMs, markov models, and weight array matrices (WAMs) 

are all described in Figure 4.2. To score how likely a given sequence may be produced 

from a PWM is simply the product of the probabilities for observing each nucleotide in 

their respective positions. PWMs are used to model specific locations in a genome such 

as splice donor or acceptors sites and cannot be used to model continuous features 

such as exons or introns. Using PWMs in classification, we build two PWMs, one for the 

true labeled set and one for a fake/negative labeled set. To evaluate a PWM model then 

is to score each sequence in the test set against the true/fake PWMs, and if the score is 

higher for the true PWM, then the test sequence is labeled true, otherwise the test 

sequence is given the fake label.  



 86 

 

 

Fig. 4.2: Overview of PWMs, WAMs, and Markov Models for classification 

(A) Overview of construction of PWMs and how to score sequences against a weight 
matrix. (B) Weight array matrices are PWMs but anchored to a specific position in the 
sequence. They relate the probability of observing each of the four nucleotides at a 
specific position given some level of context, represented by the k-mer in (B). (C) 
Markov models also model sequence context, but are not anchored to a specific 
position in the sequence. Rather they measure the frequency of emitting one of the four 
nucleotides given some previous k letters in the sequence.  
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The next layer of complexity above PWMs are Markov models. Instead of modeling 

sequences as a series of independent columns, a Markov model stores the conditional 

probabilities of each nucleotide given the previous k nucleotides. For example, in a 2nd 

order Markov model, the probability of generating an A is dependent on the previous 2 

nucleotides. In this way, the base frequencies depend on the sequence context 

preceding each column. The value of k needs to be less than the total length of the 

sequence, but typical values for k range from 2-5. A k of 2 means base frequencies are 

dependent on the identity of the two preceding nucleotide identities. Markov models are 

used for modeling continuous features such as exons and introns rather than specific 

locations such as splice sites. 

 

A slight variation of PWMs and Markov models are weight array matrices (WAMs). 

WAMs are used to model specific locations, like splice sites, not continuous features 

like exons. Each position in a WAM specifies a kth-orderMarkov model. This allows 

each position to model some local dependencies. Viewed this way, a PWM is simply a 

WAM employing 0th order Markov models. 

 

There are two types of neural networks we built for the various classification tasks in 

this study. First are multi-layer perceptrons (MLPs). MLPs are networks of artificial 

neurons that are wired in a fully-connected fashion, illustrated in Figure 4.3. The phrase 

“fully-connected” refers to how every neuron/node in pairs of layers exhibits connections 

between all possible nodes, a subset of which is illustrated in Figure 4.3. MLPs have an 

input layer, multiple hidden layers that process information from the input, and ultimately 
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an output layer that is used for classification. MLPs are trained by computing an 

error/loss function between the network output and value the output should be given the 

input, which is known as supervised learning. The parameters of the MLP, all the 

weights between nodes and node biases, are updated to reduce this loss function using 

gradient descent and back propagation(Goodfellow et al., 2016; LeCun et al., 2015). 

The sequence information is converted into its one-hot representation prior to being 

passed through the network, also indicated in Figure 4.3.  
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Fig. 4.3: Cartoon overview of multi-layer perceptrons used in classification of DNA 
sequences  
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The last type of machine learning architecture we trained for DNA sequence 

classification was convolutional neural networks (CNNs). Figure 4.4 illustrates a CNN 

and its use in classified DNA sequences. With MLPs, all combinations of nodes in each 

successive pairs of layers are wired together. CNNs take a different approach by 

convolving a filter across the input to find features that correlate with the sample’s class 

label. CNNs do not only train one filter, but many filters as indicated by the k filters in 

Figure 4.4. Filters are convolved over the one-hot encoded sequence, each convolution 

produces a single number which is stored in a feature map. Each slice of the feature 

map is the convolution of a different filter. CNNs then perform another convolution on 

the resulting feature map, and can have many layers of convolutions. To ultimately 

produce the class label, the last feature map is flatten to a one-dimensional area, and 

optionally fed through a MLP to ultimately arrive at one output node for classification. 

