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Seasonality and climate modes influence
the temporal clustering of unique
atmospheric rivers in the Western U.S

Check for updates

Zhiqi Yang 1 , Michael J. DeFlorio1, Agniv Sengupta 1, Jiabao Wang1, Christopher M. Castellano1,
Alexander Gershunov 1, Kristen Guirguis1, Emily Slinskey1, Bin Guan 2,3, Luca Delle Monache1 &
F. Martin Ralph1

Atmospheric rivers (ARs) are narrow corridors of intense water vapor transport, shaping precipitation,
floods, and economies. Temporal clustering of ARs tripled losses compared to isolated events, yet the
reasons behind this clustering remain unclear. AR orientation further modulates hydrological impacts
through terrain interaction. Here we identify unique ARs over the North Pacific and Western U.S.
and utilize Cox regression and composite analysis to examine how six major climate modes influence
temporal clusteringof uniqueARsandorientationduring extendedborealwinter (November toMarch).
Results show that climate modes condition temporal clustering of unique ARs. The Pacific-North
American weather pattern strongly modulates the clustering over the Western U.S. from early to late
winter. The quasi-biennial oscillation and Pacific decadal oscillation affect late winter clustering, while
the Arctic oscillation dominates early winter. Climate modes also strongly influence AR orientation,
with ENSO particularly affecting the orientation of temporally clustered ARs.

Atmospheric rivers (ARs) are characterized by intense horizontal water
vapor transport within a narrow corridor, profoundly shaping pre-
cipitation, floods, water availability, ecosystems, and economies. Spe-
cifically, ARs significantly contribute to flood risks and precipitation in
theWestern U.S.1–3, and flood damages exhibit exponential growth with
the intensity and duration ofARoccurrences1.WhenmultipleARs occur
in rapid succession, the compound effect on the hydrologic system can
lead to more hazards4, more impacts on the ecosystem5, and more
economic losses1. AR sequences are also aligned with periods of
increased hydrologic hazards in the historical record, such as extreme
precipitation, landslides, and flooding4. Also, the orientation of ARs
further influences the severity of their impacts, as whether AR hits the
terrain more perpendicularly can significantly affect hydrological
outcomes6. Under climate change, the frequency of ARs has the potential
to increase in the future7, suggesting the increasing likelihood and
importance of temporal clustering of ARs. The occurrence of nine
consecutive atmospheric rivers within a mere three-week span in Cali-
fornia during winter 2022/2023 highlighted the temporal AR clustering
feature, garnering increased attention8. Bowers et al.9 made a striking
discovery: temporal clustered ARs lead to over three times higher
expected losses in California compared to individual ARs occurrence.

This underscores the need to understand the temporal compounding
and orientation aspects for precise prediction of AR impacts.

Several previous studies have been conducted to explore the char-
acteristics of AR sequences that occur closely together in time, also referred
to as “AR families” or “temporal clustering”10–13. Here, we consider unique
AR events (in short, unique ARs); for a unique AR event, if it occurred on
consecutive days, only the first day is counted. Unique AR events exhibiting
temporal clustering generally show alternation between quiet and active
periods regarding the number of events. This differs from events that
happen independently of each other, as seen in memoryless Poisson pro-
cesses (see Methods). The occurrence of nine consecutive ARs within a
three-week span in California during winter 2022/2023 serves as an illus-
tration of temporal AR clustering. Fish et al.11 introduced the concept of AR
families, identifying periods when multiple ARs occurred in rapid succes-
sion in Northern California. They found that half of all ARs belong to AR
families and that some of these clusters are strongly linked to the El Niño/
Southern Oscillation (ENSO) and the Madden-Julian Oscillation (MJO).
Slinskey et al.12 examined subseasonal AR clustering in the Western U.S.,
showing ARs temporally cluster at a higher than random rate and investi-
gating the features of extreme precipitation coincident with temporally
clustered ARs, but the underlying physical mechanisms are still unclear.
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Zhou et al.13 studied temporal AR clusters and their hydrological impacts in
the Western U.S., finding a significant link to a Pacific-North American
(PNA)-like pattern. Previous research has also explored temporal clustering
in other hydrometeorological variables, such as streamflow in the eastern
U.S., heavy precipitation, and hurricanes in the Central U.S., Europe, and
China5,14–19 as well as the ability of reanalysis data and climate models
(GCM/RCM) to capture these clustering characteristics19–21. These studies
highlight the significant influence of large-scale atmospheric circulation on
the temporal clustering of hydrometeorological variables. Yet, the enigma
persists: what is the interacting effect of climate modes and seasonality on
AR temporal clustering? Answering this question is crucial as it will yield
new approaches and predictors for improving the forecasting of temporal
AR clustering and related economic losses at subseasonal-to-seasonal
timescales.

Moreover, the orientation of ARs has distinct effects on the intensity
and duration of their associated precipitation and floods, with particular
emphasis on their orientation upon landfall due to the interplay between
moisture transport and complex terrain. Slinskey et al.22 found that AR
integrated water vapor transport (IVT) along the U.S. West Coast typically
has a southwesterly orientation, aligning with moisture pathways from the
subtropics to the extratropics. Guirguis et al.23 demonstrated that persistent
southerly IVT orientations contributed to the exceptionally wet winter of
2016–2017 in Northern California, linking these ARs to significant rainfall.
South-southwesterly ARs are associated with more precipitation and
stronger moisture transport in Northern California, while westerly orien-
tations are linked to extreme streamflow and intense precipitation in
Washington and Oregon24,6,25. In other regions, west-southwesterly orien-
tations yield the most pronounced hydrological responses in Britain’s Dyfi
catchment26. Climatemodes like ENSOcan alsomodulateARorientation at
landfall23. At subseasonal lead times, AR orientation is crucial, as some
orientations are much more predictable in the Western U.S. and have sig-
nificant impact implications27. This critical insight underscores the need for
targeted forecasting strategies that account for these variations in predict-
ability, making it an essential consideration in hydrological predictions and
risk assessments. Therefore, certain AR orientations can worsen flood
severity, especially when they occur in quick succession. So, what is the
interacting effect of climate modes and seasonality on AR orientation?
Addressing this question is essential, as it will enhance the forecasting of AR
orientation. When combined with improved forecasting of temporal AR
clustering, this will allow for more accurate estimation of subsequent
hydrological impacts and benefit water management efforts in the
Western U.S.

