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ABSTRACT OF THE DISSERTATION

Construction, analysis, and application of novel
exponential time integrators for stiff problems

by Valentin Dallerit
Doctor of Philosophy in Applied Mathematics

University of California Merced, 2022

Committee Chair: Mayya Tokman

Stiff systems of ordinary differential equations (ODEs) play an essential role in the tem-

poral integration of many scientific and engineering problems. With the increase in

complexity and size of these problems, it is crucial to have efficient time integration

methods. In this dissertation, we focus on the construction, analysis, and applications of

exponential time integrators. We address the efficiency of these methods in three main

directions. First, we construct new efficient exponential multi-step methods. These

methods are carefully derived to combine the accuracy of high-order schemes with the

efficiency of low-order methods. We validate and apply the new schemes to a simplified

atmospheric model and show that they can capture more details in the solution with

a limited computational cost. Secondly, we develop a new ansatz for deriving parti-

tioned implicit-exponential integrators. These methods are applied to problems where

the forcing term of the system is comprised of stiff additive terms. We propose a new

way of analyzing the stability properties of partitioned methods. Our results show that

the increased accuracy and stability of our schemes offer improved efficiency compared

to state-of-the-art methods. Finally, we introduce a new theoretical framework for de-

riving stiffly resilient exponential methods. This framework addresses the complexity of

deriving exponential schemes and enforces advantageous properties. We establish an an-

alytical solution for the order conditions used to derive methods. We derive a new class

of exponential integrators and new schemes with an order of convergence higher than

currently available methods. We also evaluate the performance of exponential time inte-

gration for the reduced magnetohydrodynamics equations. Our initial results focus on a

simplified model capturing the essence of the full equations. We show that exponential

integrators are a valuable alternative to the schemes currently used for this problem.
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Chapter 1
Introduction

A wide range of scientific and engineering applications requires computer simu-
lation of complex time-dependent partial differential equations (PDEs). A common
approach to approximate the solution of such equations is to use the method of
lines (Schiesser, 1991). This method first spatially discretizes the problem leading
to a large system of ordinary differential equations (ODEs) of the form:

y′(t) = f(y(t))

y(t0) = y0

where: y(t) ∈ RN and t0 ≤ t ≤ tf (1.1)

This system is then advanced in time from the initial solution y0 at time t0 to the
final time using a time integration method. Many scientific problems tend to have
a wide range of time scales in their forcing terms. For example, an atmospheric
model needs to be able to represent a wide range of meteorological conditions.
Another example can be found in a plasma physics model where the phenomenon
developing close to the boundary can happen much faster than in the rest of the
domain. Because of this range of time scales, the Jacobian of the right-hand side f
of eq. (1.1) has both large and small eigenvalues. In other words the corresponding
problem (1.1) is stiff. The stiffness in these problems can be caused by the entire
right-hand side or, in some cases, by a specific forcing term. For instance, in
an advection-diffusion PDE, the diffusion term might be dominant and cause the
stiffness of the problem, while the advection term alone is not stiff. Furthermore, in
recent years, the use of high-order spatial discretization methods coupled with high

1



2

resolution or locally refined grids have been common practice in many applications
(Berger & Oliger, 1982; Godenschwager et al., 2013; Zhang et al., 2019; Holec et
al., 2022). These highly accurate approximations of the spatial terms induce more
stiffness and increase the dimension of the system of ODEs. This trend is likely to
continue in the future with the emergence of exascale computing. Highly parallel
architecture has been shown to be more efficient with high-order spatial methods
(Sjogreen et al., 2009; Dongarra et al., 2014; Loffeld & Hittinger, 2019) and allows
larger problems to be undertaken. Such large-scale problems will require accurate
and efficient numerical methods to be solved.

Even though highly accurate numerical methods in space are common in ap-
plications, time integration techniques have not necessarily kept up and in many
applications, researchers still use low order temporal integrators. The system of
ODEs obtained from the spatial discretization is often approximated using either
explicit or implicit time integration methods (J. C. Butcher, 2016; Wanner &
Hairer, 1996). Due to their limited stability, explicit methods suffer from strict
restrictions on the time step and therefore are not efficient when used with stiff
problems. On the other hand, each time step of an implicit method requires
solving large systems of nonlinear equations. Approximating such a solution is
computationally expensive if no preconditioner is available for the problem. Pre-
conditioners for complex multi-physics problems are challenging to derive and tend
to scale poorly with large-scale systems. In recent years, the growing demand for
more accurate and efficient time integration methods has led to the development
of new methods such as exponential integrators.

In the 1960s, exponential time integration was introduced by Certaine (Cer-
taine, 1960) as an alternative to explicit and implicit methods. These methods can
solve linear problems exactly, have good stability properties, and can be compu-
tationally more efficient than implicit methods (Loffeld & Tokman, 2013). Some
history and review of exponential time integration can be found in (Minchev &
Wright, 2005; Hochbruck & Ostermann, 2010). When using an exponential inte-
grator, the action of exponential-like φk matrix functions on vectors needs to be
calculated to advance the solution from the current time to the next time step. For



3

example, one of the simplest exponential method is the 2nd order exponential Euler
method which uses the function φ1(A) = (eA − I)A−1 = ∑∞

i=0
Ai

(i+1)! . Using this
method, the solution of eq. (1.1) can be advanced in time from a known solution
yn using the update yn+1 = yn+φ1(hJ)hf(yn) where J is the Jacobian matrix of f
at yn. In general, the φk functions can be defined as the series φk(A) = ∑∞

i=0
Ai

(k+i)!

similar to the exponential function. Higher-order φk functions are used with higher
order schemes. The argument of these φk functions is either the Jacobian matrix
of the full right-hand side f or a part of it. This matrix has dimension N × N

where N is the size of the problem and, therefore, is large for the problems we
are interested in. Without any efficient method to do this computation for large
problems, exponential methods were only used for systems with a few equations or
specific structures. In recent years, with the improvements in numerical linear al-
gebra, exponential integrators are now becoming more attractive for stiff problems
(van der Vorst, 1987; Saad, 1992; Higham, 2008). Since the introduction of expo-
nential integrators, new classes of methods, improving the efficiency and accuracy,
have been derived such as exponential Runge-Kutta (Hochbruck & Ostermann,
2005), exponential propagation iterative methods (Tokman, 2006, 2011), exponen-
tial Rosenbrock (Hochbruck, Ostermann, & Schweitzer, 2008; Luan & Ostermann,
2014) and exponential multi-step (Hochbruck & Ostermann, 2011) methods. These
methods have been used in a wide range of applications including atmospheric mod-
els (Gaudreault & Pudykiewicz, 2016; Calandrini, Pieper, & Gunzburger, 2021),
ocean models (Calandrini, Pieper, & Gunzburger, 2020; Pieper, Sockwell, & Gun-
zburger, 2019), nonlinear Schrodinger equations (de la Hoz & Vadillo, 2008; Hederi
et al., 2016) and computer graphics (Michels, Luan, & Tokman, 2017; Y. J. Chen
et al., 2020; Ascher et al., 2021). An introduction to the derivation of exponential
methods and a description of a numerical method to compute the φk functions
are available in Appendix A. Despite the advances in exponential time integration,
further improvements in the efficiency of these techniques are possible. However,
the construction of new methods is still a challenging task. Two main approaches
are currently available to derive exponential schemes. The first approach is the
classical order conditions commonly used to derive explicit and implicit methods.
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These conditions are obtained by comparing the Taylor expansions of yn+1, the
numerical schemes, and y(tn+1), the exact solution at the time tn+1 = tn+h where
h is the time step. By matching these expansions up to the desired order of con-
vergence p, the local error e(h) = y(tn+1) − yn+1 is bounded by e(h) = O(hp+1).
When computing the Taylor expansions, it is assumed that the solution of eq. (1.1)
and its first p derivatives are smooth. However, when applied to stiff problems,
the Jacobian matrix of f has large eigenvalues. In the limit where the stiffness
goes to infinity, this can break the assumptions of the classical order conditions,
and methods derived in this way can suffer from order reduction in our experi-
ments. This behavior is presented in (Hochbruck & Ostermann, 2005) and the
stiff order conditions are introduced to eliminate this problem. In this paper, the
authors are deriving methods under the assumption that the Jacobian matrix can
be unbounded, but the solution is still smooth. Such methods are called stiffly
accurate, and several exponential methods have been derived using this frame-
work (Hochbruck & Ostermann, 2011; Rainwater & Tokman, 2016; Luan, 2020).
Both the classical and stiff order conditions yield a system of nonlinear equations
that must be solved analytically. This system is hard to solve, and no generic
way to find a solution has been presented before. Therefore each new method
requires a significant amount of work and is derived on a case-by-case basis. As we
will demonstrate in this thesis, it is possible to introduce an intermediate class of
methods that are better suited for stiff problems compared to classically derived
schemes while at the same time are easier to construct than fully stiffly accurate
integrators.

As mentioned before, efficient time integration techniques are required to deal
with modern stiff problems. One potential approach is to derive methods specif-
ically for problems where the right-hand side f can be partitioned. The forcing
terms of physical models can usually be partitioned as the sum of several forcing
terms that correspond to different parts of the physics. In some cases, very effi-
cient solvers have been developed for specific forcing terms. These solvers might,
however, lose their efficiency when applied to the full problem. For this reason,
we would like to take advantage of the system’s structure in the construction of
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numerical time integration methods. With such methods, we would like to treat
the different components in different ways and use efficient solvers when avail-
able. A variety of techniques for partitioned problems have been explored such as
splitting methods (MacNamara & Strang, 2016) and partitioned integrators (Be-
lytschko, Yen, & Mullen, 1979; Rentrop, 1985; Ascher, Ruuth, & Wetton, 1995;
Kennedy & Carpenter, 2003). Splitting methods have been extensively used in the
literature to solve such problems (Gradinaru, 2007; Holden, Lubich, & Risebro,
2013), but their construction for orders larger than two tends to be challenging
(Blanes & Casas, 2005). On the other hand, partitioned methods can offer a more
straightforward extension to higher-order methods. Some of the best-known parti-
tioned integrators are implicit-explicit (IMEX) methods (Ascher, Ruuth, & Spiteri,
1997; Higueras et al., 2014) which have been used in a wide range of applications
(Pareschi & Russo, 2005; Keyes et al., 2013; Hundsdorfer, Verwer, & Hundsdorfer,
2003; Gardner et al., 2018). IMEX schemes treat one component of the forc-
ing term implicitly and the other explicitly. This requires that only one of the
forcing terms is responsible for stiffness in the system to avoid stability problems
and therefore reduces the range of applications. To apply partitioned methods to
problems where both components are stiff, implicit-implicit partitioned methods
have been derived (Sandu & Günther, 2015). These methods, however, suffer from
similar limitations as non-partitioned implicit methods and are usually computa-
tionally expensive. More recently, implicit-exponential (IMEXP) integration has
been introduced (Luan, Tokman, & Rainwater, 2017; Ascher et al., 2021; Y. J.
Chen et al., 2020) to combine the advantages of implicit and exponential meth-
ods. With such methods, it is possible to benefit from an efficient preconditioner
available for the implicit part and use the efficiency and stability of exponential
methods for the other part. However, the stability of these methods has not been
studied, and they are currently limited to first and second order.

In this dissertation, we address the challenges of deriving and applying efficient
exponential integrators in several directions. First, in Chapter 2, we construct new
efficient exponential multi-step methods that combine the accuracy of high-order
schemes with the efficiency of low-order methods. This is achieved by designing the
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methods so that the computation of all the φk functions can be reduced to a single
matrix-exponential-vector product in each step. This product is then approxi-
mated using the Krylov-based KIOPS (Krylov with incomplete orthogonalization
procedure) algorithm presented in appendix A.2. As a result, the cost per iteration
is similar to the cost of the exponential Euler method, independently of the order
of accuracy. These schemes are based on the idea of multi-step methods and use
the information available from the previous time steps to improve the accuracy.
The new methods are applied to the shallow water equations on the sphere. These
equations correspond to a simplified model of the atmosphere. A space-time tensor
formalism is used to express the equations of motion covariantly and to describe
the geometry of the rotated cubed-sphere grid. The spatial discretization is done
using the direct flux reconstruction method, which is an alternative formulation
of the discontinuous Galerkin approach. The proposed numerical algorithms pro-
duce realistic results and have the ability to perform accurate simulations with
very large time steps. We show that the combination of high-order spatial and
matching high-order temporal discretization leads to better accuracy and is capa-
ble of capturing more details in the solution. The convergence of the spatial and
temporal patterns is well behaved as the order of accuracy is increased. Results
are comparable to those obtained from more complicated methods. Experiments
show that mass is conserved at machine precision. The performance of the new
numerical methods is evaluated using a set of standard benchmark tests.

In Chapter 3, we introduce a new framework for deriving partitioned implicit-
exponential integrators and construct several time integrators of this type. The
new approach is suited for solving systems of ODEs where the forcing term is
comprised of two additive nonlinear terms where both components can be stiff. We
specifically derive new integrators that are A-stable, and have 2nd order accuracy.
Moreover, these methods are made efficient by only requiring one call to the linear
system solver for the implicit part and one matrix-exponential-vector product for
the exponential part at each time step. We also propose a novel approach to
visualize the linear stability of partitioned schemes. This visualization allows a
better understanding of the stability limitations of such methods. We analyze
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the accuracy and stability of the new integrators and compare their performance
to state of the art methods on a set of standard test problems. We show that
our methods are more accurate and have better stability properties. The gained
accuracy and stability of our methods provide an advantage in overall efficiency
compared to existing methods.

In Chapter 4, we address the complexity of deriving stiffly accurate exponential
methods that unlike classical techniques do not exhibit order reduction when ap-
plied to stiff problems. We introduce new order conditions and a new theoretical
framework for the derivation of exponential integrators. We derive an analytical
formula for the solution of the new order conditions making the derivation of expo-
nential methods simple for arbitrary order. This framework is very general and can
be used to derive exponential methods of many types. We present the derivation of
exponential Runge-Kutta, exponential multi-step, and a new class of exponential
multi-values methods. We demonstrate that the new order conditions can be in-
terpreted as additionnal constraints on top of the classical order conditions. These
extra constraints ensure that the dominant error terms of stiff problems are can-
celed. This has the effect of increasing the accuracy of the methods, and, similar
to the stiff order condition, the methods derived in this framework are resilient
to the stiffness of the problem. Such methods do not suffer from order reduction.
We also show that methods derived in this framework minimize the number of
matrix exponential computations. In addition, they have desirable properties such
as continuous output and embedded lower order methods. All these reasons make
the methods efficient and an interesting choice for applications.

Finally, in Chapter 5, we evaluate the performance of exponential time inte-
grators for the solution of a nonlinear diffusion PDE. This equation is chosen as
a simplified example of the system of reduced magnetohydrodynamics (RMHD).
The RMHD system is a set of equations modeling an incompressible fluid plasma
in a magnetic field. The solutions to the RMHD equations corresponding to the
parameter regimes of interest often include boundary layers that are difficult to
resolve numerically. The stiffness associated with such dynamics requires careful
numerical treatment in the temporal integration. The system of RMHD equations
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is usually approximated using low order implicit methods such as implicit Euler or
implicit midpoint (Holec et al., 2022) as higher order implicit methods tend to be
too computationally expensive. For this reason, there is a need for more accurate
and efficient methods. In this project, we explore the use of exponential integra-
tors as an alternative to the currently used implicit methods. Our experiments are
done on simplified 1D and 2D nonlinear diffusion problems recreating the boundary
layer present in the solution of the full equations. The spatial discretization is done
with a finite element method using the MFEM library. We also added exponential
integrators to this library as part of this project. Our results demonstrate that
the use of exponential methods has the potential to improve the efficiency of the
approximation of the RMHD equations compared to classical methods. Moreover,
the accuracy of exponential methods can be improved without a significant impact
on the performance.



Chapter 2
High-order numerical solutions to the
shallow-water equations on the rotated
cubed-sphere grid

The text of this chapter is a reprint of the material as it appears in Gaudreault,
S., Charron, M., Dallerit, V., & Tokman, M. (2022). High-order numerical solu-
tions to the shallow-water equations on the rotated cubed-sphere grid. Journal of
Computational Physics, 449, 110792

2.1 Introduction

A challenge of great interest in the numerical weather prediction community
is to develop numerical methods for the governing equations that are conserva-
tive, highly accurate, geometrically flexible, computationally efficient, and simply
formulated. Second-order numerical methods are often preferred in operational
models due to their simplicity and robustness. High-order methods are sometimes
perceived as less robust and complicated to implement. The aims of this paper
are to present: 1) spatial numerical techniques that are almost as simple as finite
differences; and 2) multistep exponential time integration methods with superior
stability properties compared to explicit schemes.

9
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For spatial discretization aspects, the direct flux reconstruction (DFR) scheme
(J. Romero, Asthana, & Jameson, 2016) is applied to the cubed-sphere grid. The
DFR method is a simplified formulation of a class of methods called flux reconstruc-
tion (FR) (Huynh, 2007). The DFR method is equivalent to the weak form of the
nodal discontinuous Galerkin (NDG) scheme in one dimension and on multidimen-
sional elements with tensor product bases (J. Romero, Asthana, & Jameson, 2016;
Huynh, 2019). In this alternative formulation of the NDG method, the conser-
vative equations are solved in differential form and the discretization is free from
quadrature rules, resulting in a simple and computationally efficient algorithm.
This method is also well suited to large geophysical fluid dynamics problems be-
cause it is local and has good conservation properties (Nair, Levy, & Lauritzen,
2011; Ullrich, 2014; Marras et al., 2016).

Time integration with high-order methods is a much more difficult problem.
The implementation of high-order Eulerian techniques in operational models is
made difficult by the Courant-Friedrichs-Lewy (CFL) condition that limits the
time step in several explicit time integration schemes (Courant, Friedrichs, &
Lewy, 1928). This motivated the recent investigation of exponential time inte-
grators in geophysical applications (Clancy & Pudykiewicz, 2013; Gaudreault &
Pudykiewicz, 2016; Gaudreault, Rainwater, & Tokman, 2018; Luan, Pudykiewicz,
& Reynolds, 2019; Schreiber, Schaeffer, & Loft, 2019; Peixoto & Schreiber, 2019;
Calandrini, Pieper, & Gunzburger, 2020; Shashkin & Goyman, 2020; Caliari et
al., 2021; Calandrini, Pieper, & Gunzburger, 2021). These approaches allow for
longer time steps and yield higher accuracy than traditional algorithms. In ad-
dition, these studies have shown that exponential integrators accurately calculate
the entire spectrum of waves propagating in the atmosphere. Beside the obvious
advantage of high accuracy, these methods also eliminate the need to divide the
governing equations into linear and non-linear parts. This task is performed au-
tomatically by evaluating the action of the Jacobian operator. This consideration
could greatly simplify the design of numerical models.

In this paper, new high-order exponential propagation iterative (EPI) methods
are introduced and tested in combination with DFR for the shallow-water equa-
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tions on the sphere. The paper is organized as follows. The governing equations
in arbitrary coordinates are introduced in section 2.2. This sets the stage for sec-
tion 2.3 and section 2.4 where the numerical schemes are described. Results from
a series of numerical experiments are discussed in section 2.5. Conclusions and
future works are presented in section 2.6.

2.2 General form of the equations of motion and

the rotated cubed-sphere grid

Solving the shallow-water equations is often the first step towards the con-
struction of a comprehensive numerical weather prediction model. Shallow-water
dynamics represents a (2+1)-dimensional (i.e. two spatial and one temporal di-
mensions) nonlinear system of hyperbolic partial differential equations. They are
obtained from the Euler equations by assuming that the depth of the fluid is small
compared to the mean radius of the Earth, incompressibility, hydrostasy, weak
stratification, and in the case of spherical geometry, that the spherical geopoten-
tial approximation holds.

Here, the shallow-water equations will be written in a space-time tensorial
formalism. One advantage of using space-time tensor calculus and tensor-related
objects is that the equations of motion may be expressed in arbitrary (possibly
non-inertial and time-dependent) coordinates within a unified framework.

The synchronously covariant shallow-water equations for continuity and mo-
mentum in quasi-flux form are respectively

∂

∂t
(√gH) + ∂

∂xj

(√
gHuj

)
= 0, (2.1)

∂

∂t

(√
gHui

)
+ ∂

∂xj

(√
g
[
Huiuj + 1

2grh
ijH2

])
=

−2√
g Γij0Huj − √

g Γijk
(
Hujuk + 1

2grh
jkH2

)
− √

gHgrh
ij ∂hB
∂xj

, (2.2)

where H is the fluid’s thickness scalar field, hB the height of the bottom orogra-
phy, ui (i = 1, 2) the two components of the velocity field, gr the constant effective
gravitational acceleration, g the determinant of the covariant space-time metric
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tensor, hij the space-only contravariant metric tensor, and Γ’s the Christoffel sym-
bols in space-time. Notice that the Coriolis effect is associated with the Christoffel
symbols Γij0. The indices i, j take the values 1 and 2, and repeated indices are
summed. The derivation of these equations is presented in Appendix B.1. The
form of the governing equations provided by eqs. (2.1) and (2.2) will be discretized
in the following sections.

The relevant space-time metric terms associated with the cubed-sphere coor-
dinates on a rotating 2-sphere with radius a and constant angular velocity Ω are
provided in Appendix B.2. It is assumed that the reader is familiar with the char-
acteristics of the cubed-sphere grid, otherwise (Sadourny, 1972; Ronchi, Iacono, &
Paolucci, 1996; Rančić, Purser, & Mesinger, 1996; Nair, Thomas, & Loft, 2005b,
2005a; Rossmanith, 2006; C. Chen & Xiao, 2008; Ullrich, Jablonowski, & Van Leer,
2010; Ullrich & Jablonowski, 2012; Bao, Nair, & Tufo, 2014; Nair, 2015) provide
descriptions and details on its properties. In practical applications, it may be desir-
able to rotate a coordinate system to avoid the co-location of certain geographical
points and grid peculiarities such as coordinate discontinuities. In Appendix B.2,
an arbitrary rotation of the cubed-sphere coordinates is considered.

Coordinate lines at the interface of two panels may not be smooth as a result of
the composite character of the global cubed-sphere coordinates. Although scalars
have by definition the same value at a point on the interface of two panels with
different coordinates, higher-rank tensor components are different if expressed with
the coordinate basis of one or the other side of the interface. In Appendix B.3,
consistency relations between all interfacing panels are provided for contravariant
and covariant first-rank tensors.

2.3 Spatial discretization

The discontinuous Galerkin method is built on a weak integral formulation
of the governing equations, where all unknown functions are approximated by
high-order polynomials (see (Hesthaven & Warburton, 2007; Giraldo, 2020) for a
review). This leads to the evaluation of several integrals using quadrature rules.
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The recent direct flux reconstruction method (J. Romero, Asthana, & Jameson,
2016; J. D. Romero, 2017) is formulated using a differential form of the equations.
Therefore, this method only requires Lagrange polynomials and avoids the need
for quadrature rules, which simplifies its implementation. It has been shown that
the DFR method results in a scheme equivalent to the weak form of the nodal dis-
continuous Galerkin method in one dimension and on multidimensional elements
with tensor product bases (J. Romero, Asthana, & Jameson, 2016; Huynh, 2019).
It should be noted that these ideas are not entirely new in geophysical applica-
tions since the 3rd order scheme presented in (C. Chen et al., 2015) may also be
considered as a special case of the DFR method. In section 2.3.1, an overview of
the basic properties of the method in one dimension is presented and its extension
to two dimensions and curved geometry is discussed in section 2.3.2.

2.3.1 Direct flux reconstruction in one dimension

Consider the following conservation law:
∂q

∂t
+ ∂f(q)

∂x
= 0, x ∈ D. (2.3)

The calculation domain D is divided into Ne non-overlapping elements Dj =
[xj− 1

2
, xj+ 1

2
], for j = 1, ..., Ne. The size of the element j is ∆j = xj+ 1

2
− xj− 1

2
.

In this subsection, all indices refer to positions in a one-dimensional grid and not
to space-time indices as in section 2.2. Also, implicit summation over repeated
indices is not assumed.