The same program of gradient descent and back propagation is used to train CNNs as it 

was for MLPs.  
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Fig. 4.4: Convolution neural networks in DNA sequence classification 

Prior to the CNN, an input sequence must be one-hot encoded into a matrix Lx4, where 
L is the length of the sequence. Convolutional filters (grey) are convolved over the input 
one-hot sequence matrix, building up a feature map, or tensor indicated by the 
rectangular prism adjacent to the one-hot matrix. The depth of the rectangular prism 
indicated the number of convolutional filters used in the network. These feature maps 
then undergo multiple rounds of convolutions, then are flattened and processed into a 
single output node for classification.  
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In both neural network types, there are several hyperparameters that need to selected 

that are not optimized/trainable during the supervised training process. Examples of 

hyperparameters are the number of nodes/layers in a MLP. The architecture of the 

MLP/CNN is shown by the user, and the parameters of the designed network are then 

optimized to best reproduce the true labels of the sequences in the training set. 

Hyperparameter optimization in neural networks is a challenging task, and we explored 

many architectures and choices, but for simplicity and progress we chose a set of 

hyperparameters that produced consistently good performance. The hyperparameters 

for the MLP and CNN in this study are listed in Table 4.3.  
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Hyper- 
parameters 

MLP CNN 

Layers 5 9 

Nodes/layer 
 

Splice [68, 42, 21, 10, 1] 

Intron/
Exon 

[100, 50, 25, 20, 1] 

 

N/A 

Learning rate 1e-2 1e-3 

Optimizer SGD Adam 

Kernel sizes N/A [(6,1), (4,2), (3,3), (5,4), (5,4)] 

Residual 
connections 

No Yes 

Batch 
Normalization 

No Yes 

Final MLP layer N/A [50, 10, 1] 

Batch size 32 512 

L2 
Regularization 

None 5e-3 

Epochs 50 25 

Activation 
Function 

Rectified Linear Unit (ReLU) Rectified Linear Unit (ReLU) 

Table 4.3: Hyperparameter description of MLP and CNN used for learning splice sites, 
exons, and introns  
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4.4 Results 

Position weight matrices can achieve a ~90% accuracy on splice donor and acceptor 

sites, but only for highly used splice sites, which is indicated in Table 4.4. Building and 

testing PWMs for less used splice sites indicate ~73% accuracy on donor and acceptor 

sites. As expected, the entropy of a PWM is the indicator for better accuracy 

performance, with PWMs having greater entropy exhibiting better classification results.  
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Model donor/acceptor True Fake Accuracy Entropy 

PWM don don.hi don.fake 0.9087 10.6647 

PWM don don.lo don.fake 0.7402 6.6211 

PWM don don.hi don.lo 0.7737 10.6647 

PWM acc acc.hi acc.fake 0.9314 13.0229 

PWM acc acc.lo acc.fake 0.7269 7.0464 

PWM acc acc.hi acc.lo 0.8233 13.0386 

WAM (k=4) don don.hi don.fake 0.9506 N/A 

WAM (k=4) don don.lo don.fake 0.8581 N/A 

WAM (k=4) don don.hi don.lo 0.5107 N/A 

WAM (k=4) acc acc.hi acc.fake 0.9650 N/A 

WAM (k=4) acc acc.lo acc.fake 0.8631 N/A 

WAM (k=4) acc acc.hi acc.lo 0.5538 N/A 

MLP don don.hi don.fake 0.9744 N/A 

MLP don don.lo don.fake 0.9380 N/A 

MLP don don.hi don.lo 0.7416 N/A 

MLP acc acc.hi acc.fake 0.9776 N/A 

MLP acc acc.lo acc.fake 0.9411 N/A 

MLP acc acc.hi acc.lo 0.7780 N/A 

CNN don don.hi don.fake 0.9390 N/A 

CNN don don.lo don.fake 0.7050 N/A 

CNN don don.hi don.lo 0.7695 N/A 

CNN acc acc.hi acc.fake 0.9513 N/A 

CNN acc acc.lo acc.fake 0.7271 N/A 

CNN acc acc.hi acc.lo 0.8180 N/A 

Table 4.4: Accuracy for different models on real splice site data  
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The situation improves by about 5% when WAMs with four nucleotides of context are 

