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Abstract

Essays on Asymmetric Information in Financial Markets

by

Bradyn Mitchel Breon-Drish

Doctor of Philosophy in Business Administration

University of California, Berkeley

Professor Christine Parlour, Chair

This dissertation studies the effects of asymmetric information and learning on asset prices
and investor decision-making. Two main themes run through the work. The first is the
linkage between investor decisions and the information used to make those decisions; that is,
portfolio choices reflect the nature and quality of available information. The second theme is
the interaction between investor learning and price informativeness. The information held by
individual investors is reflected in market prices through their trading decisions, and prices
thus transmit this information to other investors.

In the first chapter, Asymmetric Information in Financial Markets: Anything Goes, I
study a standard Grossman and Stiglitz (1980) noisy rational expectations economy, but
relax the usual assumption of the joint normality of asset payoff and supply. The primary
contribution is to characterize how the equilibrium relation between price and fundamentals
depends on the way in which investors react to the information contained in price. My solu-
tion approach dispenses with the typical “conjecture and verify” method, which allows me
to analytically solve an entire class of previously intractable nonlinear models that nests the
standard model. This simple generalization provides a purely information-based channel for
many common phenomena. In particular, price jumps and crashes may arise endogenously,
purely due to learning effects, and observation of the net trading volume may be valuable
for investors in the economy as it can provide a refinement of the information conveyed by
price. Furthermore, the value of acquiring information may be non-monotonic in the number
of informed traders, leading to multiple equilibria in the information market. I show also
that the relation between investor disagreement and returns is ambiguous and depends on
higher moments of the return distribution. In short, many of the standard results from noisy
rational expectations models are not robust. I introduce monotone likelihood ratio condi-
tions that determine the signs of the various comparative statics, which represents the first
demonstration of the implicit importance of the MLRP in the noisy rational expectations
literature.

In the second chapter, Do Fund Managers Make Informed Asset Allocation Decisions?,
a joint work with Jacob S. Sagi, we derive a dynamic model in which mutual fund managers
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make asset allocation decisions based on private and public information. The model pre-
dicts that the portfolio market weights of better informed managers will mean revert faster
and be more variable. Conversely, portfolio weights that mean revert faster and are more
variable should have better forecasting power for expected returns. We test the model on
a large dataset of US mutual fund domestic equity holdings and find evidence consistent
with the hypothesis of timing ability, especially at three- to 12-month forecasting horizons.
Nevertheless, whatever timing ability may be reflected in portfolio weights does not appear
to translate into higher realized returns on funds’ portfolios.
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Chapter 1

Asymmetric Information in Financial
Markets: Anything Goes

1.1 Introduction

Since at least Hayek (1945) economists have recognized that an important role of finan-
cial markets is the aggregation and transmission of information held by individual traders.
There is a vast literature, both theoretical and empirical, that seeks to understand how well
prices reflect information and what frictions best explain apparent deviations from market
efficiency.1 Following this literature, I seek to explore several questions: How do traders
react to the information in prices? Are asset prices a sufficient statistic for all public infor-
mation? Are prices necessarily more informative when more traders are informed? How is
disagreement among investors reflected in prices and future returns?

Addressing the interaction between price informativeness and investor behavior presup-
poses, of course, that traders have asymmetric information, for without information asym-
metry there is no role for learning from price. The workhorse model for studying asymmetric
information in (competitive) financial markets is the noisy rational expectations (RE) model
of Grossman and Stiglitz (1980), and similar ones due to Hellwig (1980) and Diamond and
Verrecchia (1981).2 Unfortunately, the standard model is ill-suited for a full consideration
of the questions posed above. It makes counterfactual assumptions about the distribution of
asset payoffs and supply, and it leads to overly-simplistic descriptions of investor behavior.

1Fama (1991) is a standard reference on empirical tests of market efficiency. Brunnermeier (2001) discusses
the theory.

2There is a distinct but related literature, following Kyle (1985), that studies the consequences of asym-
metric information in markets in which some traders behave strategically. Other models in this vein include
Admati and Pfleiderer (1988), Holden and Subrahmanyam (1992), and Foster and Viswanathan (1993, 1996),
in which traders submit market orders, and Kyle (1989) and Bhattacharya and Spiegel (1991), in which
traders submit demand schedules. There is also a literature, initiated by Admati (1985), that considers
noisy RE models with multiple assets.
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In the standard model, all random variables are jointly normally distributed, and de-
mand curves and asset prices are linear functions. Hence, all price observations are equally
informative, and traders always react in the same way to changes in price. In practice, asset
returns and supply are not jointly normally distributed. Fama (1965) and Mandelbrot (1963)
were among the first to make note of this fact. Kon (1984) finds that discrete mixtures of
normal distributions better describe stock returns than either normal, Student-t, or stable
Paretian distributions. (Tucker (1992) reinforces this point with additional statistical tests,
and Hall, Brorsen, and Irwin (1989) provide complementary evidence in the context of fu-
tures markets.) Recently, nonnormality has also received much coverage in the popular press
in the context of heavy tails (see, for instance, Taleb (2007)).

In this paper, I investigate the effects of asymmetric information in a class of noisy rational
expectations models in which I relax the standard Grossman and Stiglitz (1980) model to
admit fundamentals and supply that do not follow a normal distribution. This seemingly
minor change can have dramatic consequences for the standard results on the shape of
demand curves (and consequently the possibility of information-based price crashes), price
informativeness, the value of acquiring information, and the relation between disagreement
and returns. The simplicity of the classic Grossman and Stiglitz (1980) economy makes it an
ideal setting in which to illustrate the fragility of noisy RE models. My point is strengthened
by the limited number of moving parts; more general models can be expected to provide even
richer results as they afford more degrees of freedom for constructing examples.

My primary contribution is to characterize how the relation between price and funda-
mentals depends on the strength and direction in which investors react to information in
price. I provide a purely information-based channel for many common phenomena. More
specifically, I show how price-informativeness varies with the price level and how learning
effects can cause uninformed investors to submit backward-bending demand curves, lead-
ing to price “jumps” and “crashes” in response to small changes in fundamentals.3 Next, I
show that observation of (signed) trading volume may be valuable for uninformed investors
because it provides a refinement of the information contained in price alone. Third, I show
that the value of information can be non-monotonic in the number of informed investors
in the economy. That is, information acquisition can be a strategic complement. Finally,
I demonstrate that the relation between investor disagreement and returns depends on the
relation between conditional expected returns and conditional volatility and on the skewness
of fundamentals.

In standard noisy RE models price crashes are impossible in the absence of other frictions.
Demand curves of uninformed investors are downward-sloping at all prices, and because of
linearity they always respond in the same way to perturbations in price.4 As such, authors

3Strictly speaking, my model is static, so there are no changes to which traders can react. I follow the
convention of many papers in this literature, e.g., Gennotte and Leland (1990) and Barlevy and Veronesi
(2003), and interpret comparative statics as approximating dynamic effects in a repeated version of the
model.

4In the multi-asset noisy RE model of Admati (1985), demand curves can be globally upward sloping.
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modeling crashes in settings with asymmetric information often introduce context-specific
frictions. To rationalize the October 1987 crash, Gennotte and Leland (1990) introduce
imperfectly anticipated hedging demand, which can cause large price reactions in response to
small changes in fundamentals. Similarly, Romer (1993) introduces higher-order uncertainty
over the information quality of other traders. In his model, small changes in price can reveal
this information quality and lead to discontinuous drops in price. Yuan (2005) considers
the effects of borrowing constraints, which make low prices less informative: uninformed
investors have difficulty disentangling whether low price is due to a low fundamental or a
binding borrowing constraint that has prevented informed from trading fully on the basis of
information. Similarly, Barlevy and Veronesi (2003) study a model with risk-neutral traders
who are both short-sale and borrowing constrained. My model differs from all of the above in
that I focus solely on the effect of asymmetric information with fully-rational unconstrained
investors. It turns out that crashes arise naturally in settings with asymmetric information
because, in general, different price realizations are not equally informative.

It is also difficult to reconcile the empirical evidence on the information content of trading
volume and other market-generated statistics with standard rational expectations models.5

Typically, price is a sufficient statistic for all public information, and other market-generated
statistics are redundant. Schneider (2009) gives a clear statement of this point, noting that
“the fact that volume is helpful to an outside observer of the economy does not imply that
investors within the economy can learn from observing volume. If investors are rational,
then it is not clear how trading volume can contain information beyond the information
that is already incorporated into prices.” Schneider (2009) and Blume, Easley, and O’Hara
(1994) introduce higher-order uncertainty and propose that volume can be informative about
the quality of others’ information. In my model, (signed) volume can be valuable, but
the mechanism is different. Without normality, price may not be a sufficient statistic for
public information and in such situations, signed volume refines the uninformed investors’
information set.

Following the original Grossman and Stiglitz (1980) paper, the standard intuition is that
as the number of informed investors in a market increases, it becomes easier to free-ride
on their information by simply observing price. As such, the incentive for other traders to
acquire information decreases–information acquisition is a strategic substitute. There is a
small recent literature investigating the opposite situation, strategic complementarity in in-
formation acquisition. Barlevy and Veronesi (2000, 2008) introduce correlated fundamentals
and supply, which makes it more difficult for uninformed investors to disentangle whether
price changes are due to fundamentals of supply. Ganguli and Yang (2009) and Manzano and
Vives (2010) allow investors to also observe signals about the supply. Veldkamp (2006a,b)
considers a dynamic Grossman and Stiglitz (1980) model with economies of scale in the

However, as they are still linear they never bend backwards and generate crashes of the sort discussed here.
5See, e.g., Karpoff (1987), Gallant, Rossi, and Tauchen (1992), and Gervais, Kaniel, and Mingelgrin

(2001) for evidence on the relation between volume and returns.
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(competitive) information market. In such a setting, information in higher demand is sup-
plied at a lower price, generating complementarities. My model generates complementarity
through a pure information channel: when the number of informed investors increases, price
may become more difficult to read, causing uninformed investors to submit demand curves
that are less closely aligned with those of informed investors.

While the model allows for essentially general distributions of uncertainty for both the
asset payoff and supply, one need not depart too far from normality to obtain the results
above. Normal mixture distributions have been proposed as an empirically plausible al-
ternative to normal distributions (Kon, 1984), and as shown later, simple normal mixture
specifications can produce a rich set of examples. In the standard model, the strong uni-
modality of the normal distribution implies that uninformed investors are able to learn from
prices relatively “easily” (later, I make the unimodality condition precise and describe learn-
ing effects explicitly). High price is an unambiguous signal of high payoff (and vice versa),
so that the informed and uninformed investors react in the same direction to a change in
the fundamental and the equilibrium price function is monotone. When the number of in-
formed investors increases, the information contained in price is “more correlated” with the
fundamental, and uninformed investors are able to make portfolio decisions that are closer
to those of the informed and therefore better aligned with the true state. Similarly, the
fact that the conditional variance of a normal random variable, given another jointly normal
random variable, is constant implies that there are no price levels at which an uninformed
investor learns more or less than any other price level. With more general distributions this
is not true without further restrictions on the distribution of uncertainty. I give examples of
the above effects in Sections 1.4 below.

In order to derive the results above, I provide a tractable solution to a particular class of
nonlinear noisy rational expectations models that nests the standard model. Instead of the
usual solution method of conjecturing and verifying a (linear) price function, I approach the
problem by solving a general version of the uninformed investors’ optimization problem given
an arbitrary price function and then utilize the market clearing condition to write down an
equation that pins down the price as an implicit function of the primitive quantities in the
model. In principle, the technique I use would also allow for uncertainty about quantities
other than the conditional mean of asset payoffs, such as the variance, number of informed,
or risk aversion.

Other notable exceptions to the normality assumption in the literature include Ausubel
(1990a,b), Peress (2004), and Vanden (2008). However, these authors must make unappeal-
ing concessions and use a non-standard model setup or approximation methods. Bernardo
and Judd (2000) develop a computational procedure for solving rational expectations mod-
els and demonstrate the non-robustness of some results from the standard Grossman and
Stiglitz (1980) model. An advantage of their approach is the large class of models that it
handles, but without an explicit characterization of price, it is difficult to pin down the
conditions on distributions or preferences that drive standard results. The economy of Bar-
levy and Veronesi (2000, 2003) is similar to that in this paper, except that their traders
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are risk-neutral and face a portfolio constraint, and they focus on a particular parametric
distribution for random variables. Gibbons, Holden, and Powell (2010) consider a noisy
RE model of an intermediate goods market in which all random variables are uniformly
distributed and demonstrate non-robustness of some of the Grossman and Stiglitz (1980)
results in their setting. DeMarzo and Skiadas (1998, 1999) study the properties a class of
economies that nests the non-noisy economy of Grossman (1976); they demonstrate unique-
ness of Grossman’s (1976) fully-revealing linear equilibrium and give robust examples of
partially revealing equilibria when payoffs are non-normal. Foster and Viswanathan (1993)
study (linear) equilibria in the Kyle (1985) model when random variables are elliptically
distributed, and Bagnoli, Viswanathan, and Holden (2001) derive necessary and sufficient
conditions on probability distributions for existence of linear equilibria in various market
making models. Finally, Rochet and Vila (1994) study existence and uniqueness properties
in a model similar to Kyle (1985) with non-normal distributions.

The rest of the paper proceeds as follows. Section 1.2 lays out the model and characterizes
the equilibrium. Section 1.3 discusses the monotone likelihood ratio property and previews
its role in many of the results in the paper. Section 1.4 lays out the general results described
above, and Section 1.5 concludes. Section 1.6.1 collects results on sign-regular and single
crossing functions that are used to prove some of my propositions. Proofs are relegated
to Section 1.6.2. Since my results speak to a number of different literatures, I postpone
additional detailed discussion of related papers to the sections in which I present the relevant
findings.

1.2 Model

The economy has three dates t ∈ {0, 1, 2}. At the first date, t = 0, agents choose whether
to become informed. At the second, t = 1, agents trade financial assets. At the final date,
t = 2, assets make liquidating payouts. Figure 1.2 shows a timeline. There are two assets,
a risky asset that has a payoff D and a risk-free asset that pays 1 and has price normalized
to 1. The risky-asset payoff D is the sum of two components µ and ε. The distribution of
the fundamental µ has density fµ, while ε is independently distributed N(0, σ2

ε). Note that
because of the normal distribution for ε, the conditional distribution of D given µ is normal.

The assumption that ε has a normal distribution is not critical for my results, but it
greatly simplifies the analysis. One way to motivate this assumption is to consider that
even after the fundamental µ is known, there are a “large” number of “small” additive
and independent idiosyncratic factors that can affect the final payoff. By the central limit
theorem, the sum of these disturbances will be approximately normally distributed, and one
can just as well aggregate them into a single term, namely ε. While this interpretation is
plausible, I do not model it rigorously here.

To prevent fully-revealing prices, the risky asset is in random supply Z, which is inde-
pendent of other random variables in the model and has density fZ . To simplify the proofs
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? ? ?

t = 0 t = 1 t = 2

Information acquisition decision

Informed see fundamentals

Financial market opens

Agents trade competitively

Payoffs realized

Figure 1.1: This timeline shows the sequence of moves in the model. At t = 0 investors
decide whether to pay for information. After this decision, agents trade in the financial
market at t = 1. Final payoffs occur at t = 2.

of various results, I assume that both µ and Z have absolutely continuous distributions
supported on the entire real line and that their densities are continuously differentiable.6

A unit mass of ex-ante identical agents have CARA utility over wealth at t = 2 with
common risk aversion α, so u(w) = −e−αw. Investors are endowed with x0 shares of the
risky asset and y0 dollars in the risk-free asset that they can trade in the financial market.
Without loss of generality, I let x0 = y0 = 0 because a CARA investor’s demand for risky
assets is independent of initial wealth. Information about the risky asset payoff is available
at a fixed dollar cost c > 0; before trading, investors choose whether to pay c to observe µ.
Those who choose to buy information (“informed investors”) see µ immediately before the
financial market opens. The remaining agents (“uninformed investors”) do not see µ, but
can use all public information – price and signed trading volume of the informed and noise
traders – to make an inference about it. Note that all informed agents observe µ perfectly;
they do not receive conditionally independent signals as in Hellwig (1980) or Diamond and
Verrecchia (1981).

All agents are price takers. All probability distributions and other parameters of the
economy are common knowledge, and therefore, agents are only asymmetrically informed
about the fundamental µ.

The set of normal mixture distributions is useful for constructing counterexamples with-
out straying too far from the standard model. I illustrate most results in the paper for an
economy in which µ and Z follow independent normal mixture distributions

µ ∼ βN(µ1, σ
2
µ) + (1− β)N(µ2, σ

2
µ), 0 ≤ β ≤ 1

Z ∼ ηN(µZ1, σ
2
Z) + (1− η)N(µZ2, σ

2
Z), 0 ≤ η ≤ 1.

6It can be verified that all results are also true as stated for absolutely continuous distributions with
supports other than the real line.
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1.2.1 Equilibrium

Let Pλ denote the equilibrium risky-asset price when the fraction of informed agents is λ.
Let XI(µ, Pλ) denote the number of shares demanded by an informed agent as a function
of fundamental µ and price. Since the informed types know the realized value of µ, their
demand takes the standard mean-variance form XI(µ, Pλ) = µ−Pλ

ασ2
ε
.

When the uninformed agents choose their demands, they have access to the price and
the signed volume (order flow) of the informed and noise traders.7 Noise traders supply Z
shares, so the signed trading volume of the informed and noise traders is λXI(µ, Pλ) − Z.
However, it will turn out to be more convenient to work with the informationally-equivalent
adjusted volume, defined as follows.

Definition 1.2.1 (Adjusted volume). The adjusted volume µ̂λ of the informed and noise
traders is

µ̂λ := µ− ασ2
ε

λ
Z.

The adjusted volume µ̂λ is a transformation of the price and signed volume.8 To compute

adjusted volume, the uninformed need only to multiply the signed volume by the constant ασ2
ε

λ

and then add the price Pλ. Their information set provides sufficient information to perform
these calculations.

Let XU(µ̂λ, Pλ) denote the demand of the uninformed as a function of the adjusted volume
and price. The definition of equilibrium in the financial market is standard.

Definition 1.2.2 (Financial market equilibrium). A rational expectations equilibrium in
the financial market is a (measurable) price function Pλ(µ, Z) mapping R2 7→ R, and de-
mand functions for the informed agents XI and uninformed agents XU such that all agents
maximize expected utility, conditional on their information sets

XI(µ, Pλ) ∈ arg max
x∈R

E [u(x(D − Pλ))|µ, Pλ]

XU(µ̂λ, Pλ) ∈ arg max
x∈R

E [u(x(D − Pλ))|µ̂λ, Pλ] ,

and markets clear for each possible (µ, Z) pair

λXI(µ, Pλ) + (1− λ)XU(µ̂λ, Pλ) = Z.

7In the standard model signed volume provides redundant information; traders need only to observe price.
In more general settings, signed volume may refine the information contained in price. In some results in
this section I distinguish between the case in which investors condition only on price and the case in which
they also observe signed volume.

8A similar variable, labeled wλ, appears in the original Grossman and Stiglitz (1980) paper. I choose the
µ̂λ notation to emphasize that this variable will be interpreted as a signal about µ.
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All statements in the paper about equality of random variables, such as the market
clearing condition in Definition 1.2.2, should be understood to mean that the equality holds
almost surely under the joint distribution of (µ, Z, ε), and all statements about equality of
functions on Rn should be understood to mean that the equality holds almost everywhere
with respect to Lebesgue measure on Rn. To avoid unnecessary technical clutter, I refrain
from making this explicit in the results and exposition below.

If the random variables in the model were jointly normally distributed, I would now solve
for the equilibrium by conjecturing a price function that is linear in the fundamental µ and
supply Z, solving the uninformed investors’ inference and portfolio problem given the price
function, and then substituting the resulting demand into the market clearing condition.
This would produce a system of three equations with three unknowns (the coefficients in the
price function). In this simple setting, the coefficient equations would have explicit closed-
form solutions. With a non-normal joint distribution, this solution technique is not possible
since the functional form of the price is not clear a priori. Indeed, the best outcome one can
hope for is to characterize the price as an implicit function of µ and Z.

The following result characterizes the equilibrium asset price, assuming that it exists.
(Proofs of all results are relegated to Section 1.6.2.) The key step is to first solve a general
version of the uninformed investors’ optimization problem, assuming that they conjecture an
arbitrary price function. Since, in equilibrium, the quantity demanded by the uninformed
must be equal to the residual supply of the noise traders after subtracting the informed
demand, substituting in from the market clearing condition pins down a risky-asset price
that both clears the market and is consistent with the uninformed investors’ beliefs.

Proposition 1.2.1. If there exists an equilibrium price function, Pλ(µ, Z), then it is implic-
itly defined as

∫
R

(
(1− λ)y + λ

(
µ− ασ2

ε
λ Z

)
− Pλ

)
e

λ
1−λ

µ−ασ
2
ε
λ

Z−Pλ
σ2ε

y
fZ

(
λ
ασ2

ε

(
y −

(
µ− ασ2

ε
λ Z

)))
fµ(y) dy = 0.

(1.1)

Looking at the relation in eq. (1.1), it is apparent that price depends on µ and Z only

through the adjusted volume µ̂λ = µ − ασ2
ε

λ
Z, which leads immediately to the following

Corollary.

Corollary 1.2.2. If it exists, the equilibrium price Pλ in Proposition 1.2.1 can be charac-
terized as a function of the adjusted volume µ̂λ only,∫

R
((1− λ)y + λµ̂λ − Pλ) e

λ
1−λ

µ̂λ−Pλ
σ2ε

y
fµ|µ̂λ(y|µ̂λ) dy = 0. (1.2)

From this point forward, I treat Pλ as a univariate function mapping realizations m̂ of
adjusted volume µ̂λ into an equilibrium price, as in Corollary 1.2.2. There is no loss, however,
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in continuing to think of price as a function of the fundamental µ and supply Z that depends
on them only through the linear combination µ̂λ.

To better understand the meaning of the integral in eq. (1.2), note that one can also write
it as an integral over realizations of the payoff D = µ + ε rather than just the fundamental
µ. Rearranging the resulting expression and writing out the utility function in general terms,
u(·), gives

Pλ =

∫
R yu

′
(
− λ

1−λ
µ̂λ−Pλ
ασ2

ε
(y − Pλ)

)
fD|µ̂λ(y|µ̂λ) dy∫

R u
′
(
− λ

1−λ
µ̂λ−Pλ
ασ2

ε
(y − Pλ)

)
fD|µ̂λ(y|µ̂λ) dy

.

This looks like the standard representative agent pricing formula except that the “endow-
ment” of the agent, − λ

1−λ
µ̂λ−Pλ
ασ2

ε
, is endogenous. Accordingly, one can interpret eq. (1.2) as

a representative agent pricing formula in which the representative uninformed agent’s equi-
librium risky asset holding is the residual supply of the noise traders, net of the demand of
the informed investors.

It is clear from eq. (1.2) that the price is a nonlinear function of the fundamental µ and
supply Z. However, because the residual uncertainty ε is normally distributed and utility
functions are exponential, the information conveyed by price is still a linear combination µ̂λ
of the quantities µ and Z, as in the standard model. While this fact simplifies the analysis
of the information content of prices, it is not vital for my results. Indeed, allowing for a
more general distribution for ε would provide one more degree of freedom with which to
construct counterexamples to standard results. Similarly, one could criticize the restriction
to exponential utility, which precludes income effects. However, this also makes construction
of counterexamples more difficult. Indeed, including nontrivial income effects would tend to
strengthen most of the results in the paper.

Proposition 1.2.1 assumes existence of an equilibrium in the financial market. The fol-
lowing proposition gives a sufficient condition for existence.

Proposition 1.2.3. If for each fixed m̂ ∈ R the conditional moment generating function of
µ given µ̂λ = m̂ exists in an open neighborhood around zero, then there exists an equilibrium
price function Pλ.

The restriction that µ has a moment generating function (mgf) is needed so that expected
utility exists (expected utility for a CARA investor is essentially a moment-generating func-
tion) and the integral in eq. (1.2) converges. As long as the integral is finite, then the existence
of an equilibrium price that satisfies eq. (1.2) follows from the intermediate value theorem.
Unfortunately, the restriction on the distribution of fundamentals in the proposition rules
out fat-tailed distributions, along with lognormal distributions.9

9Difficulty incorporating fat-tailed distributions into an otherwise-standard economy with expected-
utility-maximizing investors is not specific to my model. Geweke (2001) points out the same problem in
a setting with a CRRA representative investor when log returns follow a t-distribution.
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So far, I have said nothing of uniqueness. In principle, for some realizations of µ̂λ there
could be multiple values of Pλ that satisfy (1.2).10 Fortunately, that is not the case, and
the equilibrium price defined by eq. (1.2) is unique, at least within the class of continuously
differentiable functions.

Proposition 1.2.4. The function defined by (1.2) is the unique continuously differentiable
price function.