To conveniently treat a general non-uniform grid, a local coordinate variable ξ
is defined by an affine transformation mapping each element Dj onto the so-called
reference element Ij = [−1, 1]:

ξ(x) = 2
∆j

(x− xj− 1
2
) − 1 (2.4)

with inverse
x(ξ) =

(
1 − ξ

2

)
xj− 1

2
+
(

1 + ξ

2

)
xj+ 1

2
. (2.5)

Derivatives in global and local coordinate systems are related by the chain rule:
∂

∂x
= 2

∆j

∂

∂ξ
. (2.6)
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Similarly to several other high-order methods such as FR and NDG, a set of
Ns ≥ 1 solution points are defined within the reference element. These points
are denoted ξk, for k = 1, . . . , Ns. There are several ways to place these points,
leading to schemes with different numerical properties (Jameson, Vincent, & Cas-
tonguay, 2012). In the present study, the Gauß-Legendre points have been cho-
sen based on theoretical results which show the optimal nature of these solution
points (Gassner & Kopriva, 2011; Witherden & Vincent, 2020). The placement of
the Gauß-Legendre points corresponds to the roots of the Legendre polynomials.
Although the solution and flux points are collocated, the method does not suffer
from the so-called 2∆x numerical mode that typically affects the unstaggered finite
difference schemes on uniform grids. In effect, the entries of the Gauß-Legendre
differentiation matrices are all non-zero. This is in contrast with centered unstag-
gered finite differences on a uniform grid, where the coefficients vanish at the center
of the stencil. The Runge phenomenon is also significantly mitigated by this choice
of points.

The essence of the DFR method consists in approximating the exact solution q
with an approximate solution q̂. This approximate solution is obtained by taking
the piecewise sum of Ne functions q̂j, each function being defined as a polynomial
of degree Ns − 1 within the element Dj and exactly zero elsewhere. Thus, the ap-
proximate solution for a given element j can be represented on a reference element
as

q̂j(ξ, t) =
Ns∑
k=1

q̂j,k(t) ℓk(ξ), (2.7)

where q̂j,k(t) are coefficients defined at the solution points, and

ℓk(ξ) =
Ns∏
l=1
l ̸=k

ξ − ξl
ξk − ξl

(2.8)

are the Lagrange basis polynomials.
Similarly, the exact flux f(q) in eq. (2.3) is approximated by the piecewise sum

of polynomials f̂j of degree Ns − 1 within each element and zero outside:

f̂j(ξ, t) =
Ns∑
k=1

f̂j,k(t) ℓk(ξ), (2.9)
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where f̂j,k(t) = f(q̂j,k(t)). It is worth noting that even if q̂ could be represented
exactly with the basis functions, the term f̂ is obtained from products of dynam-
ical variables and the expansion (2.9) would not be exact in general. This could
introduce aliasing errors which may require filtering.

At a given time t, the functions q̂ and f̂ are continuous within an element but
are not uniquely defined at the element boundaries (i.e., at the points ξ = ±1).
If for instance the flux at ξ = −1 on the element j is considered, its value may
differ from the value at ξ = 1 on the element j − 1. These disparities constitute a
Riemann problem. For smooth solutions, a simple upwinding might be an accept-
able approximation for the common flux at the interface. If, however, the physical
solution should include sharp gradients, the common flux is generally prescribed
by an approximate Riemann solver borrowed from the finite volume methodology
(see e.g. (LeVeque et al., 2002; Toro, 2013)). The study (Ullrich, Jablonowski,
& Van Leer, 2010) adapted the Rusanov (Rusanov, 1962), Roe (Roe, 1981) and
AUSM+-up (Liou, 2006) methods for the shallow-water equations. Their simula-
tions showed that AUSM+-up provides the best overall accuracy when applied to
various test cases, followed closely by the Roe solver. The Rusanov solver showed
significantly worse performance in terms of accuracy and conservation error. How-
ever, the AUSM+-up method is much more computationally intensive than the
Rusanov method, which explains why the latter is a more popular choice with
discontinuous Galerkin methods. After exploring different possibilities, an adap-
tation of the basic AUSM solver (Liou & Steffen Jr, 1993) was found to be a good
compromise between simplicity, accuracy and numerical efficiency. This Riemann
solver is described in Appendix B.4.

To account for the interaction between adjacent elements, a continuous polyno-
mial, denoted Fj(ξ), is defined within each element. This continuous flux function
must satisfy the following conditions:

1. Fj(ξ) must take the value of the Riemann fluxes at both ends of the element
Dj:

Fj(−1) = f̄
(
qLj− 1

2
, qRj− 1

2

)
, Fj(1) = f̄

(
qLj+ 1

2
, qRj+ 1

2

)
; (2.10)

2. Fj(ξ) must be a polynomial of degree Ns + 1;
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3. Fj(ξ) must approximate the discontinuous flux function f̂j(ξ, t) at a given
time t.

Condition 1 is necessary for the polynomial to be C0. Condition 2 implies that
the derivative of Fj(ξ) is a polynomial of degree Ns and that the method has an
accuracy of order Ns. To satisfy these two conditions, one defines the continuous
polynomial over the extended set of solution points as the union of the set of interior
solution points and the interface flux points, that is {ξ0, ξ1, . . . , ξNs , ξNs+1}, with
ξ0 = −1, ξNs+1 = 1 and the usual Gauß-Legendre points for indices 1, . . . , Ns.
Condition 3 may be satisfied by imposing that Fj(ξk) = f̂j,k on the interior Gauß-
Legendre points k = 1, . . . , Ns. These three conditions are sufficient to define the
following continuous flux polynomial:

Fj(ξ) = Fj(−1) ℓ̃0(ξ) +
[
Ns∑
k=1

f̂j,k(t) ℓ̃k(ξ)
]

+ Fj(1) ℓ̃Ns+1(ξ), (2.11)

where ℓ̃n are the Lagrange interpolation polynomial basis constructed from eq. (2.8)
but now for the Ns + 2 interpolation points.

Finally, the derivative of the continuous flux function is given by

F ′
j(ξ) = Fj(−1) ℓ̃′

0(ξ) +
[
Ns∑
k=1

f̂j,k(t) ℓ̃′
k(ξ)

]
+ Fj(1) ℓ̃′

Ns+1(ξ), (2.12)

with

ℓ̃′
n(ξ) =

Ns+1∑
i=0
i ̸=n

 1
ξn − ξi

Ns+1∏
m=0

m ̸=(i,n)

ξ − ξm
ξn − ξm

 . (2.13)

After replacing variables and the spatial derivative in eq. (2.3) by their discrete
counterparts, the following semi-discrete ordinary differential equation is obtained:

d

dt
q̂j,k = − 2

∆j

F ′
j(ξk). (2.14)

In practice, the derivative of the continuous flux function is calculated as a
matrix-vector product using a polynomial derivative matrix (J. Romero et al.,
2020). The equivalence of this scheme with the weak form of the NDG method
may be verified easily by noting that: 1) ℓ̃′

0(ξ) and ℓ̃′
k(ξ) respectively take the same

values as left and right Radau polynomials at the Gauß-Legendre points (Huynh,
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2019), and 2) the part of the differentiation matrix applied to the solution points
is identical to, say, Eq. (43) in (Kopriva & Gassner, 2010). Given this equivalence
between DFR and NDG, one expects that the numerical properties of the latter,
which are well studied in the literature (see e.g. (Hesthaven & Warburton, 2007;
Giraldo, 2020)), also apply to the former.

2.3.2 Extension to two dimensions and curved geometry

The extension of the DFR method to quadrilateral and hexahedral elements, for
which the basis polynomials are the tensor product of the one-dimensional basis
functions, is straightforward. The basic idea is to first transform the governing
equations from a physical element to the reference or standard element. Then, the
one-dimensional DFR formulation is applied in each coordinate direction of the
standard element without further complications. The discretization of the tensorial
momentum equations is performed by treating each component separately.

Although the method is remarkably similar in flat and curved geometries, it is
possible to simplify the formulation by avoiding the transformation of the deriva-
tives given in eqs. (2.6) and (2.14). For instance, in eqs. (2.1) and (2.2) one may
take advantage of the tensorial formulation by transforming the velocities ui, metric
hij and factor √

g as well as the components of the Christoffel symbols Γi0k and Γijk
from the cubed-sphere coordinates to the local coordinate system [−1, 1] × [−1, 1]
on each element. The transformation rules are

ũj = 2
∆xj u

j, (2.15)
√
g̃ = 1

4∆x1∆x2√g, (2.16)

g̃ij = 1
4∆xi∆xjgij, (2.17)

h̃ij = 4
∆xi∆xj h

ij, (2.18)

Γ̃ijk = 1
2∆xiΓijk, (2.19)

Γ̃i0k = Γi0k, (2.20)

where ∆x1 and ∆x2 are the element dimensions in the cubed-sphere coordinate
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system and the tilde symbol indicates the corresponding values in the coordinate
system of the standard element. These transformations may be computed only once
at the beginning of the simulation and then used consistently in all calculations.
Note that these transformations do not affect the consistency relations at the
interfaces of the cubed-sphere panels.

2.4 Time integration

The semi-discrete system obtained after applying the DFR to the shallow-water
equations is an example of a general problem arising in the so-called method of
lines, in which the space derivatives of a partial differential equation (PDE) are
discretized first, leading to a large autonomous system of ordinary differential
equations (ODEs) of the form

d

dt
q(t) = F(q(t)), q(t0) = q0, (2.21)

where q(t) represents the unknown dynamical quantities and F is a function de-
scribing all forcing terms driving the system.

Numerical time integration of eq. (2.21) is a challenging task due to both high
dimensionality of F(q) as well as the stiffness of its Jacobian ∂F/∂q. The latter
property is due to the presence of a wide range of temporal frequencies character-
istic of the evolution of this system. Traditionally, there have been two general
approaches to temporal discretization of eq. (2.21): explicit and implicit methods
(see e.g. (Mengaldo et al., 2019)). On the one hand, explicit methods are very
efficient per time step since such algorithms require only evaluations of the right-
hand side function F(q) using precomputed values of q and possible additions of
such vectors. However, explicit integrators suffer from poor numerical stability
properties, and for stiff systems the stability constraints impose a time step that
is often too small for practical applications. Implicit methods, on the other hand,
usually possess much better stability properties and allow time integration of the
system using significantly larger time step sizes compared to explicit schemes. Such
improvement though is accompanied by an increase in computational complexity
per time step since implicit methods require solution of a large and stiff system of
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nonlinear equations at each time step. Newton-Krylov algorithms (Knoll & Keyes,
2004) are the most commonly used in practice to solve such nonlinear systems
with implicit time stepping. The nonlinearity and stiffness of many dynamical
systems, such as the shallow-water equations, may result in slow convergence of
both the Krylov method used to solve the underlying linear system within a New-
ton iteration and the Newton iteration itself. Preconditioning is used to alleviate
this challenge, but developing an effective preconditioner for many problems can
in itself be a difficult and time-consuming task. This is particularly true when
higher-order spatial discretizations, such as the DFR method, are employed to ap-
proximate spatial operators. Given these considerations, there is a pressing need
for new time integration techniques with better stability properties compared to
explicit methods and improved computational complexity per time step compared
to implicit schemes. In recent years, exponential integration emerged as a possible
alternative to implicit methods in solving large stiff systems.

Let {tn}Mn=0 be a set of nodes that represent some discretization of the integra-
tion interval [t0, tend]. The numerical solution of eq. (2.21) at time tn is denoted as
qn ≈ q(tn) and the next task is to develop a time integration method to compute
the vectors qn. The starting point for constructing an exponential integrator is
often a Taylor expansion of F(q) around a known value of the solution qn that
allows writing the equation in the following form

dq

dt
= F(q) = F(qn) + ∂F

∂q
(qn)(q − qn) + R(q), (2.22)

where R(q) = F(q) − F(qn) − ∂F
∂q

(qn)(q − qn) is the nonlinear remainder after the
first two terms of the Taylor expansion. Denoting the Jacobian matrix Jn = ∂F

∂q
(qn)

for brevity and using an integrating factor etJn , one may write the integral form
of eq. (2.22), and the solution at tn + ∆t is given by the variation of constants
formula

q(tn + ∆t) = qn + J −1
n (e∆tJn − I)F(qn) +

∫ tn+∆t

tn
e(tn+∆t−t)JnR(q(t))dt (2.23)

or, if one sets φ1(z) = (ez − 1)/z, as

q(tn + ∆t) = qn + φ1(∆tJn)∆tF(qn) +
∫ tn+∆t

tn
e(tn+∆t−t)JnR(q(t))dt. (2.24)
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An exponential integrator to estimate q(tn + ∆t) is then constructed by approxi-
mating the nonlinear integral in eq. (2.24) to the desired order of accuracy. If the
integral is neglected, one obtains a second-order method known as an Exponential
Euler scheme (hereafter denoted EPI2 as in (Tokman, 2006)):

q(tn + ∆t) = qn + φ1(∆tJn)∆tF(qn). (2.25)

To increase the order of accuracy, the nonlinear integral is usually approximated
using Runge-Kutta or multistep-type approaches. Either of such schemes will
result in using some form of a polynomial approximation to the function R(q(t))
in variable t to estimate the nonlinear integral in eq. (2.24). As a result, the
approximate solution qn+1 ≈ q(tn + ∆t) will be expressed in terms of products of
matrix functions and vectors like φk(∆tJn)Rk, where Rk is a vector obtained by
computing the nonlinear function R(qk) using a known value of qk. The functions
φk satisfy the relation

φ0(z) = ez, φk(z) =
∫ 1

0
e(1−s)z sk−1

(k − 1)!ds, k ≥ 1. (2.26)

All φk(z) are analytic functions defined on the complex plane. This definition
can then be extended to matrices using any of the available definitions of matrix
functions (see e.g. (Higham, 2008)). For instance, they could be defined using
power series similar to the matrix exponential:

φk(A) =
∞∑
n=0

An

(n+ k)! .

Since Jn is generally a large stiff matrix, evaluation of the products φk(∆tJn)Rk

is the most computationally intensive part of approximating qn+1 at every time
step. Thus, choosing the right algorithm to approximate these products is key to
implementing an efficient exponential integrator.

While there are a number of algorithms that have been proposed for estimating
products of matrix functions and vectors, only a few of those are suitable for
general large stiff problems, and even fewer are appropriate for problems where
the argument matrix is not known or cannot be stored explicitly. Many of such
algorithms are only computationally feasible for small matrices (Moler & Van Loan,
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1978, 2003). Other methods can be used for large matrices but require some
information about the norm or the spectrum of the matrices (Al-Mohy & Higham,
2011; Caliari et al., 2016; Caliari, Kandolf, & Zivcovich, 2018). For many systems
including the one considered here, it is, however, common to have the Jacobian
matrix only available in the so-called matrix-free form—i.e. only a function that
multiplies the Jacobian matrix with a vector is available rather than having an
explicitly stored Jacobian. When an approximation to the Jacobian-vector product
is used, the resulting method is then called an inexact Krylov method. An analysis
of inexact Krylov subspace methods for approximating the matrix exponential has
been presented in (Dinh & Sidje, 2017).

A popular matrix-free method (see (Knoll & Keyes, 2004) and references therein)
is the finite-difference approximation

Jnv = F(qn + ϵ · v) − F(qn)
ϵ

+ O(ϵ), (2.27)

where ϵ ∈ R is a small parameter and v is an arbitrary vector. It is well known
that if ϵ is too small, then the rounding errors incurred in the evaluation of F
begin to dominate. For this reason, a methodology based on the complex-step
approximation is rather used (Squire & Trapp, 1998):

Jnv = ℑ
[

F(qn + ϵ i · v)
ϵ

]
+ O(ϵ2), (2.28)

where i2 = −1 and ℑ denotes the imaginary part operator.
Hence, the result of the Jacobian-vector product is calculated using only one

evaluation of the right-hand side function with complex arguments. The complex-
step approximation has gained popularity in the field of machine learning in recent
years (Goodfellow, Bengio, & Courville, 2016) but has seldom been used in the
context of exponential integrators.

For large stiff matrix-free cases, Krylov-projection-type algorithms are the best
approach to estimating products φk(∆tJn)Rk. In particular, adaptive Krylov-
based methods (Niesen & Wright, 2012), including the recently proposed KIOPS
algorithm (Gaudreault, Rainwater, & Tokman, 2018), have been shown to deliver
the most efficiency for such problems. Given a matrix A and a set of vectors b0,
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..., bp these methods allow fast computation of the linear combinations of the type

φ0(A)b0 + φ1(A)b1 + φ2(A)b2 + ...+ φp(A)bp. (2.29)

The adaptive Krylov-based methods compute the expression (2.29) using only one
Krylov projection and an adaptive substepping mechanism which speeds up the
computation by appropriately scaling the matrix A. The precise formulation of
the KIOPS algorithm (its structure and implementation) is given in (Gaudreault,
Rainwater, & Tokman, 2018).

As stated earlier, obtaining the matrix functions-vector products φk(∆tJn)Rk

and their linear combinations represents the main computational load of an expo-
nential integrator. One should therefore minimize the number of such operations
and optimize their computation. Exponential Propagation Iterative (EPI) meth-
ods of Runge-Kutta (Tokman, 2011) and multistep (Tokman, 2006) types were
designed to achieve this. Simulations with weather and climate models usually
employ constant time steps because they are controlled not only by the resolved
dynamics but also by constraints on sub-grid scale parameterizations. Therefore,
only methods with constant time steps are considered here.

A third-order multistep-type EPI method is derived in (Tokman, 2006). The
EPI3 algorithm to solve eq. (2.22) may be written as

qn+1 = qn + φ1(∆tJn)∆tFn + 2
3φ2(∆tJn)∆tRn−1, (2.30)

where Fn = F(qn) and

φ1(z) = ez − 1
z

, (2.31)

φ2(z) = ez − 1 − z

z2 , (2.32)

Rn−1 = F(qn−1) − Fn − Jn(qn−1 − qn). (2.33)

In the following, higher-order multistep-type EPI algorithms are presented. The
following general ansatz will become useful:

qn+1 = qn + φ1(∆tJn)∆tF(qn) +
M∑
m=1

φm(∆tJn)vm, (2.34)

vm =
P∑
i=1

αm,i∆tR(qn−i), (2.35)



23

where P is the number of previous points used and M is the maximum order of
the φ function. Notice that if methods constructed using this ansatz are combined
with adaptive Krylov-type algorithms (such as KIOPS) for calculating the linear
combinations of terms like φm(∆tJn)vm, then each time step will require only one
call to KIOPS (or to any other adaptive-Krylov method). Since approximating
the linear combinations involving φ matrix functions-vector products represents
the main computational cost of an EPI method, all such schemes will have a com-
parable cost. Therefore, significant increases in accuracy with only relatively small
increases in computational cost are expected from such higher-order methods. This
computational advantage of the newly introduced EPI schemes will hold for prob-
lems where the cost of the Krylov-projection evaluation of the exponential matrix
functions and vectors dominates the computational cost per time step compared
to the evaluation of the right-hand-side function or the actual product of the Jaco-
bian and a vector. Should the latter computations become prohibitively expensive
and dominant, one might still want to use a lower-order method.

To construct specific EPI schemes, the coefficients αm,i in eq. (2.35) must be de-
termined. This is done with the Butcher trees order condition theory, which greatly
simplifies their derivation. Details on Butcher trees to construct exponential meth-
ods are found in (J. Butcher, 2010; Tokman, 2011). This machinery is used to
derive systems of equations for the coefficients αm,i. In the case of multistep-type
EPI methods, such systems are linear but typically under-determined. Therefore,
as for standard Runge-Kutta and multistep methods, additional constraints may
be added and the extended linear systems may be solved to obtain either a single
method or a family of schemes. Such constraints may serve to introduce certain
desired properties to the resulting scheme, for instance: 1) the largest possible
number of zero coefficients, 2) coefficients with the smallest possible magnitude
in the scheme itself or in the next order error term. The coefficients of a method
may be represented as a matrix A, where Ai,j = αi,j. Therefore, a method using P
previously computed nodes qn−i (i = 1, ..., P ) and M functions φj (j = 1, ...,M)
will have P columns and M rows.

Here, it is chosen to supplement the order conditions by constraints that mini-
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mize the magnitude of the coefficients in the first term of the error, In other words,
if the method is of order p, then the coefficients of the error term of order p + 1
will be minimized. Solving the order conditions with these constraints, methods
of orders 4, 5 and 6 are obtained with the following coefficients:

A4 =



0 0

− 3
10

3
40

32
5 −11

10


, (2.36)

A5 =



0 0 0

−4
5

2
5 − 4

45

12 −9
2

8
9

3 0 −1
3


, (2.37)

A6 =



0 0 0 0

−49
60

351
560 − 359

1260
367
6720

92
7 −99

14
176
63 −1

2

485
21 −151

14
23
9 − 31

168


. (2.38)

Note that the EPI multistep methods require computation of the starting nodes
qn to begin the time stepping process. These values may be calculated in many
different ways. Here, the EPI2 method (see eq. (2.25)) with a smaller time step to
compute the necessary starting values is used. Once the initial values are obtained
and the remainder function R(qn) is evaluated and stored, the time stepping al-
gorithm proceeds as follows. At each new time iteration, the solution at the next
time step qn+1 is computed using eq. (2.34) as well as the following steps:

1. compute vectors vm = ∑P
i=1 αm,iR(qn−i) using previously stored values qn−i

and F(qn−i). Note that while vectors F(qn−i) may be reused from previous
iterations, vectors R(qn−i) cannot be reused because the Jacobian matrix
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changes from one iteration to the next;

2. use the KIOPS algorithm to evaluate

wn = φ1(∆tJn)F(qn) +
M∑
m=1

φm(∆tJn)vm;

3. advance the solution over the next time step qn+1 = qn + wn∆t.

Exponential integrators, much like implicit methods, possess very good stabil-
ity properties since they represent an exact solution qn+1 = e∆tJ qn to the linear
problem y′ = J y (i.e., R(q) = 0 and Jn = J in eq. (2.22)) with ∥e∆tJn∥ < 1 if
the real parts of the eigenvalues of Jn are all negative. In addition, exponential
integration can lead to computational savings per time step compared to implicit
schemes. This is the result of the Krylov methods performing more efficiently in
evaluating exponential-like functions φ in expression (2.29) compared to comput-
ing the rational functions of a Jacobian, which have to be approximated within
an implicit method. Exponential methods are also generally more accurate than
explicit and implicit methods of the same order. In the context of geophysical fluid
dynamics, this means that relevant wave dispersion relations are expected to be
simulated more accurately.

Note that all exponential integrators are trivially A-stable since an exponential
method solves the linear part of the system exactly (qn + φ1(∆tJn)∆tF(qn)) thus
no unstable computational modes are generated. Surely when the exponential
is approximated rather than computed exactly the method is not necessarily A-
stable. However, when adaptive Krylov-based algorithm is used to compute the
products of exponential matrix functions and vectors these computations can be
performed in a way that does not pose challenges for stability. It has been shown
in the literature (Tranquilli & Sandu, 2014a, 2014b) that combining, exponential
Runge-Kutta integration with Krylov algorithm is similar to employing an explicit
Runge-Kutta method with coefficients that depend on the eigenvalues (particularly
those from the boundary of the spectral domain) of the Jacobian and therefore the
region of stability of such method also depends on these eigenvalues. Obviously,
such explicit Runge-Kutta method will be different for each time step, as the
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Jacobian and the Krylov vectors are changing. Thus the stability region is not
static and is accounting for the eigenvalues of the Jacobian. In addition, the
adaptive Krylov allows to set tolerance on the approximation of the exponential
matrix functions-vector products and it is easy to ensure that these computations
are done with enough precision to not impact the overall time stepping process.
It is also worth noting that a similar issue arises when implicit-Krylov methods
are used and solving with an approximate Jacobian and within a certain tolerance
is a common practice with implicit methods. The implications of this strategy in
the context of Krylov subspace methods for approximating the matrix exponential
have been studied recently in (Dinh & Sidje, 2017). Practice shows that employing
exponential-Krylov time stepping approach is effective and allows integration of
many practical problems without issues with stability (Loffeld & Tokman, 2013;
Einkemmer, Tokman, & Loffeld, 2017).

In the next section, numerical examples will be used to demonstrate that the
newly constructed EPI methods allow significant increases in accuracy of the time
integration without incurring significant computational cost.

2.5 Numerical experiments

The numerical properties of the algorithms described in previous sections are
studied using test cases found in the literature. In section 2.5.1, the accuracy and
convergence of the EPI time integrators on three PDE problems are evaluated.
In section 2.5.2, numerical properties of the spatial discretization are evaluated
in isolation using benchmarks found in (Läuter, Handorf, & Dethloff, 2005). In
section 2.5.3, the accuracy of the various time integrators and DFR accuracy orders
is studied from simulating the barotropic test case found in (Galewsky, Scott, &
Polvani, 2004). Finally, results from three test cases based on the benchmarks
found in (Williamson et al., 1992) are presented. These experiments allow, among
other things, to assess the conservation of various quantities.