used. WAMs also perform better when built from highly used splice sites versus poorly 

used sites. Interestingly, WAMs reach ~50% accuracy when attempting to classify high 

versus low usage splice donor/acceptor sites, which indicate similar 4-mers exist in the 

two sets of sequences. However, PWMs could classify highly used sites from lowly 

used sites at ~75% accuracy. The deep neural networks can achieve better 

performance than the PWMs or WAMs, with MLPs being the most successful with 

accuracies on high versus fake reaching ~97%.  
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Model donor/acceptor True Fake Accuracy Entropy 

PWM don don.obs don.fake 0.8259 6.2383 

PWM don don.ex1 don.fake 0.8913 7.1412 

PWM don don.ex2 don.fake 0.8238 6.2074 

PWM acc acc.obs acc.fake 0.9175 8.5816 

PWM acc acc.ex3 acc.fake 0.9922 10.0110 

PWM acc acc.ex4 acc.fake 0.8895 7.3853 

PWM acc acc.ex5 acc.fake 0.9685 8.9151 

PWM acc acc.ex6 acc.fake 0.8488 6.8938 

WAM (k=4) don don.obs don.fake 0.7253 N/A 

WAM (k=4) don don.ex1 don.fake 0.8568 N/A 

WAM (k=4) don don.ex2 don.fake 0.7405 N/A 

WAM (k=4) acc acc.obs acc.fake 0.8336 N/A 

WAM (k=4) acc acc.ex3 acc.fake 0.9612 N/A 

WAM (k=4) acc acc.ex4 acc.fake 0.8001 N/A 

WAM (k=4) acc acc.ex5 acc.fake 0.9161 N/A 

WAM (k=4) acc acc.ex6 acc.fake 0.7640 N/A 

MLP don don.obs don.fake 0.7822 N/A 

MLP don don.ex1 don.fake 0.9208 N/A 

MLP don don.ex2 don.fake 0.7942 N/A 

MLP acc acc.obs acc.fake 0.8838 N/A 

MLP acc acc.ex3 acc.fake 0.9938 N/A 

MLP acc acc.ex4 acc.fake 0.8532 N/A 

MLP acc acc.ex5 acc.fake 0.9834 N/A 

MLP acc acc.ex6 acc.fake 0.8088 N/A 

CNN don don.obs don.fake 0.8118 N/A 

CNN don don.ex1 don.fake 0.9342 N/A 

CNN don don.ex2 don.fake 0.8180 N/A 

CNN acc acc.obs acc.fake 0.9222 N/A 

CNN acc acc.ex3 acc.fake 0.9960 N/A 

CNN acc acc.ex4 acc.fake 0.8562 N/A 

CNN acc acc.ex5 acc.fake 0.9828 N/A 

CNN acc acc.ex6 acc.fake 0.8536 N/A 

Table 4.5: Results on fabricated splice site experiments  



 98 

 

Table 4.5 demonstrates that when simple positional and compositional dependencies 

exist in the dataset, neural networks are more readily able to detect those patters. In the 

acc.ex3 experiment, which had the most distinct patterns and dependencies, CNNs 

could achieve a 99%. The PWM can also solve acc.ex3, but when errors are introduced 

acc.ex4 PWM accuracy drops to 88%, but 85% for the CNN. The introduction of 

imperfect patterns is a challenge for neural networks to model in all the other 

experiments as well.   
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Model Exons/
Introns 