In some sense, the uniqueness result should not be surprising. In models in which agents
do not learn from prices, multiplicity can arise if wealth effects are sufficiently strong to
prevent aggregate demand from sloping downward at all prices. Exponential utility rules
out wealth effects, and as indicated in Proposition 1.4.2, one can reduce the model to one in
which the uninformed do not condition on price but instead observe only adjusted volume µ̂λ.
Hence, the presence of only substitution effects means that for given µ̂λ, aggregate demand
is downward sloping, and therefore the equilibrium price is unique.

A Corollary of Proposition 1.2.4 is that the linear equilibrium in the standard model is
in fact (essentially) unique, not merely unique among linear equilibria. To my knowledge,
this was still an open question.

Corollary 1.2.5. When µ and Z are independently normally distributed, the linear price
function given in Grossman and Stiglitz (1980) is the unique continuously differentiable price
function.

This completes the analysis of equilibrium in the financial market. Next, I address
equilibrium in the information market.

Information market equilibrium

While it is not the focus of this paper, for completeness I now define equilibrium in the
information market. Let CE(λ) denote the ex-ante certainty-equivalent gain CE (gross of
cost c) from becoming informed as a function of the fraction λ of informed agents

CE(λ) := − 1

α
logE[e−αXI(µ,Pλ)(D−Pλ)]︸ ︷︷ ︸

Informed certainty-equivalent wealth

− − 1

α
logE[e−αXU (µ̂λ,Pλ)(D−Pλ)]︸ ︷︷ ︸

Uninformed certainty-equivalent wealth

. (1.3)

I use a standard definition of equilibrium in the information market, identical to that used
by Grossman and Stiglitz (1980). To add realism, one could more explicitly model an
information production sector as in, for example, Admati and Pfleiderer (1986) or Veldkamp
(2006b). However, for simplicity and comparability with earlier work I choose the most basic
possible setup.

10Technically speaking, eq. (1.2) defines a correspondence from which an equilibrium price must be selected.
In principle, this correspondence might not be single-valued.
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Definition 1.2.3 (Information market equilibrium). An equilibrium in the information mar-
ket is a fraction λ∗ ∈ [0, 1] such that,

• λ∗ = 0 and CE(0) ≤ c, or

• λ∗ ∈ (0, 1) and CE(λ∗) = c, or

• λ∗ = 1 and CE(1) ≥ c.

Definition 1.2.3 says that an equilibrium in the information market falls into one of three
possible cases. Either (1) no one buys information because the cost of doing so exceeds the
benefit, even if no one else buys any, or (2) there is an interior value for λ∗ such that at the
margin the gain from acquiring information is exactly equal to the cost of doing so, or (3)
everyone buys information because it is sufficiently cheap that the benefit always outweighs
the cost, regardless of how many others buy information.

Existence and uniqueness of equilibrium in the information market is a more delicate
matter than existence and uniqueness in the financial market. Since information market
equilibria depend on the value of acquiring information, I postpone further discussion until
I take up the value of information in Section 1.4.3.

In noisy REE models, investors use available signals to make an inference about funda-
mentals. In my model, from the standpoint of the uninformed investors the signal is the
adjusted volume µ̂λ, and the variable that they are trying to learn about is the fundamental
µ. The main results presented later on the value of technical analysis, the shape of uninformed
investor demand curves, and the value of acquiring information depend on how uninformed
investors react to the information contained in price. It turns out that a monotone likelihood
ratio property (MLRP) for signals is the appropriate concept for characterizing reaction to
information.

1.3 Discussion of the monotone likelihood ratio prop-

erty

While the MLRP is familiar to most readers, in this section I will briefly restate the definition,
discuss the implications for investor behavior, and tie the MLRP to a restriction on the
distribution of noise in the economy.11 Briefly, in my model the MLRP guarantees that
uninformed investors’ demand reacts in the “correct” direction to changes in adjusted volume
µ̂λ, and it requires that the distribution of noise satisfy a particularly stringent unimodality
condition. In more general terms, requiring the MLRP for endogenous signals in a noisy REE
model guarantees that “good news” for one agent is also “good news” for other agents who
learn about her information by looking at the price (or other market data), and it requires
that signals be affiliated with fundamentals.

11Milgrom (1981) is a standard reference for the MLRP.
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I begin by stating the definition of the monotone likelihood ratio property.

Definition 1.3.1 (Monotone likelihood ratio property). Consider any two random variables
X and Y. The family of conditional densities {fX|Y (·|y)}y∈Support(Y ) satisfies the monotone
likelihood ratio property (MLRP) if for all x′ > x and y′ > y, the following inequality holds

fX|Y (x′|y′)fX|Y (x|y) ≥ fX|Y (x′|y)fX|Y (x|y′). (1.4)

If the inequality in eq. (1.4) is strict at every set of points, the family is said to satisfy the
strict MLRP.

It is helpful to think of the random variable X as a signal providing information about Y.
If the conditional densities of the signal X have the MLRP, then increases in X shift “up”
the posterior distribution of Y in the monotone likelihood ratio (MLR) stochastic order

(i.e., given x′ > x, the likelihood ratio of the posteriors
fY |X(y|x′)
fY |X(y|x)

is increasing in y). The

MLR ordering is a strengthening of the well-known first-order stochastic dominance (FOSD)
ordering.12 In fact, Proposition 2 of Milgrom (1981) shows that a family of conditional
densities {fX|Y } has the MLRP if and only if higher values of the signal X improve the
posterior distribution of Y in the FOSD sense under any prior for Y. With only two random
variables, the MLRP is equivalent to their being affiliated. See Milgrom and Weber (1982)
for a detailed discussion of affiliation.

In my model, if the conditional densities of adjusted volume fµ̂λ|µ have the MLRP then
higher values of adjusted volume µ̂λ imply MLR improvements in the risky asset payoff.
Recalling that µ̂λ can be written as a linear combination of the fundamental and supply,

µ̂λ = µ− ασ2
ε

λ
Z, this implies that for a given realization of supply Z, both the informed and

uninformed experience an MLR improvement in response to an increase in the fundamental
µ; their beliefs react in the same direction to fundamentals. I provide more detail for this
result below when discussing implications for investor demand.

Since adjusted volume µ̂λ is not one of the primitives of the model, it is helpful to have a
condition on the underlying random variables that determines whether fµ̂λ|µ has the MLRP.
The following Lemma provides an equivalent condition on the distribution fZ of the asset
supply.

Lemma 1.3.1. The conditional densities fµ̂λ|µ satisfy the (strict) MLRP if and only if log fZ
is (strictly) concave.13

An alternative, but equivalent, characterization of Lemma 1.3.1 is that fµ̂λ|µ satisfies
the MLRP if and only if the distribution of asset supply is strongly unimodal.14 Requiring

12Eeckhoudt and Gollier (1995) provide a proof, as well as an example that satisfies FOSD but not MLR.
See also Chapter 1.C of Shaked and Shanthikumar (2007) for further discussion of the MLR order.

13An (1998) and Bagnoli and Bergstrom (2005) discuss logconcavity and related properties.
14A density on the real line is unimodal if for all K > 0, the set {x ∈ R|f(x) ≥ K} is convex. A density

is strongly unimodal if its convolution with any other unimodal distribution is unimodal. If a distribution is
strongly unimodal then it is unimodal, but the converse is not true.
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a logconcave distribution rules out fat-tailed noise distributions (Karlin, 1968, Proposition
7.1.4) as well as both multimodal distributions and unimodal ones that are not strongly
unimodal. Counterexamples to logconcavity (and thus the MLRP) need not be pathological.
The normal mixture examples used in this paper to break the MLRP can be thought of
as a world with higher-order uncertainty: noise trade is typically drawn from a normal
distribution with, say, a mean of one, but with some small probability it is drawn from
a distribution with a much higher mean, in which case noise traders flood with market
with a large number of shares. Similarly, neither lognormal nor binomial distributions are
logconcave. Even if one restricts attention to unimodal distributions with “nice” intuitive
properties, logconcavity does not necessarily follow. Given a (bounded) distribution for the
underlying state µ, Chambers and Healy (2009) exhibit a unimodal, symmetric, mean-zero
error term (the analogue to supply in my model) and a range of signals over which posteriors
deteriorate in the sense of FOSD.

In Figure 1.2(a), I plot the posterior beliefs about µ for increasing realizations of adjusted
volume µ̂λ when distributions are normal and therefore the MLRP is satisfied. The solid line
corresponds to the lowest realization of µ̂λ, followed by the dashed line, and then the dotted
line. Notice that higher signal realizations correspond unambiguously to “higher” posterior
distributions. On the other hand, if the supply distribution Z is, say, a bimodal mixture
of normals, then signals do not have the MLRP. Figure 1.2(c) plots the analogous poste-
rior beliefs in such an economy for increasing realizations of µ̂λ. In this case, the posterior
distribution corresponding to the highest signal (dotted line) is actually “lower” than the
other two, which illustrates the fact that once signals fail to have the MLRP, the uninformed
posterior beliefs do not necessarily move in the “correct” direction when µ changes.

Moving beyond probability assessments, it should be apparent that the way in which
beliefs react to signals has implications for the way in which agents trade in response to
signals. An upward shift in an asset’s payoff distribution (for instance, an FOSD improve-
ment) has both substitution and income effects in general (though income effects are absent
with exponential utility). However, the signs and magnitudes of the effects vary, so the
overall effect on demand is ambiguous without adding further restrictions on either utility
functions or random variables.15 To obtain clear comparative statics, one must restrict the
class of upward shifts considered. As first noted by Landsberger and Meilijson (1990), MLR
improvements are sufficient for all nonsatiated investors to demand a greater quantity of
the risky asset in a single-risky-asset portfolio problem. Athey (2002, Lemma 5) proves the
stronger result that MLR shifts are in fact necessary and sufficient for any nonsatiated in-
vestor to rebalance her portfolio in the expected direction regardless of the price of the risky

15It is a common misconception that FOSD improvements in a risky asset are sufficient for increased
demand. As first pointed out by Fishburn and Porter (1976), this is not true without further restrictions on
the utility function. Note that despite the lack of wealth effects, FOSD is not sufficient even for exponential
utility. Fishburn and Porter (1976), Kira and Ziemba (1980), Cheng, Magill, and Shafer (1987), and Hadar
and Seo (1990) provide conditions on utility functions that guarantee the “expected” comparative statics
results for stochastic dominance shifts in various formulations of the portfolio problem.



14

7 8 9 10
Μ

0.2

0.4

0.6

0.8

1.0

f
Μ Μ

`

(a) Beliefs (with MLRP)

15 20
XU

1

2

3

4

5

P

(b) Uninformed demand (with MLRP)

7 8 9 10
Μ

0.2

0.4

0.6

0.8

f
Μ Μ

`

(c) Beliefs (without MLRP)

-6 -4 -2 2 4 6
XU

6

7

8

9

10

11

P

(d) Uninformed demand (without MLRP)

Figure 1.2: Plots of uninformed demand curves for increasing realizations of µ̂λ, along with
the associated posterior beliefs. The lowest realization of µ̂λ is represented by the solid
line, next highest by the dashed line, and highest by the dotted line. For comparability, in
the plots of beliefs the prior fµ is included as the light gray line. In panels (a) and (b),
η = 1, µZ = 1, while in panels (c) and (d), η = 8/10, µZ1 = 1, µZ2 = 4. Other parameters are
the same: β = 1, µ = 8, σµ = 1/2, σZ = 1/2, σε = 1/2, α = 1.
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asset. In other words, requiring the MLRP is equivalent not only to requiring that beliefs of
both types respond in the same direction to changes in µ, but more importantly that their
demands move in the same direction, regardless of the price that prevails in the market.

The intuition for why an MLR shift increases demand is straightforward. In short, it
moves probability mass from bad (high marginal utility) states to good (low marginal utility)
states and does so in such a way that the worst states lose the most mass and the best states
gain the most most mass.16 Regardless of risk preferences, any agent will desire to hold more
of an asset that undergoes such an improvement. The following heuristic proof may help
clarify. Suppose that the conditional densities of adjusted volume, fµ̂λ|µ have the MLRP and
consider a small increase in adjusted volume from m̂ to m̂+ ∆m̂. The conditional density of
the fundamental µ changes from fµ|µ̂λ(m|m̂) to fµ|µ̂λ(m|m̂+ ∆m̂). Using a first-order Taylor
expansion, the new density can be written

fµ|µ̂λ(m|m̂+ ∆m̂) ≈ fµ|µ̂λ(m|m̂) +
∂fµ|µ̂λ(m|m̂)

∂m̂
∆m̂

= fµ|µ̂λ(m|m̂)

[
1 +

∂fµ|µ̂λ (m|m̂)

∂m̂

fµ|µ̂λ(m|m̂)
∆m̂

]
.

Therefore, the new conditional density is the original one corresponding to the lower signal
multiplied by a factor that scales it up or down depending on whether the local likelihood

ratio `(m|m̂) :=
∂fµ|µ̂λ

(m|m̂)

∂m̂

fµ|µ̂λ (m|m̂)
is greater or less than zero. The MLRP implies that `(m|m̂) is

increasing in m, and it is straightforward to show that
∫
R `(m|m̂)fµ|µ̂λ(m|m̂) dm = 0. Hence

there exists some state m0 below which the new density subtracts mass (`(m|m̂) < 0) and
above which it adds mass (`(m|m̂) > 0); moreover, the further to the left of m0 one moves,
the more mass is removed (as a proportion of the original mass) and the further to the right
one moves, the more mass is added. The worst states (low µ) lose the most mass and the best
states (high µ) gain the most mass. This makes the asset unambiguously more attractive
for any investor who prefers more to less, regardless of their risk preferences.

Consider again an economy in which signals have the MLRP. Figure 1.2(b) illustrates
the uninformed demand functions corresponding to the beliefs in Figure 1.2(a). Notice that
demand shifts outward at every price when signals increase. Conversely, as illustrated in
Figure 1.2(d), if signals do not have the MLRP then uninformed demand may not shift
outward at every price. In that case an increase in signal can redistribute probability mass
in an essentially arbitrary way and therefore can decrease demand at certain price levels.
As seen in Figure 1.2(c), increasing the signal does not induce MLR (or even FOSD) shifts
in the posterior, and therefore uninformed demand does not move in the same direction as
informed demand with changes in the fundamental µ.

16For instance, consider a risky asset with two-point support. Moving probability mass from the low state
to the high state is an MLR improvement.
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Up to now, I have said nothing of market clearing, but have merely described how agents
react to signals, holding all else fixed. However, it should be unsurprising to learn that since
the MLRP guarantees that the uninformed react in the “correct” direction to signals, it
also guarantees that the market-clearing price reacts in the correct direction. To understand
why this is, it may be helpful to first think about a model where there are no uninformed
types. Consider an economy populated by only informed investors and noise traders. In
this case, price always reacts in the expected direction. If the fundamental µ increases then,
since changes in µ represent MLR shifts under the informed information set, the informed
investors demand a greater quantity of risky asset at every price; therefore, in order to
clear the market the equilibrium price must increase with µ, holding supply Z constant.
Conversely, an increase in supply Z means that the informed must accommodate a greater
number of shares at any level of the fundamental µ, so price must decrease in Z for fixed µ.

Now consider the same thought experiment of making a small change to the fundamental
µ or supply Z but introduce uninformed investors who try to infer µ. If µ increases, then
the informed demand curve still shifts outward at every price. The uninformed, on the
other hand, do not observe µ, only a noisy signal in the form of the adjusted volume µ̂λ.

17

Since the uninformed demand does not always shift outward with higher signals, it follows
that the aggregate demand will not necessarily shift outward either. As such, higher signals
(corresponding, for instance, to higher realizations of µ) will not necessarily correspond to
higher prices. The only way to guarantee a monotone price function for any prior fµ is to
impose the MLRP for the signal distribution fµ̂λ|µ so that uninformed demand, and hence
aggregate demand, shifts in the same direction as the fundamental.

1.4 General results

1.4.1 Uninformed demand and the information content of prices

In rational expectations models, price affects uninformed investor demand in multiple ways.
First, a change in price will cause uninformed investors to modify their demand due to a
standard substitution effect. Secondly, since price conveys a signal about the fundamental,
there is an information effect: if higher prices signal higher fundamentals, uninformed de-
mand will increase with price. In the standard model, all prices are equally informative, and
equilibrium demand curves for the uninformed slope down. In other words, the substitution
effect of an increase in price dominates the information effect. However, this depends on the
joint distribution of fundamentals and price. In general, conditional moments of fundamen-
tals will vary nontrivially with the price level. For certain regions of price, the information
effect may dominate, leading to backward-bending demand. In such regions price responds

17Note that here I am simply endowing the uninformed with the signal µ̂λ and considering how their
demand changes; there is no explicit learning from price. Proposition 1.4.2 below implies that doing so does
not change the results.
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abruptly to small changes in the fundamental, which can be interpreted as a price crash or
jump.

Other papers in the literature generate backward bending demand in asymmetric infor-
mation models, but must introduce other features, such as hedgers who follow strategies
that are nonlinear in price (Gennotte and Leland, 1990), uncertainty over the number of
informed traders (Romer, 1993), or borrowing constraints for informed types (Yuan, 2005,
2006). Here, the effect arises for purely informational reasons. In this sense it is complemen-
tary to the model proposed by Barlevy and Veronesi (2003). They consider a single-asset
noisy RE model with risk-neutral traders who are subject to a constraint on position size
(otherwise price would always be fully-revealing) and in which the fundamental follows a
two-point distribution. While my model differs slightly from theirs, Proposition 1.4.1 below
suggests the reason that they are able to generate crashes: any two-point distribution is
not logconcave, and therefore uninformed demand can appear to “overreact” to information
about the fundamental.
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Figure 1.3: Panel (a) plots uninformed demand (solid line), informed demand assuming µ
equals its unconditional mean (dotted line), and overall aggregate demand (dashed line).
Panel (b) shows price function for this economy as a function of µ̂λ. Parameters are: β =
9/10, η = 1, λ = 1/10, µ1 = 1, µ2 = 6, σµ = 1/5, µZ = 1, σZ = 1/4, σε = 1/2, α = 1.

To illustrate a price crash in my model, consider the normal mixture setting described
above in which the mixing parameter for the supply distribution satisfies η = 1 so that
only the fundamental µ is non-normal. Lemma 1.3.1 implies that the MLRP is satisfied
and therefore by Proposition 1.4.2 below, I am justified in treating uninformed demand as
a function purely of price. Figure 1.3(a) shows the uninformed demand curve (solid), along
with the informed demand (dotted), and aggregate demand (dashed). Uninformed demand
is clearly backward-bending. For “intermediate” prices, the information effect dominates
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the substitution effect, and demand rises with price. However, once price is sufficiently high
or low, the uninformed are again relatively certain about the state of the world, and the
demand curve is downward-sloping. This fits with the intuition that an “extreme” price is
more informative than an intermediate price: when price is very high or low, small changes
have mostly substitution effects.

Backward-bending uninformed demand can lead to a price function that is particularly
steep over narrow regions of fundamentals. In Figure 1.3(b), I plot the price function for the
same economy as the demand functions in Figure 1.3(a). Notice that for values of adjusted
volume µ̂λ near 1.75 small shocks can cause large changes in price. Such extreme price
reactions to small disturbances to fundamentals can be interpreted as crashes or jumps.

The example above is an illustration of the following result.

Proposition 1.4.1 (Backward-bending demand). Assume that the distribution of adjusted
volume given the fundamental fµ̂λ|µ has the strict MLRP and that the price function is
differentiable.18

• If there exists m̂ < m̂′ such that for µ̂λ ∈ [m̂, m̂′] the price function satisfies ∂Pλ
∂m̂

> 1,
then uninformed demand slopes up for prices in the interval [Pλ(m̂), Pλ(m̂

′)].

• If log fµ is concave, then ∂Pλ
∂m̂
≤ 1 and uninformed demand is everywhere downward-

sloping.

Recalling that the adjusted volume can be written µ̂λ = µ − ασ2
ε

λ
Z, one can interpret

Proposition 1.4.1 as a condition on how strongly price reacts to a change in the fundamental
µ. If there is a region of fundamentals in which prices “overreact” in the sense of moving
more than dollar-for-dollar with µ, then that coincides with the region in which uninformed
demand is backward-bending. This makes sense intuitively: A sufficiently strong information
effect means that a change in price is self-reinforcing since the uninformed demand moves in
the same direction as the price. A sufficient condition for downward-sloping demand is that
the distribution of the fundamental is logconcave. This essentially guarantees that small
changes in µ̂λ are not “too informative,” in the sense of moving the posterior expectation of
µ by more than the change in µ̂λ itself.

In this section, I have assumed that fµ̂λ|µ has the MLRP. If it does not, then as discussed
later in Proposition 1.4.2, in general, direct observation of µ̂λ provides information not
contained in price, and price does not uniquely determine uninformed demand. Thus, if one
naively plots uninformed demand along with the associated equilibrium price, the result can
appear multivalued, as in Figure 1.4(a). It is important to note, however, that for a given
realization of adjusted volume, equilibrium demand is still uniquely determined since (from
Proposition 1.4.2) observation of adjusted volume allows uninformed investors to determine
the region of the price function in which the current equilibrium lies. In this case, as Figure

18More generally, if the price function is not everywhere differentiable, the Proposition can be stated in
terms of whether the function m̂− Pλ(m̂) is increasing or decreasing in m̂.
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1.4(b) illustrates (and as discussed in detail in Section 1.4.2), changes in fundamentals can
cause price to be decreasing in adjusted volume over certain regions.
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Figure 1.4: Panel (a) plots uninformed demand (solid line), informed demand assuming µ
equals its unconditional mean (dotted line), and overall aggregate demand (dashed line).
Panel (b) shows price function for this economy as a function of µ̂λ. Parameters are: β =
1, η = 8/10, λ = 1/10, µ = 5/4, σµ = 1/2, µZ1 = −1, µZ2 = 2, σZ = 1/2, σε = 1/2, α = 1

Unlike other models in the literature, in my setting crashes and jumps arise without
adding nonlinear hedgers, portfolio constraints, or additional uncertainty. All that is required
is that in some regions, the uninformed learn at a particularly fast rate as price changes.
This suggests that crashes may arise naturally for purely informational reasons, as long as
there is asymmetric information in the economy.

1.4.2 The value of observing signed volume

In the standard model the asset price provides all possible information that the uninformed
can glean from public sources, and observing (signed) volume, aggregate order flow, or any
public quantity other than the current price provides no additional information.19 Blume,
Easley, and O’Hara (1994) and Schneider (2009) study more complex models in which ob-
serving trading volume is useful for investors. Blume, Easley, and O’Hara (1994) consider
a dynamic model in which the precision of some traders’ signals is random. However, they
assume that investors are not able to condition on current price, only past prices. Combined
with observations of the current price, observing volume provides a way to learn about the
unknown signal precisions. Schneider (2009) studies an otherwise-standard static model but
assumes that the correlation between investors’ signals is random; trading volume allows

19This is not necessarily true in models in which traders have diverse information such as Diamond and
Verrecchia (1981). In those models, if traders can condition on volume and the sign of their own trade, then
a fully-revealing equilibrium exists. See Blume, Easley, and O’Hara (1994) for a heuristic proof.
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them to determine whether they are in the high correlation or low correlation state. Two
other related papers in the technical analysis literature are Brown and Jennings (1989) and
Grundy and McNichols (1989), both of which study three-date dynamic models in which
past prices are informative when used in conjunction with the current price.

While these other studies require introduction of either uncertainty about some quantity
other than fundamentals or additional rounds of trade, the following proposition shows that
a similar result can hold even when investors need only to learn about the asset payoff, and
there is no uncertainty over information quality or diversity.

Proposition 1.4.2 (Information content of adjusted volume).

(i) If the conditional distribution of adjusted volume given the fundamental, fµ̂λ|µ, has the
strict MLRP, then the price function is strictly increasing in adjusted volume µ̂λ and
observing Pλ provides the same information to the uninformed as observing µ̂λ.

(ii) If fµ̂λ|µ does not have the strict MLRP, then observing µ̂λ provides more information
than Pλ in the following sense: depending on the distribution of the fundamental, µ,
there may exist realizations m̂′ 6= m̂ of µ̂λ for which Pλ(m̂

′) = Pλ(m̂).

The first result in Proposition 1.4.2 is equivalent to the fact that with the MLRP, the
price function is strictly increasing in adjusted volume µ̂λ. In that case, each realization of
Pλ is associated with a unique value of µ̂λ, and price provides exactly the same information
as direct observation of adjusted volume µ̂λ. An increase in fundamental µ MLR-improves
the investment opportunity set for both types which increases the aggregate demand and
therefore increases the price. Figure 1.5(a) illustrates a monotone price function for the
normal mixture setting introduced above in which the mixing parameter for the fundamental
satisfies β = 1 so that only supply is non-normal.