Unless otherwise indicated, all tests with the shallow-water equations use a
time step of 1 hour and the tolerance of the KIOPS solver is set to 10−10. The ϵ
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parameter of the complex-step approximation is set to ≈ 1.5 × 10−8. The compu-
tational grid is made up of 6×Ne×Ne elements. Each element consists of Ns×Ns

solution points. The value of Ns and Ne are varied such that the total number of
degrees of freedom is kept constant. For the considered shallow-water test cases,
a global grid with 86400 degrees of freedom and a timestep of 1 hour correspond
to Courant numbers ranging from 10 to 20. The grid rotation parameters are set
to λ0 = 0, ϕ0 = π/4 and α0 = 0 (see Appendix B.2) since this configuration poses
a greater challenge for most test cases than, say, the unrotated configuration.

Beside the intrinsic numerical diffusion of the Riemann solver, no filter, artificial
diffusion or limiter is used in this study. These aspects have been extensively
studied in the literature (see e.g. (Jablonowski & Williamson, 2011; Marras et al.,
2016)) and may be assessed in future works.

Errors associated with simulated cases for which known analytical solutions
exist are evaluated from the height field using the following global norms:

L1(t) = I[|H −HT | ; t]
I[HT ; t] , (2.39)

L2(t) =

√√√√I[(H −HT )2; t]
I[H2

T ; t] , (2.40)

L∞(t) = max |H(x1, x2, t) −HT (x1, x2, t)|
max |HT (x1, x2, t)| , (2.41)

where HT is the height field of the analytical solution and I is an approximation to
a global integral calculated with the Gauß-Legendre quadrature rules as follows:

I [Ψ; t] ≈
5∑
p=0

Ne∑
k=1

Ne∑
l=1

Ns∑
m=1

Ns∑
n=1

Ψ
(
(x1)m,k,l,p, (x2)n,k,l,p, t

)
×

√
g
(
(x1)m,k,l,p, (x2)n,k,l,p, t

)
wmwn, (2.42)

where p is the panel index, the indices k, l,m, n refer to the position of the points
on the Gauß-Legendre grid and the w’s are quadrature weights that lead to an
exact integration of polynomials of degree 2Ns − 1 or less.
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2.5.1 Convergence of the time integrators

The performance of the new EPI methods introduced above is evaluated with a
standard set of tests for large stiff systems of equations (Hochbruck & Ostermann,
2005). Their convergence is assessed from three common benchmarks:

• Advection-diffusion-reaction PDE:

∂u

∂t
+ α

(
∂u

∂x
+ ∂u

∂y

)
= ε

(
∂2u

∂x2 + ∂2u

∂y2

)
+R(u),

where R(u) = γu(u − 1/2)(1 − u), ε = 1/100, α = −10, γ = 100, on the
domain x, y ∈ [0, 1], t ∈ [0, 0.1] and with homogeneous Neumann boundary
conditions. The initial condition is u0 = 256(xy(1 − x)(1 − y))2 + 0.3. The
equation is discretized using a second-order finite difference method with
n = 1600 grid points.

• Burger’s equation:
∂u

∂t
+ 1

2
∂u2

∂x
= ε

∂2u

∂x2 ,

with ε = 10−3. This equation is discretized using a second-order finite dif-
ference method with n = 1024 grid points on the domain x ∈ [0, 1], t ∈ [0, 1].
The initial condition u0 = exp (−(x− µ)2/(2σ2)) with µ = 0.3, σ = 0.05 and
homogeneous Dirichlet boundary conditions are used.

• Semilinear parabolic PDE (Hochbruck & Ostermann, 2005):

∂u

∂t
− ∂2u

∂x2 =
∫ 1

0
u(x, s)ds+ ϕ(x, t),

where ϕ(x, t) is chosen such that the exact solution is u(x, t) = x(1 − x)et.
This equation is discretized in space using a second-order finite difference
method for the derivative and the trapezoidal rule for the integral with n =
400 grid points on the domain x ∈ [0, 1], t ∈ [0, 1]. The initial condition
u0 = x(1 − x) and homogeneous Dirichlet boundary conditions are used.

The tolerance for KIOPS is set to 10−14 and the error is defined as the discrete 2-
norm of the difference between the approximation to the solution and the reference
solution. The exact Jacobian is used in all of the calculations. The reference
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solutions for the first two cases are computed using MATLAB’s ode15s integrator
with absolute and relative tolerances set to 10−14, whereas an exact solution exists
for the third case.

Figure 2.1 shows convergence plots obtained from the three test cases above. All
methods converge to the reference solutions with the theoretically expected order
of accuracy. Note that the semilinear parabolic PDE problem was constructed
in (Hochbruck & Ostermann, 2005) to demonstrate that certain time integration
methods can suffer from the order reduction if they were not derived using the stiff
order conditions. It has not been proven, however, that the stiff order conditions
in (Hochbruck & Ostermann, 2005, 2011) are necessary to avoid order reduction.
While EPI schemes proposed here are not derived using these stiff order conditions
from (Hochbruck & Ostermann, 2005, 2011), no order reduction is observed for
these schemes in the test problems.

Figure 2.2 shows work-precision diagrams (CPU time vs. error) for all tested
exponential scheme and benchmark cases. The points are in decreasing order of
time step size, from left to right, with the following value of h: Advection-diffusion-
reaction test case: h = {7.0 × 10−4, 2.2 × 10−4, 9.8 × 10−5}, Burger’s equation test
case: h = {3.1 × 10−3, 1.8 × 10−3, 1.0 × 10−3, 6.0 × 10−4, 3.0 × 10−4} and semilinear
parabolic test case: h = {1.1×10−1, 7.0×10−2, 5.0×10−2, 3.3×10−2, 2.1×10−2, 1.5×
10−2, 1.0 × 10−3}.

The work-precision diagrams clearly show that increasing the order of the EPI
scheme does not lead to a significant increase in the computational time required
to approximate the solutions with specified accuracy. This is because all EPI
methods are implemented using a single computation of a linear combination of φ
functions per time step and the computational cost of these linear combinations is
comparable for all of the time integrators.

2.5.2 Convergence of the DFR method

The diffusion-free, zonally balanced, time-dependent flow proposed in (Läuter,
Handorf, & Dethloff, 2005) is a difficult test for the cubed-sphere when the grid is
rotated at a 45◦ angle. The highest values of the height field cross eight panel edges,
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Figure 2.1: Convergence plots for multistep-type EPI methods of orders 2, 3, 4, 5
and 6.
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Figure 2.2: Work-precision diagrams for multistep-type EPI methods of orders 2,
3, 4, 5 and 6.
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Figure 2.3: Error convergence at day 5 for the diffusion-free, zonally balanced,
time-dependent flow.

four corners of the cube and follow two panel edges located along the equator. This
test case has an analytical solution and is therefore frequently used to assess the
convergence of numerical models. All simulations presented in this subsection are
integrated in time with the EPI6 scheme. Error norms are computed at day 5.

To illustrate the numerical convergence of the DFR method applied to the
shallow-water equations, the experiments are organized in two ways. First, a p-
convergence test is performed. The results are shown in Figure 2.3a with Ne = 10
and the number of solution points is increased from Ns = 3 to Ns = 8. Then, an
h-convergence test is conducted by varying Ne from 10 to 20, while keeping a fixed
number of solution points Ns = 5. The results are shown in Figure 2.3b. Table
2.1 shows the order of accuracy calculated with respect to the errors with Ne = 10
and Ne = 20. It is observed that the DFR scheme reaches the expected formal
order of accuracy, except at order 4 where there is a small order reduction.

2.5.3 Barotropic instability

A further description of convergence properties is obtained from a barotropic
instability case using various numbers of elements and solution points. For this
test proposed in (Galewsky, Scott, & Polvani, 2004), the initial condition is a zonal
flow imitating a tropospheric jet at mid-latitudes in the northern hemisphere. A
small perturbation of the height field is introduced to induce the development of
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Ns L1 L2 L∞

3 3.501 3.504 3.007
4 3.724 3.705 3.668
5 5.724 5.571 4.964
6 6.030 6.061 6.222

Table 2.1: Computed order of accuracy for the diffusion-free, zonally balanced,
time-dependent flow.

barotropic instability. This test case describes the evolution of a barotropic wave,
where a continuous transfer of energy occurs at different spatial scales at mid-
latitudes. This test is challenging for non-monotonic numerical schemes, such as
those presented in this study.

The relative vorticity

ζ = ε0ij
√
g

∂

∂xi

(
gjku

k
)
, (2.43)

where εαµν is the Levi-Civita symbol, may be compared with the reference solution
presented in (Galewsky, Scott, & Polvani, 2004). Figure 2.4 shows the relative
vorticity for different values of Ns. The time integrator is chosen to match the
order of convergence in space. The number of elements Ne is changed accordingly
in order to keep a constant number of degrees of freedom. Although the grid
spacing is rather coarse, a convergence to the reference solution is observed as the
order increases. The shapes of the solutions at 5th and 6th orders are comparable
to the reference solution.

2.5.4 Numerical conservation properties

Three standard tests suggested in (Williamson et al., 1992) are considered
to assess the conservation properties of the numerical schemes presented in the
previous sections. To monitor the residual temporal evolution of global invariants,
one defines a normalized conservation error as follows:

Ψ̂(t) = I [Ψ; t] − I [Ψ; 0]
I [Ψ; 0] . (2.44)
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Figure 2.4: Relative vorticity field associated with the barotropic instability test
at day 6 on a global grid with 86400 degrees of freedom. Only the Northern
Hemisphere is shown.



35

The function Ψ is replaced by H for mass conservation, by
1
2
[
Hgiju

iuj + gr
(
(H + hB)2 − h2

B

)]
for total energy conservation, and by

(ζ + f)2

2H
for potential enstrophy conservation, where

f = ε0ij
√
g
gjkΓki0 (2.45)

= 2Ω
δ

(sinϕp −X cosϕp sinαp + Y cosϕp cosαp) (2.46)

is the Coriolis parameter.
In the following numerical experiments, four different configurations are con-

sidered. The value of Ns varies from 3 to 6. The time integrator is chosen to match
the order of convergence in space. The number of elements Ne is changed in order
to keep a constant number of degrees of freedom. The parameter α introduced in
(Williamson et al., 1992) is set to zero because the grid rotation mechanism in the
present paper is embedded in the equations of motion.

The following approximation is proposed to compare the different mean reso-
lutions of the cubed-sphere grids with Gauß-Legendre points to mean resolutions
of other types of grids:

∆ = 90◦

NeNs

. (2.47)

For the configurations considered in this subsection, ∆ ≈ 1◦. This resolution is
comparable to the resolution of the models presented in (Qaddouri et al., 2012).

Steady-state geostrophically balanced flow

This test case is a steady-state solution to the shallow-water equations. The
winds are a solid-body rotation, and the height is defined such that an exact
geostrophic balance exists. The solution is expected to maintain this steady-state
balance for at least 5 days.

Figure 2.5 depicts the normalized error of the height field for the steady-state
geostrophically balanced flow after 5 days. As the order increases, the error rapidly
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decreases. All configurations maintain a balance between advection, fluid height
gradient, and Coriolis terms. Contrary to results found in other studies with the
Yin-Yang overset grid (Qaddouri et al., 2012; Li et al., 2008) in which relatively
large numerical errors occur where the zonal flow crosses the boundary between two
panels, cubed-sphere panel boundaries and orientations do not impede convergence
for higher-order configurations. The error associated with orders higher than 4 is
smaller than the errors of the four models in (Qaddouri et al., 2012), including the
reference spectral model.

Figure 2.6 shows the time trace of the normalized error for the height field over
a period of 30 days. The evolution of the normalized conservation error of the mass,
total energy and potential enstrophy is presented in Figure 2.7. Adjustments are
observed during the first few time steps, likely due to imperfections in the initial
conditions, but the conservation errors remain reasonably small for the rest of
the simulations. Further experiments will be required to fully understand the
convergence during the first few time steps. It is worth mentioning that nothing is
done here to ensure that the discrete initial conditions are in geostrophic balance.
An example of a procedure to numerically enforce the geostrophic equilibrium is
proposed in (Weller, Thuburn, & Cotter, 2012). However, the numerical stability
does not seem to be impacted by these initial imperfections since the error stabilizes
quickly and remains low for the rest of the simulations.

Zonal flow over an isolated mountain

In this test case, a flow is perturbed by a topographically induced source term.
The mountain shape is cone-like and not differentiable. In a model based on DFR,
one must therefore approximate the mountain shape with piecewise polynomials,
which may introduce spurious oscillations. In addition, the wind and height fields
would be initially balanced only in the absence of a mountain. This results in a
flow evolution that is difficult to predict numerically.

Orographic Rossby waves are induced from the beginning of the simulation.
These waves then spread over almost the entire sphere, including the southern
hemisphere. The height fields after 15 days are shown in Figure 2.8. These results
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Figure 2.5: Normalized error of the height field for the steady-state geostrophically
balanced flow after 5 days using orders 3, 4, 5 and 6. A global grid with 86400
degrees of freedom is used.
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Figure 2.6: Normalized error of the height field as a function of time for the steady-
state geostrophically balanced flow.
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Figure 2.7: Time traces of the normalized errors of conserved quantities for the
steady-state geostrophically balanced flow.
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are similar to those reported by other authors (for instance (Ullrich, Jablonowski,
& Van Leer, 2010; Qaddouri et al., 2012)). There are no apparent non-physical
features such as oscillations around the mountain, although there are visible dif-
ferences in the shape of the solution of the different configurations. In order to
better distinguish the differences between the simulations, the relative vorticity ζ
is shown in Figure 2.9. These results are comparable to those presented in (Bao,
Nair, & Tufo, 2014). Small oscillations are visible in the relative vorticity field,
especially around the mountain. This could be caused by the approximation of the
mountain slope by piecewise polynomials or could be a sign that aliasing errors are
present in higher-order simulations. The use of filters and other strategies against
aliasing-driven errors will be studied in future works. Chapter 5 of (Hesthaven &
Warburton, 2007) provides useful informations on this topic.

The normalized errors of mass, total energy and potential enstrophy conserva-
tion over 30 days are shown in Figure 2.10. The conservation of mass is accurate
to machine precision and is comparable to results presented in (Nair, Thomas, &
Loft, 2005a). The errors on the conservation of total energy and potential enstro-
phy are larger because the discretization of eqs. (2.1) and (2.2) does not explicitly
enforce their conservation.

It should also be mentioned that some of the errors may come from the fact
that this study focuses on dynamical aspects relevant to atmospheric models. For
instance, the formulation and space-time discretization presented here do not main-
tain a perfect equilibrium for some special cases such as lakes at rest (see for exam-
ple (Noelle et al., 2006)). Also, recall that nothing is done here to ensure that the
discrete initial condition are in geostrophic balance. Thus, the restoring forces seek
to compensate for these imbalances and other errors due to spatial discretization,
leading to oscillations in the conservation error curves. This is particularly visible
for energy and potential enstrophy, which are not conserved fields in the discrete
system.
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Figure 2.8: Height field of the zonal flow over an isolated mountain at day 15 using
orders 3, 4, 5 and 6. A global grid with 86400 degrees of freedom is used.

Rossby-Haurwitz wave

In this test case, the Rossby-Haurwitz wave number 4 is considered. This
wave is an analytical solution to the non-linear barotropic vorticity equation. It
is well known that this test case is susceptible to instabilities due to truncation in
the initial conditions (Thuburn & Li, 2000) and that the numerical solution will
eventually lose its structure. However, the solution is expected to remain stable
over the 14 days required by (Williamson et al., 1992). The wave number 4 is
expected to propagate steadily and retain its structure with only slight wavering
in its shape.

The simulated height fields after 14 days are shown in Figure 2.11. The numer-
ical solutions reproduce the reference solution reported in the literature (Qaddouri
et al., 2012) with good accuracy. In particular, the Rossby-Haurwitz wave remains
stable throughout the duration of the simulation. The history plots of the conser-
vation errors for mass, total energy and potential enstrophy are shown in Figure
2.12. Mass is well conserved as in previous test cases. Conservation errors are
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Figure 2.9: Relative vorticity field of the zonal flow over an isolated mountain at
day 7 using orders 3, 4, 5 and 6. A global grid with 86400 degrees of freedom is
used.
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Figure 2.10: Time traces of the normalized errors of conserved quantities for the
zonal flow over an isolated mountain.
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Figure 2.11: Height field of Rossby-Haurwitz wave at day 14 using orders 3, 4, 5
and 6. A global grid with 86400 degrees of freedom is used.

much more important during the first 5 days of the simulation. Afterwards, these
errors stabilize around a small value.

2.5.5 Large time step

As mentioned above, an important advantage of the exponential time integra-
tors is that they allow large time steps regardless of the CFL condition. So far in
this work, a time step of 1 hour has been used, which is larger than those typi-
cally allowed by an explicit Runge-Kutta method. Figures 2.13 and 2.15 show the
results of the zonal flow over an isolated mountain and the Rossby-Haurwitz wave
with a large time step of 4 hours. For these configurations, the Courant number
varies from 40 to 80. These numerical solutions are similar to those of Figures 2.8
and 2.11. The differences between the results with a time step of 4 hours and 1
hour are shown in Figures 2.14 and 2.16. On the one hand, for the zonal flow over
an isolated mountain, the solution with a time step of 4 hours seems to converge
as the order is increased. On the other hand, in the case of the Rossby-Haurwitz
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Figure 2.12: Time traces of the normalized errors of conserved quantities for the
Rossby-Haurwitz wave.
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Figure 2.13: Height field of the zonal flow over an isolated mountain at day 15
using orders 3, 4, 5 and 6 with a large timestep size of 4 hours. A global grid with
86400 degrees of freedom is used.

wave, significant differences are visible in the solutions of orders 5 and 6, while
the solutions of orders 3 and 4 seem less sensitive to the increase in the time step
size. This could be another indication that aliasing errors are present in high-order
solutions. The success of these simulations can be largely attributed to the high
accuracy with which the linear part of the equations is solved.

2.6 Summary and conclusions

The high-order methods discussed in this paper were applied to the shallow-
water equations on the rotated cubed-sphere grid. Results from various test cases
indicate that the proposed numerical algorithms produce realistic results. In par-
ticular, the convergence of the spatial and temporal patterns is well behaved as
the order of accuracy is increased. Results are comparable to those obtained from
more complicated methods based on the integral form of the equations of motion.
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Figure 2.14: Difference between timestep sizes of 4 hours and 1 hour for the zonal
flow over an isolated mountain at day 15 using orders 3, 4, 5 and 6. A global grid
with 86400 degrees of freedom is used.
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Figure 2.15: Height field of the Rossby-Haurwitz wave at day 14 using orders 3, 4,
5 and 6 with a large timestep size of 4 hours. A global grid with 86400 degrees of
freedom is used.
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Figure 2.16: Difference between timestep sizes of 4 hours and 1 hour for the Rossby-
Haurwitz wave at day 14 using orders 3, 4, 5 and 6. A global grid with 86400
degrees of freedom is used.
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Experiments show that mass is conserved at machine precision. A notable result
is the ability of the schemes to perform accurate simulations with very large time
steps for flows with complex structures.

The EPI integrators presented in this work offer not only high accuracy but new
pathways to further improvements in making exponential integrators more com-
putationally appealing. The authors plan to pursue this line of research in future
works. An important task ahead is the extension of this work to a comprehensive
three-dimensional atmospheric model with the space-time tensorial approach to
describe the Euler equations. Improvements to the performance of the exponential
solver is underway to bring the algorithm closer to the performance obtained with
semi-implicit semi-Lagrangian methods (Robert, 1982).

2.7 Code availability

The code used to generate the results in this work is available under the GNU
Lesser General Public License (LGPL) version 2.1 at
https://doi.org/10.5281/zenodo.5014876 and
https://gitlab.com/stephane.gaudreault/jcp2021_highorder_sw.

The EPIC package implements the exponential integrators and test cases pre-
sented in section 2.5.1. The code and its license are available at
http://faculty.ucmerced.edu/mtokman/#software.

A MATLAB implementation of KIOPS is available under the GNU LGPL
version 2.1 at https://gitlab.com/stephane.gaudreault/kiops.
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Chapter 3
Second-order Rosenbrock-Exponential
(ROSEXP) Methods for Partitioned
Differential Equations

The text of this chapter is a reprint of an article that will be submitted soon
Dallerit, V., Buvoli, T., Tokman, M., & Gaudreault, S. (2022). Second-order
rosenbrock-exponential (ROSEXP) methods for partitioned differential equations.
to be submitted to SIAM Journal on Scientific Computing

3.1 Introduction

Many scientific and engineering problems involve dynamics driven by several
processes of different nature. Often such systems are modeled by differential evolu-
tion equations with a forcing term that is comprised of several additive components.
These additive terms can represent the influence of each of the driving mechanisms.
A well-known example of such system is an advection-diffusion equation where the
evolution is governed by the advective and diffusive forces modeled by two addi-
tive terms with first-order and second-order derivatives respectively. In general, a
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two-term forcing model can be written as an initial-value problem of the form

y′ = f1(y) + f2(y) (3.1a)

y(t0) = y0. (3.1b)

Frequently, the forcing terms fi(y) represent processes occurring over a wide range
of temporal scales. As a result the differential equations modeling such system are
stiff with stiffness arising from either or both of the additive forcing terms. Such
additive forcing structure can be exploited in construction of an efficient temporal
numerical integrator to solve the model equations. This can be accomplished, for
example, through the use of a splitting (MacNamara & Strang, 2016) or a par-
titioned approach (Ascher, Ruuth, & Wetton, 1995; Belytschko, Yen, & Mullen,
1979). Splitting methods have been extensively used in literature to solve such
problems but construction of efficient splitting integrators of order larger than two
tends to be challenging (Blanes & Casas, 2005). Partitioned methods, on the other
hand, can offer easier extension to higher order methods. Some of the best-known
partitioned integrators are implicit-explicit (IMEX) methods (Ascher, Ruuth, &
Spiteri, 1997) which have been used for a wide range of applications (Kennedy &
Carpenter, 2003; Pareschi & Russo, 2005; Keyes et al., 2013; Hundsdorfer, Ver-
wer, & Hundsdorfer, 2003). IMEX techniques treat one component of the forcing
term implicitly and the other explicitly. The idea of a partitioned method has also
been extended to implicit-implicit methods (Sandu & Günther, 2015) and implicit-
exponential (IMEXP) integration (Luan, Chinomona, & Reynolds, 2020; Ascher
et al., 2021; Y. J. Chen et al., 2020). IMEX methods are appropriate on problems
where one of the forcing terms is responsible for stiffness in the system. If the
other term is stiff as well then implicit-implicit or implicit-exponential (IMEXP)
approaches have been used. Fewer options have been introduced for problems with
nonlinear-nonlinear additive forcing structure where both terms are stiff (Ascher
et al., 2021; Y. J. Chen et al., 2020). Here we present a novel way to construct
implicit-exponential-type methods for precisely such systems. In other words, we
develop a new way to construct partitioned time integration schemes that treat
f1 implicitly and f2 exponentially for problems where both of these functions are
nonlinear and their Jacobians J1 = ∂f1

∂y
and J2 = ∂f2

∂y
are stiff. This approach
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is particularly advantageous to use when one of the forcing terms can be treated
implicitly in a very efficient way, e.g. when a fast preconditioner exists for this
portion of the Jacobian. We extend the work in (Luan, Tokman, & Rainwater,
2017) to problems where both f1 and f2 are nonlinear and introduce a new anzatz
for construction of such partitioned implicit-exponential integrators which can po-
tentially be extended to higher order methods. We also describe a convenient way
to visualize and to assess the stability of the methods and choose schemes with fa-
vorable stability properties. The efficiency and accuracy of the new techniques are
demonstrated on a set of test problems in a numerical study which also includes
a thorough comparison of the performance of the new methods with previously
introduced partitioned schemes for such problems.

The article is organized as follows. The first section briefly reviews the ex-
ponential and Rosenbrock methods which serve as a building blocks of our new
techniques. Section 3.3 introduces the novel ansatz for the partitioned implicit-
exponential methods and presents construction of the new second-order schemes
of this type. Linear stability analysis of the new methods is included in section 3.4
where we also show that some of our scheme are A-stable. Finally, in section 3.5
we validate and compare performance of our methods to other techniques using
several numerical test problems.

3.2 Review of basic exponential and Rosenbrock

methods

The new partitioned methods which will be introduced in section 3.3 use both
exponential and Rosenbruck-type integration to advance eq. (3.1a) in time. Thus
here we present a brief overview of these two approaches as the building blocks of
our new schemes.