Positive 
case 

Negative 
case 

Accuracy 

MM (k=5) exons exon.total exon.fake 0.8222 

MM (k=5) exons exon.hi exon.hi.fake 0.8356 

MM (k=5) exons exon.lo exon.lo.fake 0.8120 

MM (k=5) introns intron.total intron.fake 0.8022 

MM (k=5) introns intron.hi intron.hi.fake 0.8160 

MM (k=5) introns intron.lo intron.lo.fake 0.7948 

MLP exons exon.total exon.fake 0.6946 

MLP exons exon.hi exon.hi.fake 0.6584 

MLP exons exon.lo exon.lo.fake 0.6467 

MLP introns intron.total intron.fake 0.7190 

MLP introns intron.hi intron.hi.fake 0.7278 

MLP introns intron.lo intron.lo.fake 0.6869 

CNN exons exon.total exon.fake 0.7765 

CNN exons exon.hi exon.hi.fake 0.7781 

CNN exons exon.lo exon.lo.fake 0.7528 

CNN introns intron.total intron.fake 0.6666 

CNN introns intron.hi intron.hi.fake 0.7824 

CNN introns intron.lo intron.lo.fake 0.7669 

Table 4.6: Accuracy for different models on exons and introns  
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PWMs are not suitable for modeling exons/introns because the window is not anchored 

around any common motif. Markov models are the more suitable model to build to 

compare MLPs and CNNs to. Markov models with a context level of five have the best 

accuracy across the exon/intron experiments. CNNs are more capable at classifying 

exons/introns from non-exons/introns than MLPs. Additionally, splitting for exons/intron 

read-depth can produce a 2% jump in accuracy. Figure 4.5 graphs the training/testing 

loss/accuracy over the training epochs for a CNN training on exons. From Figure 4.5 we 

can see the CNN is overfitting to the training data as the CNN achieves 100% accuracy 

on the training set.  
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Fig. 4.5: CNN training performance over epochs for learning exon sequences  
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4.5 Discussion 

We set out to determine if deep neural networks can outperform classic models such as 

PWMs, Markov models, and WAMs. One of the key features of a PWM is that it has so 

few parameters. A 42 nt PWM has only 168 parameters (4 bp at each position). This 

makes it simple to train and difficult to overtrain. However, it also means that when you 

have a wealth of data, the model doesn't capture the inherent richness. Each position of 

a PWM is completely independent of every other position. However, in a biological 

context it may matter very much if position 1 is an A and position 5 is a T. Biological 

entities are not strings of letters, but chemical structures. Given more data, it may be 

possible to identify subtle patterns if the model is capable of capturing those patterns. 

WAMs offer limited local context, and we found that they out-performed PWMs. More 

importantly neural networks out-performed both PWMs and WAMs for splice 

donor/acceptor classification. The advantage of neural networks is that they can find 

dependencies among any of the 42 bp used to model splice sites. The disadvantage is 

that it takes a lot of data to train and optimize the model. 

 

In the case of exon/intron classification, neural networks could not beat a 5th order 

markov model. It was not anticipated that MLPs would be successful at exon/intron 

classification as they are not invariant to translations in the input data, i.e if the 

sequence shifts even by 1 nucleotide the network “sees” a complete different sequence 

because nodes in the MLP make connections to specific positions in the input 

sequence. However, CNNs had the promise of working well in intron/exon classification 
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because CNNs can learn patterns of nucleotides in a translation invariant manner. The 

CNNs we built were overtrained, resulting in a perfect training set accuracy after 24 

epochs. However, there are mechanisms to handle overtraining through stiffer 

regularization weights, and this will be tested in future directions. 

 

While "beating the classical models" is gratifying, there is a more important 

consequence of our studies. We show that splice sites aren't simply recognized by 

individual nucleotide preferences. There are underlying patterns that may be biologically 

important. For example, there may be different classes of splice sites and different ways 

of recognizing them. While a PWM could never identify these classes, the neural 

network may have done so. Identifying exactly what the neural network found is a task 

for another day. While future studies are needed, even a 2% difference in accuracy can 

help call thousands more splices accurately when a neural network model is applied 

across a whole genome. 