Motivated by these two questions, this study delves into this research
gap, concentrating on the temporal clustering of unique ARs in theWestern
U.S. during boreal winter (November to March), highlighting the role of
dominant climate modes in modulating the temporal clustering of ARs and
ARorientation. Since climatemodes are importantpredictors to subseasonal-
to-seasonal (S2S) forecasting modeling studies, here we consider several
major climatemodes with important impacts on theWesternU.S., including
the Arctic Oscillation (AO)28, quasi-biennial oscillation (QBO)29, ENSO,
MJO30,31, Pacific Decadal Oscillation (PDO)32, and Pacific-North American
pattern (PNA)33,34. These climate modes can modulate meteorological
parameters crucial to the Western U.S., such as IVT, precipitation23,35, AR
duration, frequency, landfall orientation23,35,36, and snow water equivalent
(SWE)37.Moreover, since seasonal disparities exist in themodulations ofARs
by climate modes, we further investigate the differences in clustering char-
acteristics between early winter and late winter35,36.

Here, we find that the temporal clustering of uniqueARs during boreal
winter is conditioned on the occurrence of the climate modes. The PNA
significantly influences unique AR temporal clustering in theWestern U.S.,
with QBO and PDO affecting late winter clustering and AO dominating
early winter, according to analysis of six climatemodes’ influence on unique
AR clustering. Climate modes also strongly influence AR orientation, such
as ENSO, affecting the orientation of temporally clustered unique ARs. The
discovery of relationships between factors with high subseasonal

predictability and AR clustering/orientation would lay a foundation to
evaluate the subseasonal (2–6 week lead) and seasonal (3–6 month lead)
predictability of AR sequences occurring within a short time period. Water
resource managers and other applied end users across the Western U.S.
stand to reap numerous benefits, such as minimization of flood risks and
enhanced planning and decision-making, from improved predictability of
hydroclimate phenomena at these extended lead times8,38–40.

Results
Temporal AR clustering in the winter season—November
to March
To understand the average number of unique ARs (see Methods) in the
1-week window over the Western U.S., we first compare the climatological
patterns of unique ARs in extended boreal winter (November to March;
NDJFM), early winter (November-December-January; NDJ), and late
winter (January-February-March; JFM) from 1982 to 2021 in Fig. 1. The
regions with the maximum unique AR numbers are in the Central and
Western North Pacific, with around 1.4 unique ARs per week. Near the
WesternU.S., unique ARs decrease from the coastline (to around 1ARs per
week) towards the inland region (to around 0.6 ARs per week). Therefore,
the climatology for the inland region has less unique ARs than the clima-
tology for the coast.

Then, we investigate the temporal clustering of unique ARs within the
extended boreal winter over theWestern U.S., and the impact of AO, QBO,
ENSO, MJO, PDO, and PNA (see Methods) on the magnitude and spatial
structure of the clustering. Figure 2, left column, shows how climate modes
influence temporal AR clustering during the extended boreal winter
(NDJFM). Statistically significant Cox regression coefficients β (shaded
areas) indicate that unique ARs exhibit temporal clustering. The Cox pro-
cess belongs to the family of clusteredprocesses, indicating the occurrenceof
one event has connections with the subsequent one. β represents the
regression coefficient for each covariate, quantifying the influence of climate
modes on the cluster distribution of unique ARs, where higher jβj values
indicate stronger temporalARclustering (seeMethods).Note thatPDOand
the other five modes are analyzed in separate regressions, making a direct
comparison of PDOcoefficientswith the second regressionnot possible (see
Methods). Specifically, the AO influences Northern California, with more
uniqueAR clustering during its negative phase, consistentwithGuan et al.41.
The QBO’s positive phase increases unique AR clustering in the South-
western U.S. from California to New Mexico, while its negative phase
reduces it. ENSO impacts are mainly over the ocean, with weak effects on
land. The MJO’s RMM1 and RMM2 show distinct patterns, with RMM1
indicating anorth-positive/south-negativepattern andRMM2significant in
the Central U.S42 (seeMethods). The impacts of the PDO aremostly seen as
a dipole pattern from Washington/Oregon to the Rocky Mountains and
California. Positive PDO phases increase unique AR clustering over Cali-
fornia, while decreasing it fromWashington/Oregon to the Rockies; nega-
tive PDO has the opposite effect, aligning with Gershunov et al.43,
demonstrating that the PDO significantly modulates AR frequency over
West Coast. Note that both the PDO and AO significantly impact regions
from the North Pacific to the West Coast, warranting further investigation
into their interactions in future studies. The PNA signal shows a northwest-
southeast pattern over theWesternU.S. The PNA’s positive phase increases
uniqueARclustering in theNorthwesternU.S.,while its negative phase does
so in the interior SouthwesternU.S., as notedbyZhou et al.13 in investigating
PNA-like pattern related to AR clustering. PNA shows a strong impact as it
is a mode of climate variability affecting Western North America, particu-
larly affecting the Western U.S. Therefore, these findings highlight how
different climatemodesmodulateAR temporal clustering. By incorporating
the influence of large-scale climate modes and considering temporal clus-
tering, they enable more accurate S2S forecasting of AR events (similar
example: hurricane forecast improvement44).

To quantitatively measure the number of unique ARs associated with
each phase of these climatemodes during the extended boreal winter season
(NDJFM), we consider the composite analysis of the number of uniqueARs
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anomalies in a 1-week window (see Methods) based on the phase of AO,
QBO, ENSO,MJO, PDO, andPNA in Fig. 3. Figure 3 spatial patterns highly
match the Cox regression coefficients patterns in Fig. 2 left column, sup-
porting that unique ARs exhibit temporal clustering and are affected by
climate modes. Specifically, during the AO’s negative phase, unique ARs in
Northern California increase by about 0.1 per week compared to clima-
tology. In the QBO’s positive phase, unique ARs in the Southwestern U.S.
rise by 0.05–0.1 ARs per week compared to climatology. ENSO shows weak
effects in the Western U.S. Positive PDO conditions correspond to sig-
nificantly higher AR temporal clustering over California by around
0.01 ~ 0.05 ARs per week, while negative PDO conditions correspond to
significantly higher AR temporal clustering from Washington/Oregon to
the Rocky Mountains by around 0.05–0.1 ARs per week. Positive PNA
conditions correspond to higher AR temporal clustering in the North-
western U.S. by around 0.2 ARs per week; negative PNA conditions cor-
respond to higher AR temporal clustering in the interior Southwestern U.S.
by about 0.2–0.3ARsperweek.These results offer an independent approach

from the previous paragraph, highlighting how climate modes modulate
temporal AR clustering and showing the variation in the number of unique
ARs associated with the positive and negative phases of climate modes
within a one-weekwindow.Consequently,we can improve predictionof the
number and impact of ARs based on the current phase of these cli-
mate modes.