Consider the following (unpartitioned) system of ordinary differential equations
(ODEs)

dy

dt
= f(y), y(t0) = y0, y ∈ RN , f : RN → RN (3.2)

where y represents some unknown dynamically changing properties of the system
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and f describes all forces driving the system. Suppose we are interested in com-
puting the solution to this system over an interval t ∈ [t0, T ]. Letting h be the
discretization step size and yn = y(tn) denote the approximate solution at tn = hn,
one can expand eq. (3.2) in a Taylor series to obtain:

dy

dt
(t) = f(yn) + J · (y(t) − yn) + r(y(t)), (3.3)

where J = df

dy
(yn) and

r(z) = f(z) − f(yn) − J · (z − yn). (3.4)

Using the integrating factor e−J t on equation eq. (3.3) we can write it in the form

d

dt

(
e−J ty(t)

)
= e−J t(f(yn) − Jyn) + e−J tr(y(t)). (3.5)

Integrating over the time interval [tn, tn + h] and multiplying by eJ(tn+h) leads to
the integral form

y(tn + h) = yn + φ1(hJ)f(yn) +
∫ tn+h

tn
eJ(tn+h−t)r(y(t))dt, (3.6)

where the matrix function φ1 is defined as φ1(A) = (eA − I)A−1 and I is the
identity matrix. This equation, often called the Voltera equation, is the starting
point for construction of different integrators through introducing approximations
to the terms of the right-hand-side to estimate yn+1 ≈ y(tn + h).

For instance, a second-order exponentially fitted Euler method (EPI2) (Minchev
& Wright, 2005) can be constructed by neglecting the nonlinear integral in eq. (3.6),
e.g.:

yn+1 = yn + hφ1(hJ)f(yn), (3.7)

The action of the matrix function φ1 on a vector can be either evaluated exactly
or approximated depending on the properties of the matrix J . For example, this
action can often be calculated exactly if N is small or if J is diagonal. When the
Jacobian is large and sparse, a variety of approximation techniques such as Tay-
lor expansions (Al-Mohy & Higham, 2011), Krylov-based algorithms (Gaudreault,
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Rainwater, & Tokman, 2018) or Leja methods (Caliari, Vianello, & Bergamaschi,
2004) can be used.

A one-stage second-order Rosenbrock scheme (Rosenbrock, 1963), denoted here
ROS2, could be derived by analogously neglecting the integral in eq. (3.6) but also
replacing the φ1 function by its Padé approximant of order [0/1] :

yn+1 = yn + h

(
I − h

2J
)−1

f(yn) (3.8)

It should be mentioned that the ROS2 scheme is very close in its formulation
(differing only by a factor 1

2 in front of the Jacobian) to the linearized Euler method

yn+1 = yn + h (I − hJ)−1 f(yn) (3.9)

However, the linearized Euler method is only first-order.
Both EPI2 and ROS2 require evaluation of matrix functions of the full (un-

partitioned) Jacobian J and share similar properties in terms of linear stability.
The choice between the two therefore depends on the nature of the problem to
be solved. For example, when an efficient solver for a linear system of equations
is available (e.g. a direct solver or a preconditioned iterative method) then the
ROS2 scheme may be a judicious choice. Otherwise, exponential approximation of
φ1(hJ)fn might be more efficient when used with a fast algorithm such as KIOPS
method (Gaudreault, Rainwater, & Tokman, 2018). The case where an efficient
linear solver is only available for a portion of the Jacobian will be discussed in the
next section.

3.3 New nonlinear-nonlinear partitioned Rosenbrock-

Exponential (ROSEXP) methods

3.3.1 General framework

Below we introduce a framework for developing efficient numerical schemes for
solving nonlinear-nonlinear partitioned problems of the form:

y′ = f(y) = f1(y) + f2(y), y(t0) = y0, (3.10)
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where f1 and f2 are both stiff. To develop such schemes we use the idea of a
generalized EPI methods introduced in (Tokman, 2011). Specifically, in (Tokman,
2011) it was proposed to construct approximation to the solution of eq. (3.10) in
the form

yn+1 = yn +
∑
i

ψi(hJ)f(zi) (3.11)

where ψi(hJ) are some functions of a matrix J which in some way approximates
the Jacobian or a portion of the Jacobian and zi’s are vectors approximating the
solution on some nodes. The functions ψi are chosen to construct integrators of
a particular type. For example, these functions can be exponential or rational
depending on whether an exponential, an implicit or a hybrid method is being
built.

We extend this idea to the case of a partitioned right-hand side and allow these
functions to be a product of exponential or rational functions, each applied to
either the Jacobian of f1 or f2. For low order methods, this idea can be expressed
using the following ansatz:

yn+1 = yn +Q1,1(hJ1)Q2,1(hJ2)hf1(yn) +Q1,2(hJ1)Q2,2(hJ2)hf2(yn) (3.12)

where: Qi,j are analytic functions (rational or exponential-like functions), J1 and
J2 are respectively the Jacobians of f1 and f2 evaluated at yn. Note that the
order of the functions Q1,i and Q2,i in the above ansatz can be changed to derive
different schemes. Since matrices J1 and J2 do not necessarily commute we can
also consider the following flipped ansatz that reverses the order of application of
the functions:

yn+1 = yn +Q2,1(hJ2)Q1,1(hJ1)hf1(yn) +Q2,2(hJ2)Q1,2(hJ1)hf2(yn) (3.13)

Because the functions Qi,j are only applied to either J1 or J2, availability of efficient
solvers that estimate Qi,j’s applied to each of these matrices separately for some
problems can result in significant computational savings compared to a method
which involves only the full Jacobian J = J1 + J2. This ansatz is very general and
allows the construction of many methods. In the following section, we present the
derivation of several efficient second order schemes.
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3.3.2 Construction of second-order schemes

In this section we derive the order conditions necessary for a scheme based on
the ansatz eq. (3.12) to have second order of convergence. To do so, we assume that
the numerical solution at time tn is exact (y(tn) = yn) and match the numerical
solution at the next time step yn+1 to y(tn+1), the exact solution at time tn+1 up
to second order. This will add some restrictions on the function Qi,j that will be
used to derive second order schemes.

First, we assume that the functions Qi,j are analytic, so that we have the
following Taylor series representation

Qi,j(hJ) = αi,j + βi,jhJ +O(h2)

Without loss of generality, we can assume that αi,j = 1. If it is not the case the
function can be rescaled. Moreover, the product of the scaling coefficient must be
equal to 1 for consistency. We use these expansion of Qi,j to obtain the following
form of the numerical solution

yn+1 = yn +Q1,1 (hJ1)Q2,1 (hJ2)hf1 (yn) +Q2,1 (hJ1)Q2,2 (hJ2)hf2 (yn)

= yn + (1 + β1,1hJ1) (1 + β2,1hJ2)hf1(yn)

+ (1 + β1,2hJ1) (1 + β2,2hJ2)hf2(yn) +O
(
h3
)

= yn + h (f1 (yn) + f2(yn))

+ h2 [(β1,1J1 + β2,1J2) f1(yn) + (β1,2J1 + β2,2J2) f2(yn)] +O
(
h3
)

On the other side, the exact solution at time tn+1 can be expanded as follows,

y(tn+1) = y(tn) + h(f1(yn) + f2(yn)) + h2

2 (J1 + J2)(f1(yn) + f2(yn)) +O
(
h3
)

After matching the terms up two second order, we have the following conditions
on the Qi,j functions:

β1,1 = β2,1 = β1,2 = β2,2 = 1/2

Table 3.1 presents several schemes that satisfy these conditions. These methods
were obtained by choosing the Qi,j functions to be exponential or rational functions
similar to those found in formulas for the EPI2 and ROS2 schemes. For this reason,
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if we consider the extreme case partitioning f1 = 0, f2 = f then all the schemes
from table 3.1 reduce to the EPI2 method. Likewise, if f1 = f, f2 = 0 then all the
schemes simplify to the ROS2 scheme.

Coefficients Scheme

RosExp2 – ansatz eq. (3.12)

Q1,1(z) = Q1,2(z) =
(
I − z

2

)−1
yn+1 = yn +

(
I − h

2 J1
)−1

φ1(hJ2)hf(yn)

Q2,1(z) = Q2,2(z) = φ1(z) ExpRos2 – ansatz eq. (3.13)

yn+1 = yn + φ1(hJ2)
(
I − h

2 J1
)−1

hf(yn)

PartRosExp2 – ansatz eq. (3.12)

Q1,1(z) = Q1,2(z) =
(
I − z

2

)−1
yn+1 = yn +

(
I − h

2 J1
)−1

[
1
2

(
ehJ2 + I

)
hf1(yn) + φ1(hJ2)hf2(yn)

]
Q2,1(z) = 1

2 (ez + I) PartExpRos2 – ansatz eq. (3.13)

Q2,2(z) = φ1(z) yn+1 = yn + 1
2

(
ehJ2 + I

) (
I − h

2 J1
)−1

hf1(yn) + φ1(hJ2)
(
I − h

2 J1
)−1

hf2(yn)

Table 3.1: Second-order Rosenbrock-Exponential schemes

As mentioned above, implicit-exponential (IMEXP) schemes for linear-nonlinear
partitioned problems were were introduced in (Luan, Tokman, & Rainwater, 2017).
In particular, the scheme HImExp2N (equation (4.2) in (Luan, Tokman, & Rain-
water, 2017)) is derived for problems of the type y′ = Ly + N(y) where L is a
linear and N is the nonlinear operators. Interpreting this scheme in the context
of our anzatz and the derived order conditions, we can easily see that the method
HImExp2N also satisfies the order conditions (3.14a). Thus, HImExp2N can also
be used for the nonlinear-nonlinear partitioned problems and is in fact, a second
order scheme for problems of the form eq. (3.1a). Using the notations from this
article, HImExp2N can be written as:
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Y1 = yn + h

2

(
I − h

2J1

)−1

f(yn) (3.14a)

yn+1 = yn + h

(
I − h

2J1

)−1

f(yn) + 2hφ2(hJ2)(f2(Y1) − f2(yn)) (3.14b)

Other ideas of partitioned nonlinear-nonlinear schemes were also explored in
(Y. J. Chen et al., 2020; Ascher et al., 2021), but both of the methods derived in
these publications are limited to first order of accuracy. We will include the SIERE
and SBDF2ERE schemes derived in these papers in our comparisons:

• SIERE (Y. J. Chen et al., 2020):

yn+1 = yn + h (I − hJ1)−1 (f1(yn) + φ1(hJ2)f2(yn))

• SBDF2ERE (Ascher et al., 2021):

yn+1 = yn + 1
3

(
I − 2h

3 J1

)−1

(yn − yn−1 + 2hf1(yn) + 2hφ1(hJ2)f2(yn))

Note that all the schemes are written so that the f1 partition is treated using
the rational function, while the f2 partition is treated exponentially.

3.4 Linear stability

As mentioned in the previous section, our work focuses on nonlinear-nonlinear
partitioning where both f1 and f2 are stiff. In this context it is important to
have good stability properties. In order to study the linear stability of partitioned
integrators, we consider the following problem:

y′ = λ1y + λ2y where λ1, λ2 ∈ C. (3.15)

Any one-step method applied to eq. (3.15) reduces to the recurrence yn+1 = R(z1, z2)yn
where z1 = hλ1, z2 = hλ2 and R(z1, z2) is the stability function of the scheme.
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RosExp2, ExpRos2, HImExp2N PartRosExp2, PartExpRos2 SIERE

R(z1, z2) 1 + 2φ1(z2)
2−z1

(z1 + z2) 2+z1
2−z1

ez2 ez2
1−z1

Table 3.2: Stability functions for one-step methods.

The scheme is then stable if |R(z1, z2)| ≤ 1. The stability functions for all one-step
methods considered in this work are listed in table 3.2.

Because the SBDF2ERE scheme is a multi-step method, we determine stability
differently. After applying the method to the linear problem eq. (3.15) we obtain
the recurrence

yn+1 +R1(z1, z2)yn +R0(z1, z2)yn−1 = 0

where R1(z1, z2) = − 2
3−2z1

(1 + ez2) and R0(z1, z2) = 1
3−2z2

. The method will be
stable when w1 and w2, the roots of the polynomial w2 +R1(z1, z2)w +R0(z1, z2),
satisfy |wi| ≤ 1.

Because both z1 and z2 are complex-valued, the stability regions for both one-
step and multistep methods are challenging to visualize. To simplify our presen-
tation of stability, we will use A(α)-stability. For a stability function R(z) of a
single complex variable a method is said to be A(α)-stable if it includes a sector
of an angle α in its stability region. α is defined as:

α = max{α : ∀z (z ∈ C− ∧ | arg(z) − π| ≤ α) ⇒ |R(z)| ≤ 1}. (3.16)

For non-partitioned schemes α is the maximum value of the angle such that the
method is stable for all complex z values in the sector delimited by the lines with
an angle −α and +α with respect to the negative real axis. This value ranges
from 0◦ if the method is only stable on the negative real axis, to 90◦ for a method
that is stable in the entire left half-plane. When the α-stability of a scheme is
equal to 90◦, we say that the method is A-stable.

By fixing either z1 or z2, we can reduce the stability function of a partitioned
scheme to a function of a single complex variable. We can then compute the stabil-
ity angle α in the remaining free variable. This can be expressed mathematically
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as

fixing z1: α(z1) = max{α : ∀z2 (z2 ∈ C− ∧ | arg(z2) − π| ≤ α) ⇒ |R(z1, z2)| ≤ 1},

(3.17a)

fixing z2: α(z2) = max{α : ∀z1 (z1 ∈ C− ∧ | arg(z1) − π| ≤ α) ⇒ |R(z1, z2)| ≤ 1},

(3.17b)

Fixing z1 or z2 over a grid of values and using color to represent the stability
angle makes it possible to easily visualize the stability of each method. Figure 3.1
shows the α-stability for the schemes presented in the previous section. Note
that ordinarily due to the high dimensionality of the stability function R(z1, z2)
it is difficult to assess the properties of the stability regions. However, using the
approach described above visualization of the stability regions becomes intuitive
and the geometry of the stability region can be easily discerned from the plots of
type fig. 3.1. To our knowledge this approach to visualizing linear stability of a
method has not been used before.

In fig. 3.1 (a), we see that α = 90◦ for all values of z1 and z2. This implies
that the schemes PartRosExp2, PartExpRos2, and SIERE are all A-stable. This
can be formally proven by observing that the stability function for each of these
methods is a product of two A-stable functions in z1 and z2, respectively (e.g.
the stability function of PartRosExp2 and PartExpRos2 are the products of the
functions R1(z) = ez and R2(z) = 2+z

2−z ). Since both of these functions are A-stable,
the product must also be A-stable.

Figure 3.1 (b), shows that the stability of the schemes RosExp2, ExpRos2 and
HImExp2N is more restricted. Specifically, if z2 is close to the imaginary axis,
then the stability region for z1 is either bounded or limited. Conversely, if the
real part of z2 is sufficiently negative, then the stability is retained. This indicates
that these schemes should be used for problems where f2 is sufficiently diffusive.
Finally, the stability of the scheme SBDF2ERE, presented in fig. 3.1 (c), is good
overall with some limitations close to the origin.
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(a) Stability for the schemes PartRosExp2, PartExpRos2, and SIERE

(b) Stability for the schemes RosExp2, ExpRos2 and HImExp2N

(c) Stability for the scheme SBDF2ERE

Figure 3.1: α-stability angles for the partitioned schemes when z1 is fixed (left-
column) or z2 is fixed (right-column). The x and y axis of the plots in the left and
right columns respectively correspond to the real and imaginary parts of z1 and z2.
The color represents the stability angle α defined in eqs. (3.17a) and (3.17b). The
white regions correspond to parameter values where the stability region is bounded
and therefore not α-stable even for α = 0.
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3.5 Numerical experiments

In this section, we will verify the accuracy and test the performance of the
newly derived schemes using several numerical examples.

The stability properties of the new schemes for linear equations with constant
coefficients discussed in the previous section provide necessary, but not sufficient
conditions for the stability of variable coefficients and nonlinear problems. In this
section we summarize numerical experiments which confirm that the conclusions of
our analysis for the simple linear problem can also be applied to more complicated
problems. We choose three test problems commonly used to validate and compare
the different schemes for stiff partitioned systems.

3.5.1 Advection-diffusion PDE (AdvDiff)

We consider the following advection-diffusion PDE:

∂u

∂t
+ ∂

∂x

(
α0u+ α1u

2
)

= ∂

∂x

[
(β0 + β1u)∂u

∂x

]
, x ∈ [0, 1], t ∈ [0, 0.1], (3.18)

We use a Gaussian function as the initial condition u(x, 0) = e−5000(x−0.2)2 and
homogeneous Dirichlet boundary conditions u(0, t) = u(1, t) = 0. We also consider
two sets of parameters: the first correspond to a linear problem with α0 = 5,
α1 = 0, β0 = 10−2, and β1 = 0, and the second representing a nonlinear problem
with α0 = 5, α1 = 5, β0 = 5 × 10−4, and β1 = 10−1. Figure 3.2 shows the solution
u of this PDE at the initial and final time. Equation eq. (3.18) is discretized in
space using standard second-order centered finite differences with 1000 grid points.
This discretization leads to a system of N ordinary differential equations that can
be written as:

u′ = fadv(u) + fdiff(u)

where fadv(u) correspond to the discretized advection term ∂
∂x

(α0u+ α1u
2) and

fdiff(u) correspond to the discretized diffusion term ∂
∂x

[
(β0 + β1u)∂u

∂x

]
. In the next

section, we will explore the cases where f1 = fadv, f2 = fdiff (rational advection /
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Figure 3.2: Solution at initial and final time for the PDE eq. (3.18) with both sets
of parameters

exponential diffusion) as well as f1 = fdiff, f2 = fadv (rational diffusion / exponen-
tial advection).

3.5.2 Schnakenberg equation with non-linear diffusion (Schnaken-

berg_NL)

The following equations describe two reacting and diffusing chemical species (u
and v):

∂u

∂t
= γ(a− u+ u2v) + ∇.(uβ1∇u),

∂v

∂t
= γ(b− u2v) + d ∇.(vβ2∇v), (x, y) ∈ [0, 1]2

where a = 0.1, b = 0.9, d = 10, tend = 10−2 for γ ∈ {1000, 10000}, and tend = 10−3

for γ = 105. The parameter γ is used to control the stiffness of the reaction.
The initial conditions were chosen to be a sum of cosine functions with different
frequencies along both the x and y axes. The boundary conditions are periodic
in both directions. The diffusion terms are discretized using the standard second-
order finite differences on a uniform grid with Nx = Ny = 128. The reaction terms
are treated exponentially while the diffusion terms are treated using the rational
function.



65

3.5.3 1D Semilinear parabolic problem (Semilinear_para)

Finally, we use the following one-dimensional linear-nonlinear parabolic prob-
lem described in (Hochbruck & Ostermann, 2005):

∂u

∂t
(x, t) − ∂2u

∂x2 (x, t) =
∫ 1

0
u(x, t)dx+ ϕ(x, t) x ∈ [0, 1], t ∈ [0, 1],

with the homogeneous Dirichlet boundary conditions. The source function ϕ is
chosen so that u(x, t) = x(1−x)et is the exact solution. This problem was originally
designed to demonstrate the order reduction that some exponential integrators can
suffer when applied to stiff problems. It is therefore used here to validate that no
such order reduction is exhibited by our schemes. The diffusion term is discretized
using the standard second-order finite differences on a uniform grid with Nx = 400.
The nonlinear terms on the right-hand-side are treated exponentially while the
diffusion term is treated using the rational function.

3.5.4 Numerical results

Numerical examples presented below verify the order of convergence of the
newly derived methods and compare their performance with the existing methods
described above. The implementation of the integrators was done in MATLAB
2020b. For all the schemes, we use the KIOPS method introduced in (Gaudreault,
Rainwater, & Tokman, 2018) to approximate the products of exponential and
φ−functions with vectors. This method allows us to approximate both exponen-
tial functions in the schemes PartExpRos2 and PartRosExp2 at once as a single
computation. The rational functions are approximated using the GMRES method
(Saad & Schultz, 1986) with an incomplete LU factorization preconditioner. Be-
cause the scheme BDF2ERE is a multi-step integrator where the solution at the
current and previous time step must be known, the initial step must be treated
differently. In this work, the initial time step is computed using the 2nd order EPI2
method. The error is defined as the discrete 2−norm between the approximate so-
lution and a reference solution computed using MATLAB’s ode15s integrator with
absolute and relative tolerances set to 10−14.
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In the first set of tests, we verify the order of convergence of all the methods
on the problems presented above. Figure 3.3 shows the convergence plot (error vs
time-step in log-log scale) on the linear and nonlinear advection diffusion PDE,
Schnakenberg PDE and the semilinear parabolic problems. Note that for the
advection diffusion PDE, we used f1 = fadv and f2 = fdiff. We can see that, as
expected, the methods SBDF2ERE and SIERE both converge at first order while
the methods introduced in table 3.1 and the HImExp2N scheme are converging at
second order. We can also see that for the advection diffusion and the Schnakenberg
PDE, the order of the Qi,j function does not influence the accuracy of the solution
(ansatz eq. (3.12) vs eq. (3.13)). However, for the semilinear parabolic problem, the
order does affect the accuracy. For this problem and this partitioning, applying the
function of J2 first leads to better accuracy. This case illustrates that the accuracy
of the method does depend on the problem and the chosen partitioning.
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(a) AdvDiff (linear parameters)
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(b) AdvDiff (nonlinear parameters)
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Figure 3.3: Convergence plots (error vs time step) for the linear and nonlinear
AdvDiff, Schnakenberg_NL and Semilinear_para problems
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Next, we want to validate the stability advantages of the new schemes that
our analysis of section 3.4 predicted. We showed that for the schemes ExpRos2,
RosExp2 and HImExp2N, if z2 is close to the imaginary axis, then stability for
z1 is either bounded or restricted. Figure 3.4 shows the convergence diagram for
the advection-diffusion PDE problem. Figures 3.4a and 3.4b correspond to the
problem with linear parameters while figs. 3.4c and 3.4d correspond to the nonlin-
ear parameters. The plots on the left (figs. 3.4a and 3.4c) are obtained using the
partitioning f1 = fadv, f2 = fdiff and the plots on the right (figs. 3.4b and 3.4d) are
obtained using the partitioning f1 = fdiff, f2 = fadv. The eigenvalues corresponding
to the advection term fadv are expected to be close to the imaginary axis while the
eigenvalues of the diffusion term are expected to be along the negative real axis.
Therefore, based on the stability analysis, we are expecting the schemes ExpRos2,
RosExp2 and HImExp2N to have worse stability for f2 = fadv (right plots). For
both the linear and nonlinear parameters, we see that this indeed the case and
these methods are stable only for a more restrictive range of time step sizes.

We now compare the performance of the methods on the different test prob-
lems. Figure 3.5 shows the precision diagrams (error vs CPU time) for the linear
and nonlinear advection diffusion PDE, Schnakenberg PDE and the semilinear
parabolic problems. We can see that the computation time for all the methods is
similar. Only the PartExpRos2 scheme is slightly more expensive because it re-
quires two linear systems to be solved per iteration. All the other schemes require
the solution of one system of linear equations and one evaluation of exponential
functions. This is achieved through the use of the KIOPS method which allows
evaluation of all the exponential terms at once as a single computation. Because
of the increased order of convergence, the new methods are more efficient.
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with f1 = fdiff, f2 = fadv

Figure 3.4: Stability comparison for the AdvDiff problem with different partition-
ing
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Figure 3.5: Precision diagram (error vs CPU time) for the linear and nonlinear
AdvDiff, Schnakenberg_NL and Semilinear_parabolic problems.



70

3.6 Conclusion

In this paper, we presented a new framework for deriving partitioned integrators
for stiff systems of ODEs with nonlinear-nonlinear additive forcing terms. The
new time integrators constructed using this framework are particularly efficient
for problems where both nonlinear forcing terms are stiff but one of them can
be solved efficiently using an implicit approach, and another can be integrated
exponentially. The new ansatz that allowed us to derive specific second-order
schemes can potentially be extended to construct higher-order methods which we
plan to investigate in our future publications. We have used linear stability analysis
and a novel way to visualize properties of a stability function to demonstrate
that several of the new methods are A-stable and thus offer superior stability
compared to existing schemes for similar problems. Convergence and efficient
performance of the new methods have been demonstrated using several numerical
examples. A thorough comparison of these schemes with integrators proposed
for such problems in previous publications has been performed. We showed that
the novel exponential-Rosenbrock-type methods are both more accurate and more
stable than previously published methods and can be effectively used for a variety
of applications.