The second result in Proposition 1.4.2 says that without the MLRP, there may exist
prices that are consistent with two or more distinct realizations of adjusted volume µ̂λ.
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If the distribution of µ̂λ does not have the MLRP then one cannot guarantee that both
informed and uninformed types react in the same direction (as in Figure 1.2(d) above) and
thus that the price moves in the same direction. Nonmonotonicity of the price function may
seem surprising at first; however, in light of the discussion in Section 1.3 it is in some sense
obvious. Informed and uninformed demand may shift in opposite directions in response to
increases in the fundamental µ, and over certain regions the uninformed reaction may be
sufficiently strong to decrease the price. In those situations, the price is no longer a sufficient
statistic for learning about µ, and the adjusted volume allows the uninformed to distinguish
between the various regions of the price function. This is illustrated in Figure 1.5(b) in which
the price function is non-monotone, and there are some realizations of price that correspond
to three possible values of µ̂λ.

20Note that if the uninformed were able to observe only the price, it follows from Lemma 1.6.3 that a
µ̂λ-measurable equilibrium would fail to exist in these situations.
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Nonmonotonic price functions also arise in asymmetric information models with feed-
back effects due to endogenous firm investment decisions (Dow and Rahi, 2003) or regula-
tory intervention (Bond, Goldstein, and Prescott, 2010). For instance, in Bond, Goldstein,
and Prescott (2010), a given price may correspond to both a low-fundamental, positive-
intervention state as well as a high-fundamental, no-intervention state. In my model, cash
flows are exogenous, but there is a similar explanation with respect to the fundamental and
noisy supply. Recall that in the normal mixture setting, one can think of the noisy supply
realization as coming from a two-step procedure: first choose the ‘high’ or ‘low’ supply dis-
tribution, and then draw the supply from that distribution. In such a situation, the same
price can arise in three distinct states. As the adjusted volume moves from ‘high’ values to
‘low’ values, the uninformed become become relatively confident that the low realization can
be attributed to a draw from the ‘high mean’ supply distribution. Hence, they are willing to
accommodate more of the asset than if they believed that the low realization was due to a
low value for the fundamental µ. Hence, depending on the distribution of supply, a relatively
low realization of µ̂λ may actually be good news.
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(b) Non-monotone price function

Figure 1.5: Plots of equilibrium price functions. In panel (a), µZ2 = 3, σZ = 1, while in
panel (b), µZ2 = 5, σZ = 1/2. Other parameters are the same: β = 1, η = 9/10, µ = 8, σµ =
1, µZ1 = 0, σε = 1/2, α = 1, λ = 1/10.

As the empirical analogue of adjusted volume is net order flow, this provides a potential
explanation of the value of observing order flow: it contains information about aggregate
demand that is not contained in price alone. This is reminiscent of the point made by
Gallmeyer, Hollifield, and Seppi (2005) that the trading process itself can reveal information
about the trading motive of one’s counterparties. The results presented here are complemen-
tary in that their model focuses on learning effects with regard to unknown preferences and
the consequences for future resale prices, while my model focuses on learning effects with
regard to cash flows in a static model.
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The result that adjusted volume conveys incremental information is similar in spirit to
those of Blume, Easley, and O’Hara (1994) and Schneider (2009). In all cases, observation
of a non-price statistic allows uninformed investors to more effectively learn from prices by
making a previously non-invertible price function invertible.21 However, my result makes
clear that it is not necessary to add additional uncertainty to the model to achieve this.
Rather, what is required is to change the distribution of uncertainty in the economy in such
a way that the price function is no longer invertible. Whether one achieves this by, say,
making signal quality random or simply changing the underlying probability distributions is
immaterial. What is key is that the change makes the price function nonmonotonic in the
fundamental.

1.4.3 The value of acquiring information

In the standard model as the number of informed investors increases, price becomes more
informative, and the uninformed are better able to free-ride on the informed types’ informa-
tion. It follows that the value of observing the fundamental µ decreases with the number
of informed. In other words, information acquisition is a strategic substitute: as more in-
vestors learn about µ, the incentive for others to do the same decreases. It has been an open
question whether the opposite case (strategic complementarity in information acquisition) is
also possible in an otherwise-standard noisy RE model.

In these models, an increase in the number of informed investors has two competing
effects. It typically drives the asset price closer to the fundamental in each state (price
effect), but it also changes the equilibrium allocations (share effect). The price effect tends
to reduce the total surplus that both types enjoy at the expense of the noise traders, and it
reduces the share of that surplus taken by the informed investors. On the other hand, the
share effect requires that in equilibrium the remaining uninformed hold less advantageous
positions in the asset in order to accommodate the increased number of informed investors.
In the standard model with normal distributions, the price effect is sufficiently strong to
offset the share effect. Price is responsive to information, which causes the price effect to
dominate the share effect and make information acquisition a strategic substitute.

In my model, I can characterize the price and share effects of a change in the fraction of
informed, λ, directly.

Lemma 1.4.3 (Utility gain). Assume that the price function is differentiable with respect
to m̂ and λ. The derivative of the utility gain function CE with respect to the number of

21I do not mean invertible in the sense of fully-revealing. Here, invertible means that the price is monotonic
in some (possibly noisy) aggregate of the information of all traders.
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informed λ can be written as the sum of a price effect and a share effect

CE′(λ) = −
∫∫

R2

(
XI(m,Pλ(m̂))eI −XU (m̂, Pλ(m̂))eU

) [
∂Pλ
∂m̂

m−m̂
λ + ∂Pλ

∂λ

]
fµ̂λ|µfµ dmdm̂︸ ︷︷ ︸

Price effect

−
∫∫

R2

(
m− Pλ(m̂)− ασ2

εXU (m̂, Pλ(m̂))
) [

∂XU
∂m̂ + ∂XU

∂p
∂Pλ
∂m̂

]
m−m̂
λ eUfµ̂λ|µfµ dmdm̂︸ ︷︷ ︸

Share effect

,

(1.5)

where eI and eU are functions defined in the proof in Section 1.6.2.

As alluded to above, the interpretation of Proposition 1.4.3 is that a change in the
number of informed agents affects the equilibrium in two ways. First, price changes in each
state of the world both because the relative number of both types changes, and because
the remaining uninformed hold different information relative to the previous world in which
there were fewer informed investors. This is represented by the price effect term in eq. (1.5).
Second, holding the price constant, the remaining uninformed investors must accommodate
a larger number of informed types in each state of the world. This is represented by the
share effect term in eq. (1.5) The first effect affects both the informed and uninformed. On
the other hand, the second effect only affects the uninformed, since the informed investors’
demand depends on µ̂λ only indirectly through the price.

The next proposition gives sufficient conditions for signing the share effect.

Proposition 1.4.4 (Sign of the share effect).

• If ∂Pλ
∂m̂
≤ 1 then the share effect is positive.

A price that moves less than dollar-for-dollar with fundamentals makes the share effect
positive. Increasing λ, the fraction of informed investors, increases the correlation between µ
and µ̂λ, making µ̂λ “higher when µ is high” and “lower when µ is low” (compared to before
the increase in λ). The equilibrium risky asset holding of the informed and noise traders is
given by λ

ασ2
ε

(µ̂λ − Pλ(µ̂λ)) . As long as ∂Pλ
∂m̂
≤ 1, this expression will be increasing in µ̂λ and

hence the holdings of the informed and noise traders will also tend to be higher when µ is
high and lower when µ is low. As the uninformed investors must hold the opposite position,
it follows that an increase in λ causes the uninformed investors’ equilibrium allocation of
the risky asset to be relatively smaller when µ is high and relatively higher when µ is low
in order to accommodate the greater number of informed investors. As their positions move
in the opposite direction of the fundamental, this increases the ex-ante benefit of becoming
informed.

I have been unable to sign the price effect in general, but numerical experimentation
suggests that the MLRP and downward-sloping demand is sufficient to guarantee that it is
negative and that it dominates the share effect. To understand why, it is helpful to refer
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back to the discussion in Section 1.3. As explained there, with the MLRP, the uninformed
investors’ demand reacts in the same direction as the informed to changes in the fundamental
µ. An increase in the number of informed λ makes the signal µ̂λ more highly correlated with
the fundamental µ, and therefore makes uninformed demand more highly correlated with
informed demand. This drives the price closer to the fundamental (on average), reducing
the profit that the informed investors make from their information.

More precisely, it is straightforward to show that under the MLRP assumption, increases
in the fraction informed, λ, improve the accuracy (sometimes also called effectiveness) of the
signal µ̂λ. Accuracy was introduced by Lehmann (1988) in the context of statistical decision
theory as a generalization of Blackwell (1951, 1953) sufficiency, which is another common cri-
teria for comparing signals. Persico (1996, 2000) introduced the use of accuracy in economic
contexts. Blackwell sufficiency was the definition of informativeness used by Grossman and
Stiglitz (1980). Unfortunately, many signals cannot be compared using Blackwell sufficiency.
Accuracy allows the comparison of many more signals, as discussed by Lehmann (1988). It
also nests Blackwell sufficiency; if one signal is sufficient for another, then it is also more
accurate.

The overall sign of the utility gain expression depends on the sign and strength of the two
effects discussed above. As noted above, I have been unable to determine general conditions
under which it is either increasing or decreasing. I present here some simple numerical exam-
ples to illustrate situations in which, contrary to the standard result, information acquisition
is a strategic complement.

Example 1.4.1 (Failure of the MLRP is not necessary for complementarity). Figure 1.6(a)
plots the certainty equivalent gain of becoming informed as a function of λ for a normal
mixture example in which η = 1, so that the fundamental is not symmetric but supply is
symmetric and normally distributed. The parameter values are those used in the backward-
bending demand example in Section 1.4.1 above. Notice that the plot is increasing until λ
reaches about 0.05; over this region, information acquisition is a strategic complement. Due
to the normality of supply, this example satisfies the MLRP.

Example 1.4.2 (Failure of downward-sloping demand is not necessary for complementarity).
Figure 1.6(b) plots the gain from becoming informed when the fundamental is distributed
uniformly on [0, 10], and supply is drawn from a binomial distribution on {−1, 1} in which
both realizations are equally likely. The binomial distribution for supply breaks the MLRP.22.
In particular, for λ ≤ 1/5, the equilibrium is fully revealing, while for λ > 1/5, it is only
partially revealing. This provides a stark illustration that without the MLRP, changes in
the fraction informed can have surprising effects on price informativeness.

22A two-point distribution for supply is not consistent with the standing assumption that all random
variables are continuously distributed, but a similar result holds if one approximates the binomial distribution
with a continuous, ‘U’-shaped, distribution centered at zero and having peaks at −1 and 1.
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Figure 1.6: Panel (a) plots the certainty equivalent gain CE(λ) from becoming informed as
a function of λ for the normal mixture model with parameters β = 8/10, η = 1, µ1 = 1, µ2 =
4, σµ = 1/2, µZ = 1, σZ = 1/2, σε = 1/2, α = 1.. Panel (b) plots the certainty equivalent
gain from becoming informed when the fundamental µ follows a U [0, 10] distribution, and
supply a binomial {−1, 1}. Other parameters are σ2

ε = α = 1.

There is a small recent literature investigating situations in which information acquisition
is a strategic complement. The model closest to my own is that of Barlevy and Veronesi
(2000). They study a noisy RE model with risk-neutral investors in which the fundamental
follows a two point distribution, and supply an exponential distribution. They claim that
the change in distributions leads to complementarity in their model, but as pointed out
by Chamley (2008) they compute the value of information in a non-standard way. After
correcting this, information acquisition remains a strategic substitute. Barlevy and Veronesi
(2008) resurrect their previous model by appealing to positively correlated fundamentals
and supply. Effectively, it appears that introducing correlation generates complementarity
by breaking the MLRP. Barlevy and Veronesi (2008) exhibit an economy in which increases
in price induce downward MLR shifts in the asset payoff. They note that if one allows
the fundamental and supply to be correlated in the standard Grossman and Stiglitz (1980)
model, strategic complementarity arises if the signal from price (i.e., the adjusted volume
µ̂λ) is negatively correlated with the fundamental.23 In a jointly-normal world, this is exactly
when the MLRP does not hold. From a practical standpoint, however, if noisy supply is
meant to represent trade unrelated to fundamentals, it is not clear that a nonzero correlation
is an appropriate modeling choice. On the other hand, if noise trade is motivated by liquidity
needs, then a negative correlation (traders bail out of the asset when fundamentals are poor

23Note that this is consistent with the positive correlation between the fundamental µ and supply Z. Since
Z enters µ̂λ with a negative sign, it induces a negative correlation between µ and µ̂λ as long as the correlation
with µ is sufficiently positive.
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and vice versa) may better fit our intuition.
Ganguli and Yang (2009) demonstrate strategic complementarity in a CARA-normal

model in which investors can become informed about both the fundamental and aggregate
supply of the asset. When used in concert with the information in price, supply information
is valuable since it allows investors to more precisely ascertain whether the prevailing price
is due to the fundamental or merely a supply shock. With two dimensions of information,
investors can coordinate on an equilibrium in which information acquisition is a strategic
complement and price becomes less informative when the number of informed investors in-
creases. If an additional trader becomes informed, the weight on the fundamental in the price
increases. The increased weight on the fundamental makes all other investors trade more
intensely on their supply information, and if this effect is sufficiently strong, it can swamp
the increased informativeness from the increased weight on the fundamental. Manzano and
Vives (2010) generalize the Ganguli and Yang (2009) setting to permit correlation between
signal errors and demonstrate that strategic complementarity in the information market is
not robust, in that such equilibria are unstable in the multi-signal CARA-normal setting.

Other authors generate complementarity in models that differ more substantially from
the one presented here. Chamley (2007) solves a sequential-trade model in which investors
have short horizons. In this setting, an increase in the number of informed investors drives
today’s price closer to the fundamental, but can also make tomorrow’s price more uncertain.
If the second effect is sufficiently strong, information acquisition can be a strategic comple-
ment. Veldkamp (2006b) introduces an information production sector into an overlapping
generations version of the standard Grossman and Stiglitz (1980) model. The endogenous
price of information generates complementarity in information acquisition and can lead to
‘frenzies’ in the information market in which many investors seek to buy the same informa-
tion. The information market is such that it costs the provider nothing to distribute the
information once it has been discovered, so to maximize profits, she reduces the price of
information as demand increases to deter entry by competitors. Such price reduction can
feed back and further increase demand for information. In recent work, Garćıa and Strobl
(2010) show that relative wealth concerns can generate complementarities in information
acquisition.

Despite these advances, to my knowledge, no one has yet demonstrated strategic com-
plementarity in a standard static noisy REE model. Here, I have shown that even a simple
model can generate the effect for purely informational reasons.

Implications for information market equilibria

Here I take up briefly the question of equilibrium in the information market, which was
deferred from Section 1.2.1

In the examples presented in Figure 1.6 above, one can determine the equilibrium value
of λ for various values of c by drawing a horizontal ‘cost’ line at level c. Interior equilibria are
points at which the cost line intersects the certainty equivalent gain, while corner equilibria
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λ = 0 or 1 occur when CE(0) < c or CE(1) > c, respectively. In both examples in Figure
1.6, there are multiple equilibria in the information market. First, there is a zero-information
equilibria in which no one finds it profitable to purchase information. Secondly, there are
two interior equilibria24 in which a strictly positive number of agents gather information.
This example is an illustration of the following Corollary to Proposition 1.4.4.

Corollary 1.4.5.

• If information acquisition is a strategic substitute for all λ ∈ (0, 1), then the equilibrium
in the information market is unique.

• If information acquisition is a strategic complement for λ ∈ (0, k) for some constant
k ∈ (0, 1), then there may exist multiple equilibria in the information market: for
certain values of c, there exist both an equilibrium in which no investors buy information
and interior equilibria in which a strictly positive number of investors buy information.

Since complementarity can generate multiple equilibria, my model, as those of Veldkamp
(2006b) or Chamley (2007), provides a potential explanation for time-varying price informa-
tiveness. If markets can jump between zero-information and positive-information equilibria,
then the information content of price can change abruptly over time.

1.4.4 The relation between disagreement and returns

A number of empirical papers document a negative relation between investor disagreement
and future returns (see, e.g., Diether, Malloy, and Scherbina, 2002; Goetzmann and Massa,
2005).25 The “difference of opinions” (abbreviated DO) model of Miller (1977) in which
investors “agree to disagree” and do not condition on prices implies that if investors are
short-sale constrained then stocks about which there is more disagreement will tend to have
higher valuations (and hence lower returns). The reason is that the most pessimistic investors
are prevented from taking negative positions. Chen, Hong, and Stein (2002) build on the
Miller (1977) insight and provide further empirical support. Accordingly, based on these
models, the documented negative relation between disagreement and returns is often taken
as evidence that investors do not fully condition on prices

Banerjee (2010) points out the difficulty of distinguishing RE and DO models in a static
setting with no short-sale constraints. Static RE and DO models can be made observationally
equivalent by appropriate parameter choices. To distinguish the hypotheses, Banerjee (2010)
considers how disagreement relates to the dynamic properties of returns and trading volume
in a setting in which investors care about future resale prices. His empirical results support
the hypothesis that investors do in fact condition on prices on average.

24Only the interior equilibria at which CE is downward-sloping is stable in the tântonnement sense.
25There is some contrary evidence from Doukas, Kim, and Pantzalis (2006), but most studies find a

negative relation.
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In my model, with only two classes of investors, disagreement can be defined as the
cross-sectional variance of beliefs about D at t = 1 and is given by

λ(1− λ)(µ− E[µ|µ̂λ])2.

As the next proposition shows, if return distributions are sufficiently negatively skewed or the
relation between conditional volatility and excess returns is sufficiently weak, nonnormality
enhances the difficulty of distinguishing RE and DO in a static setting.

Proposition 1.4.6. The unconditional covariance between investor disagreement and future
returns is given by

Cov(D − Pλ, λ(1− λ)(µ− E[µ|µ̂])2) = λ(1− λ)

(
Cov (E[µ− Pλ|µ̂λ],Var[µ− Pλ|µ̂λ])

+ E [Skew[µ− Pλ|µ̂λ]]
)
.

Proposition 1.4.6 shows that the relation between disagreement and returns is given
by the sum of two terms. The first is the covariance between conditional volatility and
expected returns, which intuition typically suggests should be positive.26 Holding the fraction
of informed λ constant, greater disagreement is associated with greater uncertainty about
fundamentals, which leads to a higher risk premium. The second term is the expected
conditional skewness of the excess return µ − Pλ.

27 This reflects the fact that for, say, a
positively skewed distribution, the realizations of µ associated with the greatest degree of
disagreement tend to be those that are above the mean.

The following Corollary emerges immediately from Proposition 1.4.6 and implies that the
existing empirical evidence of a negative unconditional relation between disagreement and
returns is not necessarily inconsistent with a fully-rational noisy RE model.

Corollary 1.4.7. If the covariance between excess returns and conditional volatility,
Cov (E[µ− Pλ|µ̂λ],Var[µ− Pλ|µ̂λ]) , or the expected conditional skewness, E [Skew[µ− Pλ|µ̂λ]] ,
is sufficiently negative, then the covariance between excess returns and disagreement is neg-
ative.

Empirically, there is evidence that the conditional skewness of the market is negative.
French, Schwert, and Stambaugh (1987) document “asymmetric volatility”–the fact that
volatility tends to be higher when returns are negative. More recently, Chen, Hong, and
Stein (2001) estimate conditional skewness directly and find that it is negative for the market

26Empirically, however, Whitelaw (1994) shows that the relation is not as consistent as it is in most
theoretical models.

27For notational convenience, I refer to the third central moment of a random variable as its skewness.
The typical definition divides the third moment by the cube of the standard deviation. The nature of the
Proposition is unchanged if one uses the standard definition.
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as a whole (but is often positive for individual stocks). Furthermore, Chen, Hong, and Stein
(2001) find that stocks for which measures of disagreement, such as lagged turnover, are
highest tend to have more negatively skewed returns.

Even if one believes that conditional skewness is positive, given the conflicting evidence on
the sign of the relation between conditional volatility and returns found by French, Schwert,
and Stambaugh (1987), Glosten, Jagannathan, and Runkle (1993), and Whitelaw (1994), it
is not clear that a negative relation between disagreement and returns indicates a failure of
investors to condition on price. Corollary 1.4.7 implies that such a result can be consistent
with efficient use of the information in price, and demonstrates a heretofore unconsidered
link between higher moments and the return-disagreement relation.

1.5 Conclusion

This paper studies a standard noisy rational expectations model in the spirit of Grossman
and Stiglitz (1980) but relaxes the usual assumption of joint normality of fundamentals and
supply. Results suggest that the normality assumption is not innocuous.

I show that, in general, price-informativeness varies with the price level and learning
effects can cause uninformed investors to submit backward-bending demand curves, leading
to price jumps and crashes in response to small changes in fundamentals. If signals do
not satisfy a monotone likelihood ratio property, observation of signed trading volume may
be valuable for uninformed investors because it provides a refinement of the information
contained in price alone. Furthermore, the intuition that increasing the number of informed
traders makes it easier for uninformed investors to free-ride on their information is not always
true. The value of obtaining information can be non-monotonic in the number of informed
investors in the economy. Finally, the relation between disagreement and returns depends
on the relation between conditional expected returns and volatility and on the skewness of
fundamentals.

While the model presented is not the most general possible, the intuition should carry
over to more complex models in which investors observe diverse information, have utility
functions that are not exponential, or face an opportunity set with multiple risky assets.
The key insight is that many important comparative statics results depend on whether
investors’ beliefs and demands move in the same direction and with the comparable strength
in response to changes in fundamentals. Restricting the conditional distribution of signals by
requiring the MLRP guarantees that they do. Without such a restriction, the signs of many
important comparative statics are ambiguous. As such, I provide the first demonstration of
the importance of the MLRP for the noisy RE literature.

Overall, my results emphasize that most existing noisy RE models tend to be very special
cases that are easy to analyze, but whose conclusions are not robust to perturbations of the
economy. For the most part, the ubiquity of the standard model is due to the fact that it
is technically demanding to analyze equilibrium when price must both clear the market and
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convey information (but not be fully-revealing). The assumptions of exponential utility and
joint normality ease the technical burden significantly and lead to a tractable, elegant model.
However, a number of resulting properties that we take to be “properties of well-functioning
financial markets” may be more appropriately considered to be “properties of the normal
distribution.”
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1.6 Appendix

1.6.1 Some results on single-crossing and sign-regular functions

I collect in this Section some general results on single-crossing and sign-regular functions
that are used to prove various results in the paper. I begin with the relevant definitions.

For my purposes, a single-crossing function is defined as follows.

Definition 1.6.1 (Single-crossing). A function f : R → R is single-crossing from below if
there exists some point x0 such that x ≥ x0 implies f(x) ≥ 0. A function f is single-crossing
from above if −f is single-crossing from below.

The following two definitions are taken directly from Definitions 1.1 and 1.2 in Chapter
1 of Karlin (1968).

Definition 1.6.2 (Sign regularity). A function K : R2 → R is sign regular of order 2 (SR2)
if there exist constants κ1, κ2 ∈ {−1, 1} such that κ1K(x, y) ≥ 0 and for for any choice of
x1 < x2 and y1 < y2

κ2

∣∣∣∣K(x1, y1) K(x1, y2)
K(x2, y1) K(x2, y2)

∣∣∣∣ ≥ 0, (1.6)

where | · | represents the determinant. The function is strictly sign regular of order 2 (SSR2)
if the inequalities are strict.

The more commonly-encountered property of total positivity is a special case of sign-
regularity

Definition 1.6.3 (Total positivity). A function K : R2 → R is totally positive of order 2
(TP2) if it is SR2 and κ1 = κ2 = 1. The function is strictly totally positive of order 2 (STP2)
if it is SSR2 and κ1 = κ2 = 1.

To clarify the importance of sign regularity, recall that a conditional density fX|Y (x|y)
has the (strict) MLRP if and only if it is (S)TP2. Similarly, a utility function u has (strictly)
decreasing absolute risk aversion if and only if u′(x − y) is (S)TP2. Jewitt (1987, 1991)
discusses these and other economic applications of sign regularity.

In the following Lemma, I generalize Theorem 11.2 from Chapter 6 Karlin (1968) to
functions that are SR2. I also provide a “strong” version of the result for STP2 and SSR2

functions.

Lemma 1.6.1. Let f and K be functions mapping X×Y 7→ R for some intervals X, Y ⊂ R,
and let µ be any σ-finite measure on Y. Assume that the integral g(x) :=

∫
Y
f(x, y)K(x, y)dµ(y)

exists and is continuous in x.
If for each fixed y ∈ Y, f(x, y) is increasing in x, and either
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(a) For each fixed x ∈ X, f(x, y) crosses zero at most once, and from below, as y increases,
and K is TP2; or

(b) For each fixed x ∈ X, f(x, y) crosses zero at most once, and from above, as y increases,
and K is SR2 with κ1 = 1, κ2 = −1;

then g crosses zero at most once, and from below, as x increases. (Note that the single-
crossing “point” could in fact be an interval over which g = 0.) If the hypotheses are strength-
ened to require that f is strictly increasing in x for fixed y and either (a) K is STP2, or
(b) K is SSR2, then if g crosses zero it does so at a single point.