To understand the influence of theMJOmore clearly, we consider the
composite analysis of the number of unique ARs over a 1-week window
basedon four combinedMJOphases (consider amplitude>1) at a lag timeof
five days: MJO phases 1 and 8 (enhanced convection over the Western
Hemisphere and Africa), phases 2 and 3 (Indian Ocean), phases 4 and 5
(Maritime Continent), and phases 6 and 7 (Western Pacific)42. Supple-
mentary Fig. 1 shows the composite analysis of unique ARs based on MJO
phase, and Fig. 4 shows the anomalies during the extended boreal winter
season (NDJFM). AR temporal clustering shows significant modulation
across all MJO phases. Specifically, Phases 1 and 8 correspond to about 0.1
fewer unique ARs per week across most of the Western U.S. than

Fig. 1 | Average number of unique ARs in a 1-week window. Average number of unique ARs in a 1-week window based on the MERRA-2 AR dataset from 1982/1983 to
2020/2021 during extended winter (NDJFM, top panel), early winter (NDJ, middle panel), and late winter (JFM, bottom panel). Unit: number of unique ARs.
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climatology. In contrast, phases 4 and 5 increase unique ARs in the
Northwestern U.S. and western Canada but decrease them in the South-
western U.S., particularly Southern California, by about 0.2 ARs per week.
Phases 2 and 3 decrease AR clustering in the Southwestern U.S., while
phases 6 and 7 increase it, especially in Southern California, which is con-
sistent with previous studies45. SinceMJOphases are an important source of
S2S predictability, this finding offers valuable insights into the expected
numberofARsbasedon the currentMJOphase, thereby improving forecast
accuracy.

Seasonality of temporal AR clustering during extended
boreal winter
In addition to the influence of climate modes on the temporal clustering of
unique atmospheric rivers during extended boreal winter, it is also impor-
tant to consider the seasonality of this temporal clustering35. We now
consider temporal AR clustering during the early (NDJ) vs. late (JFM)
winter periods over the North Pacific andWestern U.S. region. To address
this inquiry, Fig. 2 middle and right columns illustrate the Cox regression
coefficient β concerning AO, QBO, ENSO, MJO, PDO, and PNA during
NDJ (middle) and JFM (right) (see Methods). The clustering patterns vary
significantly from early to late winter, suggesting strong seasonality of
temporal AR clustering and its modulation by modes of climate variability
during early vs. late winter. Specifically, the AO mainly impacts Northern
California in early winter, while the QBO’s influence is stronger in late
winter in the Southwestern U.S. and relatively small during early winter,

which is consistent with the results fromCastellano et al.36. ENSO and PDO
effects aremore pronounced in late winter, withENSO’s influence along the
California coastline and PDO’s influence stronger over the ocean and
California, and in early winter from Washington/Oregon to the Rocky
Mountains. When PDO is positive, temporal AR clustering increases in
California during late winter and decreases inWashington/Oregon and the
Rocky Mountains during early winter, with opposite effects in its negative
phase. The main difference in the influence of the PNAduring early vs. late
winter can be seen with positive values of β extending further south in the
equatorial Pacific in late winter. Therefore, this better understanding of how
climate modes like AO, QBO, ENSO, MJO, PDO, and PNA influence AR
clustering differently in early winter (NDJ) versus late winter (JFM) allows
us to tailor AR predictions based on the specific characteristics and beha-
viors of these climate modes during different parts of the winter season.

We now quantify the difference in the impact of climate mode
variability in modulating temporal AR clustering between early vs. late
winter. Figure 5 shows composites in anomalies of the number of unique
ARs in a 1-week window based on the phase of AO, QBO, ENSO, MJO,
PDO, and PNA for early vs. late winter; anomalies mean difference
compared to climatology. In general, the composite analysis aligns with
the Cox regression β patterns in Fig. 2 (middle and right), confirming the
seasonality of AR clustering. When the AO is in its negative phase,
California sees about 0.1 more unique ARs per week in early winter,
relative to climatology (Fig. 5a). During the QBO’s positive phase, the
Southwestern U.S., especially California, experiences ~0.1 more unique

Fig. 2 | Cox regression coefficients showing climate modes modulations on
temporal clustering of unique ARs.Cox regression coefficients between AO, QBO,
ENSO, MJO-RMM1, MJO-RMM2, PDO, PNA (removed ENSO signal), and the
occurrence of unique ARs based on the ERA-5 AR dataset from 1940/1941 to 2017/
2018 (for PDO analysis) and MERRA-2 AR dataset from 1982/1983 to 2020/2021

(for other climate modes analysis) during extended winter (NDJFM, left column),
early winter (NDJ, middle column), and late winter (JFM, right column). Note that
the coefficients from the regression of AO, QBO, ENSO, MJO, and PNA cannot
directly be comparable to those from PDO (see Methods). The results show coef-
ficients that are statistically significant at the 5% level.
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Fig. 3 | Composite analysis of anomalies in the number of unique ARs based on
the positive and negative phases of climate modes during extended winter.
Composite analysis in anomalies of the number of unique ARs in 1-week window
during extendedwinter (NDJFM) based on positive (left panels) and negative phases
(right panels) of AO, QBO, ENSO, MJO-RMM1, MJO-RMM2, PDO, PNA

(removed ENSO signal), using the ERA-5 AR dataset from 1940/1941 to 2017/2018
(for PDO analysis) and MERRA-2 AR dataset from 1982/1983 to 2020/2021 (for
other climate modes analysis). Dots indicate statistical significance at the 5% level.
Unit: number of unique ARs.
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ARs per week in late winter (Fig. 5b). The impacts of ENSO are strong
over the coastline during late winter and pronounced inland during early
winter. ENSO’s positive phase brings ~0.1 more unique ARs per week to
California and Nevada in late winter. Positive RMM1 phases increase
unique ARs in the Northwestern U.S. by ~0.1–0.2 per week compared to
climatology, stronger in late winter, while the influence regions of
RMM1 are not much different between early winter and late winter.
RMM2 impacts are weak in theWestern U.S. The impacts of PDO in the
early and late winter are also similar to Fig. 2 middle and right. The
PDO’s positive phase leads to 0.05-0.1 more ARs per week in late winter
over California, compared to climatology, with the opposite effect in the

negative phase (Fig. 5b). Also, the main difference in the influence of the
PNA during early vs. late winter is similar to Fig. 2 middle and right,
showing positive values (0.1–0.2 more unique ARs per week) extending
further south into the equatorial Pacific in late winter compared to early
winter, when the PNA is in positive phase.