Chapter 4
φ-order conditions and stiffness-resilient
exponential time integrators

4.1 Introduction

In the previous chapters, we presented several exponential methods. As men-
tioned in chapter 1, two main approaches currently exist to derive such methods.
The classical order conditions are obtained by comparing the Taylor expansions of
the numerical scheme and exact solution. With these conditions, it is assumed that
the solution and its derivatives are smooth. These assumptions can be invalidated
when methods derived with classical order conditions are applied to stiff problems
and can cause order reduction. To avoid order reduction in an exponential inte-
grator applied to highly stiff problems, it is not enough to derive a scheme using
classical order conditions. In (Hochbruck & Ostermann, 2005), it was shown that
stiffly accurate methods have to be constructed for stiff problems. In this paper,
the order reduction is avoided by deriving methods under the assumption that the
Jacobian matrix can be unbounded, but the solution is still smooth. However, the
solution of both the classical and stiff order conditions is highly complicated. In
fact, there have been no exponential Runge-Kutta methods of order 6 and above
constructed and the stiff order conditions are usually slightly weakened for order
4 and above. As a result, each new method requires a significant amount of work
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and is derived on a case-by-case basis. In this chapter, we introduce the φ-order
conditions based on a φ-series expansion of the exact solution. These conditions
are more restrictive than the classical order conditions. The extra conditions im-
posed on the methods guarantee that the dominant error terms of stiff problems
are canceled. For this reason, these methods are similar to the methods obtained
with stiff order conditions and do not suffer from order reduction. However, we
will show that the new conditions can be solved analytically making the deriva-
tion of new methods much easier. This chapter is organized as follows. First, in
section 4.2, we give some background on classical order conditions and B-series
theory. Then, in section 4.3, we introduce φ-order conditions and justify a general
ansatz for deriving exponential schemes with useful properties. In section 4.4, we
show that using this ansatz, the φ-order conditions can be solved analytically. In
section 4.5, we show some of the properties that are obtained by deriving methods
under this framework. Finally, section 4.6, we introduce new exponential methods
using the φ-order conditions.

4.2 Classical order conditions and B-Series

This section introduces the classical order condition theory used to derive expo-
nential schemes. This section only outlines the main results. For a more complete
presentation of this theory, the reader can refer to (J. C. Butcher, 2021; J. Butcher,
2010; Tokman, 2011; Chartier, Hairer, & Vilmart, 2010).

4.2.1 Motivations

With classical order conditions, the order of convergence of a method is ob-
tained as follows: The exact solution y(tn + h) of eq. (1.1) is comapred to the
numerical scheme yn+1 ≈ y(tn + h) around h = 0. A method is said to have
classical order of convergence p if the local error y(tn + h) − yn+1 is such that
y(tn + h) − yn+1 = O(hp+1).

To compute the local error, we first need to expand the exact solution y(tn+h)
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around h = 0.

y(tn + h) = y(tn) + h
dy

dt
(tn) + h2

2
d2y

dt2
(tn) + h3

3!
d3y

dt3
(tn) +O(h4)

Using the fact that y is the solution of the differential equation dy
dt

= f(y) and the
chain rule, we get:

y(tn + h) = yn + hf(yn)

+ h2

2

N∑
i=1

∂f

∂yi
(yn)fi(yn)

+ h3

3!

N∑
i=1

N∑
j=1

(
∂2f

∂yi∂yj
fifj + ∂f

∂yi

∂fi
∂yj

fj

)∣∣∣∣∣
y=yn

+O(h4)

However, as the order increases, this expansion gets really complicated. The idea
of Butcher’s order condition theory is to associate each elementary differential to
a rooted tree. This idea greatly simplifies the understanding and construction
of higher order methods. For example, the elementary differentials of order 3,∑
i,j

∂2f
∂yi∂yj

fifj and ∑i,j
∂f
∂yi

∂fi

∂yf
fj are respectively associated with the trees

f f

f and

f

f

f

In general, the number of branches leaving from a node determines the order of
the derivative and each branch is a vector that is applied to the derivative. The
mapping between the rooted trees and the corresponding elementary differential is
denoted: F (τ) for τ ∈ T where T is the set of rooted trees. Using this mapping, it
is possible to rewrite the Taylor expansions of the exact solution y(tn +h) and the
numerical solution yn+1 in terms of the rooted trees and their properties. In order
to express the exact solution y(tn +h) and the numerical solution yn+1 in this new
form, we first need to introduce some operations and functions on the rooted trees.

4.2.2 Operations and fonctions on rooted trees

First, we define the B+ product on rooted trees.
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Definition 4.2.1 (B+ product). The tree t = [t1t2...tn] = B+(t1, t2, ..., tn) is the
tree obtained by connecting the root of each of the trees ti to a new vertex. This
vertex is the root of the new tree.

For example: [ ]
= .

If the same tree is present several times, it is possible to use the exponential
notation to indicate the number of repetitions. For example: [τ 3] = [τ τ τ ].

A special case of this product is the rooting of a tree. If the B+ product is
applied with a single tree, the operation corresponds to adding a new node as the
root of the tree. When this operation is repeated k time we denote it by t = [τ ]k.
For example:

[ ]
2

= .

Based on this notation, we have the following theorem.

Theorem 4.2.1. Let J = f ′(yn) be the Jacobian matrix of the right hand side f
of eq. (1.1) at yn. We have:

JkF (τ)(yn) = F ([τ ]k)(yn)

Proof. Direct consequence of the definition of the mapping F (t).

This theorem plays an important role in the construction of exponential meth-
ods as they use functions of the Jacobian matrix applied to vectors. After expand-
ing these functions as a Taylor series, it allows the computation of the B-series of
the numerical scheme.

Next, we present some functions on the rooted trees. These functions will be
used later to compute the coefficients of some B-series.

For a tree t = [t1m1t2
m2 ...tk

mk ], we can define the following functions:

• Order:

|t| =


1 if t = •

1 +∑
imi|ti| otherwise

(4.1)
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• Density:

γ(t) =


1 if t = •

|t|∏k
i=1 γ(ti)mi otherwise

(4.2)

• Symmetry:

σ(t) =


1 if t = •∏k
i=1 mi! σ(ti)mi otherwise

(4.3)

4.2.3 B-series

We can now rewrite Taylor expansions using the mappings from rooted trees to
elementary differentials. For this, we first denote by T the set of rooted trees and
T# the set of rooted trees including the empty tree ∅ such that T# = T ∪ {∅}.
We further define B∗ as the set of all mappings from T# to R, B0 the subset of B∗

such that if a ∈ B0 then a(∅) = 0 and B the subset of B∗ such that if a ∈ B then
a(∅) = 1. The new expansion is called a B-series and is defined as follows:

Definition 4.2.2 (B-series). The B-series B(a, yn) where a ∈ B∗ and yn ∈ Rn is
defined as:

B(a, yn) = a(∅)yn +
∑
t∈T

a(t) h
|t|

σ(t)F (t)(yn) (4.4)

Many expressions can be expressed as a B-series. For example, the right hand
side of eq. (1.1) at yn can be expressed as: hf(yn) = B(d, yn) where

d(t) =


1 if t = •

0 otherwise
(4.5)

The following theorem presents another important example:

Theorem 4.2.2. Let y(tn + ch) = B(a, yn). Then,

a(t) =


1 if t = ∅
c|t|

γ(t) if t ∈ T
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Proof. replace h = ch in exact solution.

Theorem 4.2.3. The exact solution of eq. (1.1) at t = tn + θh can be expressed
as a B-series such that y(tn + θh) = B(eθ, yn) where:

eθ(∅) = 1,

eθ(τ) = θ|τ |

γ(τ) , τ ∈ T

Proof. See (J. C. Butcher, 2021, Section 3.4, p. 115)

Several operations can also be applied to manipulate B-series. From the above
definition, it is easy show that B-series are linear in the coefficients meaning that:
αB(a, yn)+βB(b, yn) = B(c, yn) with c(t) = αa(t)+βb(t) ∀t ∈ T#. A less obvious
property is the composition of B-series. If, in a B-series, yn is replaced by another
B-series the result is again a B-series: B(b, B(a, yn)) = B(a◦b, yn). The coefficients
a◦b can be expressed in terms of the coefficients a and b as well as some properties
of the trees. The general formula for these coefficients is complex and we refer the
reader to (J. C. Butcher, 2021, Section 3.9) for more details. An interesting case
of the composition rule is when B(b, yn) = hf(yn).

Theorem 4.2.4. Let Z = B(z, yn) such that z(∅) = 1. Then hf(Z) can be
expressed as a B-series such that hf(Z) = B(af , yn) where

af (t) =


0 if t = ∅

1 if t = •∏m
i=1 z(ti) if t = [t1 t2 . . . tm]

Proof. See (J. C. Butcher, 2021, Theorem 3.4E)

Using the notations introduced in this section, the classical order conditions
can be expressed as follows:

Theorem 4.2.5. Consider the numerical method expressed as a B-series yn+1 =
B(ϕ, yn). This method has classical order p if and only if

ϕ(t) = 1
γ(t) for all trees such that |t| ≤ p
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4.3 φ-order conditions

In this section, we introduce a new set of order conditions we call φ-order
conditions. These order conditions will be motivated by a series expansion of the
exact solution based on the φk functions.

First, we introduce the set TD of all the trees with exactly one branch leaving
from the root and TS = T \ TD the set containing the tree with a single node
(•) and all trees with at least 2 branches leaving from the root. The set T can
therefore be partitioned in 2 disjoint subsets: T = TD ∪ TS.

We can note that any tree t ∈ TD as a unique representation as t = [τ ]k with

τ ∈ TS. For example, the tree t = ∈ TD can be expressed as t =
[ ]

2
and

∈ TS.
Instead of expending the exact solution y(tn +h) using a Taylor series, we note

that this expression can be written in terms of the φ functions.

Theorem 4.3.1. Let y be the solution of the initial value problem eq. (1.1) with
initial condition y(tn) = yn. The solution at time tn + h can be expressed as:

y(tn + h) = yn +
∞∑
k=1

φk(hJ)Λk (4.6)

where Λk = B(λk, yn) and

λk(t) =


k!
γ(t) if t ∈ TS and |t| = k

0 otherwise
(4.7)

Proof. Using the definitions of the B-series and λk, we have:

φk(hJ)Λk = φk(hJ)
(
λk(∅)yn +

∑
t∈T

λk(t)
h|t|

σ(t)F (t)(yn)
)

= φk(hJ)

∑
t∈TS
|t|=k

k!
γ(t)

hk

σ(t)F (t)(yn)


We can now apply the definition of the φk functions (eq. (A.4a)).
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φk(hJ)Λk =
( ∞∑
i=0

(hJ)i
(k + i)!

)∑
t∈TS
|t|=k

k!
γ(t)

hk

σ(t)F (t)(yn)


=

∞∑
i=0

∑
t∈TS
|t|=k

k!
(k + i)!

hk

γ(t)σ(t)(hJ)iF (t)(yn)

We also know from theorem 4.2.1 that J iF (t)(yn) = F ([t]i)(yn). Therefore:

φk(hJ)Λk =
∑
t∈TS
|t|=k

[
hk

γ(t)σ(t)F (t)(yn) +
∞∑
i=1

k!
(k + i)!

hk+i

γ(t)σ(t)F ([t]i)(yn)
]

Based on the properties of trees defined in section 4.2.2, we have that |[t]i| =
|t| + i, γ([t]i) = (|t|+i)!

|t|! γ(t) and σ([t]i) = σ(t). The expression simplifies to:

φk(hJ)Λk =
∑
t∈TS
|t|=k

[
h|t|

γ(t)σ(t)F (t)(yn) +
∞∑
i=1

h|[t]i|

γ([t]i)σ([t]i)
F ([t]i)(yn)

]

Because every tree t ∈ TD can be uniquely written as t = [τ ]i with τ ∈ TS, the
set TD can be defined as TD = { [t]k, t ∈ TS and k ≥ 1}. Summing over all k, we
get:

∞∑
k=1

φk(hJ)Λk =
∑
t∈TS

h|t|

γ(t)σ(t)F (t)(yn) +
∑
t∈TD

h|t|

γ(t)σ(t)F (t)(yn)

=
∑
t∈T

h|t|

γ(t)σ(t)F (t)(yn)

Finally, we have:

yn +
∞∑
k=1

φk(hJ)Λk = yn +
∑
t∈T

h|t|

γ(t)σ(t)F (t)(yn)

= B(e, yn)

where the B-series B(e, yn) is equal to the exact solution as defined in theorem 4.2.3
with θ = 1.

Note that in the expansion of the exact solution in theorem 4.3.1, the vectors
Λ1 and Λ2 can be expressed simply. For k = 1, the only tree of order 1 in TS is
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the tree t = • and F (•)(yn) = f(yn) so Λ1 = hf(yn). Moreover, for k = 2, there is
a single tree of order 2 ( ) but this tree is TD so Λ2 = 0. The exact solution can
then be expressed as

y(tn + h) = yn + φ1(hJ)hf(yn) +
∞∑
k=3

φk(hJ)Λk (4.8)

where Λk is defined as in theorem 4.3.1.
When using the classical order conditions, the exact solution is expanded as a

single B-series and the structure in eq. (4.8) is lost. Here, we want to keep this
structure and we will approximate each Λk B-series individually up to some order
p. However, we can note that for k > p,Λk = O(hp+1) and it can be approximated
with the zero vector. Therefore, we consider the following truncated series when
we seek a numerical method to approximate the exact solution:

yn+1 = yn + φ1(hJ)hf(yn) +
p∑

k=3
φk(hJ)vk (4.9)

where each of the vectors vk can be expressed as a B-series vk = B(νk, yn) and are
approximation of the vector Λk. We now define the φ-order condition for methods
following this ansatz.

Definition 4.3.1 (φ-order). Consider a method of the form

yn+1 = yn + φ1(hJ)hf(yn) +
q∑

k=3
φk(hJ)vk

where vk = B(νk, yn) for 3 ≤ k ≤ q and vk = 0 for k > q.
This method is said to have φ-order p if for all k ≥ 3

νk(∅) = λk(∅)

νk(t) = λk(t) for all t ∈ T such that |t| ≤ p

Note that a method cannot have φ-order p if q < p because we would have
vp = 0 and some conditions could not be satisfied. In practice, we will usually
consider the case q = p as the vectors vk = 0 for k > p automatically meet the
conditions.

Looking at the definition of λk from eq. (4.7), we notice that for all k ≥ 3,
λk(∅) = 0, λk(•) = 0 and λk(t) = 0 for all t ∈ TD. Therefore, if we want our
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method to have φ-order p, we need to make sure that at least νk(∅) = νk(•) =
νk(t) = 0 for all t ∈ TD and 3 ≤ k ≤ q. The following theorem provides an easy
way to enforce these constraints.

Theorem 4.3.2. Let r(z) = f(z)−f(yn)−J(z−yn) where f is the right hand side
of eq. (1.1) and J = f ′(yn) is the Jacobian matrix of f at yn. For any Z = B(z, yn)
such that z(∅) = 1, hr(Z) can be expressed as a B-series B(ar, yn) with coefficients

ar(t) =


∏m
i=1 az(ti) if t ∈ TS \ {•} and t = [t1, . . . , tm]

0 otherwise
(4.10)

Proof. Let Z = B(z, yn) such that z(∅) = 1. From theorem 4.2.4, we know that
hf(z) = B(af , yn) with:

af (t) =


0 if t = ∅

1 if t = •∏m
i=1 z(ti) if t = [t1, . . . , tm]

Thus hf(z) − hf(yn) = B(adf , yn) such that:

adf (t) =


0 if t ∈ {∅, •}∏m
i=1 az(ti) if t = [t1, . . . , tm]

Moreover, we have w = z − yn = B(aw, yn) such that aw(∅) = 0 and aw(t) =
az(t) for all t ∈ T , then using theorem 4.2.1 we have hJw = B(aJ , yn) with:

aJ(t) =


az(τ) if t = [τ ] ∈ TD

0 otherwise

We further note that, adf ([τ ]) = az(τ) for t ∈ T .
Finally, hr(Z) can be expressed as the difference hr(Z) = B(ar, yn) = B(adf , yn)−

B(aJ , yn), and we get:

ar(t) =


0 if t ∈ {∅, •}

0 if t ∈ TD∏m
i=1 az(ti) otherwise with t = [t1, . . . , tm]
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From this theorem, we can conclude that if vk is computed as vk = hr(Z)
with Z = B(z, yn), z ∈ B or if vk is a linear combination of such vectors then the
conditions νk(∅) = 0, νk(•) = 0 and νk(t) = 0 for all t ∈ TD and 3 ≤ k ≤ q are
automatically satisfied. This motivates the choice of the vectors vk in the ansatz
eq. (4.9) to have the following form:

vk =
m∑
i=1

αk,i hr(Zi)

with Zi = B(zi, yn), zi ∈ B. The φ-order conditions are then reduced to the
following:

Theorem 4.3.3. Consider a numerical method following the ansatz eq. (4.9):

yn+1 = yn + φ1(hJ)hf(yn) +
q∑

k=3
φk(hJ)vk

with vk = B(νk, yn) = ∑m
i=1 αk,i hr(Zi) and Zi = B(zi, yn), zi ∈ B. This method

satisfies the φ-order conditions of order p if and only if, for all 3 ≤ k ≤ q:

νk(t) =


k!
γ(t) if k = |t|

0 if k ̸= |t|
for all t ∈ TS such that |t| ≤ p (4.11)

For example, for a method to have φ-order 4, we have the following six condi-
tions:

ν3( ) = 2 ν3( ) = 0 ν3( ) = 0

ν4( ) = 0 ν4( ) = 6 ν4( ) = 3

As mentioned above, we want to compute the vectors vk using linear com-
binations of the function r evaluated at different vectors Zi. To minimize the
computational cost of the final method, we want to minimize the number of such
evaluations. However, because for each tree t ∈ TS, νk(t) ̸= 0 only for k = |t|,
the mappings νk must be linearly independent. Based on this conclusion, the
corresponding vectors vk = B(νk, yn) must also be linearly independent. We will
therefore compute the vectors vk using m = p−2 evaluations of the function r. We
denote these evaluations Wi = hr(Zi) and the corresponding B-series mappings wi
and zi such that Wi = B(wi, yn) and Zi = B(zi, yn).
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Using these notations, we expressed the vectors vk as follows:

vk =
m∑
i=1

αk,iWi (4.12)

or if we want to express it in terms of the corresponding B-series mappings:

νk(t) =
m∑
i=1

αk,iwi(t) (4.13)

The ansatz eq. (4.9) then becomes:

yn+1 = yn + φ1(hJ)hf(yn) +
q∑

k=3
φk(hJ)

m∑
i=1

αk,i hr(Zi) (4.14)

4.4 Solution of φ-order conditions

In the previous section, we introduced the φ-order conditions and motivated
the ansatz in eq. (4.14) for exponential methods. However, in order to derive a
specific method, we need to solve the system of φ-order conditions. The unknowns
of this system are the scalar αk,i and the vectors Zi. The goal of this section is to
prove the following theorem:

Theorem 4.4.1. Consider a method of the form

yn+1 = yn + φ1(hJ)hf(yn) +
q∑

k=3
φk(hJ)

(
m∑
i=1

αk,ihr(Zi)
)

approximating the solution y of eq. (1.1) and let ci for 1 ≤ i ≤ m be some scalars
such that ci ̸= 0 and ci ̸= cj if i ̸= j.

This method has φ-order p if and only if

αk,i = (−1)m−k(k − 1)! ep−k({c1, . . . , cm} \ {ci})

ci2
m∏
l=1
l ̸=i

(ci − cl)
(4.15)

and the vectors Zi are approximations of order p − 2 (in the classical sense) of
y(tn + cih).
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Proof. First, we note that eqs. (4.11) and (4.13) can be combined to form the
system of φ-order conditions:

m∑
i=1

αk,iwi(t) =


k!
γ(t) if |t| = k

0 if |t| ≠ k
for all t ∈ TS such that |t| ≤ p (4.16)

Because we want to apply the function r to the vectors Zi, we need zi ∈ B
and therefore zi(∅) = 1. Then we define ci = zi(•) and the tree ψj = [τ j] with
τ = •. For example ψ3 = . Moreover, applying the definitions of section 4.2.2,
we have |ψj| = j + 1 and γ(ψj) = |ψj| = j + 1. Finally, using theorem 4.2.4, we
have wi(ψj) = zi(•)j = ci

j.
Applying these expressions to our running example, we get the following con-

ditions:

α3,1c
2
1 + α3,2c

2
2 = 2 α4,1c

2
1 + α4,2c

2
2 = 0

α3,1c
3
1 + α3,2c

3
2 = 0 α4,1c

3
1 + α4,2c

3
2 = 6

α3,1w1( ) + α3,2w2( ) = 0 α4,1w1( ) + α4,2w2( ) = 3

With this example, it is easy to show that this system of equations simplifies
to: 

α3,1 = 2c2

c2
1(c2 − c1)

α3,2 = 2c1

c2
2(c1 − c2)

α4,1 = − 6
c2

1(c2 − c1)

α4,2 = − 6
c2

2(c1 − c2)

w1( ) = c1

2

w2( ) = c2

2
However, as we increase the order that we want to achieve, the number and

complexity of these equations are increasing rapidly. We will now present a sys-
tematic way for solving these order conditions for an arbitrary order p.
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First, we want to express the coefficient αk,i in terms of ci. For this, we consider
the order conditions corresponding to the trees ψj+1 introduced above for j =
{1, . . . ,m} (corresponding to trees of order 3 to p).

Looking at the right-hand side of equation (4.16) with t = ψj+1, we have for
1 ≤ i ≤ m and 1 ≤ j ≤ m:

νi+2(ψj+1) =


(i+2)!
γ(ψj+1) if |ψj+1| = i+ 2

0 if |ψj+1| ≠ i+ 2

=


(i+ 1)! if i = j

0 if i ̸= j

For all the values of i and j, we can collect the coefficient in a matrix B ∈ Rm×m

with components Bi,j = νi+2(ψj+1) = (i+ 1)! δi,j.
Now looking at the left-hand side of equation (4.16) with t = ψj, we have for

1 ≤ i ≤ m and 1 ≤ j ≤ m:

νi+2(ψj+1) =
m∑
n=1

αi+2,n wn(ψj+1)

=
m∑
n=1

αi+2,n cn
j+1 =

m∑
n=1

αi+2,n cn
2 cn

j−1

For all the values of i and j, this can be express as the product of three matrices
A, C2 and V of size m×m with Ai,j = αi+2,j, Ci,j = ci δi,j and Vi,j = ci

j−1.
After combining both sides of the equation (4.16), we get the matrix equation

AC2V = B or written more explicitly:


α3,1 . . . α3,m

. . .
αp,1 . . . αp,m



c1

2

. . .
c2
m





1 c1 . . . c1
m−1

1 c2 . . . c2
m−1

...
1 cm . . . cm

m−1

 =


2!

. . .
(m+ 1)!



We can note that the matrix V is a Vandermonde matrix and therefore analyt-
ical formulas are available for its determinant and inverse. We want to solve the
equation AC2V = B for the variable A. This equation will have a unique solution
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if and only if det(C2V ) = det(C)2 det(V ) ̸= 0. We have:

det(V ) =
m∏

i,j=1
i>j

(ci − cj) det(C) =
m∏
i=1

ci

Therefore, we will have a unique solution if and only if all the ci are distinct and
non-zero. The solution will then be A = BV −1C−2 with:

(C−1)i,j = 1
ci
δi,j

(V −1)i,j = (−1)m−i em−i({c1, . . . , cm} \ {cj})
m∏
l=1
l ̸=j

(cj − cl)

where ek(S) is the kth elementary symmetric function or the sum of all distinct
products of k elements of the set S.

Finally, we have

αk,i = Ak−2,i

=
m∑

j,l=1
Bk−2,j(V −1)j,l(C−2)l,i

=
m∑

j,l=1
(k − 1)! δk−2.j

(−1)m−j em−j({c1, . . . , cm} \ {cl})∏m
n=1
n̸=l

(cl − cn)
1
cl2

δl,i

= (−1)m−k(k − 1)! ep−k({c1, . . . , cm} \ {ci})

ci2
m∏
l=1
l ̸=i

(ci − cl)

We now want to find the conditions on the vectors Zi. First, by looking at
the equation (4.16), we see that the system will involve the unknown w(t) for all
t ∈ TS such that |t| ≤ p. In turn, considering equation (4.10), we can conclude
that the system will involve the unknown zi(τ) for all τ ∈ T such that |τ | ≤ p− 2.
In fact, the coefficients zi(τ) for trees of order higher than p − 2 can only appear
with coefficient w(t) with |t| ≥ p because it would involve a tree of the form
t = [τ t2 . . . tn] with ∑n

i=2 |ti| ≥ 1 so |t| ≥ p. We already know that zi(∅) = 1 and
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zi(•) = ci. We would like to be able to express the remaining unknown zi(t) for
t ∈ T such that 2 ≤ |t| ≤ p − 2 in terms of the values ci using some of the order
conditions. For this, we define the trees ζ(τ) = [τ •]. For these trees, we have the
following properties: |ζ(τ)| = |τ | + 2, and γ(ζ(τ)) = (|τ | + 2) γ(τ)

Looking at the right-hand side of equation (4.16) with t = ζ(τ), we have for
1 ≤ k ≤ m:

m∑
n=1

αi+2,n wn(ζ(τ)) =


(i+2)!