Proof of Lemma 1.6.1. I prove Case (b). First, consider the “weak” version of Case (b) in
which K is SR2 and f is weakly increasing in x. The proof is similar to that of the weak
version of Case (a) in Karlin (1968). Take x0 such that g(x0) = 0. It suffices to show that
for any x > x0, one has g(x) ≥ 0. By the hypothesis that f is single-crossing in y for fixed x,
it follows that there exists y0 (which will, in general, depend on x0) such that f(x0, y) Q 0

as y R y0. Now, write

g(x)

K(x, y0)
=

g(x)

K(x, y0)
− g(x0)

K(x0, y0)

=

∫
Y
f(x, y)

K(x, y)

K(x, y0)
dµ(y)−

∫
Y
f(x0, y)

K(x0, y)

K(x0, y0)
dµ(y)

=

∫
Y

(f(x, y)− f(x0, y))
K(x, y)

K(x, y0)
dµ(y) +

∫
Y
f(x0, y)

K(x, y)

K(x, y0)
dµ(y)

−
∫
Y
f(x0, y)

K(x0, y)

K(x0, y0)
dµ(y)

=

∫
Y

(f(x, y)− f(x0, y))
K(x, y)

K(x, y0)
dµ(y) +

∫
Y
f(x0, y)

[
K(x, y)

K(x, y0)
− K(x0, y)

K(x0, y0)

]
dµ(y).

(1.7)

The first equality holds since g(x0) = 0, the second simply uses the definition of g to write
out the integrals, the next-to-last equality adds and subtracts f(x0, y) in first integral, and
the final line condenses the second and third integrals in the expression.

One can now use the expression in eq. (1.7) to sign g(x). Since f is increasing in x, the

term f(x, y) − f(x0, y) in the first integral is ≥ 0, and since κ1 = 1, one has K(x,y)
K(x,y0)

≥ 0.

Thus, the first integral is ≥ 0. In the second integral, f(x0, y) Q 0 as y R y0 by the choice

of y0, and K(x,y)
K(x,y0)

− K(x0,y)
K(x0,y0)

Q 0 as y R y0 by the assumption that κ2 = −1. It follows that

the second integral is also ≥ 0. Hence, g(x)
K(x,y0)

, and therefore g(x), is ≥ 0. This completes

the “weak” version of Case (b). The “strong” version follows immediately since in that case,
the weak inequalities involving f and K that were used to sign the two integrals on the last
displayed line are strict.
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For convenience, I restate, without proof, Lemma 1 from Persico (2000).

Lemma 1.6.2 (Lemma 1 from Persico (2000)). Let Y ⊂ R be any interval. Let g : R→ R be
an increasing function, and let h : R→ R cross zero at most once and from below. Assume
that for some measure µ on Y, we have∫

Y

h(y) dµ(y) = 0.

Then, ∫
Y

g(y)h(y) dµ(y) ≥ 0.

1.6.2 Proofs

I begin with two preliminary Lemmas that will be used in the proofs of Proposition 1.2.1
and 1.2.4.

Lemma 1.6.3. If the uninformed investors can condition only in price, then any equilibrium
price function must be one-to-one in Z for each fixed realization µ = m and one-to-one in µ
for each fixed realization Z = z.28

Proof of Lemma 1.6.3. I prove that price must be one-to-one in Z for fixed µ = m. The proof
of the second result is essentially identical. Assume to the contrary that Pλ is an equilibrium
price function but that there exists some realization m such that Pλ(m, ·) is not one-to-one
in its second argument. Then there exist realizations z 6= z′ with Pλ(m, z) = Pλ(m, z

′). This
implies

0 = (1− λ)XU(P (m, z)) + λ
m− Pλ(m, z)

ασ2
ε

− z market clearing in state (m, z)

= (1− λ)XU(P (m, z′)) + λ
m− Pλ(m, z′)

ασ2
ε

− z since Pλ(m, z) = Pλ(m, z
′)

6= (1− λ)XU(P (m, z′)) + λ
m− Pλ(m, z′)

ασ2
ε

− z′ since z 6= z′

= 0 market clearing in state (m, z′),

which is a contradiction.

28Of course, one can only make such statements up to a sets of Lebesgue measure zero. As in the body of
the paper, I do not insist on such qualifications in this Section. It is straightforward but tedious to extend
all proofs to be fully rigorous with respect to such measure-theoretic details.
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Proof of Proposition 1.2.1. For clarity, I break the proof into steps. I begin by solving the
agents’ optimization problems assuming that the uninformed can condition only on the price,
and that they have conjectured some (continuously differentiable) price function satisfying
the conditions in Lemma 1.6.3 that they use for updating their beliefs. Next, I impose
market clearing and simplify the resulting expression to produce the an implicit function
that characterizes a candidate price function. There are then two cases to consider, one in
which the candidate price function satisfies the condition in Lemma 1.6.3 and one in which it
does not. I verify that when the candidate function does satisfy the condition then observing
adjusted volume provides no additional information beyond that conveyed by price alone,
which completes the proof in this case. To conclude, I show that when the candidate function
does not satisfy the conditions Lemma 1.6.3, it nevertheless remains an equilibrium price
function as long as the uninformed can condition on adjusted volume.

Fix a realization of (µ, Z) = (m, z). Consider the informed agent’s maximization problem.

max
x∈R

E[− exp{−αx(D − Pλ)}|µ = m,Pλ = p].

Since this problem is that of a CARA investor facing a conditionally normal risky asset, the
demand function is standard

XI(m, p) =
m− p
ασ2

ε

.

Next, consider an uninformed agent’s maximization problem. Assume that the unin-
formed conjecture some price function Pλ : R2 → R when computing their posterior beliefs
given the observed price p, and this function satisfies the condition in Lemma 1.6.3

max
x∈R

E[− exp{−αx(D − Pλ)}|Pλ = p].

Since ε is independent of the other random variables, I can integrate it out, rewriting the
maximization as

max
x∈R

E[− exp{−αx(µ− Pλ) +
1

2
α2σ2

εx
2}|Pλ = p].

Differentiation yields the first-order condition for uninformed demand XU(p).29 Since the
utility function is strictly concave, the first-order condition defines the global maximum.

E[(µ− Pλ −XU(p)ασ2
ε) exp{−αXU(p)(µ− Pλ) +

1

2
α2σ2

ε (XU(p))2}|Pλ = p] = 0. (1.8)

29Differentiation through the expectation is justified since the expected utility is a conditional moment
generating function of D evaluated at the point −αx, and moment generating functions are infinitely con-
tinuously differentiable in their domain of existence.
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After dividing out terms that are constant with respect to µ, I can rewrite (1.8) explicitly
as an integral ∫

R
(y − p− ασ2

εXU(p))e−αXU (p)yfµ|Pλ(y|p) dy = 0. (1.9)

My next goal is to derive an expression for the joint distribution of µ and Pλ in terms of
the distributions of the primitive random variables in order to characterize the conditional
distribution in eq. (1.9). The condition that Pλ be one-to-one for each fixed µ = w guarantees
that there exists a inverse function P−1

λ (p;w) that maps price to a unique value of supply
for each fixed w. The inverse is defined implicitly by p = Pλ(w,P

−1
λ (p;w)). Thus, using

Bayes rule and the standard transformation of random variables formula, the conditional
distribution has a density which can be written as

fµ|Pλ(y|p) =
fZ(P−1

λ (p; y))
∣∣∣ ∂∂pP−1

λ (p; y)
∣∣∣ fµ(y)∫

R fZ(P−1
λ (p;w))

∣∣∣ ∂∂pP−1
λ (p;w)

∣∣∣ fµ(w) dw
. (1.10)

The above steps characterize the uninformed investors’ information set and optimal de-
mand for a given function Pλ. Now I will impose market clearing and use eq. (1.9) to pin
down the equilibrium price. The market clearing condition requires that at an equilibrium
price Pλ(m, z), the quantity demanded by the uninformed investors equals the negative of
the quantity demanded by the informed investors and noise traders: (1− λ)XU(Pλ(m, z)) =

z − λXI(m,Pλ(m, z)) = z − λm−Pλ(m,z)
ασ2

ε
. Hence, I can replace p with the candidate equilib-

rium price function Pλ(m, z) in eq. (1.9) and use the market clearing condition to substitute
for XU(Pλ) to obtain a functional equation in Pλ∫

R

(
y − ασ2

ε

1−λz + λ
1−λm−

1
1−λPλ(m, z)

)
e
− α

1−λ

(
z−λm−Pλ(m,z)

ασ2ε

)
y
dFµ|Pλ(y|Pλ(m, z)) = 0. (1.11)

It remains to derive a more explicit expression for the conditional distribution evaluated
at the equilibrium price. Consider once again the negative of the quantity demanded by the
informed investors and noise traders: z− λXI(m,Pλ). If some other state (y, v) leads to the
same price p as the state (m, z), then the uninformed demand must be the same in both
states since they condition only on price. By market clearing, this implies that the effective
supply must also be equal in both states. Hence, when evaluated at an equilibrium price
Pλ(m, z), the inverse function in eq. (1.10) must produce

P−1
λ (Pλ(m, z); y) = {v : v − λXI(y, Pλ(m, z)) = z − λXI(m,Pλ(m, z))}

= z − λ

ασ2
ε

(m− y) . (1.12)
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It follows that the conditional density in eq. (1.10) can be written as

fµ|Pλ(y|Pλ(m, z)) =

fZ

(
z − λ

ασ2
ε

(m− y)
)
fµ(y)

∣∣∣ ∂∂pP−1
λ (p; y)

∣∣∣ ∣∣∣∣
p=Pλ(m,z)∫

R
fZ

(
z − λ

ασ2
ε

(m− w)
)
fµ(w)

∣∣∣ ∂∂pP−1
λ (p;w)

∣∣∣ ∣∣∣∣
p=Pλ(m,z)

dw

. (1.13)

To eliminate the remaining Jacobian terms, differentiate eq. (1.12) totally with respect to z
to obtain

∂

∂p
P−1
λ (p; y)

∣∣∣∣
p=Pλ(m,z)

∂

∂z
Pλ(m, z) = 1,

which can be rearranged to yield ∂
∂p
P−1
λ (p; y)

∣∣∣∣
p=Pλ(m,z)

= 1
∂
∂z
Pλ(m,z)

. This expression is con-

stant with respect to y, so the Jacobian terms cancel from the numerator and denominator
of eq. (1.13). Substituting this conditional density into eq. (1.11), canceling terms that do
not depend on y, and rearranging produces eq. (1.1) in the text.

If the function Pλ defined implicitly by (1.1) is in fact one-to-one in each variable when
the other is held fixed, then the condition from Lemma 1.6.3 is met and Pλ is an equilibrium
price function for the case in which the uninformed can condition only on the asset price.
Since the uninformed can also condition on the signed volume of the informed and noise
traders, then in principle Pλ may not remain an equilibrium. This would be the case if the
signed volume, λXI(m,Pλ)−z, reveals strictly more information that the linear combination,
m̂, that is revealed by the price However, it does not do so. To see this, note that the signed
volume also depends (directly) on m and z only through m̂ :

λXI(m,Pλ)− z = λ
m− Pλ
ασ2

ε

− z

=
λ

ασ2
ε

(m̂− Pλ) (1.14)

This concludes the proof in the case that Pλ is monotone.
If the function Pλ defined by (1.1) is not one-to-one in m for fixed z, then the inversion

in eq. (1.13) in the proof is not possible for all realizations p. Hence, if the uninformed can
condition only on the asset price, then equilibrium does not exist in this case. However,
as long as the uninformed can condition on signed volume, then the (non-one-to-one) Pλ
from eq. (1.1) is still an equilibrium price function. To prove this, it suffices to show that
observing the combination of Pλ from eq. (1.1) and signed volume is equivalent to observing
m̂. Hence, the uninformed investors’ updating step in eq. (1.13) will still reduce to updat-
ing from observations of the random variable µ̂λ. Given the signed volume can be written
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as in eq. (1.14), the required observational equivalence is immediately apparent since the

uninformed need only to multiply the signed volume by ασ2
ε

λ
and add Pλ to obtain m̂. This

completes the proof.

Proof of Proposition 1.2.3. Fix any realization µ̂λ = m̂. Suppose that the conditional mo-
ment generating function of µ given µ̂λ = m̂ exists in some open interval (−δ0, ζ0), where
δ0, ζ0 > 0, allowing the possibility of either endpoint being ∞. Consider eq. (1.2) as a func-

tion of p, after multiplying by e
− λ

1−λ
m̂−p
σ2ε

m̂
, which is constant with respect to y and strictly

positive, and thus does not affect the value of p at which eq. (1.2) equals zero

F (p) :=

∫
R

((1− λ)y + λm̂− p) e
λ

1−λ
m̂−p
σ2ε

(y−m̂)
fµ|µ̂λ(y|m̂) dy.

If this integral exists and is continuous in p in some nonempty open set, then by the inter-
mediate value theorem, it suffices to show that there exist p and p′ in that open set such
that F (p) < 0 and F (p′) > 0.

Given the assumption on existence of the conditional moment-generating function, the
integral is finite as long as p satisfies λ

1−λ
m̂−p
σ2
ε
∈ (−δ0, ζ0). Furthermore, since moment gen-

erating functions are infinitely continuously differentiable in their domain of existence, it
follows that F is continuously differentiable in p.30 It remains to find the p and p′ with
F (p) < 0 and F (p′) > 0.

Evaluating F at m̂ gives

F (m̂) = (1− λ)

∫
R
(y − m̂)fµ|µ̂(y|m̂) dy.

If E[µ|µ̂λ = m̂] = m̂, existence is thus immediate, with Pλ(m̂) = m̂. If such is not the
case, then the sign of F (m̂) depends on whether the conditional expectation of µ given
µ̂λ = m̂ is greater or less than m̂ itself. Without loss of generality, consider the case in which
E[µ|µ̂λ = m̂] > m̂. Then, F (m̂) > 0. It remains to find p such that F (p) < 0.

Parameterize p(δ) = m̂ + σ2
ε

1−λ
λ
δ, where 0 < δ < δ0. I will show that one can choose δ

such that F (p(δ)) < 0. We have

F (p(δ)) = (1− λ)

∫
R
(y − m̂)e−δ(y−m̂)fµ|µ̂(y|m̂) dy − σ2

ε

1− λ
λ

δ

∫
R
e−δ(y−m̂)fµ|µ̂(y|m̂) dy

< (1− λ)

∫
R
(y − m̂)e−δ(y−m̂)fµ|µ̂(y|m̂) dy.

30To see this, let Mµ|µ̂λ denote the conditional moment generating function and write F as

F (p) =

[
(1− λ)M ′µ|µ̂λ

(
λ

1−λ
m̂−p
σ2
ε

∣∣∣∣m̂)+ (λm̂− p)Mµ|µ̂λ

(
λ

1−λ
m̂−p
σ2
ε

∣∣∣∣m̂)] e− λ
1−λ

m̂−p
σ2ε

m̂
.
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Now, split the integral on the last line into positive and negative parts∫
R
(y − m̂)e−δ(y−m̂)fµ|µ̂(y|m̂) dy

=

∫
R

1{y<m̂}(y − m̂)e−δ(y−m̂)fµ|µ̂(y|m̂) dy +

∫
R

1{y≥m̂}(y − m̂)e−δ(y−m̂)fµ|µ̂(y|m̂) dy

≤
∫
R

1{y<m̂}(y − m̂)e−δ(y−m̂)fµ|µ̂(y|m̂) dy +

∫
R

1{y≥m̂}(y − m̂)fµ|µ̂(y|m̂) dy. (1.15)

If the first integral in line (1.15) can be made arbitrarily negative by appropriate choice
of δ, it will dominate the second (positive) integral, and the proof will be complete. It
is convenient, and equivalent, to show that the negative of the first integral,

∫
R−(y −

m̂)1{y<m̂}e
−δ(y−m̂)fµ|µ̂(y|m̂) dy, can be made arbitrarily large. Consider first the case in

which δ0 = ∞. As δ → ∞, the integrand converges almost everywhere to ∞. Hence, by
Fatou’s Lemma, one has

lim inf
δ→∞

∫
R
−(y − m̂)1{y<m̂}e

−δ(y−m̂) dy ≥ ∞.

Thus, there exists some δ > 0 such that F (p(δ)) < 0, which completes the proof. Next,
consider the case in which the moment generating function diverges at −δ0 for δ0 < ∞.
Then, for δ ∈ (0, δ0), one has∫

R
−(y − m̂)1{y<m̂}e

−δ(y−m̂) dy ≥
∫
R
−(y − m̂)1{y<m̂−1}e

−δ(y−m̂) dy

≥
∫
R

1{y<m̂−1}e
−δ(y−m̂) dy.

Let δ ↑ δ0. Because the moment generating function diverges at −δ0, it follows that

lim
δ↑δ0

∫
R

1{y<m̂−1}e
−δ(y−m̂) dy =∞.

Hence,

lim inf
δ↑δ0

∫
R
−(y − m̂)1{y<m̂}e

−δ(y−m̂) dy ≥ ∞,

which again guarantees the existence of δ > 0 such that F (p(δ)) < 0.

Proof of Proposition 1.2.4. To prove uniqueness in the case that the uninformed can condi-
tion only on price, it suffices to show that the price correspondence defined by eq. (1.2) is
single-valued since the proof of Proposition 1.2.1 implied that in this case, any equilibrium
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must be characterized by eq. (1.2). In the case that the uninformed can also condition on
signed volume, to show uniqueness among µ̂λ-measurable price functions one must also show
that any such price function is characterized by eq. (1.2).

I begin by showing that the price correspondence defined by eq. (1.2) is single-valued.
Fix µ̂λ = m̂ and apply Lemma 1.6.1 to∫

R
− ((1− λ)y + λm̂− p) e

λ
1−λ

m̂−p
σ2ε

y
fZ

(
λ

ασ2
ε

(y − m̂)

)
fµ(y) dy, (1.16)

which is simply eq. (1.2) multiplied by −1 (this multiplication, of course, does not affect

the point p at which the expression equals zero). Since e
λ

1−λ
µ̂λ−p
σ2ε

y
is SSR2 in (p, y) and

−((1−λ)y+λµ̂λ−p) is strictly increasing in p and single-crossing from above in y it follows
that (1.16) crosses zero at most once, at a single point, and from below, as p increases.

To prove that eq. (1.2) characterizes all µ̂λ-measurable price functions, note that in the
proof of Proposition 1.2.1, I showed that observation of a µ̂λ-measurable price function along
with signed volume provides the uninformed with the same information as direct observation
of µ̂λ. Hence, any such equilibrium is equivalent to one in which the uninformed condition
only on µ̂λ. Eq. (1.2) characterizes exactly this equilibrium.

Proof of Lemma 1.3.1. This result is well-known, and follows immediately after writing out
fµ̂λ|µ in terms of the density of supply fZ .

fµ̂λ|µ(m̂|m) =
λ

ασ2
ε

fZ

(
λ

ασ2
ε

(m− m̂)

)
. (1.17)

The next lemma collects some useful expressions for the derivatives of uninformed demand
and equilibrium price with respect to various quantities, assuming that the derivatives exist.

Lemma 1.6.4. Considered as a function of the realizations µ̂λ = m̂ and Pλ = p, the deriva-
tives of uninformed demand XU are

∂XU

∂m̂
=

∫
R (y − p− ασ2

εXU) e−αXUy
∂fµ|µ̂
∂m̂

(y|m̂)

fµ|µ̂(y|m̂)
fµ|µ̂(y|m̂) dy

α
∫
R [(y − p− ασ2

εXU) y + σ2
ε ] e
−αXUyfµ|µ̂(y|m̂) dy

(1.18)

∂XU

∂p
=

−
∫
R e
−αXUyfµ|µ̂(y|m̂) dy

α
∫
R [(y − p− ασ2

εXU) y + σ2
ε ] e
−αXUyfµ|µ̂(y|m̂) dy

. (1.19)

The derivatives of the price function Pλ with respect to the realization of µ̂λ = m̂ and the
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parameter λ are

∂Pλ
∂m̂

=

∫
R [(1− λ)y + λm̂− Pλ] e

λ
1−λ

m̂−Pλ
σ2ε

y
∂fµ|µ̂λ
∂m̂

(y|m̂)

fµ|µ̂λ (y|m̂)
fµ|µ̂λ(y|m̂) dy∫

R

(
[(1− λ)y + λm̂− Pλ] λ

1−λ
y
σ2
ε

+ 1
)
e

λ
1−λ

m̂−Pλ
σ2ε

y
fµ|µ̂λ(y|m̂) dy

(1.20)

+

∫
R

(
[(1− λ)y + λm̂− Pλ] λ

1−λ
y
σ2
ε

+ λ
)
e

λ
1−λ

m̂−P̂λ
σ2ε

y
fµ|µ̂λ(y|m̂) dy∫

R

(
[(1− λ)y + λm̂− Pλ] λ

1−λ
y
σ2
ε

+ 1
)
e

λ
1−λ

m̂−P̂λ
σ2ε

y
fµ|µ̂λ(y|m̂) dy

and

∂Pλ
∂λ

=

∫
R ((1− λ)y + λm̂− Pλ) e

λ
1−λ

m̂−Pλ
σ2ε

y
∂fµ|µ̂λ
∂λ

(y|m̂)

fµ|µ̂λ (y|m̂)
fµ|µ̂λ(y|m̂) dy∫

R

(
[(1− λ)y + λm̂− Pλ] λ

1−λ
y
σ2
ε

+ 1
)
e

λ
1−λ

m̂−Pλ
σ2ε

y
fµ|µ̂λ(y|m̂) dy

(1.21)

+

m̂−Pλ
σ2
ε(1−λ)2

∫
R ((1− λ)y + λm̂− Pλ) ye

λ
1−λ

m̂−Pλ
σ2ε

y
fµ|µ̂λ(y|m̂) dy∫

R

(
[(1− λ)y + λm̂− Pλ] λ

1−λ
y
σ2
ε

+ 1
)
e

λ
1−λ

m̂−Pλ
σ2ε

y
fµ|µ̂λ(y|m̂) dy

+
m̂−Pλ
1−λ

∫
R e

λ
1−λ

m̂−Pλ
σ2ε

y
fµ|µ̂λ(y|m̂) dy∫

R

(
[(1− λ)y + λm̂− Pλ] λ

1−λ
y
σ2
ε

+ 1
)
e

λ
1−λ

m̂−Pλ
σ2ε

y
fµ|µ̂λ(y|m̂) dy

.

Proof of Lemma 1.6.4. The first-order condition defining XU(m̂, p) is∫
R

(
y − ασ2

εXU − p
)
e−αXUyfµ|µ̂λ(y|m̂) dy = 0.

The denominators in the expressions in the Lemma are non-zero due to Lemma 1.6.2. Hence,
we can apply the implicit function theorem to obtain the results for ∂XU

∂m̂
and ∂XU

∂p
immedi-

ately.
Using the implicit function theorem on eq. (1.2), gives the results for ∂Pλ

∂m̂
. Applying the
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implicit function theorem again for ∂Pλ
∂λ

gives

∂Pλ
∂λ

=

∫
R ((1− λ)y + λm̂− Pλ) e

λ
1−λ

m̂−Pλ
σ2ε

y
∂fµ|µ̂
∂λ

(y|m̂)

fµ|µ̂λ (y|m̂)
fµ|µ̂λ(y|m̂) dy∫

R

(
[(1− λ)y + λm̂− Pλ] λ

1−λ
y
σ2
ε

+ 1
)
e

λ
1−λ

m̂−Pλ
σ2ε

y
fµ|µ̂(y|m̂) dy

+

1
(1−λ)2

m̂−Pλ
σ2
ε

∫
R ((1− λ)y + λm̂− Pλ) ye

λ
1−λ

m̂−Pλ
σ2ε

y
fµ|µ̂λ(y|m̂) dy∫

R

(
[(1− λ)y + λm̂− Pλ] λ

1−λ
y
σ2
ε

+ 1
)
e

λ
1−λ

m̂−Pλ
σ2ε

y
fµ|µ̂(y|m̂) dy

−
∫
R (y − m̂) e

λ
1−λ

m̂−Pλ
σ2ε

y
fµ|µ̂λ(y|m̂) dy∫

R

(
[(1− λ)y + λm̂− Pλ] λ

1−λ
y
σ2
ε

+ 1
)
e

λ
1−λ

m̂−Pλ
σ2ε

y
fµ|µ̂(y|m̂) dy

.

However, by rearranging eq. (1.2) one can see that

−
∫
R

(y − m̂) e
λ

1−λ
m̂−Pλ
σ2ε

y
fµ|µ̂λ(y|m̂) dy =

m̂− Pλ
1− λ

∫
R
e

λ
1−λ

m̂−Pλ
σ2ε

y
fµ|µ̂λ(y|m̂) dy.

Substituting this for the numerator in the last term above gives the desired result.