4.6 Conclusion and Future Directions 

In splice site classification using real genomic sequences from C. elegans, MLPs had 

the best performance. All models built in this study saw improved performance on highly 

used sequences. In the future we will work to deploy the trained models in this study to 

sequence windows along the C. elegans genome. This deployment of the MLPs is a 

significant test of their feasibility for use in more practical genomic settings. The 

abundance of sequence in genomics opens the possibility for many false positives to be 

generated with MLPs, and any machine learning model. Observing how MLPs perform 
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in a genome-wide context is an important next step. Additionally, the training of CNNs 

can be improved to reduce the problem of overfitting by adjusting the regularization 

hyperparameter.  
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5. Predicting NMR Chemical Shifts With Graph 

Kernels 

5.1 Introduction 

Nuclear Magnetic Resonance spectroscopy takes advantage of the quantum 

mechanical properties of atomic nuclei to measure the structure and motions of 

chemical molecules ranging from small organic molecules, to proteins and 

biomolecules, all the way to medical imaging(Berjanskii and Wishart, 2017; Wuthrich, 

1986). In structural biology, NMR is a critical experimental tool to interrogate the 

structure and motions of biomolecules(Curry, 2015). The chemical shift is the ‘milepost’ 

in protein NMR. Protein NMR spectroscopists seek to assign chemical shifts observed 

in their protein/biomolecular sample to specific atoms in the biomolecule in order to 

build an atomic and dynamic picture of the system they are studying. 

 

As described in Section 1.1, the chemical shift is a relative frequency measurement that 

records the relative frequency difference to some molecule standard, internal or external 

to the sample. The Protein NMR community has a rich history in the prediction of 

chemical shifts with machine learning. Two of the more accurate predictors are 

ShiftX2(Han et al., 2011, p. 2) and UCBShift(Li et al., 2020) for proteins. Table 5.1 lists 

out the RMSE performance for ShiftX2 and UCBShift on protein backbone atoms taken 

from Li et al (2020)(Li et al., 2020). There still remains the need for improved chemical 

shift predictions because even small errors in chemical shifts can lead to errors in many 
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structural factors for proteins(Berjanskii and Wishart, 2017; Chen et al., 2018; Wishart et 

al., 1995; Zhang et al., 2003).  
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Protein NMR Chemical shift predictors (RMSE) 

Predictor N H HA CA 

ShiftX2 2.40±0.02 0.44±0.003 0.23±0.003 1.05±0.01 

UCBShift 1.81±0.02 0.31±0.02 0.19±0.002 0.81±0.02 
 

Chemical shift predictors on small chemical molecules (MAE) 

Predictor 1H 13C 

HOSE 0.33 2.85 

MPNN 0.224±0.002 1.355±0.022 
 

Table 5.1: Performance of NMR chemical shift predictors in protein and small molecules  
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Small organic molecules are an important learning task for chemical shift prediction, and 

a useful testing ground of empirical chemical shift predictors for biomolecules. As the 

chemical shift is largely a local electronic environment effect, small chemical systems 

may be suitable training/testing environments for designing novel machine learning 

architectures to predict biomolecular chemical shifts. The purpose of the work presented 

in this chapter is to test how marginalized graph kernels combined with Gaussian 

Process Regression can be leveraged to predict chemical shifts.  

 

Chemical shift prediction in small molecules has also garnered vast interest. Table 5.1 

highlights two predictors in the small molecule space, HOSE codes(Bremser, 1978), 

and message passing neural networks(Kwon et al., 2020). HOSE codes is a way of 

predicting chemical shifts from a database of known chemical shifts and molecules. The 

neural message passing from Kwon et al uses deep neural networks to predict chemical 

shifts using molecular structures and chemical descriptors.   

 

Marginalized graph kernels are a type of graph kernel that computes the similarity 

between two graph objects. Graphs are collections of nodes and edges, and are an 

ideal object to represent chemical molecules, from small organic molecules all the way 

to large proteins. Graphs can represent diverse and rich data types, where attributes 

can be placed on nodes of a graph, e.g mass of an atom, and weights/descriptors on 

edges, e.g distance of molecular bond type. The task is to learn from the graph 

topologies and data features to accurately predict some property or properties of the 

graph. There are several types of graph kernels, but in this study we are exploring 
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marginalized graph kernels. The concept of molecules as graphs and an illustration of 

the marginalized graph kernel is presented in Figure 5.2. 