(|τ |+2) γ(τ) if i+ 2 = |τ | + 2

0 if i+ 2 ̸= |τ | + 2

=


(i+1)!
γ(τ) if i = |τ |

0 if i ̸= |τ |

For all the values of i, we can collect the coefficient in a vector b ∈ Rm with
components bi = (i+1)!

γ(τ) δi,|τ |.
Now looking at the left-hand side of equation (4.16) with t = ζ(τ), we have for

1 ≤ i ≤ m:
m∑
n=1

αi+2,n wn(ζ(τ)) =
m∑
n=1

αi+2,n cn zn(τ)

This can be express as the matrix-product ACz with Ai,j = αi+2,j, Ci,j = ci δi,j

and zi = zi(τ).
After combining both sides of the equation (4.16), we get the following system

of linear equations ACz = b. When solving for the coefficients αk,i, we already
showed that A = BV −1C−2, det(V ) ̸= 0 and det(C) ̸= 0. We also have det(B) =∏m
i=1(i + 1)! ̸= 0. Therefore, det(AC) = det(B)

det(V ) det(C) ̸= 0 and the system ACz = b

has a unique solution. A simple way to solve this system is to compare the order
conditions for the trees t = ζ(τ) and t = ψ|τ |+1. For t = ζ(τ), we have:

m∑
n=1

αi+2,n cn zn(τ)γ(τ) =


(i+ 1)! if i = |τ |

0 if i ̸= |τ |

and for t = ψ|τ |+1, we have:

m∑
n=1

αi+2,n cn
|τ |+1 =


(i+ 1)! if i = |τ |

0 if i ̸= |τ |
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After taking the difference of these two equations, we get:
m∑
n=1

αi+2,n (cn|τ |+1 − cnzn(τ)γ(τ)) = 0

One possible solution for this equation is to take cn|τ |+1 − cnzn(τ)γ(τ) = 0 for all
n ∈ 1, . . . ,m which implies that zi(τ) = ci

|τ |

γ(τ) . The solution is unique, therefore,
this solution is the unique solution and we have the following constraints on the
coefficients of zi: 

zi(∅) = 1

zi(•) = ci

zi(t) = ci
|t|

γ(t) ∀t ∈ T such that |t| ≤ p− 2

(4.17)

A consequence of theorem 4.2.3 is that the vectors Zi = B(zi, yn) are order
p− 2(classical) approximations of the vectors y(tn + cih).

We proved that considering the order conditions corresponding to the trees
ψj+1 for 1 ≤ j ≤ m we have a unique solution for the coefficients αk,i such that:

αk,i = (−1)m−k(k − 1)! ep−k({c1, . . . , cm} \ {ci})

ci2
m∏
l=1
l ̸=i

(ci − cl)

Then, using the order conditions associated to the trees of the form ζ(t) for all tree
t such that |t| ≤ p − 2, we get the following extra conditions on the coefficients
zi(τ): 

zi(∅) = 1

zi(t) = ci
|t|

γ(t) ∀t ∈ T such that |t| ≤ p− 2

These two sets of equations gave us conditions on all the unknowns of the system
of order conditions. We are now verifying that the other equations that we haven’t
considered so far are automatically satisfied with the conditions presented above.

From equation (4.16), we have:

m∑
i=1

αk,iwi(t) =


k!
γ(t) if |t| = k

0 if |t| ≠ k
for all t ∈ TS such that |t| ≤ p (4.18)
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Moreover, using the conditions on the zi(t) coefficients with equation (4.10), we
get that for all trees t = [t1, . . . , tn] with 3 ≤ |t| ≤ p:

wi(t) =
n∏
j=0

c
|tj |
i

γ(tj)

= c
|t|−1
i |t|
γ(t)

Therefore,

m∑
i=1

αk,ic
|t|−1
i =


(k − 1)! if k = |t|

0 if k ̸= |t|
for all t ∈ TS such that |t| ≤ p

4.5 Properties of schemes

4.5.1 Comparison to classical order conditions and extra

conditions

In addition to greatly reducing the number of order conditions, the choice we
made to compute the vector vk as linear combinations of evaluations of the function
hr also enforces the following property.

Theorem 4.5.1. Let yn+1 = B(ϕ, yn) a numerical method of the form eq. (4.14).

yn+1 = yn + φ1(hJ)hf(yn) +
q∑

k=3
φk(hJ)vk

where the vectors vk are chosen such that vk = ∑m
i=1 αk,ihr(Zi).

This method has φ-order p if and only if
ϕ(t) = e(t)

ϕ([t]k) = e([t]k) ∀ k > 1
for all t ∈ T such that |t| ≤ p

where the mapping e correspond to the coefficients of the B-series expansion of the
exact solution as defined in theorem 4.2.3 with θ = 1.
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Proof. Let v1 = hf(yn) = B(ν1, yn) where the mapping ν1 = d is defined in eq. (4.5)
and v2 = 0 = B(ν2, yn) where ν2(t) = 0 ∀ T ∈ T#. We can rewrite the method as:

yn+1 = yn +
q∑

k=1
φk(hJ)vk

Moreover, for all 1 ≤ k ≤ q, νk(t) = 0 ∀ t ∈ TD so we have:

vk =
∑
t∈TS

νk
h|t|

σ(t)F (t)(yn)

Using eq. (A.4a), we get:

φk(hJ)vk =
∞∑
i=0

(hJ)i
(i+ k)!

∑
t∈TS

νk
h|t|

σ(t)F (t)(yn)

=
∑
t∈TS

νk
k!

h|t|

σ(t)F (t)(yn) +
∞∑
i=1

∑
t∈TS

νk
(i+ k)!

h|t|+i

σ(t) F ([t]i)(yn)

=
∑
t∈TS

νk
k!

h|t|

σ(t)F (t)(yn) +
∞∑
i=1

∑
t∈TS

νk
(i+ k)!

h|[t]i|

σ([t]i)
F ([t]i)(yn)

We also know that yn+1 = B(ϕ, yn) so using the previous equation, ϕ is defined
as ϕ(∅) = 1 and

ϕ(t) =


∑q
k=1

νk(t)
k! if t ∈ TS∑q

k=1
νk(τ)
(i+k)! if t = [τ ]i ∈ TD

If we assume that yn+1 is a method with φ-order p then according to defini-
tion 4.3.1, νk(t) = λk(t) for all t ∈ T such that |t| ≤ p. Therefore if t ∈ TS such
that |t| ≤ p, ϕ(t) = ∑q

k=1
1
γ(t)δk,|t| = 1

γ(t) and if t = [τ ]i ∈ TD such that |τ | ≤ p

and i ≥ 1 then ϕ(t) = ∑q
k=1

k!
(i+k)!γ(τ)δk,|τ | = |τ |!

(i+|τ |)!γ(τ) = 1
γ(t) . Note that this is true

because q ≥ p if the method has φ-order p as noted before. This proves that if the
method has φ-order p then

ϕ(t) = e(t)

ϕ([t]k) = e([t]k) ∀ k > 1
for all t ∈ T such that |t| ≤ p

To show the other direction, we assume that
ϕ(t) = e(t)

ϕ([t]k) = e([t]k) ∀ k > 1
for all t ∈ T such that |t| ≤ p
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Then, for t ∈ TS such that |t| ≤ p, we have ϕ(t) = ∑q
k=1

νk(t)
k! = 1

γ(t) and ϕ([t]i) =∑q
k=1

νk(t)
(i+k)! = 1

γ([t]i) = 1
γ(t)

|t|!
(|t|+i)! . Thus,

q∑
k=1

νk

(
1
k! − (i+ |t|)!

|t|!(i+ k)!

)
= 0

The unique solution for this equation is νk(t) = 0 ∀ k ̸= |j|. Therefore, ϕ(t) =
ν|t|(t)

|t|! = 1
γ(t) We also already know that νk(∅) = 0 and νk(t) = 0 for t ∈ TD so,

νk(t) =


k!
γ(t) if k = |t|

0 otherwise
for all t ∈ TS such that |t| ≤ p

This implies that the method has φ-order p.

This theorem means that for a method with φ-order p and following the ansatz
presented in eq. (4.14), not only the local error term for all the elementary differ-
ential terms up to order p is zero (classical order conditions) but it is also zero for
all the elementary differential terms corresponding to trees of the form [τ ]k where
|τ | ≤ p and k ≥ 1. For example, if such a method as φ-order 3, then it will have a
zero local error term for the elementary differential term F ( )(yn) but it will also
have a zero local error term for F ( )(yn), F ( )(yn) and so on.

This property is of great interest for exponential methods as these methods
are usually applied to stiff systems of differential equations using large time step.
The stiffness of a systems of differential equations is usually characterized by
large eigenvalues for the Jacobian matrix. In this context, terms of the form
JkF (τ)(yn) = F ([τ ]k)(yn) are usually large in magnitude as they can get amplified
by the eigenvalues of the Jacobian matrix. In practice, this effect tends to reduce
the accuracy of the method and limit the domain where the method is converging
at the expected order. The methods matching the conditions of theorem 4.5.1 can
circumvent this problem by eliminating all such terms from the error expansion
and therefore help the accuracy of the method.
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4.5.2 Embedded lower order methods

Theorem 4.5.2. Consider a numerical method following the ansatz of eq. (4.9)
with φ-order p:

yn+1 = yn + φ1(hJ)hf(yn) +
q∑

k=3
φk(hJ)vk

Then the truncated method with q̃ < q:

yn+1 = yn + φ1(hJ)hf(yn) +
q̃∑

k=3
φk(hJ)vk

has order min(p, q̃).

Proof. Direct consequence of definition 4.3.1.

This theorem can be useful for deriving methods with embedded error esti-
mates. It is possible to compute the φk terms in two times and obtain one order p
and one order p−1 approximation of the solution. These approximations can then
be used to estimate the error and adapt the time-step of the method. Moreover,
the formula to compute the coefficients αk,i is very inexpensive and therefore, new
coefficients can be computed at each step if necessary.

4.5.3 Single exponential projection

Using the results from appendix A.2, once the vectors vk are available, it is
possible to compute the linear combination φ1(hJ)hf(yn) + ∑q

k=3 φk(hJ)vk from
eq. (4.9) using a single Krylov projection. This computation being the most ex-
pensive part of exponential schemes, it allows to minimize the computation time.

4.5.4 Dense output

The following theorem is an extension of theorem 4.3.1.

Theorem 4.5.3. Let y be the solution of the initial value problem eq. (1.1) with
initial condition y(tn) = yn. The solution at time tn + θh can be expressed as:

y(tn + θh) = yn +
∞∑
k=1

φk(θhJ)θkΛk (4.19)
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where Λk = B(λk, yn) and

λk(t) =


k!
γ(t) if t ∈ TS and |t| = k

0 otherwise
(4.20)

Proof. Using the same argument as in the proof of 4.3.1, we can get:

yn +
∞∑
k=1

φk(θhJ)θkΛk = yn +
∑
t∈T

θ|t|

γ(t)
h|t|

σ(t)F (t)(yn)

= B(eθ, yn)

where the B-series B(eθ, yn) is equal to the exact solution as defined in theo-
rem 4.2.3.

Using this theorem and the definition of the φ-order, we can see that if a method
using the ansatz of eq. (4.9):

yn+1 = yn + φ1(hJ)hf(yn) +
q∑

k=3
φk(hJ)vk,

is an approximation of the solution at time tn+h with φ-order p, then the methods

yn+1 = yn + φ1(τhJ)τhf(yn) +
q∑

k=3
φk(τhJ)τ kvk,

will be an approximation of the solution at time tn + τh with φ-order p. This ex-
pression therefore provides a way to get a full order dense output for any method
following the ansatz of eq. (4.9). We can further notice that this expression coin-
cides with the expression in theorem A.2.1. If the linear combination of φ functions
is evaluated using the adaptive Krylov procedure, it is also possible to get the value
for different values of τ along the way with no or little extra computation time.
These values being full order approximations of the solution at the time tn + τh,
can be used for the vectors Zi in the next time step as we will see in the next
section.

4.6 Derivation of exponential schemes

In section 4.4, we showed that using the ansatz in eq. (4.14), the φ order
conditions can be solved analytically. In theorem 4.4.1, the only constraint on
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the vectors zi is that they need to be an approximations of order p − 2 of the
exact solution at tn + cih. By choosing the values of the nodes ci, different classes
of exponential integrators can be obtained. In this section, we will give a few
examples of the methods that can be obtained by considering different values ci.

4.6.1 Exponential Runge-Kutta

We first consider the class of exponential Runge-Kutta method. Methods of
this type can be obtained by choosing the node values ci such that 0 < ci ≤ 1.
The vectors zi then correspond to the stages of the method at time tn + cih.

We start with a method of order 3. Using the ansatz in eq. (4.14), the method
will have the following form:

yn+1 = yn + φ1(hJ)hf(yn) + φ3(hJ) α31 hr(z1)

According to theorem 4.4.1, the values of α31 is given by α31 = 2
c12 and z1 is a

first-order approximation of the exact solution. The value of z1 can be obtained
using the exponential Euler methods at time tn + c1h. With these conditions, any
methods with 0 < c ≤ 1 will have φ-order 3. However, by choosing c = 3

4 , the
classical order of the method can be increased to 4. We then get the following
method:

z1 = yn + φ1

(3
4hJ

) 3
4hf(yn)

yn+1 = yn + φ1(hJ)hf(yn) + φ3(hJ)32
9 hr(z1)

Similarly, if we want to derive a method with φ-order 4, we need the following
conditions:

α3,1 = 2c2

c12(c2 − c1)
α3,2 = 2c1

c22(c1 − c2)

α4,1 = 6
c12(c1 − c2)

α4,2 = 6
c22(c2 − c1)

By choosing c1 = 1
2 , c2 = 2

3 and c1 = 1
8 , c2 = 1

9 we rederive the methods from
(Rainwater & Tokman, 2017). As for the third order method, the node values ci
can also be chosen carefully to minimize the error. For the order 4, this is done by
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choosing ci as the root of the polynomial p(c) = 6 − 20x + 15x2 (c1 = 10−
√

10
15 and

c2 = 10+
√

10
15 ). The method can then be expressed as:

z1 = yn + φ1 (c1hJ) c1hf(yn)

z2 = yn + φ1 (c2hJ) c2hf(yn)

yn+1 = yn + φ1(hJ)hf(yn) + φ3(hJ)(α3,1hr(z1) + α3,2hr(z2))

+ φ4(hJ)(α4,1hr(z1) + α4,2hr(z2))

where α3,1 α3,2

α4,1 α4,2

 =
 155+65

√
10

18
155−65

√
10

18
−100−55

√
10

4
−100+55

√
10

4

 (4.21)

If we want to derive a method with order higher than 4 then we cannot use
the exponential Euler method anymore to compute the stage. However, to get a
method of order p, it is possible to use a method of order p − 2 to compute the
stages. This can be done using the continuous output property of the methods
presented in this chapter. For example, if we want to derivate a method of order
6, we can use the exponential Runge-Kutta presented above and evaluate it at the
desired node. Below we give the coefficient α for a method of order 6 corresponding
to the nodes ci = i

4 .

αi+2,j =



128 −48 128
9 −2

−1664 912 −896
3 44

9216 −6144 7168
3 −384

−20480 15360 −20480
3 1280

 (4.22)
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The full methods can be expressed as:

zi = yn + φ1 (cihJ) cihf(yn) for i ∈ {1, 2}

zj = yn + φ1 (cjhJ) cjhf(yn) + φ3 (cjhJ) c3
j

2∑
k=1

β3,khr(zk)

+ φ4 (cjhJ) c4
j

2∑
k=1

β4,khr(wk) for j ∈ {3, 4, 5, 6}

yn+1 = yn + φ1 (hJ)hf(yn) + φ3 (hJ)
6∑

k=3
α3,khr(zk) + φ4 (hJ)

6∑
k=3

α4,khr(zk)

+ φ5 (hJ)
6∑

k=3
α5,khr(zk) + φ6 (hJ)

6∑
k=3

α6,khr(zk)

with c = [10−
√

10
15 , 10+

√
10

15 , 1
4 ,

2
4 ,

3
4 ,

4
4 ], βi,k are the coefficient in eq. (4.21), and αi,k

are the coefficient in eq. (4.22).

4.6.2 Exponential multi-step

Exponential multi-step methods use the values of the previous iteration to
approximate the value at the new step. In our framework, this corresponds to
choosing the node ci as negative itegers. For example, a method of order 3 using
the value at the previous time step will give us: c1 = −1 and

yn+1 = yn + φ1(hJ)hf(yn) + φ3(hJ)2hr(yn−1).

In general, for a method of order p, we choose ci = −i for i ∈ {1, . . . , p−2}. Using
the ansatz of eq. (4.14), the coefficients α for order 3 to 6 are given in table 4.1.

The methods obtained in this way are identical to the methods derived in
(Hochbruck & Ostermann, 2011).

4.6.3 Exponential multi-value

The exponential multi-step methods presented above have two main drawbacks.
First, in order to use such method with order p, we need p−2 previous iterates. This
makes the methods hard to initialize in practice. Second, the accuracy is reduced
as we reach further and further in the past because the approximations are more



96

Order Coefficients α
3

(
2
)

4
 4 −1

2

6 −3
2



5


6 −3

2
2
9

15 −6 1
12 −6 4

3



6



8 −3 8
9 −1

8

26 −57
4

14
3 −11

16

36 −24 28
3 −3

2

20 −15 20
3 −5

4



Table 4.1: Coefficients for exponential multi-step methods

accurate when we use nodes closer to the current value. For this reason, we would
like to develop methods where the nodes are closer to the current time. More
specifically we will consider the values ci corresponding to nodes occurring during
the last step such that −1 < ci < 0. The corresponding vector zi ≈ y(tn + cih)
can be obtained for little to no extra cost if an adaptive pocedure such as the one
presented in appendix A is used.

As an example, for a method of order 4, we can consider the nodes c1 = −1
2

and c2 = −1. The parameters α for these values are:

α =
 16 −2

48 −12


More generally, if we consider equidistant nodes from −1 to 0, we can obtain a

method of order p with the node ci = − i
p−2 . Table 4.2 contains the coefficients α

for these methods with order 3 to 6.
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Order Coefficients α
3

(
2
)

4
 16 −2

48 −12



5


54 −27

2 2
405 −162 27
972 −486 108



6



128 −48 128
9 −2

1664 −912 896
3 −44

9216 −6144 7168
3 −384

20480 −15360 20480
3 −1280



Table 4.2: Coefficients for exponential multi-value methods

4.7 Conclusion

In this chapter, we introduced a new set of order conditions derived from a
φ-series expansion of the exact solution. These order conditions naturally lead to
a general ansatz for exponential methods. With this ansatz, we show that it is
possible to solve these orders condition analytically. Moreover, we demonstrated
that such methods have beneficial properties such as dense output and embedded
lower order methods. Finally, we showed that this framework can be used to
rederive known methods as well as new ones.

We are currently working on applying the schemes we introduced in this chapter
to standard test problems to validate the order of convergence of the methods
as well as their efficiency. Once this is done, we want to apply the methods
to problems found in applications such as atmospheric models like the one we
presented in chapter 2 and problems in plasma physics. We want to explore new
classes of methods such as methods with complex node values similar to (Buvoli,
2021). In the future, we also want to explore the impact of the node values c on
the precision and efficiency of the methods. The node values are currently degrees
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of freedom that we can choose and we would like to be able to determine optimal
values. We also want to study geometric properties of the methods derived in the
new framework such as conservation of energy and simplecticity. These properties
can be useful for some applications, and we would like to find out if it is possible
to derive such methods as well.



Chapter 5
Application of exponential integrators for
non-linear diffusion

The text of this chapter is a reprint of the material as it appears in Dallerit, V.,
Tokman, M., & Joseph, I. (2022). Exponential integrators for non-linear diffusion.
https://doi.org/10.2172/1860647

5.1 Introduction

The goal of this project is to compare the performance of exponential time inte-
grators with traditional methods such as diagonally implicit Runge-Kutta methods
in the context of solving the system of reduced magnetohydrodynamics (RMHD).
In this report, we present initial results of a proof of concept study that shows
that exponential integrators can be an efficient alternative to traditional integra-
tion schemes.

For this work the spatial discretization is done using the finite element method
and we utilize LLNL’s MFEM software package for this purpose. Discretizing
RMHD equations in space using finite elements leads to a large system of ordinary
differential equations (ODEs) of the form:

y′(t) = f(y(t))

y(t0) = yn

(5.1)
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where y(t) is the vector of degrees of freedom of the system and t0 ≤ t ≤ tf . Due to
the presence of a widely ranging timescales in the RMHD equations, system (5.1) is
very stiff. Therefore, it is usually solved using an implicit time integrator, such as
implicit Runge-Kutta or Backward Differentiation Formula (BDF) method. Each
time step of an implicit method requires the solution of a large system of nonlinear
equations. Approximating such a solution is computationally expensive, and a
preconditioner is necessary. Often, preconditioners that yield sufficient efficiency
are hard to construct. For these reasons, we want to explore the use of exponential
integrators for this problem. These methods are attractive for large stiff problems
since they have good stability properties, allow larger time step, and their cost per
time step can be computationally cheaper than implicit methods.

In order to show the advantages of exponential time integrators, we formulate
two nonlinear diffusion test problems corresponding to a simplified version of the
RMHD model of interest. We then compare the efficiency of these exponential
schemes to the traditional methods.

This report is organized as follows. First, we introduce the numerical expo-
nential integrators used for this comparison. Then, we describe the numerical test
problems and detail the implementation. Finally, we present the results of the
comparison study and demonstrate that exponential time integrators can lead to
a more accurate and more efficient solution compared to implicit schemes.

5.2 Time integration

5.2.1 Time stepping methods

In this section, we give a brief overview of exponential time integrators and
present the schemes we will be using in the numerical experiments. We also provide
details on the implementation and software we use.

Exponential integrators are usually derived in the following way. First, the
right-hand side function f of (5.1) is expanded in a Taylor series around the solution
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y(tn) at a given time tn:

f(y) = f(y(tn)) + Jn(y − y(tn)) +R(y) (5.2)

where Jn is the Jacobian matrix of f at time tn and R(y) = f(y)−f(y(tn))−Jn(y−
y(tn)) is the nonlinear remainder of the Taylor expansion. Using the integrating
factor e−Jnt and integrating the equation from tn to tn+1, we can get the solution
at a future time tn+1 = tn + h as:

y(tn+1) = y(tn) + φ1(hJn)hf(y(tn)) +
∫ 1

0
e(1−θ)hJn hR(y(tn + hθ)) dθ (5.3)

where the exponential-like functions φk are defined as:

φ0(z) = ez =
∞∑
n=0

zn

n!

φk(z) =
∫ 1

0
e(1−θ)z θk−1

(k − 1)!dθ =
∞∑
n=0

zn

(n+ k)! for k ≥ 1

Equation (5.3) is the integral form of system (5.1) and a starting point for the
derivation of most exponential integrators. An exponential integrator is derived
by choosing a numerical approximation of the nonlinear integral in equation (5.3).
For the study, we choose EPI type methods ((Tokman, 2006), (Tokman, 2011))
derived in (Rainwater & Tokman, 2016) as they have been shown to be efficient
for this type of problems ((Tokman, Loffeld, & Tranquilli, 2012), (Einkemmer,
Tokman, & Loffeld, 2017)). In particular, we will be testing the following two
exponential schemes:

• EPI2 / Exponential Euler (2nd order):

yn+1 = yn + φ1(hJn)hfn (5.4)

• EPIRK4 (4th order) (Rainwater & Tokman, 2016) :

Y1 = yn+1
8φ1

(1
8hJn

)
hfn

Y2 = yn+1
9φ1

(1
9hJn

)
hfn

yn+1 = yn+φ1 (hJn)hfn

+φ3(hJn)(α3,1hR(Y1) + α3,2hR(Y2))

+φ4(hJn)(α4,1hR(Y1) + α4,2hR(Y2)) (5.5)
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where α3,1 = −1024, α3,2 = 1458, α4,1 = 27648, α4,2 = −34992.
Note that the major computational cost of exponential integrator is the com-

putation of the product between exponential functions of the jacobian matrix and
vector. The EPI methods are specifically designed to reduce the number of such
computations. For example, EPIRK4 requires only 2 such evaluations. As we
explain below, these evaluations are usually done using Krylov projection type of
technics so one would compare the number of such evaluations with the number
of nonlinear iterations required at each time step of an implicit method.