Proof of Proposition 1.4.1. Under the assumption that fµ̂λ|µ has the MLRP, Proposition
1.4.2 below implies that the price function is invertible. This implies that uninformed demand
is in fact a function of Pλ. Given that Pλ is increasing in µ̂λ, is follows also that uninformed
demand will be increasing in price if and only if it is increasing in m̂. Assuming that the price
and uninformed demand functions are differentiable, differentiating the equilibrium demand
XU(m̂, Pλ(m̂)) totally with respect to m̂ gives

d

dm̂
XU(m̂, Pλ(m̂)) =

∂XU

∂m̂
+
∂XU

∂p

∂Pλ
∂m̂

.

Substitute in from Lemma 1.6.4 for all three partial derivatives on the right-hand side of the
equation. It is then tedious but straightforward to manipulate the resulting expression and
show that it is ≥ 0 if and only if ∂Pλ

∂m̂
≥ 1.

To prove the second statement, it suffices to show that logconcavity of fµ implies that
∂Pλ
∂m̂
≤ 1. The nondifferentiable case can be handled by rearranging the uninformed first-order

condition and applying Corollary 2.3 of Ma (1999).
Consider the expression for the derivative of the price function in eq. (1.20) By a simple

application of Bayes rule on the conditional density in the integrand, one can express the
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numerator in the first term in eq. (1.20) as∫
R

[(1− λ)y + λm̂− Pλ] e
λ

1−λ
m̂−Pλ
σ2ε

y ∂fµ̂λ|µ
∂m̂

(m̂|y)fµ(y) dy (1.22)

From eq. (1.17), it follows that
∂fµ̂λ|µ
∂m̂

(m̂|y) = −∂fµ̂λ|µ
∂y

(m̂|y). Use this fact to perform integra-

tion by parts on eq. (1.22) to obtain the following expression (the boundary terms are zero
since the densities have mgfs, and therefore tails that converge to zero at least exponentially)

= (1− λ)

∫
R
e

λ
1−λ

m̂−Pλ
σ2ε

y
fµ̂λ|µ(m̂|y)fµ(y) dy +

λ

1− λ
m̂− Pλ
σ2
ε

∫
R

[(1− λ)y + λm̂− Pλ] e
λ

1−λ
m̂−Pλ
σ2ε

y
fµ̂λ|µ(m̂|y)fµ(y) dy

+

∫
R

[(1− λ)y + λm̂− Pλ] e
λ

1−λ
m̂−Pλ
σ2ε

y
fµ̂λ|µ(m̂|y)

f ′µ(y)

fµ(y)
fµ(y) dy.

The second term in this sum vanishes, due to the price equation eq. (1.2). Plugging the
remaining two terms back into eq. (1.20) and rearranging gives

∂Pλ
∂m̂

= 1 +

∫
R [(1− λ)y + λm̂− Pλ] e

λ
1−λ

m̂−Pλ
σ2ε

y f ′µ(y)

fµ(y)
fµ̂λ|µ(m̂|y)fµ(y) dy∫

R

(
[(1− λ)y + λm̂− Pλ] λ

1−λ
y
σ2
ε

+ 1
)
e

λ
1−λ

m̂−Pλ
σ2ε

y
fµ̂λ|µ(m̂|y)fµ(y) dy

. (1.23)

If log fµ is concave, then
f ′µ(y)

fµ(y)
is decreasing in y. The numerator of the second term in

eq. (1.23) is therefore ≤ 0 by Lemma 1.6.2, and as noted in the first section of this proof,
the denominator is ≥ 0. Hence, the entire term is ≤ 0, and therefore ∂Pλ

∂m̂
≤ 1.

Proof of Proposition 1.4.2. It suffices to show that under the MLRP the price function is
strictly increasing in the realization of µ̂λ and hence invertible. I do so by showing that the
derivative in eq. (1.20) is greater than zero.

From eq. (1.2) we know that [(1− λ)y + λm̂− Pλ] e
λ

1−λ
m̂−Pλ
σ2ε

y
integrates to 0 against fµ|µ̂.

Furthermore, this function crosses zero once, and from below, as y increases. Since the MLRP

guarantees that
∂fµ|µ̂
∂m̂

(y|m̂)

fµ|µ̂(y|m̂)
is increasing in y, Lemma 1.6.2 implies that the numerator of the

first term in eq. (1.20) is greater than zero. Similarly, since y is increasing, the numerator
of the second term and the denominator of each term are also greater than zero. It follows
that eq. (1.20) is greater than zero.

Proof of Lemma 1.4.3. Fix λ ∈ (0, 1), and choose any τ ∈ (λ, 1). Following Persico (1996,
2000), define the function Tλ,τ,m(m̂) = m+ λ

τ
(m̂−m). Persico (1996) shows that conditional

on µ = m the random variable µ̂τ is equal in distribution to Tλ,τ,m(µ̂λ). Hence, when fraction
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τ are informed, the difference in certainty equivalent wealth is

CE(τ) = − 1

α
log

∫∫
R2

e−αXI(m−Pτ )+
1
2α

2X2
Iσ

2
εfµ̂τ |µ(m̂|m)fµ(m) dmdm̂

+
1

α
log

∫∫
R2

e−αXU (m−Pτ )+ 1
2α

2X2
Uσ

2
εfµ̂τ |µ(m̂|m)fµ(m) dmdm̂

= − 1

α
log

∫∫
R2

eαc−αXI(m,Pτ (T (m̂)))(m−Pτ (T (m̂))+ 1
2α

2X2
I (m,Pτ (T (m̂)))σ2

εfµ̂λ|µ(m̂|m)fµ(m) dmdm̂

+
1

α
log

∫∫
R2

e−αXU (T (m̂),Pτ (T (m̂)))(m−P̂τ (T (m̂))+ 1
2α

2X2
U (T (m̂),Pτ (T (m̂)))σ2

εfµ̂λ|µ(m̂|m)fµ(m) dmdm̂.

Differentiate this expression with respect to τ and evaluate the derivative at τ = λ. Since
the integrand is continuously differentiable in τ, it is permissible to differentiate through the
integral sign.

d

dτ
CE(τ)

∣∣∣∣
τ=λ

= − 1

αEI

∫∫
R2

d
dτ e

αc−αXI(m,Pτ (T (m̂)))(m−Pτ (T (m̂))+ 1
2α

2X2
I (m,Pτ (T (m̂)))σ2

ε

∣∣∣∣
τ=λ

fµ̂λ|µ(m̂|m)fµ(m) dmdm̂

+
1

αEU

∫∫
R2

d
dτ e
−αXU (T (m̂),Pτ (T (m̂)))(m−Pτ (T (m̂))+ 1

2α
2X2

U (T (m̂),Pτ (T (m̂)))σ2
ε

∣∣∣∣
τ=λ

fµ̂λ|µ(m̂|m)fµ(m) dmdm̂,

where

EI = E
[
e−αXI(m−Pλ)+

1
2α

2X2
Iσ

2
ε

]
,

EU = E
[
e−αXU (m−Pλ)+ 1

2α
2X2

Uσ
2
ε

]
are the negative of the unconditional expected utilities of each type of investor.

I now proceed to differentiate the integrand. To conserve space, I use the notation eI

and eU for the exponentials in the informed and uninformed expected utility, divided by EI
and EU, respectively.

= −
∫∫

R2

{
XI(m,Pτ (T (m̂)))

[
∂Pτ
∂m̂

∂T
∂τ

+ ∂Pτ
∂τ

]
+
(
m− Pτ (T (m̂))− αXI(m,Pτ (T (m̂)))σ2

ε

) [ ∂XI
∂p

[
∂Pτ
∂m̂

∂T
∂τ

+ ∂Pτ
∂τ

]
+ ∂XI

∂τ

]}
eI
∣∣∣∣
τ=λ

fµ̂λ|µfµ dmdm̂

+

∫∫
R2

{
XU (T (m̂), Pτ (T (m̂)))

[
∂Pτ
∂m̂

∂T
∂τ

+ ∂Pτ
∂τ

]
−
(
m− Pτ (T (m̂))− αXU (T (m̂), Pτ (T (m̂)))σ2

ε

) [ ∂XU
∂m̂

∂T
∂τ

+ ∂XU
∂p

[
∂Pτ
∂m̂

∂T
∂τ

+ ∂Pτ
∂τ

]
+ ∂XU

∂τ

]}
eU
∣∣∣∣
τ=λ

fµ̂λ|µfµ dmdm̂.

The informed investors’ first-order condition implies that

m− Pτ (T (m̂))− αXI(m,Pτ (T (m̂)))σ2
ε = 0,

which eliminates the second term in the first integral. Similarly, the uninformeds’ first-order
condition implies that the terms in the second integral involving ∂XU

∂p
× ∂Pτ

∂τ
and ∂XU

∂τ
vanish
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when integrating over m since these expressions depend only on m̂. Hence, the expression
becomes

= −
∫∫

R2

XI(m,Pτ (T (m̂)))
[
∂Pτ
∂m̂

∂T
∂τ + ∂Pτ

∂τ

]
eI
∣∣∣∣
τ=λ

fµ̂λ|µfµ dmdm̂

+

∫∫
R2

{
XU (T (m̂), Pτ (T (m̂)))

[
∂Pτ
∂m̂

∂T
∂τ + ∂Pτ

∂τ

]
−
(
m− Pτ (T (m̂))− αXU (T (m̂), Pτ (T (m̂)))σ2

ε

) [
∂XU
∂m̂ + ∂XU

∂p
∂Pτ
∂m̂

]
∂T
∂τ

}
eU
∣∣∣∣
τ=λ

fµ̂λ|µfµ dmdm̂.

Finally, substitute for ∂T
∂τ

and use the fact that Tλ,λ,m(m̂) = m̂ to evaluate the integrand
explicitly at τ = λ to derive the expression in the text,

CE′(λ) = −
∫∫

R2

(
XI(m,Pλ(m̂))eI −XU (m̂, Pλ(m̂))eU

) [
∂Pλ
∂m̂

m−m̂
λ + ∂Pλ

∂λ

]
fµ̂λ|µfµ dmdm̂

−
∫∫

R2

(
m− Pλ(m̂)− αXU (m̂, Pλ(m̂))σ2

ε

) [
∂XU
∂m̂ + ∂XU

∂p
∂Pλ
∂m̂

]
m−m̂
λ

}
eUfµ̂λ|µfµ dmdm̂.

Proof of Proposition 1.4.4. The expression I desire to sign is

−
∫∫

R2

(m− Pλ(m̂)− αXU(m̂, Pλ(m̂))σ2
ε)
[
∂XU
∂m̂

+ ∂XU
∂p

∂Pλ
∂m̂

]
m−m̂
λ

}
eUfµ|µ̂λfµ̂λ dmdm̂.

(1.24)

Note that ∫
R

(
m− Pλ(m̂)− αXU(m̂, Pλ(m̂))σ2

ε

)
eUfµ|µ̂λ dm = 0

from the uniformed investors’ first order condition. Given that m − m̂ is increasing in m,
Lemma 1.6.2 will once again imply that the inner integral in eq. (1.24) (and hence the

entire expression) is ≥ 0 as long as
[
∂XU
∂m̂

+ ∂XU
∂p

∂Pλ
∂m̂

]
≤ 0 for all m̂. However, the proof of

Proposition 1.4.1 shows that this is the case if and only if uninformed demand is everywhere
downward-sloping. Hence, under this assumption eq. (1.24) is ≥ 0.

Proof of Corollary 1.4.5. Interior equilibria in the information market are defined as λ∗ such
that CE(λ∗) = c, and zero-information-acquisition equilibria, λ∗ = 0, occur when CE(0) ≤ c.
Therefore, if CE is nonmonotonic, then for appropriate c there can be multiple values of λ∗,
including zero, consistent with equilibrium.

Proof of Proposition 1.4.6. Using the law of total covariance and the fact that ε is indepen-
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dent of all other random variables, write

Cov
(
D − Pλ, (µ− E[µ|µ̂λ])2

)
= Cov

(
E [µ− Pλ|µ̂λ] ,E[(µ− E[µ|µ̂λ])2|µ̂λ]

)
+ E

[
Cov

(
µ− Pλ, (µ− E[µ|µ̂λ])2|µ̂λ

)]
= Cov (E [µ− Pλ|µ̂λ] ,Var[µ||µ̂λ]) + E

[
Cov

(
µ− Pλ, (µ− E[µ|µ̂λ])2|µ̂λ

)]
= Cov (E [µ− Pλ|µ̂λ] ,Var[µ|µ̂λ]) + E

[
Cov

(
µ− E[µ|µ̂λ], (µ− E[µ|µ̂λ])2|µ̂λ

)]
= Cov (E[µ− Pλ|µ̂λ],Var[µ|µ̂λ]) + E [Skew[µ|µ̂λ]] .

The second equality uses the definition of conditional variance to simplify the first term.
The third inequality uses the fact that Pλ and E[µ|µ̂λ] are conditionally constant to manip-
ulate the conditional covariance in the second term. The last equality uses the fact that
E[µ − E[µ|µ̂λ]] = 0 to rewrite Cov (µ− E[µ|µ̂λ], (µ− E[µ|µ̂λ])2|µ̂λ) = E[(µ − E[µ|µ̂λ])3|µ̂λ].
Multiplying the above expression by λ(1 − λ) and using the fact that the covariance is a
bilinear operator to pull this constant inside the expression gives the desired result.

Proof of Corollary 1.4.7. Follows immediately from Proposition 1.4.6.
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Chapter 2

Do Fund Managers Make Informed
Asset Allocation Decisions

Note: This chapter represents joint work with Jacob S. Sagi.

2.1 Introduction

Every active fund manager has to make asset allocation decisions, and changes in the portfolio
weights of major asset classes should be viewed as a function of the manager’s information
set and her or her ability to optimally use that information set.1 This paper develops a
fully dynamic model of the asset allocation decision, where each portfolio manager accounts
for a historical time series of public and private information available to him or her. Such
information, if used optimally, will reflect itself in the dynamics of portfolio weights. The
model leads to testable and, to our knowledge, novel predictions. The main prediction, after
suitably controlling for the conditional volatility of market returns, is that aggregate equity
weights that are more volatile reflect better information and should better forecast future
market returns.

We apply the model to the portfolio weights of US mutual funds holding primarily US
common equity from 1979Q3 until 2006Q4. We find evidence for the model predictions at
forecasting horizons from three to twelve months, but weak contrary evidence at one-month
forecasting horizons. The timing ability we find at horizons beyond one month is consistent
with a small number of recent studies, and we interpret it as indicative of better information
about medium-term future market returns. If one believes our model assumptions and
empirical methodology are sound, one can attribute the general absence of timing ability at
a shorter horizons as evidence against the existence of much private information about short-
run expected returns. However, even for forecasting horizons over which some managers

1The decision by an active manager to not attempt to time the market is also a decision that is presumably
based on the manager’s information.



47

appear to have ability, timing behavior does not reflect itself in higher returns on funds’
portfolios. This could be because of measurement error or because the portfolios are not
held long enough to benefit from the predictability.

2.1.1 Literature review and motivation

The literature on portfolio management generally views ‘market timing’ as the shifting of
funds between broad asset categories (such as ‘US equities’, or ‘US Government bonds’) in
an attempt to capture higher risk-adjusted returns. Skillful market timers are said to divine
those times during which returns on one major asset class will exceed those of another.

Early tests of market timing ability were largely based on the regression methodologies
of Treynor and Mazuy (1966) and Henriksson and Merton (1981), and looked for a convex
relationship between fund-level returns and contemporaneous market returns. Results from
these early experiments have largely shaped researchers’ perception that professional port-
folio managers do not exhibit timing ability.2 This is despite the fact that such tests are
susceptible to numerous criticisms (see Ferson and Schadt, 1996; Goetzmann, Ingersoll, and
Ivković, 2000; Jagannathan and Korajczyk, 1986; Kothari and Warner, 2001). For instance,
bias can result if a portfolio is rebalanced more frequently than the observation intervals
used in the test. In addition, the residuals may be highly non-normal and correlated across
funds, leading one to potentially question the use of pooled statistics employed by all the
early studies (this is similar to the criticism offered by Kosowski, Timmermann, Wermers,
and White, 2006). Finally, even if managers possessed timing ability, one might not detect it
using fund-level returns because the latter incorporate fees which, in a competitive market,
could offset the value added by market timing (e.g., Berk and Green, 2004). Ferson and
Schadt (1996) also point out that market timing tests should condition on public informa-
tion relevant to predicting the market. When making the appropriate modifications, the
negative results of earlier tests disappear and they even find weak support for timing ability,
although their inference from pooled statistics does not account for cross-sectional correla-
tions and non-normalilty when computing standard errors. Edelen (1999) confirms these
findings, pointing out that fund flows account for the negative results obtained in earlier
studies.3

A number of subsequent studies have focused on holdings, often testing market timing
in a multiple-asset allocation context. Those finding no evidence for timing include Daniel,
Grinblatt, Titman, and Wermers (1997); Kacperczyk and Seru (2007); Kacperczyk, Sialm,
and Zheng (2005); Kosowski, Timmermann, Wermers, and White (2006); Wermers (2000).4

2Among the early tests are Chang and Lewellen (1984); Henriksson (1984); Henriksson and Merton (1981);
Kon (1983); Treynor and Mazuy (1966).

3Eckbo and Smith (1998) apply the conditional performance test approach of Ferson and Schadt (1996)
to assess the performance of insiders on the Oslo Stock Exchange. They find no evidence of timing ability
among these insiders.

4Recent related studies of mutual funds that employ holdings to construct performance measures include
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Save for Kosowski, Timmermann, Wermers, and White (2006), these holding-based studies
employ pooled statistics and, to our knowledge, do not fully adjust for the cross-sectional
correlation in funds’ weights when reporting significance. Such correlation may be partic-
ularly important when testing for timing because funds presumably attempt to time the
same macroeconomic variables.5 Standing in contrast with the other holdings-based mutual
fund studies of timing is Jiang, Yao, and Yu (2007), who estimate aggregate portfolio betas
from mutual fund holdings and find that funds tend to hold higher beta securities prior to
when market returns are high. Taliaferro (2009), however, suggests that their results depend
strongly on the period 2000-2002 and that managers do not necessarily show timing ability
continuously over their sample. Recent work by Simutin (2009) finds a relation between
forecasting ability and excess cash holdings of funds.

All of the studies mentioned thus far examine monthly and/or quarterly holdings. Several
recent studies that examine timing ability at a higher frequency have tended to yield positive
evidence. Busse (1999) and Fleming, Kirby, and Ostdiek (2001) study volatility timing,
while Chance and Hemler (2001) examine timing strategies based on the recommendations
of 30 Registered Financial Advisers that, when pooled, yield significant evidence for market
timing ability. The latter authors document that the use of daily data is key to their
findings, confirming the negative results of Graham and Harvey (1996) who look at newsletter
recommendations on a monthly basis. Bollen and Busse (2001) also find significant evidence
for ability in their Treynor and Mazuy (1966) and Henriksson and Merton (1981) regression
tests using daily data and bootstrapped standard errors, although they do not control for
cross-sectional correlations in their tests.

Overall, the picture that emerges from reviewing the literature is that early studies,
though flawed, found no or negative evidence for timing ability, while a survey of recent
literature provides a substantially more mixed view of the topic. Of 14 mentioned papers
written since the 1990’s on the subject of timing, seven find supportive evidence. By and
large, there does not appear to be a definitive answer to whether the average portfolio
manager can create value through asset allocation. When one further considers that many
of the papers can potentially be criticized on econometric grounds, the picture becomes
hazier still.

We attempt to shed additional light on this question by offering a new set of tests for
timing ability, and design our empirical methodology keeping in mind the various econometric
pitfalls we’ve identified above. In addition, our tests address at least one additional issue
ignored in this literature: If market returns are forecasted to be higher than average but the
Sharpe Ratio is forecasted to be lower than average, it is not clear that a rational market
timer would elect to increase her exposure to equities. As far as we know, all of the studies

Huang, Sialm, and Zhang (2008) and Shumway, Szefler, and Yuan (2009).
5While Kosowski, Timmermann, Wermers, and White (2006) use a bootstrap methodology, they only

mention their results for timing in a footnote without reporting their test methodology. It is therefore not
clear how they controlled for cross-sectional correlations in market weights when conducting their bootstrap
tests for timing ability.
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looking for market timing ability ignore the potential importance of conditional volatility on
market timing, whereas this consideration plays a key role in our methodology.

2.1.2 Our contribution

We examine ‘market timing’ from several new perspectives. Consistent with the literature on
the predictability of aggregate returns, we assume that fund managers receive noisy private
signals about future market returns.6 This information comes in two forms: information
about the slow-moving expected equity premium, some of which is known to be present in
macroeconomic variables such as Lettau and Ludvigson’s (2001) cay; and information about
the shock to market returns.7 The first type of information provides the manager with a
refined sense of the premium of the market over bonds, while the second type of information
can provide the manager with more dramatic insight such as whether bonds may fare better
than stocks in the immediate future. We also consider three types of managers. ‘Type 1’, or
non-highly informed, have access to private and public information about the slow moving
equity premium, while ‘type 2’, or highly informed managers, in addition have access to
information about the shock to market returns. Together, we refer to ‘type 1’ and ‘type 2’
managers as informed managers. On the other hand, ‘type 3’, or noise traders, believe that
they have access to information about the shock to market returns but in actuality observe
only noise. Correspondingly, we characterize the Bayesian-optimal changes in weights of the
three types of managers assuming they can invest in the market and/or in short-term bonds;
the managers are assumed to optimize a mean-variance myopic objective function and can
condition on their current private information as well as all past private information, and all
past market returns.

The primary prediction of the model is that, controlling for conditional volatility, in-
formed managers whose portfolio weight in equity exhibits a greater time-series variance
must possess better information. The reason is intuitive. A manager who has more precise
information will be able to take more extreme positions in response to her signals without
increasing the portfolio risk. Conversely, for noise traders, the greater the variance of port-
folio equity weights, the less information about future market returns should be reflected

6The predictability of market returns has been documented in Breen, Glosten, and Jagannathan (1989);
Campbell (2002); Campbell and Shiller (1988a,b); Keim and Stambaugh (1986); Lettau and Ludvigson
(2001). The potential benefits from making use of this information in asset allocation decisions is docu-
mented in, among other papers, Andrade, Babenko, and Tserlukevich (2006); Kandel and Stambaugh (1996);
Whitelaw (1997). Because investors can rebalance their exposure to market risk in reaction to changes in
publicly available information, managers may not feel compelled to adjust their portfolio weights in reaction
to such information. Thus it is better to view our managers’ information as private in this paper. In a sep-
arate addendum, available upon request, we discuss and empirically compare publicly available predictors
of the equity premium to aggregate changes in funds’ equity weights. There, we also calculate the potential
utility loss to investors who ignore this predictability.

7We do not assume that the information about the slow-moving equity premium is public. In principal,
such information can be correlated with public information.
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in equity weights. This too is intuitive, a noise trader who believes that she has better
information will take more extreme positions, but in so doing she merely adds idiosyncratic
noise to her portfolio returns. In short, if managers have timing ability, we should observe a
positive relation between the variability of portfolio weights and their forecasting power for
future market returns, while if managers are trading mostly on noise, we should observe a
negative relation.

The model also implies that the portfolio equity weights of every non-highly informed
manager ought to have an autocorrelation coefficient equal to that of the time-varying ex-
pected equity premium. Roughly, the intuition for this result is that all non-highly in-
formed managers are attempting to forecast the time-varying expected equity premium.
Their Bayesian-optimal forecasts should, therefore, exhibit this very same persistence. A
further implication is that the portfolio equity weights of highly informed managers and
noise traders will have a lower autocorrelation than a non-highly informed manager, and
that this autocorrelation will decrease with the signal-to-noise ratio of their high-frequency
signals. The intuition for this result is straightforward: information about the shock to the
market returns is, by definition, high frequency and iid. The more information that a man-
ager has about the shock, the more her portfolio weights will respond to that information.
Hence, for informed managers, the smaller the autocorrelation of a managers equity expo-
sure, the more information she ought to have about future market returns, and this should
be reflected in the equity exposure of the fund.

The fact that our model is set in a partial equilibrium setting might invite criticism. In
particular, in a general equilibrium setting the fact that all portfolio positions must sum
to the ‘market’ precludes every investor from shifting weights with the equity premium.
To address this, we first emphasize that, as in practice, managers in the model base their
trades on a heterogeneous mix of public and private information and do not necessarily
tilt their portfolios in the same direction. Second, we do not presuppose that informed
fund managers span the entire market. Third, it is possible to embed a model of profitable
informed trading in a general equilibrium setting (see, for example, Grossman and Stiglitz,
1980); to our knowledge, there is nothing in the model or the industrial organization of the
mutual fund industry that suggests that general equilibrium considerations will nullify the
model’s predictions.