 

Marginalized graph kernels (MGKs) have been applied to the prediction of total 

molecular energy(Tang and de Jong, 2019). In this example, MGKs are used as 

functions to compute similarity between graphs, and use those similarities to predict a 

molecule's total energy. A molecule's total energy would be a property of the whole 

graph. However, in chemical shift prediction, the properties we seek to predict are on 

the nodes of the graph as chemical shifts are properties of atoms/nodes of a 

molecule/graph. Marginalized graph kernels take the approach that similarity between 

graphs should be a function of the number of shared random walk paths between the 

graphs, as illustrated in Figure 5.2 with the different types of walks drawn on the right 

side of the figure.  
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Fig. 5.1: The marginalized graph kernel 

Here we illustrate how chemical molecules are abstracted to graphs. Then graphs are 
“multiplied” together in order to find the number of shared random walks between the 
two graphs The marginalized graph kernel prescribes a procedure to measure the path 
similarity between two graphs. In our learning with marginalized graph kernels, we are 
using Gaussian process regression. We have a training set of molecules with known 
chemical shifts, and the kernel matrix between all pairs of graphs in the training set is 
computed. To make predictions on a held-out set of molecules (or testing set), we first 
compute the similarities between all testing set molecules and training set molecules. 
These two kernel matrices are used in the GPR model.  
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Graph kernels are only part of the procedure for chemical shift prediction, or estimation 

of any graph property. There needs to be a procedure to take the matrix of all pairwise 

kernel values into the properties we want to predict. In this study we use the Gaussian 

Process Regression (GPR) method that assumes each multivariate normal distribution 

over the training dataset. The GPR is a nonparametric, probabilistic regression model 

that uses the kernel to devise the covariance matrix between training samples.  

5.2 Materials and Methods 

We gathered molecules with 3D coordinates and chemical shifts from the NMRShiftDB2 

database, available at https://nmrshiftdb.nmr.uni-koeln.de/. We split the NMRShiftDB2 

dataset into training and testing sets, 21,509 molecules for training and 5,386 molecules 

for testing. To test the marginalized graph kernel approach, we optimized graph kernels 

to predict carbon chemical shifts. We had 213,507 shifts for training, and 53,259 shifts 

for testing. Figure 5.2 shows the distribution of carbon chemical shifts in our dataset.  
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Fig. 5.2: Histogram distribution of carbon chemical shifts in the NMRShiftDB2 dataset  
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We built the graphs representing the molecules in our dataset in two ways. We first 

used just the atom element identity for every atom in the molecule and the 3D 

coordinates of every atom. This first way just uses the atoms and the coordinates for the 

molecule. The second way we built graphs from molecules was to use the coordinates 

and chemical features. Table 5.3 lists the chemical features we are using, features like 

atom hybridization, aromaticity, charge, bond type, bond conjugation, and several more.  



 114 

  

Node features Edge features 

element length 

aromatic aromatic 

hybridization conjugated 

chiral stereo-chemistry 

charge bond type 

hydrogen count in-ring 

degree  

donor  

acceptor  

Table 5.2: Chemical features computed for molecules in our dataset  
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We are using the GraphDot Python library to build and optimize graph kernels as 

described previously(Tang et al., 2020; Tang and de Jong, 2019). Gaussian process 

regression is the regression method to convert the pairwise graph similarities 

information into a model that estimates chemical shifts. Given a set X of training graphs 

with y chemical shifts, and Z testing graphs, the Gaussian Process Regressor can 

estimate the testing chemical shifts in the following manner: 

 

Where KD,Z is the kernel matrix between the training graphs D and testing graphs Z, and 

KD,D is the square kernel matrix between all training graphs.  