For comparison we will use the following explicit and implicit methods imple-
mented in MFEM:

• Explicit methods: explicit Euler (ForwardEulerSolver), Runge-Kutta of or-
ders 2, 3 and 4 (RK2Solver, RK3SSPSolver, RK4Solver)

• Implicit methods: implicit Euler (BackwardEulerSolver), singly-diagonally
implicit Runge-Kutta of orders 2 and 3 (SDIRK23Solver, SDIRK23Solver)

5.2.2 Exponential matrix function evaluation

The main computational challenge in the time stepping of exponential schemes
is the evaluation of the matrix-vector products involving the φk functions. For the
problems we are considering, the Jacobian matrix involved in these computations
is large and stiff. Therefore, we need an efficient method adapted to this kind of
problem. In this work, we are using the KIOPS algorithm (Gaudreault, Rainwater,
& Tokman, 2018). It uses a Krylov subspace to project the large operator into a
smaller space where the computation can be carried out more efficiently. This idea
is similar to the one used in methods like GMRES or conjugate gradient. More-
over, some optimizations are used in this method to improve the efficiency. First,
using a theorem from (Al-Mohy & Higham, 2011), it is possible to reduce the com-
putation of a linear combination of φ functions of the form ∑k

i=0 φi(hJ)vi to the
computation of a single matrix exponential times a vector. Then, in (Gaudreault,
Rainwater, & Tokman, 2018), the authors show that during the Arnoldi process it
is enough to orthogonalize the new vector with respect to the last 2 previous vec-
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tors. This modification reduces the number of dot products from O(m2) to O(m),
where m is the size of the Krylov space, while keeping the procedure stable. This
is especially important for parallel code, as dot products require a communication
between the computation nodes. Unlike standard Arnoldi procedure and adaptive
Krylov algorithm, KIOPS requires only 2 dot products per Krylov vector which
significantly improves its parallel efficiency. The last optimization, originally pre-
sented in (Niesen & Wright, 2012), is to substep the computation of the matrix
exponential by using the following property of the exponential function:

eAv = eτkA...eτ2Aeτ1Av if
k∑
i=1

τi = 1

Using this equation, it is possible to compute eAv by first computing w1 = eτ1Av,
then computing w2 = eτ2Aw1 , and so on until τk. By choosing τi < 1, we have
||τiA|| < ||A|| and therefore the approximation requires a smaller Krylov subspace.
This also allows the computation of eτA with several values of τ with a single Krylov
projection. KIOPS uses an algorithm to compute the values of τ adaptively.

Using these optimizations, it is possible to advance the solution using the
method EPIRK4 with only 2 Krylov projections instead of the 5 projections re-
quired with a naive implementation. To do so, we first compute the stages Y1

and Y2 in a single computation using the substepping. Then, we can compute the
linear combination of φ functions with a second projection using the first optimiza-
tion. For full details on EPI methods with KIOPS see (Gaudreault, Rainwater, &
Tokman, 2018) and (Gaudreault et al., 2022).

5.3 Test problems

In order to compare the performance of the different time integration methods,
we set up two test problems. These problems model nonlinear diffusion in a way
that is similar to what is found in the RMHD problem of interest.

• 1D diffusion problem:
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The first problem corresponds to a nonlinear diffusion PDE in 1 dimension.
∂u

∂t
= ∂

∂x

(
µ(u)∂u

∂x

)
+ s(x) (5.6)

on the domain x ∈ [0, 1] with µ(u) = (β1 + β2u
5/2) and the source is defined

by s(x) = e− 1
2 ((x−1/2)/σ)2 . The diffusion coefficients can be selected in order

to adapt the stiffness and the amount of nonlinearity of the problem. With
β2 = 0, the problem is linear. In the other case, the nonlinearity is chosen to
emulate the kind of diffusivity found in RMHD problems.

We found that in order to get the correct order of convergence, we need to
rewrite the problem in the following form:

∂u

∂t
= ∂2

∂x2 (g(u)) + s(x) (5.7)

where g(u) = β1u+ 2
7β2u

7/2 =
∫
µ(u)du. Since mathematically equation (5.6)

and (5.7) are equivalent, the discrepency is most likely due to a bug in the
current version of MFEM.

• 2D anisotropic diffusion

The second problem is an anisotropic diffusion PDE in 2 dimensions.
∂u

∂t
= ∇. (µ(u)∇u) + s(x)

on the domain (x, y) ∈ [0, 1]2 with µ(u) = κ
[
(β1 + β2u

5/2)(b̂⊗ b̂) + 10α(I − b̂⊗ b̂)
]

and the source is defined by s(x) = e− 1
2 ((x−1/2)/σ)2 . The magnetic field b used

in this experiment is the 2-wire model and is represented in Figure 5.1 .

The β parameters control the diffusion in the direction of the magnetic field.
As in problem (5.6), it is possible to choose either a linear or nonlinear diffu-
sion. The α coefficient controls the strength of the diffusion in the direction
perpendicular to the magnetic field. As this parameter goes to 0, a boundary
layer forms, making the problem stiffer.

Similar to the 1D diffusion test, we need to rewrite the problem in the fol-
lowing form in order to get the correct order of convergence:
∂u

∂t
= ∇.

((
b̂⊗ b̂

)
∇
(
β1u+ 2

7β2u
7/2
))

+ ∇.
(
(I − b̂⊗ b̂)∇ (10au)

)
+ s(x)
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Figure 5.1: Magnetic field used for the anisotropic diffusion

5.4 Results

5.4.1 Validation of the order of convergence

Our first task is to validate the correct order of convergence of the implemented
methods. Since for linear problems, the schemes (5.4) and (5.5) are exact (assuming
that the φk functions are evaluated exactly), we want to verify that if we set the
nonlinear diffusion coefficient to zero, we are getting the expected result. Figure
5.2 shows the norm of the error as a function of the timestep for the 1d test problem
on the left and the 2d test problem on the right with linear diffusion. As expected,
for the non-exponential methods (red and yellow curves), the error is growing with
the time step. For the exponential schemes, for all values of the time step, the error
stays very low. This error is nonzero because of the tolerance in the evaluation of
the φk functions.

Figure 5.3 shows the convergence plot for the 1d test problem with nonlinear
diffusion. The plots on the top correspond to a coarse grid making the problem non-
stiff while the plots on the bottom are on a more refined grid making the problem
stiffer. The left plots are comparing the explicit and exponential methods while
the plots on the right are comparing the implicit and exponential methods. The
dashed lines next to each curve correspond to the expected order of convergence.
We can see that all the methods are converging at the expected rate. However, the
explicit methods on the fine grid are only stable for the smallest time step while



106

10 -4 10 -3 10 -2

Time step

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

L 2
 n

or
m

 e
rr

or

Explicit Euler
RK2
RK3
Implicit Euler
SDIRK2
EPI2
EPIRK4

(a) 1d test problem (β1 = 5 ×
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10−3, β1 = 1, β2 = 0)

Figure 5.2: Convergence diagrams for the 1d and 2d test problems with linear
diffusion.

both the implicit and exponential methods do not have any stability issues. Figure
5.4 present the same results but for the 2d anisotropic diffusion test problem. With
this problem, all methods still converge as expected and the explicit schemes still
suffer from instability on the finer grid.

5.4.2 Performance comparison

Figure 5.5 and 5.6 are showing the precision diagram (Error vs time to solu-
tion) for the 1d nonlinear diffusion and 2d anisotropic diffusion respectively. Each
plot compares the performance of the exponential schemes to explicit (left) and
implicit (right) methods on a coarse (top) and fine (bottom) grid. As expected, if
we compare an explicit with an exponential scheme at the same order of accuracy,
the time to solution for the explicit scheme will be lower as the cost per iteration is
much cheaper with explicit scheme. However, as we can see from the previous sec-
tion, explicit schemes quickly become unstable as the grid is refined and therefore
can not be considered for stiff problems. On the other hand, we can see that the
performance of exponential schemes is better than the implicit methods on both
test problems. Moreover, the gap between the implicit and exponential methods is
increasing going from the coarse to the finner grid. This indicates that exponential
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Figure 5.3: Convergence diagrams for the 1d test problems with nonlinear diffusion
(β1 = 5 × 10−5, β2 = 5 × 10−3).

methods scale better as the problem gets stiffer.

5.5 Conclusion and future work

In this work, we introduced two nonlinear diffusion PDEs as test problems
for the RMHD equations. We used these problems to compare the performance
of exponential integrators with traditional methods. These integrators and test
problems were validated by looking at the order of convergence. Moreover, the re-
sults demonstrate that exponential integrators have the potential to be an efficient
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Figure 5.4: Convergence diagrams for the 2d test problems with anisotropic diffu-
sion (κ = 10−2, α = 10−3, β1 = 0, β2 = 10).

alternative to implicit methods for this kind of problem.
In the future, we are planning on extending this work to more realistic test

problems. We also want to investigate the addition of algebraic constraints as part
of the solve. These constraints are of great interest for RMHD problems and need
to be treated correctly and efficiently.
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Figure 5.5: Precision diagrams for the 1d test problems with nonlinear diffusion
(β1 = 5 × 10−5, β2 = 5 × 10−3).
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Figure 5.6: Precision diagrams for the 2d test problems with anisotropic diffusion
(κ = 10−2, α = 10−3, β1 = 0, β2 = 10).



Chapter 6
Conclusion and future work

In this dissertation, we advanced the field of exponential integration in several
directions. We first introduced new high-order exponential multi-step methods
that require the computation of a single matrix-exponential-vector product to be
computed at each step. These methods were validated on a simplified atmospheric
model. We showed that when combined with high-order spatial discretization,
these methods can perform accurate simulations with very large time steps, even
in the case of complex flows. We believe that further gain in efficiency could be
achieved by using the multi-values methods introduced in Chapter 4. We intend to
explore the use of exponential integrators for more complex atmospheric models.

We also introduced a new framework for deriving implicit-exponential par-
titioned integrators for stiff systems of ODEs with nonlinear-nonlinear additive
forcing terms. The new time integrators are made efficient by only requiring one
call to the linear solver and one call to the matrix-exponential solver. We demon-
strated that these methods offer superior stability and accuracy compared to exist-
ing schemes and can be effectively used for various applications. We plan to extend
the ansatz introduced in this work to allow the construction of higher-order meth-
ods. This can be done by computing intermediate stages to derive Runge-Kutta
type methods or using the values from previous iterations to derive multi-step type
methods.

Stiffness resilient methods were also introduced. These methods are similar
to the stiffly accurate methods and do not suffer from order reduction. However,
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they can be easily derived, and some of their properties were presented. We are
currently working on applying the schemes we introduced in this work to standard
test problems to validate the order of convergence of the methods as well as their
efficiency. We believe that all the methods present in this work are also stiffly
accurate. However, this still needs to be proven, and the exact conditions to have
stiff accuracy in this framework are not fully understood yet. Moreover, many
aspects of these methods still need to be explored. For example, we want to
study the impact of the node values c on the methods’ accuracy, stability, and
efficiency. The node values are currently degrees of freedom that we can choose,
and we would like to be able to determine optimal values. We also want to study
the geometric properties of the methods derived in the new framework, such as
conservation of energy and simplecticity. These properties can be important for
some applications, and we would like to determine if it is possible to derive methods
with such guarantees in this framework. We plan on exploring new classes of
methods and extending the framework to new types of schemes. We would like
to consider methods with complex node values similar to the work presented in
(Buvoli, 2021) and methods where the stages are computed using non-exponential
methods. We will further consider the extension of the framework to allow schemes
where the matrix in the φk functions does not need to be the Jacobian of the
full right-hand side but can be any linear operator. Some initial work has been
done in this direction and indicates that similar results can be obtained in this
case. In parallel, we also want to apply the stiffness resilient methods to the
applications presented in this dissertation. With the methods we presented in this
dissertation, much attention was paid minimizing the number of matrix exponential
and φk evaluations that must be computed at each step. To further improve
the efficiency of exponential methods, we believe that further progress needs to
be achieved in the computation of this term. Further advances in the adaptive
procedure of the KIOPS method presented in Appendix A are possible. Moreover,
for each substep, the Krylov subspace is currently discarded. Reusing the basis
or a part of it could help reduce the number of right-hand side evaluations and
communications. We also want to explore other techniques to compute the matrix
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exponential and associated φk functions, such as the Leja point approximation,
Taylor expansion method, and contour integral approximation. We believe that
depending on the application, one or a combination of these techniques can provide
faster computations.

Finally, we demonstrated that exponential methods are a good alternative to
the implicit schemes often used to simulate the reduced magnetohydrodynamics
(RMHD) equations. In the future, we plan to extend this analysis to a broader
selection of exponential methods and make a similar comparison on the Kelvin
Helmholtz instability problems. This problem is closer to the RMHD equation and
is a step toward a more realistic problem. However, on top of the system of ordinary
differential equations, this system contains an algebraic constraint. Computing this
constraint for each evaluation of the right-hand side might be too expensive. For
this reason, we will explore more efficient techniques to enforce this constraint. One
possibility is to use exponential methods that allow the matrix in the φk function to
be only a part of the Jacobian of the right-hand side. This would allow us to remove
the constraint from the Jacobian and compute the constraint only once per time
step. In summary, in this thesis, we constructed new time integration methods,
developed a novel framework for constructing novel classes of time integrators, and
explored the performance of the new schemes and methodologies on test problems
and important applications in weather and climate modeling and plasma physics.
This work generated both new ideas as well as opened new research directions we
plan to pursue in the future.
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Appendix A
Introduction to the derivation and
computation of exponential time
integrators

This appendix contains a short introduction to the derivation of exponential
time integration methods and presents some of the common exponential schemes
used in the literature. It also presents a numerical method to compute the φk

function used in exponential schemes.

A.1 Derivation of exponential integrators

We consider the system (1.1) and its solution at time t, y(t). We want to derive
a scheme that can advance the problem from a known solution at time tn, y(tn)
to the solution y(tn+1) at a future time tn+1 = tn + h. Exponential integrators can
be derived using the following reformulation. First, the function f is expanded in
a Taylor series around y(tn):

f(z) = f(y(tn)) + Jn(z − y(tn)) +R(z) (A.1)

where Jn is the Jacobian matrix of f at y(tn) and R(z) = f(z) − f(y(tn)) −Jn(z−
y(tn)) is the nonlinear remainder of the Taylor expansion. Using the integrating
factor e−Jnt and integrating the equation from tn to tn+1, we can write the solution
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at time tn+1 as:

y(tn+1) = ehJny(tn) +
∫ tn+1

tn
eJn(tn+1−t) (f(y(tn)) − Jny(tn) +R(y(t))) dt (A.2)

Simplifying this expression and using the change of variable t = tn + θh, we get:

y(tn+1) = y(tn) + φ1(hJn)hf(y(tn)) +
∫ 1

0
e(1−θ)hJn hR(y(tn + hθ)) dθ (A.3)

where φ1(z) = (ez − 1) z−1.
This equation is the starting point for the derivation of an exponential inte-

grator and no approximation has been used yet. From here, it is necessary to
approximate the nonlinear reminder R to derive a numerical scheme. We define
exponential-like functions φk as:

φ0(z) = ez =
∞∑
n=0

zn

n! (A.4a)

φk(z) =
∫ 1

0
e(1−θ)z θk−1

(k − 1)!dθ =
∞∑
n=0

zn

(n+ k)! for k ≥ 1 (A.4b)

If the nonlinear reminder is approximated using a polynomial in θ: R(y(tn+hθ)) ≈
R0 + θR1 + ...+ θp

p!Rp where Ri ∈ RN then eq. (A.3) becomes:

y(tn+1) ≈ y(tn) + φ1(hJn)h(f(y(tn)) +R0) + φ2(hJn)hR1 + ...+ φp+1(hJn)hRp

This shows that the φk functions are a natural basis to derive exponential
integrators. In practice, exponential schemes are usually not derived directly using
a polynomial to approximate the function R but using the order condition theory
presented.

We are now presenting some exponential methods that can be derived from
eq. (A.3). We assume that we have an approximation yn ≈ y(tn) of the solution
at time tn and compute the approximation yn+1 ≈ y(tn+1) of the solution at time
tn+1. The simplest and one of the earliest exponential method is the exponential
Euler method which can be obtained by approximating the nonlinear residual by
0. For a historical review of exponential integrators, we invite the reader to refer
to (Minchev & Wright, 2005).

• Exponential Euler (2nd order):

yn+1 = yn + φ1(hJn)hf(yn)
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If we wish to get higher order methods, just like with classical methods, two
techniques are usually used. First, one can use the values from the previous iterates
and obtain linear multistep methods e.g.

• 3rd order exponential multistep method (Tokman, 2006):

yn+1 = yn + φ1(hJn)hf(yn) + 2
3φ2(hJn)hR(yn−1)

Another strategy is to build intermediate stage values as in Runge-Kutta methods
e.g.

• 4th order exponential Runge-Kutta method (Rainwater & Tokman, 2016):

Y1 = yn + 1
9φ1

(1
9hJn

)
hf(yn)

Y2 = yn + 1
8φ1

(1
8hJn

)
hf(yn)

yn+1 = yn + φ1 (hJn)hf(yn) + φ3(hJn)(1458 hR(Y1) − 1024 hR(Y2))

+ φ4(hJn)(−34992 hR(Y1) + 27648 hR(Y2))

One common feature of all these methods is the expressions involving products
of φ functions with vectors. The major computational expense of an exponential
integrator comes from the evaluation of these terms. Therefore, the fewer evalua-
tions a method requires, the more efficient it will be. In the next section, we will
show that a linear combination of the form

p∑
i=1

τ iφi(τhJn)vi (A.5)

where τ is a scalar and vi are vectors, can be computed for the cost of a single
evaluation. Moreover, we will see that it is also possible to get this result for
different values of τ at once.

A.2 Computing matrix exponential and related

matrix functions

All of the exponential schemes require the computation of so-called φ func-
tions of matrix arguments and their products with vectors. As mentioned before,
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this is the most computationally expensive part of the time stepping algorithm.
Many numerical methods are available to compute the exponential of a matrix
(Moler & Van Loan, 1978). However, most of these methods are not adapted to
large stiff matrices. For large matrices, numerical methods such as Taylor series
methods (Bader, Blanes, & Casas, 2019; Al-Mohy & Higham, 2011), Chebychev
methods (Abdulle, 2002; Bergamaschi, Caliari, & Vianello, 2003), Leja approx-
imation (Caliari, Vianello, & Bergamaschi, 2004; Caliari et al., 2016) or Krylov
subspace methods (Saad, 1992; Sidje, 1998; Gaudreault, Rainwater, & Tokman,
2018) can be used. In this section, we are going to present the main results of
the KIOPS algorithm introduced in (Gaudreault, Rainwater, & Tokman, 2018) as
it can be used to compute linear combination of these terms efficiently using an
approximation in a Krylov subspace.

A.2.1 From φ functions to matrix exponential

The following theorem allows us to reduce the computation of a linear combi-
nations of φ functions to the computation of a single matrix exponential time a
vector.

Theorem A.2.1. Let A ∈ RN×N , V = [vp, . . . , v2, v1] ∈ RN×p, K =
0 Ip−1

0 0

 ∈

Rp×p, v =
[
v0, ep

]⊺
∈ RN+p and τ . We define the augmented matrix

Ã =
A B

0 K

 ∈ R(N+p)×(N+p) (A.6)

and let w = eτÃv. Then, the first N elements of the vector w are given by

w(1 : N) =
p∑
j=0

τ jφj(τA)vj (A.7)

The proof of this theorem can be found in (Al-Mohy & Higham, 2011). Using
this result, it is possible to reduce the computation of any linear combination of the
form eq. (A.5) to a single matrix exponential-vector product. Note that the matrix
used in the matrix exponential is slightly bigger than the original. This extension
has zero to little impact on the computation time for large-scale applications.
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A.2.2 Krylov approximation of the matrix exponential

In this section, we will describe the most common methods for approximating
the matrix exponential in a Krylov subspace. First, a subspace is built on which the
matrix is projected. Then, the action of the matrix exponential on this subspace is
computed. Finally, the solution is projected back onto the original space to get the
final approximation. The subspace used for this work will be a Krylov subspace
which is defined as:

Km(A, v) = span
{
v,Av, ..., Am−1v

}
,

Building Krylov space: Arnoldi iteration

The first step of the approximation is to build a basis for the Krylov space.
The vectors Akv become increasingly aligned as k increases, so the naive basis is
not stable for numerical applications. For this reason, the Arnoldi iteration is used
(see Algorithm 1).

Algorithm 1 Arnoldi process
1: Input: A ∈ RN×N , B ∈ RN×p, V ∈ RN+p×mmax+1, m ∈ N+

2: for j = 1 to m do
3: vj+1 = Avj

4: for i = 1 to j do
5: hi,j = v⊺i · vj+1

6: vj+1 = vj+1 − hi,j vi

7: end for
8: hi+1,j = ∥vj+1∥
9: if hi+1,j ≈ 0 then

10: break
11: end if
12: vj+1 = 1

hi+1,j
vj+1

13: end for
14: return Vm = [v1, ..., vj], Hm = hi,j
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This procedure produces the matrix Vm corresponding to an orthonormal basis
of Km and the matrix Hm where m is the size of the Krylov space. It can be
noted that lines 4 to 7 in Algorithm 1 correspond to the modified Gram–Schmidt
algorithm. Therefore, we have hi,j = vi

TAvj or equivalently Hm = Vm
TAVm. Then,

Hm is the projection of the matrix A onto the Krylov subspace Km.

Approximation in Krylov space

The second step is to approximate the action of the matrix exponential using
the subspace created before. In (Saad, 1992), the author proves that for any
polynomial function pm−1 of degree ≤ m− 1, we have:

pm−1(τA)v = Vmpm−1(τHm)VmTv = βVmpm−1(τHm)e1

where β = ||v|| and e1 = (1, 0, ..., 0)T ∈ Rm

Moreover, the exponential can be expressed as: ex = ∑∞
n=0

xn

n! . The terms of
this series converging quickly to zero motivate the following approximation:

eτAv ≈ Vm eτHm Vm
Tv = β Vm eτHm e1

Following (Saad, 1992), the error made by this approximation can be expressed
as:

eτAv − β Vm eτHm e1 = τβ hm+1,m

∞∑
j=1

em
Tφj(τHm) e1(τA)j−1vm+1

For practical application, keeping only the first term of the series provides a
good approximation of the error:∣∣∣∣∣∣∣∣eτAv − β Vm eτHm e1

∣∣∣∣∣∣∣∣ ≈ τβ hm+1,m |emTφ1(τHm) e1|

The term φ1(τHm) e1 can be computed by applying Theorem 1 again. The
other terms are directly available. This error estimate can be used to select the
size of the Krylov space to get an approximation within some tolerance.
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A.2.3 Matrix exponential of a small matrix

The previous section presented the approximation in the Krylov space. How-
ever, it is still necessary to compute the matrix exponential of the smaller matrix
Hm. Since m << N , eτHm can be computed using any standard technique. (see
(Higham, 2008) for a review). Here, we present a diagonal Padé approximation
combined with the scaling and squaring method (Higham, 2005). A [k/m] Padé
approximation of a function f is a rational function rkm such that

rkm(x) = pk(x)
qm(x)

where pk and qmare polynomials of degree at most k and m respectively, qm(0) = 1
and f(x) − rkm(x) = O(xk+m+1). In the case k = m, the approximant is called a
diagonal Padé approximation.

The matrix exponential eA is well approximated with a diagonal Padé function
when the norm of A is small. For this reason, the Padé approximation is combined
with the scaling and squaring method.

The scaling and squaring method uses the property of the exponential: eA =(
eA/σ

)σ
. By taking σ to be a power of 2: σ = 2s, s ∈ N, the result can be computed

efficiently by repeatedly squaring the matrix.
In summary, the algorithm to compute the exponential of the small matrix Hm

is as follow:

1. σ = 2s is selected such that ||Hm|| is sufficiently small.

2. E = eHm/σ is computed using a diagonal Padé approximation.

3. The matrix E is squared s times to get the final result.

A.2.4 KIOPS optimizations

This section describes new improvements to the Krylov approximation intro-
duced by the KIOPS algorithm (Gaudreault, Rainwater, & Tokman, 2018).
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Incomplete orthogonalization

To build a Krylov basis of size m using the Arnoldi process presented above,
it is necessary to evaluate m matrix-vector products and m(m+1)

2 dot products.
Therefore, as m increases, the cost of the orthogonalization is increasing relative
to the cost of the matrix product and can become dominant. This is even more
true in the case of parallel code. The action of the matrix on a vector usually
scales nicely with the number of threads but the dot product always requires some
communication.