The model predictions are made under the assumption that one can control for non-
informational changes in portfolio weights (e.g., fund flows, or portfolio insurance strate-
gies), and we attempt to do this in our empirical tests. While our predictions ought to be
fairly robust because the economic rationale behind them is more general than the particu-
lar model we investigate, in our battery of empirical tests we focus on the relation between
the variability of portfolio equity weights and their market forecasting power. There are
a number of reasons to believe that the our predictions on weight autocorrelation will be
less robust. If the market autocorrelation is low, even minor misspecification in our control
variables may lead to spurious results. Additionally, to the extent that managers disagree
on the data generating process for market returns, it is difficult to interpret deviations from



51

the predictions. Conversely, the prediction relating weight variability and forecasting power
relies only on the assumption of manager rationality, as long as a forecast that incorporates
a manager’s signal is more precise that one that does not. Nevertheless, the model used to
derive our results is rich in allowing a great deal of heterogeneity in fund manager charac-
teristics and their private information. We test the model predictions on a large panel of
US mutual fund holdings, and are able to, at least partially, assess the degree to which asset
allocation decisions reflect information.

Our tests support the hypothesis that at three-, six-, and 12-month forecasting horizons,
the market forecasting power of funds’ weights does increase with the weights’ variance (as
predicted by the model). Thus, it appears that variation in timing ability does exist in
the cross-section of mutual fund managers, at least at quarterly forecasting horizons and
beyond. On the other hand, we find essentially no evidence of timing ability at a one-month
horizon. Our findings appear broadly consistent with those of Jiang, Yao, and Yu (2007),
who find evidence of timing ability at horizons of three and six months, but not at the
one-month horizon. We confirm their findings with respect to portfolio betas in our sample.
Nevertheless, further tests lead us to conclude that the forecasting power documented here
and by Jiang, Yao, and Yu (2007) does not translate into higher portfolio returns.

It is important, however, to temper our results by noting that the holdings data used in
our empirical tests are generally limited to US equity holdings only. We have no information
on how funds invest outside of this asset class. Although our treatment of fund holdings is
consistent with that of other studies, these funds could in principal make use of instruments
such as index futures or high-yield bonds to change their effective equity exposure and our
study would not pick this up.8 Moreover, it is also possible that the reported portfolio
holdings suffer from window dressing and do not truly reflect funds’ portfolio strategies.

Section 2.2 develops the model. Section 2.3 describes our data set, the empirical method-
ology, and reports our tests of the model. Section 2.4 analyzes the extent to which forecasting
ability is associated with improved portfolio returns. Section 2.5 concludes.

2.2 A model of optimal market timing

We begin by considering a typical market-timing fund manager, identified by the index i,
who receives a noisy private signal each period about the market risk premium and adjusts
her portfolio accordingly. Our assumptions represent a rich information environment, both
across managers and across time. Doing so enables us to achieve a level of realism and gen-
erality beyond the typical static modeling of the asset allocation decision under asymmetric
information.

8Koski and Pontiff (1999) and Almazan, Brown, Carlson, and Chapman (2004) document that few funds
use derivatives.
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The market’s excess return at date t+ 1 is assumed to be:

r̃et+1 = µ̄+mt + εt+1, (2.1)

where µ̄ is the unconditional premium and mt is its publicly unobserved time-varying compo-
nent. The empirical literature notes that market return volatility is predictable. Consistent
with this, we assume that εt+1 has an observable date-t conditional variance of σ2

εt.
9

There are three broad classes of portfolio managers. All types receive a noisy signal about
mt of the form:

sit = nit +mt, (2.2)

where i indexes the identity of the manager and nit is the noise component of the manager’s
signal. The signal sit, incorporates public information (available to all fund managers) as
well as private information about mt. Whereas managers in all classes receive a private signal
of the form sit, only managers belonging to the second class receive an additional signal of
the form,

qHit = eit + εt+1, (2.3)

that provides information about the shock variable εt+1. We will refer to this second type of
manager as being highly informed (the first class of managers will be referred to as non-highly
informed).10 For every highly informed manager the conditional variances of eit and εt+1

at date t have a ratio, denoted Rqi, that does not vary with time. That is to say, for the
highly-informed manager, the signal-to-noise ratio of qit is constant. Finally, there is a third
class of managers, called noise traders, who believe that they receive a signal like that of the
highly informed managers, but in actuality receive only noise. Specifically they update their
beliefs as though they receive a signal of the form

qNit
′
= e′it + εt+1,

where the ratio of conditional variances of e′it and εt+1 is still denoted Rqi. However, the true
‘signal’ is purely noise

qNit = eit,

where the ratio of conditional variances of eit and εt+1 is 1 + Rqi. This assumption on

9It appears realistic to assume that investors observe the conditional volatility of market returns (using,
for example, the S&P500 volatility index). In other words, Var[ret+1|Pt] is observable, with Pt representing a
common knowledge (public) information set. Under the assumption that mt is independent of ε̃t+1, assuming
the observability of σ2

εt presupposes that Var[mt+1|Pt] is separately observable.
10There is no loss of generality in thinking of the non-highly informed managers as receiving a signal of

the form qHit where Var[eit] is arbitrarily large.
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the variance ratio guarantees that the perceived variance coincides with the true variance,
Var(qNit

′
) = Var(qNit ).

We further assume that

mt = (1− φm)mt−1 + ut,

nit = (1− φin)nit−1 + vit,

and that the conditional variances of ut and vit are constants, denoted as σ2
u and σ2

iv, respec-
tively. Finally, each shock in the collection, { εs

σεs−1
, eis

Var[eis]
, us
σu
, vis
σiv
}s≤t is a standard normal iid

random variable, independent of the process that generates σ2
εt. Under our assumptions, mt

and σ2
εt are independent and universal to all managers while nit (and eit for highly informed

and noise traders) may or may not be correlated across managers.11 Moreover, the variance
of noise in managers’ signals is heterogeneous in precision as well as persistence.

Given our assumptions, Var[mt] = σ2
u

1−(1−φm)2
and Var[nit] =

σ2
iv

1−(1−φin)2
; we’ll refer to these

unconditional variances as Var[m] and Var[ni], respectively. Let Iit correspond to manager
i’s information set, consisting of observations of six, σ

2
εx and reix (as well as qix for highly

informed and noise traders) for all dates x ≤ t. Finally, we assume that the manager seeks
to myopically maximize a mean-variance function of her portfolio returns, implying that the
optimal allocation at date t is

wit = Ai
E[r̃et+1|Iit]

Var[r̃et+1|Iit]
. (2.4)

The proportionality factor, Ai, can be viewed as a measure of relative risk tolerance and is
assumed constant through time. Thus, if σm = m0 = 0 and σ2

εt is constant (i.e., there is no
predictability in the market’s Sharpe Ratio), then an informed manager follows a strategy
of rebalancing to constant weights. When we test the model, we revisit this assumption and
control for alternative specifications that are consistent with dynamic portfolio management
for an optimizing agent (e.g., a buy and hold strategy, or a portfolio insurance strategy).
Assuming a mean-variance objective function is consistent with the preferences of a log-
investor who can rebalance continuously, but the assumption ignores the additional hedging
demands of other types of investors. In neglecting a hedging demand component, we note
that its sign and magnitude vary with investor preferences and horizon, while all investors
place some (often considerable) weight on the myopic allocation given by Eq. (2.4).12 Finally,

11Without loss of generality and without changing our main results, one can replace µ̄ with ξσ2
εt plus

a constant, consistent with various asset pricing models. Various studies explore the relationship between
the market’s conditional variance and expected returns. Whitelaw (1994) demonstrates that the theoretical
relationship may not be monotonic, French, Schwert, and Stambaugh (1987) find a positive relationship
while Breen, Glosten, and Jagannathan (1989) and Breen, Glosten, and Jagannathan (1989) do not. In light
of this, we elected not to explicitly model such a relationship, although we account for its potential presence
in the empirical section

12Kim and Omberg (1996) and Wachter (2002) demonstrate that when the Sharpe Ratio is an AR(1)
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we note that, to the extent that the equity premium affects the expected returns of all stocks,
Eq. (2.4) ought to apply to all managers of equity portfolios (i.e., both ‘stock pickers’ and
‘market timers’).

The following proposition establishes properties of the manager’s optimal forecast of the
time-varying component of the equity premium.

Proposition 2.2.1.

m̂it ≡ E[mt|Iit] =

(
∞∑
j=0

aitjsit−j +
∞∑
j=0

bitj(r
e
t−j − µ̄)

)
, (2.5)

where the coefficients {aitj, bitj}∞j=0 provide a solution to the following infinite set of linear
equations:

(1− φm)kVar[m] =

∞∑
j=0

aijt

(
Var[m](1− φm)|k−j| + Var[ni](1− φin)|k−j|

)
+

∞∑
j=0

bijtVar[m](1− φm)|k−j−1|, k ≥ 0

(1− φm)k+1Var[m] = biktσ
2
εt−k−1 +

∞∑
j=0

aijtVar[m](1− φm)|k+1−j| +

∞∑
j=0

bijtVar[m](1− φm)|k−j|, k ≥ 0.

Moreover,

Var[mt|Iit] = σ2
εt−1(1− φin)bi0t + Var[ni]ai0tφin(2− φin). (2.6)

Finally, for both highly informed managers and noise traders,

E[εt+1|Iit] =
1

1 +Rqi

qjit, j ∈ {H,N} (2.7)

Var[εt+1|Iit] =
Rqi

1 +Rqi

σ2
εt. (2.8)

Proofs to all results are found in Section 2.6.1. Although being able to actually solve the
infinite set of equations in Proposition 2.2.1 is not germane to our analysis in this paper, it
is worth noting that the infinite set of coefficients in Proposition 2.2.1 can be approximated
extremely well by truncating the higher order equations. In numerically experimenting with

process in continuous time, any investor who can rebalance continuously and has utility over terminal wealth
with constant relative risk aversion will allocate her wealth to equities by modifying Eq. (2.4) to include
calendar-time dependence in A and an additional calendar-time dependent constant. Detemple, Garcia, and
Rindisbacher (2003) find that variations in the hedging demand are significantly less pronounced than those
of the myopic solution. Overall, this suggests that Eq. (2.4) captures much of the information content in
changes to equity allocations even in the presence of a hedging demand.
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the equations, we’ve found that for realistic parameter settings it suffices to keep only those
coefficients for which k ≤ 5.

2.2.1 Testable predictions

The next set of results pertains to the relation between the autocorrelation of funds’ equity
portfolio weights and their associated forecasting power.

Proposition 2.2.2. The unconditional autocorrelation of Var[ret+1|Iit]×wit ∝ E[ret+1|Iit] for
a non-highly informed manager is 1− φm, coinciding with the unconditional autocorrelation
of mt.

Thus, controlling for the denominator in (2.4) (say, by multiplying wit by σ2
εt and assuming

σ2
εt � Var[mt|Iit]), the autocorrelation of the optimal weight assigned to the market is the

same across non-highly informed managers despite the rich heterogeneity in their information
structure. One can understand the intuition for the result as follows: Every non-highly
informed manager knows that the conditional equity premium has persistence of (1 − φm).
If her estimate of the equity premium, m̂it, exhibits a different level of persistence, then the
manager is either over-reacting or under-reacting to new information.

Corollary to Proposition 2.2.2. The unconditional autocorrelation of Var[ret+1|Iit] ×
wit ∝ E[ret+1|Iit] for a highly informed manager or a noise trader is strictly smaller than
1− φm, and monotonically decreases with 1

1+Rqi
.

Recall that Rqi is the ratio of the conditional variances of eit to the conditional variance
of εt+1. A high value of 1

1+Rqi
is therefore a measure of the signal-to-noise ratio of the

corresponding highly informed manager. The corollary states that a higher signal-to-noise
ratio is associated with less persistence in E[ret+1|Iit]. Controlling for the denominator in
(2.4), this implies that highly-informed managers and noise traders ought to exhibit less
persistent equity portfolio weights. Putting together Propositions 2.2.2 and its corollary,
one concludes that if managers are highly informed, the R2 in a regression of r̃et+1 against
Var[ret+1|Iit] × wit (a measure of forecasting power of fund weights) should monotonically
decrease with the persistence of the portfolio equity weights. Conversely, if managers act
as noise traders, the R2 should monotonically increase with the persistence of the portfolio
equity weights.

As noted previously, Proposition 2.2.2 and its Corollary rely strongly on the assumption
that the return generating process for ret+1 is common knowledge. Therefore, any tests of
the Proposition or Corollary suffer from a joint hypothesis problem that managers both (1)
agree on the return generating process and (2) use information optimally. As such, we refrain
from attempting any direct tests of the Proposition or implications of its predictions.

The key result for our empirical tests relies on the observation that, controlling for the
denominator in (2.4), the time-series variation in weights is related to the quality of the
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manager’s signal. If the quality of the signal is poor (e.g., consider a non-highly informed

manager with Var[m]
Var[m]+Var[ni]

small), then the manager will optimally react by being careful not

to make dramatic changes in the weights, which are proportional to changes in E[r̃et+1|Iit].
Likewise, a high quality signal will be associated with larger shifts in weights in response to
the signal. Thus, a higher variance of portfolio weights ought to reflect better forecasting
power for the market returns. This is the subject of the next result.

Proposition 2.2.3. For non-highly informed and highly informed managers, the regression
of r̃et+1 on E[r̃et+1|Iit] yields a slope coefficient of β = 1, and for noise traders the regression
yields a slope coefficient of β < 1. Moreover, the unconditional correlation of r̃et+1 with
E[r̃et+1|Iit] is

ρrr̂i = β

√√√√Var
[
E[r̃et+1|Iit]

]
σ2
r

=



σm̂i
σr

if i is non-highly informed

σm̂i
σr

√
1 +

σ2
εt

(1+Rqi)σ2
m̂i

if i is highly informed

σm̂i
σr

1√
1+

σ2εt
(1+Rqi)σ

2
m̂i

if i is a noise trader,

(2.9)

where σr is the unconditional standard deviation of equity returns and σm̂i is the uncondi-
tional standard deviation of m̂it.

An implication of Eq. (2.9) is that, controlling for the conditional volatility in Eq. (2.4),
if managers have timing ability the R2 in a regression of the market excess return against
lagged realizations of Var[ret+1|Iit] × wit (i.e., ρ2

rm̂i
) should be increasing in the time-series

variance
Var
[
Var[ret+1|Iit]×wit

]
= Var

[
E[r̃et+1|Iit]

]
. Conversely, if managers act as noise traders, the

R2 should be decreasing in the above time-series variance.
Unlike the predictions on weight autocorrelations, the prediction from Proposition 2.2.3

does not rely as strongly on fund managers agreeing on the data generating process. Rather,
it essentially depends only on the assumption of individual rationality (as long as a forecast
that incorporates a manager’s signal is more precise than one that does not). Accordingly,
it lends itself better to empirical testing, to which we turn in the next Section.

2.3 Empirical investigation

Our empirical work is guided by the model results of Section 2.2.1 where we assumed that
the portfolio weight assigned to the market is given by Eq. (2.4). Before we can apply the
results of the model to open-end mutual funds holding domestic equity, we have to address
three issues.

First, fund managers may not time the market by shifting between equities and cash.
Rather, if a manager forecasts higher (lower) excess market returns in the near future, she
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may move into (out of) high-beta stocks and leave her cash position unchanged. Even if
managers do time the market by adjusting cash holdings, the cash balance of the fund is
likely to be affected by other factors not related to market timing, such as liquidity needs
for future redemptions.13 To account for these possibilities, we compute a holdings-based
portfolio beta for each fund at each report date and use the resulting beta, βit, as the
‘effective’ portfolio weight in equities.14 In a setting in which a manager holds only cash
and a market proxy, then the portfolio beta, of course, coincides with the raw weight in the
market proxy. To compute the holdings-based betas, we follow the procedure of Jiang, Yao,
and Yu (2007), the details of which we outline in subsection 2.3.1 below.

A second issue is that managers may not follow a strategy that rebalances to constant
weights in the absence of information. One example of this is a buy-and-hold strategy, while
another is portfolio insurance. In the case of iid returns, it is well known (e.g., Cox and
Leland, 2000; Leland, 1980) that these three dynamic strategic do not dominate each other
in the sense that certain investors (e.g., those exhibiting a particular version of decreasing
relative risk aversion) might prefer portfolio insurance while others might prefer a rebalancing
strategy. Moreover, in the presence of trading costs, it may be optimal to allow weights to
wander within an ‘inaction’ region (see Davis and Norman, 1990) and the optimal allocation
of new funds might therefore exhibit a lag. Because all of these alternative reasons for weight
changes are contingent on past returns or fund flows, which are orthogonal to the error term
in forecasting r̃et , one can still test the model by controlling for past returns and fund flows.

Finally, the Propositions pertain to the numerator of Eq. (2.4), but in practice portfolio
weights incorporate the denominator as well:

wit =


Ai

µ̄+m̂it
σ2
εt+Var[mt|Iit]

if manager i is non-highly informed

Ai
µ̄+m̂it+

qit
1+Rqi

Rqi
1+Rqi

σ2
εt+Var[mt|Iit]

if manager i is highly informed or a noise trader.

(2.10)

Thus, in testing whether asset allocation is informed, one must control for the conditional
volatility in the denominator of Eq. (2.10). To do so, we begin by assuming that

Rqi
1+Rqi

σ2
εt �

Var[mt|Iit], which appears reasonable given that the ‘shock’ component of market returns is
harder to forecast than the equity premium and ought to vary substantially more.15 Based

13Chordia (1996) documents that fund cash holdings are affected by uncertainty over flows and the load
structure of the fund, while Yan (2006) relates cash to the liquidity of funds’ holdings and to the level and
volatility of future flows. Simutin (2009) also documents a relation between excess cash holdings and the
liquidity and riskiness of funds’ stock holdings.

14The betas we calculate have a correlation with the raw equity weights of only about 0.33, which suggests
that the factors that affect cash holdings differ from those that affect portfolio allocation decisions.

15For example, even if the equity premium mt has a standard deviation of 4% per year, assuming that
Rqi = 1, and that εt has an unconditional standard deviation of 16% per year, yields a ratio of

Rqi
1+Rqi

σ2
εt to

Var[mt|Iit] greater than 8.
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on that assumption, one can approximate

σ2
εtwit ≈


Ai

(
µ̄+ m̂it

)
if manager i is non-highly informed

Ai
1+Rqi
Rqi

(
µ̄+ m̂it + qit

1+Rqi

)
if manager i is highly informed or a noise trader.

(2.11)

One can proxy for σ2
εt using a volatility index such as the vix, acknowledging that a

market forecast of volatility will differ, though likely not by much, from σ2
εt.

16 Eq. (2.11)
provides a proxy for Var[ret+1|Iit]×wit, and it is to this proxy that we will apply the insights
from Section 2.2.1.

2.3.1 Data

We obtain quarterly holdings information for all mutual funds, from 1979Q3 until 2006Q4,
in the Thompson Financial CDA/Spectrum s12 database accessed through the Wharton Re-
search Data Services (WRDS). The data is then linked to CRSP through WRDS’ MFLinks
service and the CRSP survivorship bias-free Mutual Fund Database (MFDB). For each quar-
ter and each fund we obtain, whenever available, the portfolio weight corresponding to the
total domestic equity holdings of the fund, the value-weighted return on those holdings in the
three months immediately following the report date, the S&P objective, style and specialty
fund codes (from CRSP MFDB), and the CDA/Spectrum s12 investment objective fund
code.17 We also obtain the return to fund investors, net of distributions, for each calendar
quarter and document the dollar value of total assets managed by the fund. We augment
this with quarterly data constructed from the monthly series of CRSP value-weighted re-
turns and the risk-free rate (from WRDS), and quarterly data for the aggregate dividend
yield and earnings-to-price ratio on the S&P500 index (Global Financial Data). Finally,
our tests require a measure of conditional volatility, i.e., a proxy for σ2

εt. We compute four
different such proxies of market volatilities: the first predictor is a naive monthly volatility
calculated using the past month’s daily CRSP value-weighted return data, the second cor-
responds to a fit of monthly CRSP value-weighted return data over the period 1954-2006
to a GARCH(1,3) model, and the third consists of the S&P100 volatility index (vox from

16Var[ret+1|Pt], where Pt represents a common knowledge (public) information set, should be approximately
a constant proportion of Var[ret+1|Iit]. The deviation from a constant proportionality should amount to the
difference between Var[mt+1|Pt] and Var[mt+1|Iit], which ought to be small relative to σ2

εt.
17Because funds report their holdings at different times, the holding returns are not contemporaneous

across all funds. When a fund reports holdings more than once in a quarter, we consider only the earliest
report for that quarter. Many funds only report twice a year, the minimum SEC requirement, resulting in
substantial ‘seasonality’ in the number of funds that report each quarter.
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WRDS).18 The fourth proxy for σ2
εt is a constant, corresponding to a situation in which fund

managers ignore changes in volatility when selecting the optimal equity position (the actual
magnitude of this constant is immaterial as it can be absorbed into Ai in the definition of
wit). In merging the volatility data with our quarterly observations, we choose the volatility
predictor for the last month of each quarter.19

To compute holdings-based fund betas, we follow the procedure from Jiang, Yao, and
Yu (2007). Closing prices from CRSP are used to first calculate the portfolio weights of the
individual holdings of each fund on each reporting date.20 Denote by ωijt the weight of stock
j in fund i’s portfolio at time t. Next, for each stock on each reporting date t, daily returns
for the preceding one-year period are pulled from CRSP. The beta of stock j at date t is
computed using the Dimson (1979) method. We run the regression

rejτ = ajt +
5∑

q=−5

bjqtr
e
m,τ−q + εjτ , τ ∈ {t− 364, t},

and the stock beta is estimated as the sum of the coefficients

bjt =
5∑

q=−5

bjqt.

At least 60 daily return observations are required for this regression. Stocks not meeting
this criteria are assigned betas of one. All non-stock securities are assigned betas of zero.
Combining the portfolio weights and stock beta estimates, the beta of fund i at time t is
given by

βit =
∑
j

ωijtbjt.

We initially start with 5278 funds. We filter out funds that at any point reported an
equity portfolio weight of more than 200% (76 funds), funds that report holdings in fewer
than eight quarters (983 more funds), and funds with an average equity portfolio weight of

18We found the GARCH(1,3) model to be the most parsimonious best fit nested within a GARCH(4,4)
framework. Of the three, the GARCH measure is the only one that is incorporates information unavail-
able contemporaneously because the coefficient estimates use the full time series. This turns out to be
inconsequential for our tests.

19For the GARCH measure of volatility, while we could have used an average of the forecast for all three
months of the quarter based on the last quarter’s information, this doesn’t significantly impact our test
results. Moreover, weights are typically reported towards the end of the quarter and would therefore reflect
a volatility prediction for that month (given that turnover ratios for the average mutual fund tend to be
larger than what might be suggested from reported quarterly weight changes).

20Individual stocks from the CDA/Spectrum s12 holdings file are matched with CRSP using CUSIPs and,
when CUSIPs are not present in the holdings file, ticker symbols.
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less than 50% (774 additional funds). We generally wish to investigate funds that invest in
a broad enough range of domestic equity so that information about the US equity premium
ought to particularly matter to them. Table 2.1 tabulates how the remaining 3445 funds are
then categorized as ‘broad domestic equity funds’ using their CDA/Spectrum s12 investment
objective codes, ICDI (MFDB) objective codes, and S&P objective codes.21 Funds not
highlighted in the table are considered ‘broad domestic equity funds’. We exclude the other
funds from the sample and are left with 2766 funds. Even for these remaining funds, some
fields are missing for some (or all) quarters.

For each fund, we calculate the time-series average holdings-based beta, the average
weight of domestic equity in the fund’s portfolio, the average total net assets under manage-
ment, the number of observations, the contemporaneous correlation of returns on the fund’s
domestic equity portfolio with the CRSP value-weighted index returns, the contemporaneous
correlation between a fund’s holdings-based beta and the various predictors of market return
variance. We also calculate the correlation between the holdings-based betas of every pair
of funds in our sample that have at least eight overlapping weight data (2,675,922 pairs).
Finally, we estimate the CAPM β̂ and α̂ from a regression of the fund’s domestic equity
returns, the t-statistic for the α, and the Sharpe Ratio of the non-CAPM returns (i.e., the
α̂ divided by the standard deviation of the CAPM regression residual, or the ‘information
ratio’). Table 2.2 provides a summary of these statistics across funds.

The summary statistics indicate that the funds in our sample maintain a typical holdings-
based beta of around 1, and that it is not unusual for this to fluctuate by 0.2 or more each
quarter. The funds also have a high average portfolio weight in equities. Moreover, the
equity portfolio held by the typical fund is highly correlated with the market portfolio (this
is also confirmed by CAPM β of the equity portfolio held by the typical fund). A striking
statistic is the low typical correlation between the holdings-based betas of any two funds.
This suggests that much of the asset allocation taking place is largely due to noise. Overall,
the typical fund in our sample is not particularly good at picking stocks either, although
according to Kosowski, Timmermann, Wermers, and White (2006) it is likely that the highest
ranked funds do exhibit ability.