 

Marginalized graph kernels have parameters that need to be optimized through the 

GPR procedure. The marginalized graph kernel parameters are probabilities that relate 

to starting and stopping probabilities for walks around the molecular graphs, the length 

scale for comparing distances between atoms in a molecule, and parameters that 

weight qualitative features like atomic element, bond type, etc. Qualitative features, i.e 

features that are symbols or categorical values are compared through a Kronecker 

Delta function, which returns one if two categorical variables are the same, or a 

parameter h that is learned. In the case where molecule graphs are made just from 

atomic elements and coordinates, there are four parameters to learn (starting/stopping 

probability, length scale, helement). In the case where molecular features from Table 5.2 

are incorporated into the graphs, there are a total 19 parameters to optimize. 

Parameters are optimized by maximizing the log likelihood from the GPR model, with 

gradient calculations handled through the GraphDot library.  
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5.3 Results 

The results of our study are presented in Table 5.3. Our main objective was to test how 

addition of molecular descriptors, like atom hybridization, bond type, etc influenced the 

GPR training and performance. We tested several models with different amounts of 

training set graphs. The kernel matrices that need to be computed in the GPR 

construction scale quadratically with the total number of nodes in the training set, not 

the number of graphs. Training on graphs with larger than 10,000 shifts requires a great 

deal of memory to compute. So we tested on training set sizes ranging from 200 to 800 

molecules, and evaluated on 2,000 molecules. We trained on graphs with/without 

chemical features.  
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Train 
graphs 

Test 
graphs 

Graph 
Type 

Train 
shifts 

Test 
shifts 

In-mae 
(ppm) 

Out-mae 
(ppm) 

In-rmse 
(ppm) 

Out-rmse 
(ppm) 

700 2000 CF 18665 54415 2.314 3.501 3.358 5.729 

400 2000 CF 10272 53770 2.3906 3.662 3.4496 5.867 

1000 2000 CF 26308 54243 1.5428 3.742 2.2249 6.268 

800 2000 CF 20876 54351 0.0785 3.783 0.1878 6.411 

800 2000 CF 20876 54351 1.5469 3.875 2.2192 6.468 

400 2000 CF 10272 53770 0.0831 4.143 0.2139 6.964 

200 2000 CF 5072 53601 2.4391 4.257 3.5031 6.667 

400 2000 CF 10272 53770 0.0421 4.432 0.1575 7.444 

1000 2000 3D 26308 54243 3.2826 4.459 5.0620 7.126 

800 2000 CF 20876 54351 3.3277 4.648 5.1013 7.461 

200 2000 CF 5072 53601 0.0597 4.754 0.0945 7.817 

200 2000 CF 5072 53601 0.0024 4.868 0.0039 8.070 

100 2000 CF 2407 53775 2.0784 5.249 2.9129 8.314 

800 2000 3D 20876 54351 0.0307 5.253 0.1488 8.447 

100 2000 CF 2407 53775 0.0016 5.478 0.0028 8.873 

100 2000 CF 2407 53775 0.0523 5.485 0.0892 8.869 

400 2000 3D 10272 53770 3.4784 5.820 5.1228 9.323 

400 2000 3D 10272 53770 0.0240 5.962 0.1648 9.799 

200 2000 3D 5072 53601 3.4489 6.787 4.8817 10.537 

800 2000 3D 20876 54351 0.0775 7.489 0.1800 11.679 

400 2000 3D 10272 53770 0.0729 8.130 0.1984 12.685 

100 2000 3D 2407 53775 3.0112 8.462 4.1959 12.758 

200 2000 3D 5072 53601 0.0012 8.847 0.0016 13.851 

200 2000 3D 5072 53601 0.0546 8.848 0.0793 13.851 

100 2000 3D 2407 53775 0.0012 9.406 0.0017 14.337 

100 2000 3D 2407 53775 0.0557 9.448 0.0794 14.410 

Table 5.3: Results for training GPR with different molecular graph types and training set 
sizes 