In considering the four combined MJO phases, Fig. 6a, b illustrates a
distinct contrast between early and late winter. It presents anomalies from
composite analyses in the NDJ and JFM seasons (same method as Fig. 4),
depicting the percentage change of AR temporal clustering compared to
climatology. AR clustering during MJO phases 1 and 8 shows opposite
patterns in early vs. late winter, especially in Washington/Oregon and

Fig. 4 | Composite analysis of anomalies in the number of unique ARs based on
four combined MJO phases during extended winter. Composite analysis in
anomalies of the number of unique ARs in a 1-week window during extended winter

(NDJFM) based on four combined MJO phases using the MERRA-2 AR dataset
from 1982/1983 to 2020/2021. Dots indicate statistical significance at the 5% level.
Unit: number of unique ARs.

Fig. 5 | Composite analysis of anomalies in the number of unique ARs based on six climate modes during early and late winter. Similar to Fig. 3, but for early winter (a)
and late winter (b). Dots indicate statistical significance at the 5% level. Unit: number of unique ARs.
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Arizona. In Arizona, late winter sees a 30% increase in AR clustering, while
early winter sees a 20–30% decrease (Fig. 6). MJO phases 4 and 5 lead to a
10–20% decrease in temporal AR clustering in late winter over Southern
California, but a 30% increase in early winter over the interiorWesternU.S.
Over California, MJO phases 2 and 3 produce a north-south dipole in late
winter and widespread negative anomalies in early winter. MJO phases 6
and 7 show a 30% increase in temporal AR clustering in early winter over
Southern California and a 20% decrease in late winter over Northern
California, Washington, and Oregon. The seasonality of MJO impacts is
mainly from the different amplitudes and locations of both the MJO and
basic states such as the westerly jet35.

To see the differencesmore intuitively, Figs. 7 and 8 show the difference
in the composite analysis of the number of uniqueARs in the 1-weekwindow
between NDJ and JFM. In California, during negative phases of AO, QBO,
ENSO, PDO, or PNA, the number of unique ARs is higher in early winter
than in latewinter,with significant effects seen forQBOandPNA(Fig. 7). For
the combinedMJO phases (Fig. 8), early winter shows around 0.3 more ARs
per week compared to late winter in Washington/Oregon during phases 1
and 8, and phases 6 and 7 also show higher AR clustering over California
during earlywinter.Therefore, by identifying significantdifferences inunique
AR patterns between early and late winter, recognizing the impact of distinct
climatemodes phases, and adjusting forecastmodels, wewill further enhance
the accuracy of ARs S2S forecasts.

AR IVT orientation
We now shift our focus from temporal clustering of unique ARs to AR IVT
orientation of all AR days (mean IVT orientation; see Methods), of unique
ARs (mean IVT orientation throughout their life cycle; seeMethods), and of

temporally clustereduniqueARs (mean IVTorientation throughout their life
cycle). In particular, we investigate the changes in AR orientation during the
transition from early winter to late winter. Figure 9a shows a schematic of
terms used to describe all AR days (black squares), unique ARs (light blue),
and temporally clustered unique ARs (dark blue). Figure 9b shows the life-
cycle IVT orientation of temporally clustered unique ARs (top row, left and
middle) and all unique ARs (second row, left and middle) during NDJ and
JFM. The right-side panels of Fig. 9b display theNDJminus JFMdifferences,
while the bottom panels highlight the first-minus-middle rows difference of
Fig. 9b. We show AR IVT orientation climatology of all AR days in Sup-
plementary Fig. 2. AR orientation is defined by the direction of mean IVT,
measured clockwise from North (e.g., 0° indicates South to North, 90° indi-
cates West to East; Fig. 9c). Therefore, in Fig. 9b right and bottom panels, a
positive anomaly means a more westerly AR IVT, while a negative anomaly
indicates a more southerly IVT. In general, the orientation of all ARs days
increases from the Northwestern U.S. (~58°–59°, south-southwesterly) to
Southern California/Arizona (~67°–68°, west-southwesterly), with a more
noticeable shift in late winter (Supplementary Fig. 2). This aligns with
Slinskey et al.22. The AR orientation difference between NDJ and JFM indi-
cates that the IVT orientation of all AR days is significantly more westerly
during earlywinter than latewinter overmuchof theWesternU.S. by around
2°–6° (Supplementary Fig. 2). This shift could be attributed to the seasonal
variation in horizontal moisture transport from the subtropics to the
extratropics46,47. Late winter (especially January and February) is often char-
acterized by strong southerly winds due to the southernmost locations of the
jet stream, leading to a more southerly orientation of ARs48. Understanding
these differences is crucial for accurately forecasting the hydrological impacts
ofARs across different times of thewinter and this provides new insights into

Fig. 6 | Composite analysis of anomalies in the number of unique ARs based on
four combined MJO phases during early and late winter. Composite analysis in
anomalies of the number of unique ARs in a 1-week window for early winter (a) and

late winter (b) based on four combinedMJO phases using theMERRA-2 AR dataset
from 1982/1983 to 2020/2021. Relative difference compared to climatology (Unit:
%). The dots represent statistical significance at the 5% level.
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ARorientation seasonaldisaggregation in thewesternU.S.Basedon the study
of Picard and Mass49, precipitation amounts over drainages in the Pacific
Northwest can vary substantially with ~10° changes in the direction of AR-
related wind flow influenced by the interaction with surrounding orography.

Consequently, the difference in AR orientation between NDJ and JFM can
result in significant variations in precipitation amounts over the westernU.S.