21Some funds change objective codes throughout the sample period. We assign a fund its modal investment
code, and when there is more than one mode, we assign the ‘largest’ one (numerically or alphabetically).
In classifying a fund, we rely firstly on its CDA/Spectrum s12 objective code and consider it not to be a
broad domestic equity fund if the investment code is 1 (‘International’), 5 (‘Municipal Bonds’), 6 (‘Bond and
Preferred’), or 8 (‘Metals’). Only 2289 of the 3445 funds surviving the initial filter have a CDA/Spectrum
s12 objective code. Surprisingly, 170 funds have an investment code of 1, 5, 6, or 8, meaning that, despite
their objective, they mostly hold U.S. domestic equity (150 of these are classified as ‘International’). None
of the unclassified funds have an entry for their MFDB policy code or Wiesenberger objective.
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2.3.2 The market forecasting power inherent in weight dynamics

An implication of Proposition 2.2.3 is that for managers with timing ability, a larger esti-
mated weight variance implies better forecasting power. On the other hand, for noise traders
the above results should reverse. By testing these predictions, we test whether the cross-
sectional differences in portfolio weights (with respect to their variance) are related to ability
or noise.

As mentioned earlier, the observed portfolio weight may deviate from the expression in
Eq. (2.4). In order to control for strategy and for time-varying volatility, we posit that the
fund’s observed ‘effective’ weight in equity, wOit (= βit) can be written as

wOit = wit +Bi + γi1rit−1 + γi2r
2
it−1 + δi1fit + δi2f

2
it, (2.12)

where wit is the expression from Eq. (2.4), rit−1 is the excess return on the fund’s equity
subportfolio, fit is fund’s growth in net assets due to net inflows, and Bi is a constant.22 By
including rit−1 and r2

it−1 we are controlling for persistent changes in weights due to strategies
such as buy-and-hold or portfolio insurance. These terms, along with fit and f 2

it, also control
for the presence of ‘no trade’ regions that arise in the presence of transaction costs or other
forms of illiquidity.23 The inclusion of squared flows helps account for any nonlinearity in
the relation between weights and flows. Using the approximation in Eq. (2.11), we proxy
for σ2

εt using one of the four predictors of market variance described earlier, and denoted as
σ2

p t (e.g., σ2
vox t).

Consider the following forecasting regression

ret+1 = constant + ζ̂iσ
2
ptw

O
it + γ̂i1σ

2
ptrit−1 + γ̂i2σ

2
ptr

2
it−1 + δ̂i1σ

2
ptfit + δ̂i2σ

2
ptf

2
it + τ̂iσ

2
pt + noise.

(2.13)

Under our assumption, Eq. (2.12), σ2
p tw

O
it corresponds to σ2

pt times the sum of the control
variables, plus a constant multiple of E[r̃et+1|Iit] from Proposition 2.2.3 (where the constant
of proportionality depends on Ai and Rqi, as in Eq. (2.11)). Moreover, under the model
assumptions, the forecast error in E[r̃et+1|Iit] is orthogonal to the control variables in the
equation so that ζi and the residual variance can be estimated via OLS.

Testing Proposition 2.2.3

To test the implication of Proposition 2.2.3, one needs to estimate the variance of Var[ret+1|Iit]×
wit. Because we do not observe this directly, we instead estimate the residual variance from

22If, as discussed in footnote 11, the predictable part of the equity premium includes a term such as ξσ2
p t,

then by including the constant Bi we ensure that wit accounts for the remaining predictive variables.
23Fund flows are calculated as the difference between the growth in total net assets (TNA) under man-

agement less the rate of return on the fund including all distributions: fit = TNAt−(1+rt)TNAt−1

TNAt−1
.
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the following equation, based on Eq. (2.12):

σ2
ptw

O
it = constant +Biσ

2
pt + σ2

ptγi1rit−1 + γi2σ
2
ptr

2
it−1 + δi1σ

2
ptfit + δi2σ

2
ptf

2
it + noise. (2.14)

Under our assumptions, the residual variance from Eq. (2.14) is equal to the variance of the
expression in Eq. (2.11) (i.e., is proportional to the variance of E[r̃et+1|Iit] where the constant
of proportionality depends on Ai and Rqi). If there is no relation between the long-run target
of the fund’s equity exposure, corresponding to Ai, and the quality of information available
to the manager, then Proposition 2.2.3 implies an overall positive relationship between the
residual variance in Eq. (2.14) and the incremental R2 from Eq. (2.13) in the presence of
informed and highly-informed managers and an overall negative relation in the presence of
informed managers and noise traders.

Table 2.3 reports on this relationship at various forecasting horizons, using each of our
four proxies for market volatility, by presenting the Spearman rank correlation between the
incremental R2 from Eq. (2.13) and the residual variance from Eq. (2.14). At a one-month
forecasting horizon three of the 16 correlations between residual variance and incremental R2

are significantly negative, all using the vox conditional volatility measure. This is consistent
with the prediction of Proposition 2.2.3 for noise traders; however, the limited number of
significant coefficients provides only weak evidence against timing ability. At three, six-,
and 12-month forecasting horizons, the results appear broadly supportive of the hypothesis
that some managers possess superior information on future market returns. Results under
both the naive and vox volatility estimates indicate a significantly positive relation between
weight variation and forecasting ability, which is consistent with the prediction of Proposition
2.2.3 when cross-sectional differences in weight variation are due to ability. This result is
consistent with evidence presented by Simutin (2009) that funds with the most volatile
excess cash holdings exhibit timing ability at three- to six-month forecasting horizons. It is
also broadly consistent with the findings of Jiang, Yao, and Yu (2007), who find that that
holdings-based betas predict three- and six-month ahead market returns.

It is notable that when we use the simple constant volatility proxy, the relation between
weight variance and forecasting ability is consistently significantly negative. As there is ample
evidence (see, e.g., French, Schwert, and Stambaugh, 1987; Schwert, 1989) that conditional
volatility varies substantially over time, we place comparatively little weight on these results.
However, it is interesting to note that were we to fail to control for time-varying volatility
and consider only the constant-volatility proxy, we would conclude that managers exhibit
no timing ability. Given that (to our knowledge) all of the previous studies that evaluate
market timing ability ignore conditional volatility, this may partially explain some of the
negative results in the market timing literature.

To be sure that our results are not the result of an unanticipated cross-sectional rela-
tionship between the Ai’s and the variance of E[r̃et+1|Iit], we re-did the test by normalizing
the residual variance of Eq. (2.14) by the squared sample mean of σ2

ptw
O
it , taking care to
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adjust the denominator for bias.24 There was no substantial difference in the conclusions,
indicating that no systematic bias is introduced in Table 2.3 by ignoring the variation in
Ai’s. Thus, we conclude that at a three-, six-, and 12-month forecasting horizons there is
a positive relationship between forecasting ability (as inferred from portfolio weights) and
variation in weights.25

We report various robustness exercises in the next Section that seek to examine the
sensitivity of these conclusions to our statistical methods.

2.3.3 Robustness checks

The results reported in Table 2.3, lead us to conclude that, at least at three- to 12-month
forecasting horizons, there is information in managers’ equity weight exposures. To confirm
this, we test, using a bootstrapping methodology, whether the cross-sectional distribution
of ζi’s in the regression equation (2.13) is different than what would arise under the null of
ζ̂i = 0 for all i. The methodology proceeds as follows:

1. Using the data, the regression equation (2.13) is estimated for each fund, and the t-
statistics for ζ̂i, denoted as ti, is saved along with the corresponding regression residual.
Because the residuals in our model are heteroskedastic, White (1980) standard errors
are used when computing t-statistics.

2. Next, the regression equation (2.13) with ζ̂i set to zero is estimated:

ret+1 = γ̌i1σ
2
ptrit−1 + γ̌i2σ

2
ptr

2
it−1 + δ̌iσ

2
ptfit + τ̌iσ

2
pt + ε̌it+1 + consti,

and the predicted returns, řeit+1 ≡ ret+1 − ε̌it+1 are saved.

3. The set of dates {1979Q3, . . . 2006Q4} is randomly sampled, with replacement, to cre-
ate 2000 sets of data, each of which has the same time-series length as the original sam-
ple. Denote by T (k, t) the random element from {1979Q3, . . . 2006Q4} corresponding
to the tth item in the kth sample.

4. For each fund, we construct 2000 sets of bootstrapped sample returns under the null
that ζ̂i = 0 by combining randomly drawn residuals from the unrestricted model in
step 1 with the predicted returns from step 2. Specifically, the return at date t of the

24The normalization will, theoretically, remove any dependence on the Ai’s. The bias mentioned in the
text arises from dividing through by something with an estimation error. We correct for this using the
‘delta’-method.

25We also ran all of our tests on a subsample of funds that we classified as ‘timers’ based on the specification
of flexibility or dynamic asset allocation in their MFDB policy code, S&P objective code, S&P style code,
or S&P specialist code. The limited number of funds in this sample yielded too little statistical power to
draw any conclusions.
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kth bootstrapped sample is:

reikt
∗ = řeit + ε̂iT (k,t).

This approach preserves the cross-sectional properties of the residuals in each of the
2000 bootstrapped panels.

5. For each fund, denoted by i, and bootstrapped sample, denoted by k, the following
time-series regression is estimated:

reikt+1
∗ = ζ∗ikσ

2
ptwit + γ∗ik1σ

2
ptrit−1 + γ∗ik2σ

2
ptr

2
it−1 + δ∗ikσ

2
ptfit + τ ∗ikσ

2
pt + ε∗ikt+1 + const∗ik.

The estimate for the t-statistic associated with each ζ∗ik is saved. This exercise essen-
tially samples the joint distribution of the t∗i ’s, the t-statistics associated with the ζi’s,
under the null of no timing ability. For the kth bootstrapped panel, let Γk(`) denote
the cross-sectional `th percentile of among the t∗i ’s.

6. The one-sided p-values for the cross-sectional percentiles, Γ(`), of ti’s from step 1 are
computed according to

p(`) =
1

2000

2000∑
k=1

1{Γk(`) > Γ(`)},

For instance, p(50) corresponds to the likelihood, under the null, that we would observe
by chance alone a sample median ti as high or higher than the median ti in step 1.
In particular, if p(50) is small, then this could be interpreted as evidence that the
asset allocation decisions made by the median manager contain more information than
would be expected under the null.

Table 2.4 reports various cross-section percentiles of ti’s when the regression is performed
using our four different measures of market volatility, when various restrictions are imposed
on funds’ age in the panel, and for a one-month versus three-months forecast. The boot-
strapped p-values are reported below each estimated percentile. At the one-month forecasting
horizon, for virtually all values of `, the percentile Γ(`) is not significantly greater than what
is obtained under the null that ζ̂i = 0. There is no evidence that the cross sectional distri-
bution of ζi’s is shifted to the right of what would expected under a null of ζi = 0. Table 2.5
reports the same results at a 3-month forecasting horizon. In this case, under all volatility
proxies, the upper right-tail of the cross-sectional distribution of t-statistics is shifted signif-
icantly to the right. This provides confirmatory evidence of timing ability at a three-month
horizon. Similar conclusions are reached when the bootstrapping exercise is repeated using
the Kosowski, Timmermann, Wermers, and White (2006) approach. In summary, consistent
with our previous tests, at horizons longer than one month, fund managers appear to move
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portfolio weights between equity and non-equity in a manner that predicts future market
returns.

Comparison with Jiang, Yao, and Yu (2007)

Jiang, Yao, and Yu (2007) report that lagged equity portfolio betas of open-end mutual funds
predict market returns. Specifically, fund managers appear to be holding equity portfolios
with higher betas prior to positive market outcomes, and tend to be in possession of equity
portfolios with lower betas prior to negative market outcomes. This is viewed as supportive
of timing ability on the part of active fund managers. Section 2.6.2 qualitatively confirms
that, in our sample, equity portfolio betas also predict market returns. Our results differ
somewhat from those of Jiang, Yao, and Yu (2007) (see their Table 3) in that we find mixed
evidence that betas predict returns at the three-month horizon, whereas Jiang, Yao, and Yu
(2007) do find such evidence. Both Jiang, Yao, and Yu (2007) and we fail to find evidence
that portfolio betas forecast market returns at the one-month horizon. This is in line with
the earlier results of this section, in that evidence of timing ability, as reflected in portfolio
weights, appears to not be present at the one-month horizon.

In summary, the results reported in this subsection reinforce our conclusion that, at
least at forecasting horizons of three months and beyond, cross-sectional differences in the
time-series properties of portfolio weights appear to be related to ability.

2.4 Does successful ‘timing’ translate into higher re-

turns?

There are several ways in which the seemingly positive results from Section 2.3.2 could
arise, even in the absence of timing ability. For instance, it might be that our finding is
not actually reflective of market timing ability, perhaps because of mis-measurement in the
portfolio betas, because the shift into higher (lower) beta portfolios is accompanied by a shift
into lower (higher) non-market systematic risk, or because changes in funds’ equity portfolios
might be taking place at a frequency that is too high to benefit from the predictability at 3-
to 12-month horizons. It is also possible that our results are a mere statistical artifact.26

To help shed light on whether our findings are truly indicative of market timing ability,
we perform Treynor-Matzuy (TM) and Henriksson-Merton (HM) regressions on the cross
section of funds’ equity portfolio returns and compare the standardized timing coefficients
from these regressions with those from bootstrapped samples for which, by construction,
there is no timing ability. Jiang, Yao, and Yu (2007) examine TM and HM return regressions
for fund returns, which suffer from the various criticisms mentioned in the Introduction (fund

26In this vein, Taliaferro (2009) reports evidence that the Jiang, Yao, and Yu (2007) results are strongly
influenced by a few managers timing correctly during the downturn of 2000-2002. If one eliminates those
years from their sample, managers appear to forecast no better than would be expected by chance.
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returns do not reflect the equity portfolio returns because the former results from trading
at a frequency greater than quarterly). By contrast, we look at the results of TM and
HM bootstrapped tests for the same portfolios whose market betas are shown to forecast
future market returns. Because the rebalancing period for these portfolios coincides with the
observation frequency by construction, the criticism of Goetzmann, Ingersoll, and Ivković
(2000) and Jagannathan and Korajczyk (1986) do not apply to our tests.

Our first bootstrapping procedure, similar to the procedure used to test the timing regres-
sion in Section 2.3.3, is aimed at addressing the possibility that t-statistics from the timing
regressions might not be t-distributed, and that residuals are likely to be cross-sectionally
correlated. We proceed similarly to the method outlined in Section 2.3.3 except that řeit is
now defined as řeit ≡ consti +

∑
j∈{m,smb,hml,umd} βjr

e
jt, and the pseudo returns are generated

by combining r̂it with reordered values of ε̂iT (k,t), where T (k, t) is defined as in Section 2.3.3.
The timing regression is then re-run for each replication of each fund, and right-tail p-values
are calculated for various percentiles.

The results, reported in Panels A and B of Table 2.6, suggest that there is no evidence
of timing ability in funds’ equity portfolios. We also re-ran the procedure using a monthly,
rather than quarterly, forecasting horizon.27 At the monthly horizon, we did find weak
evidence of timing in the HM regression test, though not for the TM test.

The second procedure we performed proceeds similarly to Bollen and Busse (2001). The
results are consistent with those for the first procedure, so we relegate discussion of the
procedure and results to Section 2.6.3.

To recap, although the equity portfolios of actively managed funds, as reconstructed
from quarterly holdings, exhibit portfolio betas that predict market returns at a horizon
of three months and longer, we find no evidence that this translates into successful timing
as measured in terms of quarterly portfolio returns. This could be because the portfolios
are not held long enough to benefit from the predictability. Alternatively, this could be
because of mis-measurement in the portfolio betas or because the shift into higher (lower)
beta portfolios is accompanied by a shift into lower (higher) non-market systematic risk.

2.5 Conclusions

We derive a model of asset allocation based on a dynamic noisy information model. The
model predicts that a more volatile equity exposure should be linked to higher quality of
information about the equity premium. The model also predicts that the equity exposure of
every portfolio manager who uses information optimally, whether they are market timers or
not, ought to have an autocorrelation coefficient that decreases with the quality of informa-
tion that the manager has.

We find evidence supportive of the first prediction, at forecasting horizons of three, six,

27The table is available upon request.
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and 12 months. Fund managers with more volatile effective equity portfolio weights appear
to better forecast future market returns (as measured through forecasting regressions that
include the weights). Various bootstrap exercises corroborate this result. While our tests
support the hypothesis that some managers have information about future market returns,
we find no evidence that this ability manifests itself in the form of higher portfolio returns.

2.6 Appendix

2.6.1 Proofs

Proof of Proposition 2.2.1. Since mt, sit−j, and r̃t−j are jointly normal, the conditional ex-
pectation takes the form of a linear projection of mt onto sit−j and r̃t−j (recall that qit is
orthogonal to mt).

The equations defining the coefficients in such a linear projection are of the form

E[sit−kmt] =
∞∑
j=0

aitjE[st−kst−j] +
∞∑
j=0

bitjE[st−k(r̃
e
t−j − µ̄)], k ≥ 0

E[(r̃et−k − µ̄)mt] =
∞∑
j=0

aitjE[(r̃et−k − µ̄)st−j] +
∞∑
j=0

bitjE[(r̃et−k − µ̄)(r̃et−j − µ̄)], k ≥ 0.

Calculating the expectations in these expressions allows one to rewrite the first equation
as

(1− φm)kVar[m] =
∞∑
j=0

(
aitj
(
Var[m](1− φm)|k−j| + Var[ni](1− φin)|k−j|

)
+ bitjVar[m](1− φm)|k−j−1|

)
. (2.15)

and the second equation as

(1− φm)k+1Var[m] = bitkσ
2
εt−k−1 +

∞∑
j=0

(
aitjVar[m](1− φm)|k+1−j|+

bitjVar[m](1− φm)|k−j|
)

(2.16)

As long as 1− φm, 1− φin ∈ (0, 1), Austin (1987) guarantees that a solution to this infinite
set of equations exists. This establishes the first claim in the proposition.

Next, consider Var[mt|Iit]. The coefficients {aitj, bitj}∞j=0 are chosen such that mt −
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E[mt|Iit] is orthogonal to E[mt|Iit], so Var[mt|Iit] = Var[mt − E[mt|Iit]]. Hence,

Var[mt|Iit] = Var[m]− 2
∞∑
j=0

(
aitjVar[m](1− φm)j + bitjVar[m](1− φm)j+1

)
+

Var

[
∞∑
j=0

(
aitjsit−j + bitj(r̃

e
t−j − µ̄)

)]
(2.17)

To simplify this, obtain an expression for the middle summation term by multiplying
(2.15) by aitk and summing over k and by multiplying (2.16) by bitk and summing over k.
Obtain an expression for the third term by expanding and simplifying it to write it as∑
j,k

aitjaitk
(
Var[m](1− φm)|k−j| + Var[ni](1− φin)|k−j|

)
+
∑
j,k

aitjbitkVar[m](1− φm)|k+1−j|

+
∑
j,k

aitkbitjVar[m](1− φm)|k−j−1| +
∑
j,k

bitjbitkVar[m](1− φm)|k−j| +
∑
k

b2
itkσ

2
εt−k−1

Substituting the results from these manipulations back into (2.17) gives

Var[mt|Iit] = Var[m]−
∑
j,k

aitjaitkVar[m](1− φm)|k−j| −
∑
j,k

aitjbitkVar[m](1− φm)|k+1−j|

−
∑
j,k

aitkbitjVar[m](1− φm)|k−j−1| −
∑
j,k

bitjbitkVar[m](1− φm)|k−j|

−
∑
j,k

aitjaitkVar[ni](1− φin)|k−j| −
∑
k

b2
itkσ

2
εt−k−1. (2.18)

To simplify this expression to one that does not depend on Var(m), first multiply (2.15)
by aitk and sum over k, then multiply (2.16) by bitk and sum over k, and finally sum the
results of these manipulations to obtain

−
∑
j,k

aitjaitkVar[m](1− φm)|k−j| −
∑
j,k

aitjbitkVar[m](1− φm)|k+1−j|

−
∑
j,k

aitkbitjVar[m](1− φm)|k−j−1| −
∑
j,k

bitjbitkVar[m](1− φm)|k−j|

=
∑
j,k

aitjaitkVar[ni](1− φin)|k−j| +
∑
k

b2itkσ
2
εt−k−1 −

∑
k

(
aitkVar[m](1− φm)k + bitkVar[m](1− φm)k+1

)
(2.19)

Take k = 0 in eq. (2.15) to get an expression to substitute for∑
k

(
aitkVar[m](1− φm)k + bitkVar[m](1− φm)k+1

)
,
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then plug the result back to (2.18) to obtain

Var[mt|Iit] =
∑
j

aitjVar[ni](1− φin)j (2.20)

Finally, we obtain the result in the proposition by stepping (2.15) forward from k to k+1,
subtracting (2.16), and taking k = 0 to produce

bit0σ
2
εt−1 =

∞∑
j=0

aitjVar[ni](1− φin)|1−j|

After minor manipulation, substituting this expression back into (2.20) gives the desired
formula.

The result for the highly-informed manager is standard and relies on the fact that the
shocks are not serially correlated and the assumption that the conditional variances of eit
and εt+1 at date t have a ratio, denoted Rqi, that is time-invariant.

Proof of Proposition 2.2.2. Begin by using the definition of autocorrelation to write

1

Var[m̂it]
Cov

 ∞∑
j=0

(
aitjsit−j + bitj

(
r̃et−j − µ̄

))
,

∞∑
k=0

(
aitksit−1−k + bitk

(
r̃et−1−k − µ̄

))
=

1

Var[m̂it]

∑
j,k

(
aitjaitk

(
Var[m](1− φm)|k+1−j| + Var[ni](1− φin)|k+1−j|

)
+ bitjaitkVar[m](1− φm)|k−j|

+aitjbitkVar[m](1− φm)|k+2−j| + bitjbitkVar[m](1− φm)|k+1−j|
)

+
∑
k

bitkbit(k+1)σ
2
ε t−2−k

]
(2.21)

To simplify this expression, take (2.15), advance k to k + 1, multiply by aitk, and sum over
k. Similarly, take (2.16), advance k to k + 1, multiply by bitk and sum over k. Add the two
results to conclude that the term in brackets in (2.21) equals

Var[m]
∑
k

(
aitk(1− φm)k+1 + bitk(1− φm)k+2

)
. (2.22)

To simplify (2.22) further take k = 0 in (2.15), multiply the result by 1 − φm, and
rearrange the result to obtain

Var[m]
∑
k

(
ak(1− φm)k+1 + bk(1− φm)k+2

)
= (1− φm)

Var[m]−Var[ni]
∑
j

aitj(1− φin)j


= (1− φm) (Var[m]−Var[mt|Iit]) , (2.23)

where the second equality follows from (2.20).
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Finally, substitute from (2.23) back into (2.21) and use the fact that Var[m̂it] = Var[m]−
Var[mt − E[mt|Iit]] to obtain the stated result.

Proof of Corollary to Proposition 2.2.2. One can write E[ret+1|Iit] = m̂it+E[εt+1|Iit] = m̂it+
qit

1+Rqi
. Because the qjit are serially independent, Proposition 2.2.2 can be used to write the

autocorrelation of E[ret+1|Iit] for the highly informed managers and noise traders as

1− φm√(
1 +

σ2
εt

(1+Rqi)Var(m̂)

)(
1 +

σ2
εt−1

(1+Rqi)Var(m̂)

) .
This establishes the corollary.

Proof of Proposition 2.2.3. Let r̂eit+1 ≡ E[r̃et+1|Iit]. For the informed and highly informed
managers, we have

β =
Cov

[
r̃et+1, r̂

e
it+1

]
Var[r̂eit+1]

=
Cov

[
(r̃et+1 − r̂eit+1) + r̂eit+1, r̂

e
it+1

]
Var[r̂eit+1]

= 1,

where the last equality follows since r̂eit+1 is by definition orthogonal to r̃et+1 − r̂eit+1.
For the noise traders,

β =
Cov

[
r̃et+1, r̂

e
it+1

]
Var[r̂eit+1]

=
Cov

[
mt + εt+1, m̂it +

qNit
1+Rqi

]
Var[m̂it +

qNit
1+Rqi

]

=
Cov [mt, m̂it]

Var[m̂it] +
Var[qNit ]

(1+Rqi)2

=
1

1 +
σ2
εt

(1+Rqi)Var[m̂it]

,

where the third equality follows from the fact that Cov(εt+1, q
N
it ) = 0, and the last equality

follows (after rearranging) since m̂it is orthogonal to mt − m̂it.
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We can also express β as

β =
Cov

[
r̃et+1, r̂

e
it+1

]
Var

[
r̂eit+1

]
=
ρrr̂iσr̂iσr
σ2
r̂i

Using the values for β derived above and rearranging, we obtain the results.

2.6.2 Reproducing the results from Jiang, Yao, and Yu (2007)

With the holdings-based beta estimates from Section 2.3.1, we follow Jiang, Yao, and Yu
(2007) and estimate the Treynor-Mazuy and Henriksson-Merton timing measures directly
from the regressions28

βit = αi + γir
e
m,t+1 + ηi,t+1

βit = αi + γi1{rem,t+1>0} + ηi,t+1.