In (Gaudreault, Rainwater, & Tokman, 2018), the authors are showing that
during the Arnoldi process it is enough to orthogonalize the new vector with respect
to the last 2 previous vectors. This simple modification reduces the number of dot
products from m(m+1)

2 to 2m while keeping the procedure stable.

Adaptive Krylov

Using incomplete orthogonalization allows reducing the computation cost of
the Arnoldi process from O(m2) to O(m). However, the computation of the ma-
trix exponential in the Krylov space: eτHm still requires O(m3) operations if the
diagonal Padé approximation is used (due to the matrix inversion).

The idea of the adaptive Krylov method, originally presented in (Niesen &
Wright, 2012), is to substep the computation of the matrix exponential by using
the following property of the exponential:

eAv = eτkA...eτ2Aeτ1Av if
∑
i

τi = 1

Using this equation, it is possible to compute eA by first computing w1 = eτ1Av,
then computing w2 = eτ2Aw1, and so on until τk. By choosing τi < 1, we have
||τiA|| < ||A|| and therefore the approximation requires a smaller Krylov subspace.
The goal is to choose the value τi such that it minimizes the total CPU time. In
(Gaudreault, Rainwater, & Tokman, 2018), a strategy for choosing the values of
τi is presented.



Appendix B
High-order numerical solutions to the
shallow-water equations on the rotated
cubed-sphere grid

B.1 The covariant shallow-water equations in 2+1

dimensions

Here, the (2+1)-dimensional shallow-water equations will be derived from the
(3+1)-dimensional covariant form of the Euler equations when the fluid is exter-
nally forced by a gravitational potential Φ. Following (Charron, Zadra, & Girard,
2014),

∂

∂t
(√gρ) + ∂

∂xj

(√
gρuj

)
= 0, (B.1)

∂ui

∂t
+ uj

∂ui

∂xj
+ Γi00 + 2Γij0uj + Γijkujuk = −hij

(
1
ρ

∂p

∂xj
+ ∂Φ
∂xj

)
(B.2)

describe the continuity and inviscid momentum equations (i = 1, 2, 3), respec-
tively. Repeated Latin (spatial) indices are summed from 1 to 3, unless otherwise
indicated. These equations hold under the classical assumptions of Newtonian
space-time: time intervals are absolute, and space is also absolute. The symbol ρ
represents the fluid’s density field, p the pressure field, and ui ≡ dxi/dt the velocity
field components.
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One may define an infinitesimal space interval dl in an inertial frame as dl2 =
hµνdx

µdxν , where repeated Greek indices are summed from 0 to 3 (0 being a time
index), and an infinitesimal time interval dx0 = u0dt as (dx0)2 = δ0

µδ
0
νdx

µdxν ,
where δνµ is the Kronecker tensor and u0 an arbitrary non-zero constant with
units of velocity. The time unit may be chosen such that u0 = 1 without loss
of generality and without impacting the form of the equations. Therefore, u0 = 1
is assumed from now on. A (3+1)-dimensional distance ds is written ds2 =
dl2 + (dx0)2 = gµνdx

µdxν = (hµν + δ0
µδ

0
ν)dxµdxν . Therefore, the contravariant

tensor hµν is obtained from the (3+1)-dimensional contravariant metric tensor gµν

(where gµνgνα = δµα):

hµν = gµαgβνhαβ = gµαgβν(gαβ − δ0
αδ

0
β) = gµν − g0µg0ν ,

with g00 = 1 in Newtonian mechanics. This definition implies that hµ0 = h0µ van-
ishes. Notice that in Newtonian space-time, there are in fact two tensors describing
the geometry (for instance, gµν for space-time and hµν for space-only) because both
spatial distances dl and temporal intervals dx0 are absolute and invariant.

The Γ’s in Eq. (B.2) are Christoffel symbols of the second kind: Γi00 corresponds
to the centripetal acceleration, Γij0 is associated with the local Coriolis accelera-
tion, and Γijk with the nonlinear metric terms. They are obtained from the usual
definition in a metric space-time:

Γµαβ = 1
2g

µν

(
∂gνα
∂xβ

+ ∂gνβ
∂xα

− ∂gαβ
∂xν

)
= 1

2h
µν

(
∂gνα
∂xβ

+ ∂gνβ
∂xα

− ∂gαβ
∂xν

)
. (B.3)

The last equality in Eq. (B.3) stems from the fact that Γ0
αβ vanishes in Newtonian

mechanics. The term √
g is the square root of the determinant of the covariant

metric tensor gµν . In Newtonian mechanics, it also corresponds to the inverse of
the square root of the 3-dimensional determinant of hij. Details on this (3+1)-
dimensional formalism are provided in (Charron, Zadra, & Girard, 2014).

Consider spherical geometry under the thin-shell (or shallow-atmosphere) ap-
proximation. The x3 axis is taken to represent the radial direction from the origin
of the coordinate system and is chosen to indicate a geometric distance from the
center of the Earth. The contravariant metric tensor components gµν—and there-
fore gµν and hij—become independent of the coordinate x3 because x3 = a, where
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a is the mean radius of the Earth in spherical geometry, as explained in (Charron,
Zadra, & Girard, 2014; Charron & Zadra, 2014). The Christoffel symbols must not
be directly approximated using x3 = a but rather recalculated from Eq. (B.3) with
the approximated metric tensors (this preserves conservation laws). It turns out
that this choice of coordinates together with the thin-shell approximation implies
that the components Γiµ3 of the Christoffel symbols vanish, as shown in (Charron,
Zadra, & Girard, 2014) (their Eqs. (117)–(118)), and that h13 = h23 = 0 and
h33 = 1 (their Eq. (60)).

Applying the spherical geopotential approximation in a geopotential coordi-
nate, it may be shown that

hij
∂Φ
∂xj

+ Γi00 =

 0 for i = 1, 2;
gr for i = 3,

(B.4)

where gr ≈ 9.80616 m s−2 is the constant effective gravitational acceleration at the
surface of the Earth.

The “horizontal” (i.e. any spatial direction perpendicular to x3) momentum
equations become

∂ui

∂t
+ uj

∂ui

∂xj
+ 2Γij0uj + Γijkujuk = −1

ρ
hij

∂p

∂xj
(B.5)

for i = 1, 2, while the radial momentum equation leads to the hydrostatic balance:

∂p

∂x3 = −ρgr. (B.6)

Recall that in Eqs. (B.1) and (B.5), all the metric terms (the Γ’s, hij and √
g) are

independent of x3 because the thin-shell approximation is being used.
To obtain the set of shallow-water equations, one makes the additional assump-

tion that the fluid’s density ρ is uniform and constant. Integrating Eq. (B.1) over
x3 from x3 = hB(t, x1, x2), where hB is prescribed, to x3 = h(t, x1, x2) while as-
suming that “horizontal” motion does not vary significantly over the depth h−hB,
one obtains

(h− hB)
∂(√g)
∂t

+ √
g
(
u3(h) − u3(hB)

)
+ (h− hB) ∂

∂xj

(√
guj

)
= 0,
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where in this case j is summed from 1 to 2. Writing u3(h) = dh/dt and u3(hB) =
dhB/dt, and expanding the operator d/dt = ∂/∂t + uj∂/∂xj (where j is summed
from 1 to 2 because h is independent of x3), one gets the shallow-water continuity
equation in arbitrary “horizontal” coordinates:

∂

∂t
(√gH) + ∂

∂xj

(√
gHuj

)
= 0, (B.7)

where H ≡ h − hB is the thickness of the incompressible fluid and j is summed
from 1 to 2.

The 2-dimensional shallow-water momentum equations follow from assuming
that the pressure at x3 = h(t, x1, x2) is a constant p0. Therefore from Eq. (B.6),
p = ρgr(h− x3) + p0, and the “horizontal” pressure gradient in Eq. (B.5) becomes
∂p/∂xj = ρgr∂h/∂x

j (j = 1, 2).
A quasi-flux form may be obtained by adding Eq. (B.5) multiplied by √

gH

and Eq. (B.7) multiplied by ui:

∂

∂t

(√
gHui

)
+ ∂

∂xj

(√
gHuiuj

)
= −2√

g Γij0Huj − √
g ΓijkHujuk

−1
2

√
g grh

ij ∂H
2

∂xj
− √

gHgrh
ij ∂hB
∂xj

, (B.8)

where i = 1, 2 and j, k are summed from 1 to 2. From the identity ∂(√ghij)/∂xj =
−√

ghjkΓijk, Eq. (B.8) may be rewritten as

∂

∂t

(√
gHui

)
+ ∂

∂xj

(√
g
[
Huiuj + 1

2grh
ijH2

])
= −2√

g Γij0Huj

−√
g Γijk

(
Hujuk + 1

2grh
jkH2

)
− √

gHgrh
ij ∂hB
∂xj

. (B.9)

Note that Eqs. (B.7) and (B.9) may be rewritten as a single expression in a
(2+1)-dimensional formalism:

∂

∂xν
(√g T µν) = −2√

g Γµj0T j0 − √
g ΓµjkT jk − √

gHgrh
µj ∂hB
∂xj

, (B.10)

where

T µν = Huµuν + 1
2grh

µνH2 (B.11)

is the mass-momentum tensor for the shallow-water equations. Repeated Greek
indices are summed from 0 to 2.
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B.2 Metric terms associated with the rotated cubed-

sphere grid

Consider a given panel p (out of 6 identical ones). Its coordinates x1 and x2 are
great circles intersecting at right angle at the panel’s center, which is assumed to be
located at geographical longitude λp and geographical latitude ϕp. The coordinate
line x1 = 0 is assumed to be rotated clockwise by an angle αp with respect to
a geographical meridian (oriented northward) when looking at the panel’s center
directly from above. Define the quantities X = tan x1, Y = tan x2, and δ2 =
1 +X2 + Y 2. The transformation from geographical longitude and latitude (λ, ϕ)
to cubed-sphere coordinates (x1, x2) is performed via the relations

X = sin(λ− λp) cosαp + sinϕp cos(λ− λp) sinαp − tanϕ cosϕp sinαp
cosϕp cos(λ− λp) + tanϕ sinϕp

, (B.12)

Y = sin(λ− λp) sinαp − sinϕp cos(λ− λp) cosαp + tanϕ cosϕp cosαp
cosϕp cos(λ− λp) + tanϕ sinϕp

. (B.13)

Each panel of the cubed-sphere grid is a gnomonic projection from the 2-sphere
to the plane tangent to the panel’s center. For instance, a panel with λp = 0 and
αp = 0 centered at the north pole (ϕp = π/2) has tan x1 = y/z and tan x2 = −x/z,
where (x, y, z) are 3-dimensional Cartesian coordinates of the Euclidean space in
which the 2-sphere is embedded.

Tensors and Christoffel symbols are transformed following the usual laws (see
for instance Eqs. (6), (7) and (17) in (Charron, Zadra, & Girard, 2014)). It may
be shown that the covariant metric tensor in 2+1 dimensions is

g00 = 1 + a2

δ2 Ω2
(
δ2 − [sinϕp −X cosϕp sinαp + Y cosϕp cosαp]2

)
, (B.14)

g01 = a2

δ2 Ω(1 +X2) (cosϕp cosαp − Y sinϕp) = g10, (B.15)

g02 = a2

δ2 Ω(1 + Y 2) (cosϕp sinαp +X sinϕp) = g20, (B.16)

g11 = a2

δ4 (1 +X2)2(1 + Y 2), (B.17)

g12 = −a2

δ4XY (1 +X2)(1 + Y 2) = g21, (B.18)

g22 = a2

δ4 (1 +X2)(1 + Y 2)2. (B.19)
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The spatial metric tensor hij, where hijgjk = δik, takes the form

h11 = δ2

a2(1 +X2) , (B.20)

h12 = XY δ2

a2(1 +X2)(1 + Y 2) = h21, (B.21)

h22 = δ2

a2(1 + Y 2) . (B.22)

The term √
g is most simply calculated as the inverse of the square root of the

determinant of hij:

√
g = a2(1 +X2)(1 + Y 2)

δ3 . (B.23)

The Christoffel symbols of the second kind with mixed space-time components
depend on the position of the panel because the rotation at constant angular
velocity Ω around a given axis breaks the (space-time) symmetry. These Christoffel
symbols associated with the Coriolis acceleration may be calculated based on a
space-time tensor formalism, as in (Charron, Zadra, & Girard, 2014). They are

Γ1
01 = ΩXY

δ2 (sinϕp −X cosϕp sinαp + Y cosϕp cosαp) = Γ1
10, (B.24)

Γ1
02 = −Ω(1 + Y 2)

δ2 (sinϕp −X cosϕp sinαp + Y cosϕp cosαp) = Γ1
20, (B.25)

Γ2
01 = Ω(1 +X2)

δ2 (sinϕp −X cosϕp sinαp + Y cosϕp cosαp) = Γ2
10, (B.26)

Γ2
02 = −ΩXY

δ2 (sinϕp −X cosϕp sinαp + Y cosϕp cosαp) = Γ2
20. (B.27)

The spatial components of the Christoffel symbols of the second kind are

Γ1
11 = 2XY 2

δ2 , (B.28)

Γ1
12 = −Y (1 + Y 2)

δ2 = Γ1
21, (B.29)

Γ1
22 = 0, (B.30)

Γ2
11 = 0, (B.31)

Γ2
12 = −X(1 +X2)

δ2 = Γ2
21, (B.32)

Γ2
22 = 2X2Y

δ2 . (B.33)
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Because of spherical symmetry, the tensor hµν , the quantity √
g and the spatial

components of the Christoffel symbols of the second kind have the same form on
all six panels.

The 2-dimensional cubed-sphere coordinates have an interesting property: it
may be shown that the contraction hjkΓijk (i = 1, 2 and j, k are summed from 1
to 2) vanishes (see also (Ullrich, Jablonowski, & Van Leer, 2010)), thus allowing
a simplification of Eq. (2.2). Note however that hjkΓijk does not vanish in general
and that this term cannot be discarded from the equations of motion when other
coordinates are employed.

A general rotation of the global cubed-sphere grid may be characterized by three
angles which are here assumed to be (λ0, ϕ0, α0) associated with panel 0. The other
angles (λp, ϕp, αp) associated with panels 1 to 5 are obtained as functions of these
(λ0, ϕ0, α0). They are found to be

λ1 = tan−1
(

cosλ0 cosα0 + sin λ0 sinϕ0 sinα0

cosλ0 sinϕ0 sinα0 − sin λ0 cosα0

)
, (B.34)

ϕ1 = − sin−1 (cosϕ0 sinα0) , (B.35)

α1 = tan−1
(

sinϕ0

cosϕ0 cosα0

)
, (B.36)

λ2 = λ0 + π, (B.37)

ϕ2 = −ϕ0, (B.38)

α2 = −α0, (B.39)

λ3 = − tan−1
(

cosλ0 cosα0 + sin λ0 sinϕ0 sinα0

sin λ0 cosα0 − cosλ0 sinϕ0 sinα0

)
, (B.40)

ϕ3 = sin−1 (cosϕ0 sinα0) , (B.41)

α3 = − tan−1
(

sinϕ0

cosϕ0 cosα0

)
, (B.42)

λ4 = tan−1
(

cosλ0 sinα0 − sin λ0 sinϕ0 cosα0

− cosλ0 sinϕ0 cosα0 − sin λ0 sinα0

)
, (B.43)

ϕ4 = sin−1 (cosϕ0 cosα0) , (B.44)

α4 = tan−1
(

cosϕ0 sinα0

− sinϕ0

)
, (B.45)
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λ5 = tan−1
(

sin λ0 sinϕ0 cosα0 − cosλ0 sinα0

cosλ0 sinϕ0 cosα0 + sin λ0 sinα0

)
, (B.46)

ϕ5 = − sin−1 (cosϕ0 cosα0) , (B.47)

α5 = tan−1
(

cosϕ0 sinα0

sinϕ0

)
. (B.48)

Care must be taken when choosing the correct branch of the arctangent operators
for various panels. In the special case where ϕ0 = α0 = 0, different formulas for
λ4, α4, λ5 and α5 must be used due to the singularity at the poles. In this case,
λ4 = 0 = λ5 and α4 = −λ0 = −α5. Examples are provided in the accompanying
implementation code (see § 2.7).

B.3 Consistency relations at the interfaces of pan-

els

At the interface of two panels, consistency relations on tensor components
may be established. Consider for instance the contravariant vector components
A1

(0), A2
(0) on panel 0 and their relations to the contravariant vector components

A1
(1), A2

(1) on panel 1. Note that due to spherical symmetry, the form of these
relations is not altered by rotating the grid. One may then consider the case
λ0 = ϕ0 = α0 = ϕ1 = α1 = 0 and λ1 = π/2. From X(0) = tanλ, Y(0) = tanϕ/ cosλ,
X(1) = −1/ tanλ and Y(1) = tanϕ/ sin λ, the transformation laws from coordinates
on panel 0 to coordinates on panel 1 lead to

∂x1
(0)

∂x1
(1)

= 1, (B.49)

∂x1
(0)

∂x2
(1)

= 0, (B.50)

∂x2
(0)

∂x1
(1)

=
Y(1)(1 +X2

(1))
X2

(1)(1 + Y 2
(1))

⇒
∂x2

(0)

∂x1
(1)

= 2Y(1)

1 + Y 2
(1)

at X(1) = −1, (B.51)

∂x2
(0)

∂x2
(1)

= −
X(1)(1 + Y 2

(1))
X2

(1) + Y 2
(1)

⇒
∂x2

(0)

∂x2
(1)

= 1 at X(1) = −1. (B.52)

These relations are used at the interface X(1) = −1 to convert contravariant vector
components from panel 1 to panel 0. A similar approach is used to convert covari-
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ant vector components. This procedure may be performed at the 12 interfaces of
the cubed-sphere grid.

The consistency relations for contravariant vector components Ai(p) and covari-
ant vector components A(p)i on panel p at the 12 interfaces are provided below. At
the interface of panels (p, q) = (0, 1), (1, 2), (2, 3), (3, 0), one obtains

A1
(p) = A1

(q), (B.53)

A2
(p) = 2Y

1 + Y 2A
1
(q) + A2

(q), (B.54)

A(p)1 = A(q)1 − 2Y
1 + Y 2A(q)2, (B.55)

A(p)2 = A(q)2. (B.56)

At the interface of panels (4, 0), one obtains

A1
(4) = A1

(0) − 2X
1 +X2A

2
(0), (B.57)

A2
(4) = A2

(0), (B.58)

A(4)1 = A(0)1, (B.59)

A(4)2 = 2X
1 +X2A(0)1 + A(0)2, (B.60)

with X defined on panel 0. At the interface of panels (4, 1), one obtains

A1
(4) = −A2

(1), (B.61)

A2
(4) = A1

(1) − 2X
1 +X2A

2
(1), (B.62)

A(4)1 = − 2X
1 +X2A(1)1 − A(1)2, (B.63)

A(4)2 = A(1)1, (B.64)

with X defined on panel 1. At the interface of panels (4, 2), one obtains

A1
(4) = −A1

(2) + 2X
1 +X2A

2
(2), (B.65)

A2
(4) = −A2

(2), (B.66)

A(4)1 = −A(2)1, (B.67)

A(4)2 = − 2X
1 +X2A(2)1 − A(2)2, (B.68)
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with X defined on panel 2. At the interface of panels (4, 3), one obtains

A1
(4) = A2

(3), (B.69)

A2
(4) = −A1

(3) + 2X
1 +X2A

2
(3), (B.70)

A(4)1 = 2X
1 +X2A(3)1 + A(3)2, (B.71)

A(4)2 = −A(3)1, (B.72)

with X defined on panel 3. At the interface of panels (5, 0), one obtains

A1
(5) = A1

(0) + 2X
1 +X2A

2
(0), (B.73)

A2
(5) = A2

(0), (B.74)

A(5)1 = A(0)1, (B.75)

A(5)2 = − 2X
1 +X2A(0)1 + A(0)2, (B.76)

with X defined on panel 0. At the interface of panels (5, 1), one obtains

A1
(5) = A2

(1), (B.77)

A2
(5) = −A1

(1) − 2X
1 +X2A

2
(1), (B.78)

A(5)1 = − 2X
1 +X2A(1)1 + A(1)2, (B.79)

A(5)2 = −A(1)1, (B.80)

with X defined on panel 1. At the interface of panels (5, 2), one obtains

A1
(5) = −A1

(2) − 2X
1 +X2A

2
(2), (B.81)

A2
(5) = −A2

(2), (B.82)

A(5)1 = −A(2)1, (B.83)

A(5)2 = 2X
1 +X2A(2)1 − A(2)2, (B.84)
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with X defined on panel 2. At the interface of panels (5, 3), one obtains

A1
(5) = −A2

(3), (B.85)

A2
(5) = A1

(3) + 2X
1 +X2A

2
(3), (B.86)

A(5)1 = 2X
1 +X2A(3)1 − A(3)2, (B.87)

A(5)2 = A(3)1, (B.88)

with X defined on panel 3.
Consistency relations for higher-rank tensors may be obtained from these rules.

For instance, if a symmetric contravariant second-rank tensor is considered at a
point on an interface, then T 00 remains identical on both panels; T 0i and T i0

transform as Ai; and T ij as the product AiAj.

B.4 AUSM Riemann solver for the shallow-water

equations

The Advection Upstream Splitting Method (AUSM) is a simple flux splitting
method. It works by splitting the advective component of the flux from the pressure
component. This appendix presents a brief overview of the elements that are
relevant for its implementation in the context of the shallow-water equations. The
reader is referred to (Liou & Steffen Jr, 1993) for more details.

From Eq. (B.11), define a tensor density qµ ≡ √
g T µ0 = √

gHuµ. One may
express √

g T µν as a function of qµ:
√
g T µν = qµqν

q0 + 1
2√

g
grh

µν
(
q0
)2
. (B.89)

In AUSM, the components of the tensor densities appearing in the spatial derivative
of Eq. (B.10) are splitted into

√
g T µi = M iAµi + P µi, (B.90)

(no sum over i) where Aµi = qµ
√
gHai/q0 is the advective component, M i = ui/ai

is the Froude number, ai is the intrinsic gravity wave velocity (derived in Appendix
B.5) and P µi = grh

µi (q0)2
/(2√

g) is the so-called pressure component.
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The Froude number and pressure component are decomposed into a part eval-
uated on one side of the interface (denoted by a "+" superscript) and another part
evaluated on the other side (denoted by a "−" superscript). Specifically,

M i = (M i)+ + (M i)− (B.91)

and

P µi = (P µi)+ + (P µi)−, (B.92)

where (M i)± and (P µi)± are respectively defined by Eq. 6 and Eq. 8 of (Liou
& Steffen Jr, 1993). Analogously to the original AUSM formulation, the Froude
number is splitted a second time as follows

M i = max[0, (M i)+ + (M i)−] + min[0, (M i)+ + (M i)−]. (B.93)

Then the AUSM method with “double Froude number splitting” is

√
g T µi =

[
(√g T µi)+ + (√g T µi)−

]
(B.94)

where

(√g T µi)+ = max[0, (M i)+ + (M i)−] (Aµi)+ + (P µi)+, (B.95)

(√g T µi)− = min[0, (M i)+ + (M i)−] (Aµi)− + (P µi)−. (B.96)

B.5 Gravity wave velocities

The components (ν, α) of the three flux Jacobian matrices J µ are defined as

(J µ)να ≡
∂(√g T µν)

∂qα
. (B.97)

Note that the left-hand side of Eq. (B.10) may be rewritten with the flux Jacobian
matrices as

∂

∂xν
(√g T µν) = (J µ)να

∂qα

∂xν
. (B.98)
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They are written explicitly as J 0 = I3×3 (the identity matrix) and

J 1 =


0 1 0

grh
11H − u1u1 2u1 0

grh
12H − u1u2 u2 u1

 ; J 2 =


0 0 1

grh
12H − u1u2 u2 u1

grh
22H − u2u2 0 2u2

 . (B.99)

The three eigenvalues of J 0 correspond to u0 = 1. The three eigenvalues of J 1 are

u1, u1 ±
√
h11grH, (B.100)

and those of J 2 are
u2, u2 ±

√
h22grH. (B.101)

Since the shallow-water equations are hyperbolic, the eigenvalues (B.100) and
(B.101) are real and distinct. The intrinsic gravity wave velocities are deduced
from these eigenvalues as a1 ≡

√
h11grH and a2 ≡

√
h22grH.
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