We now characterize the orientation of unique ARs (light blue squares
in Fig. 9a; see Methods) and temporally clustered unique ARs (dark blue

Fig. 7 | Difference of composite analysis of anomalies in the number of unique
ARs based on six climate modes between NDJ and JFM. Composite analysis in
anomalies of the number of unique ARs in 1-week window, but for early winter

(NDJ) minus late winter (JFM), i.e., Fig. 5a minus Fig. 5b. Unit: number of unique
ARs. The dots represent statistical significance at the 5% level.
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squares in Fig. 9a). Their orientation also shows an increase in angle from
the Northwestern U.S. (south-southwesterly) to Southern California/Ari-
zona (west-southwesterly), similar to all AR days. In early winter, the
temporal clustereduniqueARs show amore southerly orientation along the
North Pacific coast, while inland regions like Arizona and Southern Cali-
fornia exhibit a more westerly orientation, though this is not statistically
significant. Other inland regions show some sensitivity based on fixed
windows (see Methods). The seasonality of the orientation of temporally
clustered unique ARs is significantly different from the seasonality of the
orientation for all AR days (Fig. 9b and Supplementary Fig. 2). Also,
comparing unique ARs and clustered unique ARs, we can see temporal
clustereduniqueARsaremorewesterly thanuniqueARs, especiallynear the
coast (Fig. 9b bottom panels).

Next, we investigate the influence of climatemodes on themodulation
of the life-cycle orientation of temporally clustered unique ARs. This
investigation conducts a composite analysis that examines the life-cycle
orientation of such events based on positive or negative phases of climate
modes. We analyze early and late winter data (Fig. 10), and the anomalies
show the composite analysis of temporally clustered AR orientation during
positive and negative phases of climate modes, relative to climatology. A
positive anomaly means a larger angle clockwise, so AR IVT is more wes-
terly than climatology. The spatial patterns of the life-cycle orientation of
temporally clustered unique ARs are distinctly influenced by the variability
of AO, QBO, ENSO, MJO, PDO, and PNA. Specifically, AO shows strong
seasonality of life-cycle orientationof temporally clustereduniqueARs,with
significant impacts in Central and Southern California in early winter and
Northern California in late winter. Positive AO phases in early winter
modulate to a strong westerly AR orientation over the Western U.S.,
especially over Central California by around 6°–8°, which can be attributed
to AO being stronger in the early winter and then gradually weaken50. The
positive AO is typically associated with stronger polar vortex and leads to
stronger westerly winds across the mid-latitudes during this period. QBO
negative phases cause a more southerly AR orientation in late winter.
Notably, ENSO shows a strongmodulation of AR orientation, which differs
from itsweak impacts on temporalAR clustering across theWesternU.S. In
early winter, the impacts of ENSO are mainly located in the Southwestern
U.S. but not statistically significant, while in late winter, the significant
impacts are mainly located on the Northern California and Pacific North-
west coast. MJO-RMM1 affects the Southwestern U.S. with more southerly
(westerly) during the positive (negative) phase by ~6°–8° in early winter,
while in the late winter, the main impacts are located on Pacific Northwest
coast. MJO-RMM2 shows significant modulation over the Southwestern
U.S. in late winter. In early winter, the positive PDO phase shows a more
westerly AR orientation in Southern California and a more southerly

orientation in Nevada, though the seasonal difference is not statistically
significant (Supplementary Fig. 3). The reverse is true for the negative PDO
phase. Under PNA modulation, the life-cycle orientation of temporally
clustered unique ARs shows strong seasonality over the interior Western
U.S. In early winter, PNA impacts are centered on Arizona, while in late
winter, they shift to the Great Basin. As for the seasonality, during the PNA
positive phase, the orientation of temporally clustered unique ARs is sig-
nificantlymore westerly in Arizona (6°–8°) and theGreat Basin (2°–6°) and
more southerly over coastal Central California by around 2° during early
winter. On the contrary, the situation is reversed during the negative phase
of the PNA. Therefore, climate modes strongly influence the IVT life-cycle
orientation of temporally clustered unique ARs, which in turn affects
whether they enhance or reduce precipitation.

Discussion and conclusions
We examined the temporal clustering of unique ARs over the North Pacific
and Western U.S. region during the extended boreal winter period
(NDJFM), specifically the modulation of temporal AR clustering and AR
orientation by different climate modes of variability, and related differences
during early (NDJ) and late (JFM) winter. Our analysis suggests that:
(1) UniqueARs exhibit temporal clustering in theWesternU.S. during the

extended boreal winter period, and this temporal clustering is condi-
tioned on the occurrence of the climate modes.

(2) The impact of AO, QBO, ENSO, MJO, PDO, and PNA on clustering
varies spatially. Notable shifts occur from early to late winter: the
impacts of QBO on the Southwestern U.S. and PDO on California are
mainly from the late winter, and for the AO,most of the impacts are in
the early winter over Northern California.

(3) Regarding the MJO, four MJO combined phases show significant
modulation of temporal AR clustering over the North Pacific and
WesternU.S. region. DuringNDJFM,MJO phases 1/8 and 4/5most
strongly modulate AR clustering and show opposite anomaly pat-
terns in the Western U.S. MJO phases 4/5 corresponds to a sig-
nificantly strong increase in temporal AR clustering events in the
Northwestern U.S., including Washington/Oregon and Northern
California. Also, the influence of MJO phases 1/8 and 6/7 on the
temporal AR clustering in early winter is significantly different
from that in late winter. This pattern is interesting since MJO sig-
nificantly modulates AR clustering with the entire Western U.S.,
which differs from other works that have not observed such a
widespread influence.

(4) IVT orientation of all AR days is significantly more westerly in early
winter than in late winter over the Western U.S., indicating a strong
seasonality ofARorientation. In contrast, the temporally clusteredARs

Fig. 8 | Difference of composite analysis of anomalies in the number of unique
ARs based on four combined MJO phases between NDJ and JFM. Composite
analysis in anomalies of the number of unique ARs in a 1-week window, but for early

winter (NDJ) minus late winter (JFM), i.e., Fig. 6a minus Fig. 6b. Unit: number of
unique ARs. The dots represent statistical significance at the 5% level.
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tend to exhibit a more southerly life-cycle orientation along the North
Pacific coastline in early winter compared to late winter, whereas some
inland regions experience a more westerly orientation in early winter.
This pattern is interesting; since westerly winds are more conducive to
precipitation in the Northwestern U.S., while southerly winds favor
precipitation in the Southwestern U.S., temporally clustered ARs in
early (late) winter are more likely to lead to the most significant
hydrologic impacts in the Northwest (Southwest).