To test the null hypothesis that funds have no timing ability, we first estimate the TM and
HM regressions for each fund and save the regression coefficients and t-statistics. Following
Jiang, Yao, and Yu (2007), only funds with at least 8 valid report dates are included in the
analysis. Furthermore, the t-statistics are computed using the Newey-West procedure with
a two-quarter lag window to correct for serial correlation in the residuals brought about by
overlapping market returns. In the results below, four different horizons (one-, three-, six-,
and 12-month) for the market excess return rem,t+1 are reported.

The cross-section of t-statistics, ti, is analyzed with a bootstrap procedure. The procedure
proceeds by randomly sampling with replacement the set of market excess returns to produce
2000 time series, each with the length of the original time series. The TM and HM regressions
above are re-run on the bootstrapped excess market return series to produce 2000 distinct
cross-sectional panels of regression slope coefficients and associated t-statistics, tki .

Consider the `th percentile Γ(`) of the cross-sectional distribution of “actual” γi t-statistics.
To test whether the `th percentile is significantly greater than expected under the null, we
compare it to the percentiles Γk(`) of the bootstrapped t-statistics. The p-value for a one-
sided test of Γ(`) is computed as

p(`) =
1

2000

2000∑
k=1

1{Γk(`) > Γ(`)}.

28Jiang, Yao, and Yu (2007) use characteristic-adjusted betas (see Daniel, Grinblatt, Titman, and Wermers,
1997) in their analysis. Because they mention that their results are not sensitive to this adjustment, we do
not make it.
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In short, a cross-sectional percentile is considered significantly larger than expected under
the null if only a small number of bootstrap samples produce cross-sectional percentiles that
are larger.

Table 2.7 reports the results of this test and confirms the findings in Jiang, Yao, and Yu
(2007) that the equity portfolio betas forecast future market excess returns.

2.6.3 Robustness of equity portfolio timing regressions

Using quarterly data, we run the regression

reit = consti +
∑

j∈{m,smb,hml,umd}

βjr
e
jt + γif(remt) + εit, (2.24)

for each fund, where reit is the excess return on the equity portion of the fund’s port-
folio, rekt is the return for Fama-French-Carhart factor k, and f(remt) = (remt)

2 for the
TM model and f(remt) = 1{remt > 0}remt for the HM model. The fitted values, r̂eit ≡
consti +

∑
j∈{m,smb,hml,umd} βjr

e
jt + γif(remt) and the residuals are saved. We next create 2000

bootstrapped panels as follows. To create a single bootstrapped panel the set of dates is ran-
domly resampled, with replacement, and the residuals for each fund reordered accordingly.
Then, the resampled residuals are merged back with the r̂it’s, producing a time-series panel
of pseudo-return data for the funds’ equity portfolios. The equity portfolio pseudo-returns
for a given fund is considered missing if no residual is available for the resampled date. The
regression in (2.24) is re-run for each replication of each fund. The bootstrapped standard
error of each estimated γi parameter is computed using

Std. Err.(γi) =
1

2000− 1

2000∑
k=1

(γik − γik)2 .

t-statistics are computed using the formula t = γi
Std. Err.(γi)

, and are compared to ±1.96 to

assess significance. For consistency with the Jiang, Yao, and Yu (2007) replication results,
we require a fund have a minimum of 8 quarters of data to qualify for inclusion in the sample.
Panel A of Table 2.8 shows the results for this procedure and is analogous to Table III in
Bollen and Busse (2001). The fact that the number and magnitude of negative and positive
timing coefficients is roughly the same suggests that there is no serious negative bias of the
sort suggested in Jagannathan and Korajczyk (1986) and Goetzmann, Ingersoll, and Ivković
(2000), and found in the analysis of fund-level returns by Jiang, Yao, and Yu (2007). The
fact that significant coefficients are no more frequent than might be expected is evidence
against timing ability, as reflected in equity portfolio returns.

.
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variable mean max min p5 p25 p50 p75 p95

β .98 2.06 .17 .55 .84 .96 1.13 1.42
σβ .21 1.23 .023 .081 .14 .19 .27 .40
Avg. tnam 597 28000 10 17 54 156 470 2313
# quarters 33 105 8 9 17 27 42 82
ρmkt .79 1.0 -.26 .44 .74 .84 .92 .97
ρσ2 naive -.16 .93 -.91 -.67 -.38 -.17 .049 .39
ρσ2 GARCH -.084 .93 -.95 -.68 -.33 -.087 .16 .52
ρσ2 vox -.16 1.0 -.97 -.70 -.40 -.16 .071 .43
ρbet β .13 1.0 -.99 -.56 -.15 .15 .43 .75
w̄ .88 1.1 .5 .59 .85 .92 .95 .99
σw .085 .46 .0015 .017 .04 .067 .12 .21

β̂ 1.2 3.3 -.44 .81 1.0 1.1 1.4 1.8
α̂ -.0014 .12 -.084 -.025 -.0082 -.0012 .0056 .021
tα -.15 5.4 -7.4 -2.4 -1.1 -.17 .74 2.1
SRα -.088 2.8 -4.9 -1.1 -.4 -.063 .27 .85

Table 2.2: Summary statistics for the 2766 funds in our sample. β and σβ correspond,
respectively, to the time-series average and standard deviation of a fund’s holdings-based
beta. Avg. tnam refers to a fund’s time series average of total net assets under management.
ρmkt denotes the contemporaneous correlation between the return on a fund’s domestic equity
portfolio and the CRSP value weighted index returns. Each of ρσ2 naive, ρσ2 GARCH, and
ρσ2 vox is a contemporaneous correlation between the fund’s domestic equity weight and a
predictor of market variance (naive, GARCH(1,3), and the vox, respectively). ρbet wts is the
contemporaneous correlation between the domestic equity weights of two distinct funds. w̄
and σw correspond, respectively, to a fund’s time-series average and standard deviation of
weight allocated to domestic equity. α̂ and β̂ are the CAPM regression statistics for each
fund’s domestic equity returns (tα is the t-statistic for the fund’s alpha, while SRα is the
fund’s α divided by the residual standard deviation).
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one-month horizon

σ2
p t min obs Corr(R2

I ,Var[m̂i]) p-val # funds

σ2
naive

16 -0.02 0.493 1746
24 0.04 0.198 1176
32 0.05 0.161 759
40 0.00 0.915 480

σ2
GARCH

16 -0.03 0.246 1746
24 -0.01 0.677 1176
32 -0.00 0.944 759
40 -0.06 0.204 480

σ2
vox

16 -0.08 0.001 1698
24 -0.07 0.028 1127
32 -0.09 0.015 711
40 -0.11 0.018 426

σ2
const

16 0.02 0.413 1746
24 0.03 0.369 1176
32 -0.04 0.270 759
40 -0.08 0.086 480

three-month horizon

σ2
naive

16 0.15 0.000 1746
24 0.20 0.000 1176
32 0.18 0.000 759
40 0.17 0.000 480

σ2
GARCH

16 -0.03 0.149 1746
24 -0.01 0.770 1176
32 -0.00 0.964 759
40 -0.05 0.244 480

σ2
vox

16 0.07 0.003 1698
24 0.08 0.004 1127
32 0.10 0.007 711
40 0.05 0.295 426

σ2
const

16 -0.08 0.000 1746
24 -0.09 0.002 1176
32 -0.08 0.038 759
40 -0.08 0.081 480

Continued on next page

Table 2.3: This table reports Spearman rank correlations between the residual variance of
Eq. (2.14) and the incremental R2 from the forecasting Eq. (2.13) for a one-month and
three-month forecasting horizons. The associated p-values are reported.
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Table 2.3, continued.

six-month horizon

σ2
p t min obs Corr(R2

I ,Var[m̂i]) p-val # funds

σ2
naive

16 0.10 0.000 1746
24 0.15 0.000 1176
32 0.11 0.002 759
40 0.07 0.121 480

σ2
GARCH

16 -0.04 0.097 1746
24 -0.05 0.098 1176
32 -0.07 0.067 759
40 -0.11 0.019 480

σ2
vox

16 0.09 0.000 1698
24 0.07 0.017 1127
32 0.07 0.075 711
40 0.03 0.583 426

σ2
const

16 -0.11 0.000 1746
24 -0.14 0.000 1176
32 -0.13 0.000 759
40 -0.15 0.001 480

twelve-month horizon

σ2
naive

16 0.16 0.000 1746
24 0.24 0.000 1176
32 0.20 0.000 759
40 0.15 0.001 480

σ2
GARCH

16 0.00 0.898 1746
24 0.02 0.514 1176
32 0.00 0.913 759
40 -0.05 0.305 480

σ2
vox

16 0.12 0.000 1698
24 0.14 0.000 1127
32 0.14 0.000 711
40 0.06 0.204 426

σ2
const

16 -0.07 0.003 1746
24 -0.06 0.039 1176
32 -0.07 0.059 759
40 -0.09 0.045 480
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t-stats with associated p-values for forecasting regression

min obs 1% 5% 10% 25% 50% 75% 90% 95% 99%

σ2
naive

8 -7.502 -3.581 -2.450 -1.240 -.1518 0.9089 2.1190 3.3006 6.3357
0.0275 0.2289 0.3993 0.6382 0.7396 0.8201 0.8816 0.9085 0.9990

16 -4.771 -2.896 -2.101 -1.131 -.1810 0.7442 1.7067 2.4344 4.2153
0.8721 0.8816 0.8366 0.8101 0.7786 0.7431 0.6062 0.4703 0.3253

24 -4.118 -2.492 -1.841 -.9728 -.1347 0.7092 1.5781 2.2327 3.7641
0.8741 0.8031 0.7431 0.6747 0.7146 0.7271 0.5977 0.4328 0.2469

32 -3.464 -2.320 -1.749 -.9319 -.1449 0.6691 1.4425 1.8507 3.2522
0.7506 0.7506 0.7021 0.6507 0.7221 0.7316 0.6792 0.7411 0.3443

40 -3.260 -2.189 -1.653 -.9265 -.1472 0.5867 1.2373 1.6411 2.8819
0.6562 0.6792 0.6387 0.6512 0.7031 0.7816 0.8341 0.8541 0.5672

σ2
GARCH

8 -7.112 -3.420 -2.364 -1.073 -.0406 0.9562 2.0546 3.0701 5.7944
0.0160 0.1894 0.3788 0.4583 0.5767 0.7236 0.8831 0.9460 0.9995

16 -4.438 -2.757 -1.950 -.9275 -.0435 0.7977 1.6409 2.1718 3.5307
0.8846 0.8926 0.7951 0.6082 0.5837 0.6157 0.5707 0.5957 0.5647

24 -3.558 -2.149 -1.511 -.7388 0.0227 0.8091 1.5644 2.0473 3.0697
0.8176 0.6477 0.4693 0.4213 0.4893 0.5137 0.4928 0.4748 0.4788

32 -3.224 -1.871 -1.400 -.7235 0.0417 0.7922 1.4681 1.9386 2.8673
0.8151 0.4598 0.4198 0.4438 0.4668 0.4903 0.5392 0.4973 0.4338

40 -2.291 -1.549 -1.282 -.6782 0.0310 0.7077 1.4256 1.8508 2.7772
0.2099 0.1964 0.3288 0.4093 0.4803 0.5757 0.5397 0.5172 0.4563

σ2
vox

8 -6.200 -3.033 -2.142 -1.049 -.1115 0.7638 1.5885 2.2572 4.4383
0.3988 0.5297 0.5912 0.6072 0.6777 0.7996 0.9260 0.9630 0.9705

16 -4.076 -2.454 -1.881 -.9401 -.1267 0.6640 1.3248 1.8115 2.6567
0.9290 0.8751 0.8751 0.7126 0.7166 0.7431 0.8306 0.8121 0.8981

24 -3.089 -2.083 -1.517 -.7641 -.0635 0.6646 1.3041 1.7190 2.3788
0.7486 0.7411 0.5992 0.5172 0.6252 0.6812 0.7316 0.7396 0.8611

32 -3.055 -1.863 -1.396 -.6427 -.0126 0.6587 1.2451 1.6456 2.3575
0.8621 0.5742 0.4928 0.3558 0.5292 0.6507 0.7471 0.7366 0.7101

40 -2.417 -1.578 -1.222 -.5436 0.0795 0.6748 1.2339 1.6196 2.4245
0.3938 0.2839 0.3023 0.2549 0.4078 0.6082 0.7111 0.7071 0.6217

σ2
const

8 -6.200 -3.033 -2.142 -1.049 -.1115 0.7638 1.5885 2.2572 4.4383
0.3988 0.5297 0.5912 0.6072 0.6777 0.7996 0.9260 0.9630 0.9705

16 -4.076 -2.454 -1.881 -.9401 -.1267 0.6640 1.3248 1.8115 2.6567
0.9290 0.8751 0.8751 0.7126 0.7166 0.7431 0.8306 0.8121 0.8981

24 -3.089 -2.083 -1.517 -.7641 -.0635 0.6646 1.3041 1.7190 2.3788
0.7486 0.7411 0.5992 0.5172 0.6252 0.6812 0.7316 0.7396 0.8611

32 -3.055 -1.863 -1.396 -.6427 -.0126 0.6587 1.2451 1.6456 2.3575
0.8621 0.5742 0.4928 0.3558 0.5292 0.6507 0.7471 0.7366 0.7101

40 -2.417 -1.578 -1.222 -.5436 0.0795 0.6748 1.2339 1.6196 2.4245
0.3938 0.2839 0.3023 0.2549 0.4078 0.6082 0.7111 0.7071 0.6217

Table 2.4: This table reports `th percentiles, Γ(`) for ` = 1%, 5%, 10%, 25%, 50%, 75%,
90%, 95%, and 99%, of the cross-sectional distribution of t-statistics of ζ̂i in the regressions
ret+1 = ζ̂iσ

2
ptwit + γ̂i1σ

2
ptrit−1 + γ̂i2σ

2
ptr

2
it−1 + δ̂i1σ

2
ptfit + δ̂i2σ

2
ptf

2
it + τ̂iσ

2
pt + ε̂it+1 + consti, with

a 1-month forecasting horizon. Bootstrapped right-tailed p-values for a test of the null
hypothesis ζ̂i = 0 for all i are below each estimate. Each bootstrap sample is composed of
2000 replications.



78
t-stats with associated p-values for forecasting regression

min obs 1% 5% 10% 25% 50% 75% 90% 95% 99%

σ2
naive

8 -9.522 -3.952 -2.651 -1.102 0.1648 1.4646 2.8538 3.8623 7.5264
0.1424 0.4913 0.6387 0.4623 0.2664 0.1514 0.2374 0.5867 0.9780

16 -5.387 -2.976 -2.069 -.8801 0.2487 1.4785 2.7454 3.5284 5.8299
0.9645 0.9265 0.8251 0.4793 0.1754 0.0220 0.0060 0.0080 0.0130

24 -4.712 -2.676 -1.855 -.6912 0.3539 1.4547 2.5859 3.3526 5.1098
0.9675 0.9080 0.7541 0.2884 0.0950 0.0245 0.0075 0.0065 0.0120

32 -4.081 -2.392 -1.713 -.5588 0.3500 1.3870 2.5364 3.2066 4.7164
0.9365 0.7861 0.6537 0.1849 0.1154 0.0390 0.0095 0.0120 0.0165

40 -3.717 -2.161 -1.696 -.6604 0.2069 1.2738 2.2795 2.9694 3.9256
0.8471 0.6142 0.6512 0.3378 0.2664 0.0860 0.0405 0.0340 0.1099

σ2
GARCH

8 -8.491 -3.518 -2.372 -.9687 0.2044 1.3691 2.6730 3.9046 8.8164
0.0725 0.2614 0.4313 0.3113 0.2284 0.2109 0.3503 0.5362 0.9075

16 -4.250 -2.529 -1.775 -.7644 0.3365 1.3765 2.4873 3.4232 4.8873
0.8446 0.7851 0.6227 0.3713 0.1114 0.0355 0.0140 0.0070 0.0385

24 -3.633 -2.104 -1.506 -.5943 0.4096 1.3043 2.3673 2.9614 4.5827
0.8646 0.6172 0.4628 0.2429 0.0705 0.0410 0.0105 0.0095 0.0070

32 -3.279 -2.037 -1.398 -.4783 0.3922 1.2311 2.2332 2.7387 4.0483
0.8421 0.6212 0.3973 0.1624 0.0895 0.0675 0.0210 0.0235 0.0165

40 -3.004 -1.865 -1.380 -.5777 0.2969 1.0957 2.0184 2.4178 3.4382
0.7016 0.5107 0.4343 0.3028 0.1829 0.1569 0.0580 0.0975 0.1269

σ2
vox

8 -9.728 -3.484 -2.327 -.9131 0.3038 1.5233 2.9672 4.0483 7.1716
0.2079 0.2359 0.3428 0.2114 0.1209 0.0965 0.1389 0.3918 0.9815

16 -4.543 -2.602 -1.834 -.6864 0.4282 1.5323 2.8197 3.5813 6.1618
0.8366 0.7251 0.5787 0.2149 0.0605 0.0220 0.0085 0.0115 0.0070

24 -3.434 -2.268 -1.515 -.4785 0.5768 1.5202 2.5829 3.2713 5.5226
0.6637 0.6462 0.3708 0.1054 0.0270 0.0200 0.0110 0.0100 0.0050

32 -3.451 -2.109 -1.370 -.4109 0.5725 1.4203 2.3303 2.9711 4.0581
0.8261 0.5992 0.2879 0.0975 0.0310 0.0410 0.0280 0.0185 0.0510

40 -3.222 -1.821 -1.305 -.4582 0.5529 1.3778 2.2338 2.9519 3.8779
0.7046 0.3578 0.2714 0.1434 0.0445 0.0540 0.0405 0.0175 0.0825

σ2
const

8 -5.703 -2.727 -1.926 -.7804 0.2167 1.1798 2.1394 3.1220 5.9919
0.2709 0.3178 0.3668 0.2399 0.2089 0.2584 0.4128 0.3863 0.6622

16 -3.156 -2.109 -1.529 -.6211 0.3467 1.2142 2.0112 2.7946 4.4181
0.5262 0.5862 0.4508 0.2339 0.0760 0.0575 0.0590 0.0160 0.0175

24 -2.685 -1.829 -1.276 -.4908 0.4034 1.1964 1.8897 2.4796 3.8888
0.4113 0.4248 0.2594 0.1464 0.0515 0.0485 0.0660 0.0350 0.0160

32 -2.611 -1.784 -1.172 -.4406 0.3652 1.1525 1.7771 2.2501 3.5784
0.5087 0.4483 0.1959 0.1244 0.0755 0.0690 0.1199 0.0975 0.0210

40 -2.551 -1.595 -1.130 -.4682 0.2494 1.0788 1.6882 2.1098 2.9691
0.4743 0.2714 0.1999 0.1779 0.1799 0.1139 0.1754 0.1854 0.2114

Table 2.5: This table reports `th percentiles, Γ(`) for ` = 1%, 5%, 10%, 25%, 50%, 75%,
90%, 95%, and 99%, of the cross-sectional distribution of t-statistics of ζ̂i in the regressions
ret+1 = ζ̂iσ

2
ptwit + γ̂i1σ

2
ptrit−1 + γ̂i2σ

2
ptr

2
it−1 + δ̂i1σ

2
ptfit + δ̂i2σ

2
ptf

2
it + τ̂iσ

2
pt + ε̂it+1 + consti, with

a 3-month forecasting horizon. Bootstrapped right-tailed p-values for a test of the null
hypothesis ζ̂i = 0 for all i are below each estimate. Each bootstrap sample is composed of
2000 replications.
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Panel A t-stats with associated p-values for TM regression
1% 5% 10% 25% 50% 75% 90% 95% 99%

8 -4.662 -2.661 -1.995 -.8863 0.1243 1.1031 2.2092 2.9289 5.6924
0.0324 0.1118 0.2420 0.2141 0.2759 0.4162 0.4711 0.6846 0.7360

16 -3.669 -2.355 -1.781 -.8286 0.1109 0.9875 1.9261 2.5471 3.7780
0.6003 0.5519 0.5544 0.3797 0.2959 0.3169 0.2580 0.2410 0.3698

24 -3.239 -2.108 -1.576 -.6920 0.1905 0.9920 1.8440 2.3498 3.3549
0.5978 0.5005 0.4536 0.2849 0.2086 0.2335 0.1861 0.1966 0.3288

32 -2.912 -1.952 -1.439 -.5842 0.2693 0.9982 1.7817 2.2331 3.0041
0.4651 0.4167 0.3358 0.1946 0.1432 0.2101 0.1976 0.2330 0.4491

40 -2.921 -1.770 -1.375 -.5950 0.2321 0.9015 1.6524 2.0989 2.9876
0.5434 0.2735 0.3273 0.2430 0.1886 0.3069 0.2954 0.3164 0.3987

Panel B t-stats with associated p-values for HM regression
8 -4.323 -2.525 -1.763 -.8962 0.1376 1.1014 2.1294 2.7054 5.1685

0.0165 0.1043 0.1183 0.3154 0.2690 0.3733 0.5070 0.7994 0.8907
16 -3.279 -2.145 -1.644 -.8219 0.1413 1.0261 1.8897 2.4428 3.5407

0.4566 0.4511 0.4905 0.4541 0.2520 0.2166 0.1971 0.2096 0.3548
24 -2.936 -1.895 -1.397 -.6770 0.2793 1.0513 1.8455 2.3107 3.0889

0.5259 0.3762 0.3194 0.3278 0.1158 0.1352 0.1103 0.1362 0.3463
32 -2.824 -1.721 -1.297 -.5194 0.3305 1.0778 1.7706 2.2185 2.9021

0.5993 0.2759 0.2720 0.1577 0.0913 0.1048 0.1317 0.1412 0.3378
40 -2.858 -1.657 -1.247 -.5110 0.3055 0.9981 1.5799 1.9427 2.8669

0.6811 0.2839 0.2590 0.1826 0.1173 0.1732 0.2899 0.3558 0.3244

Table 2.6: Panels A and B reports percentiles, Γ(`), of the cross-sectional distribution of t
for the timing coefficient in the TM and HM regressions. Bootstrapped one-sided p-values
for a test of the null hypothesis of γ = 0 are included below each percentile. Each bootstrap
consists of 2000 replications.
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Mean 1% 5% 10% 25% 50% 75% 90% 95% 99%
1-month horizon

γ -.21 -4.3 -2.4 -1.7 -.76 -.11 0.44 1.12 1.71 3.21
p 0.83 0.91 0.92 0.90 0.83 0.72 0.63 0.56 0.51 0.54
t -.19 -3.8 -2.3 -1.7 -.94 -.14 0.59 1.33 1.83 3.10
p 0.73 0.83 0.74 0.64 0.67 0.67 0.76 0.74 0.72 0.58
3-month horizon

γ 0.08 -2.3 -1.1 -.70 -.24 0.12 0.45 0.79 1.09 2.00
p 0.24 0.87 0.73 0.62 0.33 0.12 0.10 0.20 0.25 0.27
t 0.27 -3.7 -2.1 -1.5 -.57 0.33 1.21 1.93 2.37 3.66
p 0.16 0.80 0.63 0.47 0.21 0.12 0.07 0.09 0.14 0.20
6-month horizon

γ 0.10 -2.3 -1.1 -.69 -.20 0.15 0.45 0.81 1.07 2.04
p 0.13 1.00 0.99 0.96 0.51 0.02 0.00 0.01 0.01 0.00
t 0.40 -4.6 -2.5 -1.7 -.57 0.47 1.51 2.38 3.04 4.69
p 0.08 0.99 0.94 0.76 0.24 0.05 0.00 0.00 0.00 0.00
12-month horizon

γ 0.06 -1.8 -.89 -.57 -.18 0.10 0.34 0.59 0.82 1.53
p 0.18 1.00 1.00 0.99 0.76 0.02 0.00 0.00 0.00 0.00
t 0.39 -5.3 -3.1 -2.0 -.72 0.46 1.58 2.77 3.71 5.68
p 0.08 1.00 1.00 0.96 0.44 0.06 0.00 0.00 0.00 0.00

Table 2.7: To generate this table we replicated the procedure used in Jiang, Yao, and
Yu (2007) (see their Table 3). The table reports percentiles (and the mean) of the cross-
sectional distribution of γ and t for the holdings-based Trenor-Mazuy regression along with
the associated one-sided p-values given a null hypothesis that managers have no ability. The
bootstrap consists of 2000 replications.
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+ - ++ - -
Fraction
TM 0.5242 0.4758 0.0061 0.0042
HM 0.5326 0.4674 0.0076 0.0061
Mean timing coefficient
TM 1.2298 -1.0387 1.2766 -2.1912
HM 0.5819 -0.3903 0.4035 -0.6677

Table 2.8: The first two rows of report the fraction of estimated γi’s (timing coefficients as
in Bollen and Busse, 2001) that are positive or negative (+,-) and significantly positive or
negative (++/- -). The second two rows report the conditional means of the γi’s, given that
they are positive, negative, significantly positive, or significantly negative. Each bootstrap
consists of 2000 replications.
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