Graph type CF refers to chemical features, 3D refers to only 3D coordinates and 
element information. The table is sorted by testing set mean absolute error (MAE).  
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From Table 5.3, we can see that GPRs trained on graphs including chemical features 

perform better than GPRs trained without chemical features. There is a weak tendency 

for models trained with more graphs to perform better, but there are exceptions. Figure 

5.3 presents representative plots predictive shifts versus ground truth shifts from 

training and testing set graphs.  
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Fig. 5.3: Predicted versus ground truth plots for trained GPRs 

(A) Training set predictions versus ground truth. (B) Testing set predictions versus 
ground truth. In this example, the training set size was 400 graphs, 2000 graphs for 
testing.  
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5.4 Discussion 

We successfully built molecular graphs that encoded chemical features such as bond 

type, atomic hybridization, etc into a GPR model for chemical shift prediction. Bond 

types, aromaticity, hydrogen bond donors/acceptors, etc., all have important effects on 

the local electronic environment around a nuclei’s chemical shift. Ideally, one would like 

to learn a suitable model where only positions of every atom are needed to produce 

reliable chemical shift predictions. However, in many empirical chemical shift predictors, 

chemical/biomolecular features are used to infer the chemical shift of NMR active nuclei 

in a system. For instance, ShiftX2 uses hand curated features to engineer feature 

vectors that are then fed through an ensemble of machine learning models to produce 

accurate chemical shift predictions. Some of the features are protein secondary 

structure identity, backbone torsion angles, hydrogen bond lengths, pH, temperature, 

distance to ring systems, etc. Neural message passing from Kwon et al (2020) also 

used chemical molecular features to construct feature vectors for every atom in their 

dataset, also from NMRShiftDB2. In our example, addition of chemical features 

produces at least 1.1 ppm reduction in mean absolute error. 

 

Training set size is a major limitation to the work presented here. With 700 molecules in 

the training set, ~18k chemical shifts, achieved the best performance in our tests. 

Neural message passing was able to train on ~21k molecules, ~550k chemical shift 

observations. Marginalized graph kernels thus present a kernel method that can use 

training data efficiently. Ultimately, to improve model performance will require 
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innovations on how to train with more graphs. We have developed a batching 

mechanism that can compute the kernel matrices needed for the GPR in tiles, which is 

a potential next step in improving the methods developed here.  

 

Another future avenue of exploration is application of marginalized graph kernels on 

protein structures. Yet, protein structures are vastly larger systems than the small 

molecules in the NMRShiftDB2 database. However, there is a potential to carve protein 

structures into short structural fragments, construct molecular graphs out of the 

fragments, and be able to use the same tools developed here. We are actively 

investigating the prospects of applying marginalized graph kernels to st ructural 

fragments. The graph approach to this problem is also attractive for the application to 

protein structural fragments because other features can be placed on top of the graphs 

constructed from proteins, like solvent accessibility, secondary structure status, pH, and 

other features known to influence the structure of proteins. These new features can be 

efficiently incorporated into graphs representing proteins. Separately, there is a need to 

test how accurate GPRs trained on small molecules can be directly applied to protein 

structural fragments. Given chemical shifts are largely driven by local effects, it stands 

to reason that GPRs trained in the regime of small molecules can be transferred to 

proteins. This needs to be tested.  

5.5 Conclusion 

Here, we presented marginalized graph kernels optimized through the Gaussian 

Process Regression procedure to estimate small molecule chemical shifts. We 
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demonstrated that incorporating chemical features into the molecular graphs abstracting 

the molecules in our dataset improved the GPRs performance measured by mean 

absolute error by at least 1.1 ppm for carbon shifts. The training set size is a limiting 

factor in the training of marginalized graph kernels. Chemical shifts are properties of 

nodes of graphs, so the kernel matrix that is constructed scales quadratically with the 

number of atoms in the training set. This places a steep memory cost on optimizing the 

marginalized graph kernels for chemical shift prediction tasks, or any nodal prediction 

tasks. New methods to train on more graphs is required to make continued gains in 

chemical shift prediction accuracy using graph kernels.  
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