(5) ENSO shows a strong modulation of the IVT life-cycle orientation of
temporally clustered unique ARs, which differs from its weak impacts
on temporal AR clustering, which is supportive of other work, such as
Guirguis et al.23.

These results yield anewunderstandingof temporalARclusteringover
the North Pacific and Western U.S. region, including the seasonality of
clustering and its relationship to various climatemodes of variability. In this
study, results from both the Cox regression analysis and composite analysis
are similar, and both perspectives help characterize temporal clustering of
unique ARs, their seasonality, and their relationship to climate mode
variability during the extended boreal winter season over the North Pacific
and Western U.S. region. These results are also consistent with study of
Zhou et al.13, which employs machine learning techniques to define the
temporal AR clusters and identifies a PNA-like pattern exerting significant
influence.

Fig. 9 | Schematic overview of all AR days, unique ARs, and temporally clustered
uniqueARs, as well as IVTorientation across early and late winter. a Schematic of
terms used to describe all AR days, unique ARs, and temporally clustered unique
ARs. The temporally clustered unique ARs satisfy the situation where there is more
than one unique AR in a week window. b Life-cycle IVT orientation of temporally
clustered unique ARs based onMERRA-2 AR dataset from 1982/1983 to 2020/2021
in early winter (NDJ, first row left), late winter (JFM, first row middle), and their

difference (first row right). Life-cycle IVT orientation of unique ARs in early winter
(NDJ, second row left), late winter (JFM, second row middle), and their difference
(second row right). Life-cycle IVT orientation of temporally clustered unique ARs
minus unique ARs in early winter (NDJ, third row left). Life-cycle IVT orientation of
temporally clustered unique ARs minus unique ARs in late winter (JFM, third row
right). Unit: degree. c IVT orientation diagram.
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Fig. 10 | Climate modes modulate IVT orientation of temporally clustered
unique ARs. Composite analysis in anomalies of the life-cycle IVT orientation of
temporally clustered unique ARs during early winter (NDJ) and late winter (JFM).
The analysis based on positive (columns 1,3) and negative phases (columns 2,4) of
AO, QBO, ENSO, MJO-RMM1, MJO-RMM2, PDO, PNA (removed ENSO signal),
using the ERA-5 AR dataset from 1940/1941 to 2017/2018 (for PDO analysis) and

MERRA-2 AR dataset from 1982/1983 to 2020/2021 (for other climate modes
analysis). The anomalies represent a composite analysis of temporally clustered AR
orientation based on the positive and negative phases of climate modes, minus the
climatology of temporally clustered AR orientation. Dots indicate statistical sig-
nificance at the 5% level. Unit: degree.
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This study also emphasized theorientationofARs,whichwill influence
the spatial distribution of precipitation in a region. The strong seasonality of
ARorientations between early and latewinter can result in shifts in the areas
that receive the heaviest precipitation, and the topography of the region can
interact with the orientation ofARs to influence local weather patterns23,25,26.
Changes in orientation may affect how they interact with geographical
features, and orientation at landfall can determine whether and how an AR
penetrates inland.

Furthermore, the modulation of life-cycle IVT orientation of tempo-
rally clustered uniqueARs bydifferent climatemodes provides uswith ideas
for forecasting AR-related precipitation. Specifically, since the impacts of
ARs and the related precipitation are closely related to their orientation,
climate modes that do not strongly influence temporal AR clustering or
frequency can strongly modulate AR precipitation through changes in IVT
orientation. For instance, ENSO does not show the influence of AR tem-
poral clustering in the Pacific Northwest but significantly makes the life-
cycle IVT orientation of temporally clustered ARsmorewest-southwesterly
during the ElNino phase andmore south-southwesterly during the LaNina
phase during earlywinter. Therefore, it will be equally important to consider
the impact of AR orientation and temporal AR clustering, frequency, and
magnitude in future research. This comprehensive analysiswill enhance our
understanding of AR impacts under climate modes’ modulation with the
goal of informing future improvements in precipitation forecasts.

Methods
Climate modes
To capture the impacts of climate mode variability on ARs over theWestern
U.S., we consider six dominant climatemodes at the daily scale, including the
AO, the QBO, the ENSO, the MJO, the PDO, and the PNA. Each of these
climate modes significantly modulates precipitation and AR activity in the
Western U.S.23,51. We consider these climate modes dominant based on the
literature review of their significant impacts on atmospheric rivers and pre-
cipitation over thewesternU.S. and on their utilization in the S2S operational
forecasts. For instance, Guan andWaliser41 found that the AO, ENSO,MJO,
and PNA significantly impact AR frequency and precipitation in the western
U.S. Specifically, the increased activity over California was linked to the
negative phase of both the PNA and AO. ENSO modulates AR frequency
along thewesternU.S. coast.TheARactivity in theCaliforniaSierraNevada is
shown to be significantly strengthened whenMJO convection is in phase 652.
The PNA-like pattern strongly correlates with temporal AR clustering in the
western U.S.13. In the operational forecast, MJO andQBO stronglymodulate
subseasonal AR activity and precipitation in California, with reduced AR
activity during easterly QBO and increased activity during westerly QBO in
the mid-to-late winter36. Additionally, Gershunov et al.43 reported that AR
activity along the west coast of North America generally increases during
positive phases of the PDO and decreases during negative phases. Further-
more, we consider two sets of AR datasets separately for long-period cycle
(i.e., PDO) and short-period cycle climate modes.

Due to the constraints of the data timeframe and facilitate comparative
research utilizing the same AR dataset (MERRA-2 based AR catalog)53, the
analysis based on AO, ENSO, MJO, QBO, PNA and is conducted for the
period of water years 1983–2021 and MERRA-2 based AR catalog (see
Identify unique ARs on a daily scale), while the analysis based on PDO is
period of water years 1941–2018 and ERA5 based AR catalog (see Identify
unique ARs on a daily scale).

The daily AO and PNA indices are downloaded from the NOAA
Climate Prediction Center (CPC), covering January 1950 to the present
(https://www.cpc.ncep.noaa.gov/; or https://ftp.cpc.ncep.noaa.gov/cwlinks/).
Similar examples of data usage include54. For ENSO, the daily NINO3.4
index is calculated from daily NOAA OI SST V2 High Resolution Dataset
anomalies from 1981 to the present (https://www.psl.noaa.gov/data/
gridded/data.noaa.oisst.v2.highres.html 55), defined by average SST anoma-
lies over 5°N to 5°S, 170°W to 120°W56. We use linear regression to remove
the influence of the ENSO signal on the PNA, since PNA is strongly related
to phases of ENSO, projection highly depends on ENSO. For instance,

during El Niño events, the PNA tends to exhibit a positive phase, while
during La Niña events, it tends to exhibit a negative phase57,58. The daily
QBO index is calculated from daily-averaged Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-2) 50-hPa zonal
mean zonal wind anomalies59 over the tropics (10°S–10°N), covering 1980
to the present60. The daily MJO index is obtained from the Australian
Bureau of Meteorology (http://www.bom.gov.au/climate/mjo/), including
RMM1, RMM2, phase, and amplitude, which covers June 1974 to the
present. The real-time RMM1 and RMM2 are defined by empirical
orthogonal functions (EOFs) of the combined fields of satellite-observed
outgoing longwave radiation (OLR), near-equatorially averaged 850hPa
zonal wind (u850), and 200-hPa zonal wind (u200) data42. RMM1 and
RMM2 jointly indicate both the phase and amplitude of the MJO. Indivi-
dually, RMM1 indicates intensified convection at the Maritime Continent
longitudes, while RMM2 signifies heightened convection over the Pacific
Ocean42. To find the largest time overlap of the above climate modes and the
MERRA-2 AR events dataset, we use the period of water years 1983-2021
extended winter from November to March, which is the season with the
highest climatological frequency of AR events in the Western U.S.

In order to investigate themodulation effect of the low-frequencyPDO
climate mode, we consider a longer-period monthly PDO index from
University of Washington, covering 1900 to 2018 (http://research.jisao.
washington.edu/pdo/PDO.latest). This PDO index is derived from the
UKMO Historical SST dataset for 1900–1981, Reynold’s Optimally Inter-
polated (OI) SST (V1) for 1982 to 2001, and OI SST Version 2 (V2) from
2002 to 2018. Then, we use linear interpolation to obtain the daily PDO
index23. To find the largest time overlap between the PDO index and the
longest period of the AR events dataset based on ECMWF Reanalysis v5
(ERA5), we use the period of water years 1941-2018winter fromNovember
to March.

Identify unique ARs on a daily scale
TodetectARevents over theWesternU.S. andPacificOcean,we employ the
Guan and Waliser41,61,62 algorithm. This algorithm stands out as one of the
few globally accessible methods, defining AR based on IVT intensity,
direction, and geometry. This AR identification method also shows strong
agreement with independently developed methods found in other studies63

as supported by results from the Atmospheric River Tracking Method
Intercomparison Project (ARTMIP)53.

To better study the impact of long-period cycle (i.e., PDO) and short-
period cycle climate modes and make full use of existing data, we consider
two sets of AR datasets separately. One is the commonly used MERRA-2-
based AR catalog downloaded from Global Atmospheric Rivers Dataverse
(https://dataverse.ucla.edu/dataverse/ar), which also provides AR track IDs
to identify unique AR events. This AR dataset covers from 1980 to 2021,
with 6-hourly global data with a resolution of 0.5° x 0.625°. We use this
MERRA-2-based AR dataset to capture the impacts of short-period climate
modes of variability on unique ARs (i.e., AO, QBO, ENSO, MJO, PNA~
MERRA-2 AR) and enable comparative research using the same AR
dataset53. Another is the newly published long-period ERA5-based AR
catalog downloaded from the same website (https://dataverse.ucla.edu/
dataverse/ar). This AR dataset goes from 1940 to 2022, with 6-hourly global
data and a resolution of 0.25° x 0.25°. We utilize the ERA5-based dataset to
capture the impacts of climate models characterized by interdecadal
variability, such as the PDO, on unique ARs (i.e., PDO ~ ERA5 AR). To
identify AR events at daily scale, we consider in each grid cell that if there is
anARobject at any timestep (4 timesteps per day) during a day, then theday
is considered an AR day, which is used for AR orientation analysis. We
identify time series of unique ARs that contain occurrence or non-
occurrence (represented as ‘1’ or ‘0’) at a daily scale in each grid (light blue
squares in Fig. 9a).

Cox regression analysis
To identify the presence andmagnitude of unique AR temporal clusters, we
appliedCox regression analysis64,65, whichhas beenused to identify temporal
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clustering in hydroclimatological studies, heavy precipitation, and floods in
the Potomac River, the Central U.S., and Europe15–18,20,65–67. The Cox process
is a generalization of a Poisson process. Specifically, a Poisson process is a
memoryless process, while theCoxprocess belongs to the family of clustered
processes, indicating the occurrence of one event has connections with the
subsequent one. In a Cox process, the rate of occurrence parameter λ is not
deterministic but a randomfunction16. The rate of occurrenceλ for the tth day
(t = 1,2,…, 151 for NDJFM; t = 1,2,…, 92 for NDJ; t = 1,2,…, 90 for JFM) in
the ith year can be described by the following equation:

λiðtÞ ¼ λ0ðtÞ exp
Xm

q¼ 1

βqZiqðtÞ
" #

whereλ0 is thebaselinehazard,which is anon-negative function for time.Ziq
are time-varying qth covariates, i.e., AO,QBO, ENSO,MJO, PNA, and PDO;
m is the number of covariates. βq indicates the regression coefficient of each
covariate (q = 1,…,m). Since the Cox process is the semiparametric model,
where the baseline hazard function is non-parametric and the exponential
part is parametric, we calculate β coefficients based on themaximumpartial
likelihood method16. We use βq to quantitatively measure the influence of
climatemodes on the cluster distribution of uniqueARs. The climatemodes
of variability Ziq, which alternates between positive and negative phases,
dictates the active and quiet periods of unique ARs. Similar to the
methodology employed by Mallakpour et al.16, we calculate a seven-day
moving average for each of the daily climate indices and utilize them as
predictors in our regression model.

In this study, to consider themost significant covariates in eachgrid,we
cover all possible combinations (i.e., 32 combinations in total, calculated by
permutations and combinations) of AO, QBO, ENSO,MJO, and PNA.We
also took into account the correlation among the different predictors in the
context of collinearity. Anderson and Burnham68 recommended using a
cutoff value of |0.95| for excluding predictors, while retaining those with
seemingly significant correlations. In this study, the correlation values
among these AO, PNA,MJO,QBO, ENSO are generallymuch smaller than
|0.3| (Supplementary Table 1). Therefore, we do not believe that collinearity
among the climate indices has impacted our results. Then, to find the best
Cox regressionmodel, we select a regressionmodelwith the smallest Akaike
information criterion (AIC69).

Regarding PDO,we compute only based on the PDO index and ERA5
ARdataset. Noted that sincewe use two separate Cox regression analysis for
AO, QBO, ENSO, MJO, PNA and PDO, the coefficients from the first
regression (i.e.AO,QBO,ENSO,MJO,PNA)cannotdirectlybe comparable
to those from the second (i.e., PDO). All calculations were performed using
the survival package in R70.

In the analysis of modulation of temporal AR clustering by several
climatemodes in Fig. 2, the extent of thismodulation is quantified using the
Cox regression coefficient β for AO, QBO, ENSO (considering NINO3.4
here and following),MJO,PDO, andPNA(excludingENSOsignal here and
following).We define the positive or negative phases of eachmode based on
whether the indexes of climate modes are positive or negative. A positive β
indicates that when a given climate mode is in a positive phase, the rate of
occurrence of unique ARs will be high, suggesting an active period of more
unique ARs. On the contrary, a negative β indicates that when climate
modes are in a negative phase, the rate of occurrence of unique ARs will be
high, suggesting the active period of more unique ARs16,20. In the Cox
regression analysis, we do not set a window to identify temporal clustering.
Instead, the significant β coefficient indicates the presence of temporal
clustering among unique ARs, independent of any window setting.

Setting number of unique ARs anomalies in a 1-week window
We use a 1-weekwindow tomeasure the temporal compounding of ARs in
composite analysis, which is to establish a foundational framework for
future research on subseasonal AR clustering and prediction within a
dynamic statistical forecasting framework. Inspired by the clustering

framework presented by Fish et al.10,11, we implement a 1-week window to
identify AR families here. While Fish et al.10,11 classify AR events as an AR
family if two ormoreAR objects occur within the 5-day aggregation period,
we adapted similar concepts to define AR families. Therefore, 1-week is an
appropriate window to identify clustering. While a longer window could
offer additional insights, our approach provides a starting point for
understanding temporal compounding on a manageable scale.

The underlying null hypothesis at each grid cell in Figs. 4 and 5 is that
there is no significant difference in the number of unique ARs in a 1-week
window during the winter season (NDJFM in Fig. 4, NDJ or JFM in Fig. 5)
between the composite analysis based on positive or negative phases
of climate modes (or combined MJO phases in Fig. 4) and the long-term
average from 1982/1983 to 2020/2021. In other words, it posits that
any observed anomalies in the number of unique ARs at each grid cell are
due to random variability rather than an effect of the climate modes
phases. Statistical significance at the 5% level indicates that there is less
than a 5% probability that the observed anomalies are due to random
chance.

AR orientation of all AR days and of temporally clustered
unique ARs
We consider AR orientation of all AR days based onmean IVT orientation.
In this case, each AR day gets an equal weight when averaging. This
approach also facilitates comparisons with other studies. For example, the
meanorientationofARdays tends to bemore southerly in the northwestern
U.S. andmore westerly in the southwestern U.S. Additionally, this metric is
widely used in climatological studies and operational forecasting, as it helps
identify prolonged periods of moisture transport and precipitation.

Note that we characterize the orientation of unique ARs and of tem-
porally clustered unique ARs by considering the mean IVT orientation
throughout their life cycle. A long-lastingARwould get the sameweight as a
short-lasting AR. When there is more than one unique AR occurring
within fixed one-week windows, we classify them as temporal clustered
unique ARs, depicted as dark blue squares in Fig. 9a. Therefore, in Fig. 9a,
the 3rd AR (black squares) is not considered part of a cluster. The clima-
tology of the life-cycle IVT orientation of temporally clustered unique ARs
is calculated based on averaging all ARs belonging to clusters. Our
results are not sensitive to the start date of the one-week interval (Supple-
mentary Fig. 4).

Statistical significance test
To evaluate the statistical significance of composite analysis patterns asso-
ciated with each climate mode, we employ bootstrapping. This involves
generating distributions of multiple random composite analysis patterns
(e.g., 1000 iterations), each derived from an equal number of positive and
negative phases of the climate modes. By assessing the extent to which the
composite analysis patterns deviate from thedistribution tails,we determine
the statistical significance of the results.

To test the statistical significance difference between composite ana-
lysis patterns in the early and the late winter (NDJ vs. JFM), we use the
Student’s t-test.

Data availability
The daily NINO3.4 is calculated from daily NOAA OI SST V2 High
Resolution Dataset anomalies (https://www.psl.noaa.gov/data/gridded/
data.noaa.oisst.v2.highres.html). The daily AO and PNA are downloaded
from the NOAA Climate Prediction Center (CPC) (https://www.cpc.ncep.
noaa.gov/products/precip/CWlink/pna/pna.shtml; https://ftp.cpc.ncep.
noaa.gov/cwlinks/). The daily MJO is from the Australian Bureau of
Meteorology (http://www.bom.gov.au/climate/mjo/). Monthly PDO index
from the University of Washington (http://research.jisao.washington.edu/
pdo/PDO.latest). The daily QBO is calculated by MERRA-2 50hPa zonal
mean zonal wind anomalies (https://disc.gsfc.nasa.gov/datasets?keywords=
u&page=1). AR dataset based onMERRA-2 and ERA5 are fromhttps://doi.
org/10.25346/S6/YO15ON.
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Code availability
All Cox regression calculations were performed using the survival package
in R (Theerneau 2014, https://cran.r-project.org/web/packages/survival/
index.html). The analysis code utilized in this study can be obtained here
https://github.com/CW3E/ARclustering or by reaching out to the corre-
sponding author upon request.
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