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xiv



ACKNOWLEDGMENTS

Rick Schoenberg - you are my academic role model, and a role model for me in many

other ways. Thank you for opening doors for me, and thank you for waiting so patiently for

me to cross through. I hope that I can continue to learn from you for the rest of my life.

Nicolas Christou - without your belief in me, I would have never even dreamt of getting

my doctorate. Thank you for sparking the courage in me to try.

My gracious collaborators are acknowledged in Sections 2.9, 3.7, and 5.4.

xv



VITA

2011–2016 BS Applied Mathematics, BA Piano Performance, University of California,

Los Angeles.

2016–2018 KPMG – Associate Statistical Consultant in Economic and Valuation Ser-

vices, Los Angeles.

2018–2020 RSM – Senior Statistician, Los Angeles.

2018– Ph.D. Student, Statistics, University of California, Los Angeles. Advisor:

Frederic Schoenberg.

2018–2023 Teaching Assistant, Lecturer, University of California, Los Angeles.

2019–2023 Graduate Student Researcher, in collaboration with the Army Research

Office. University of California, Los Angeles.

PUBLICATIONS

Parametric estimation of spatial- temporal point processes using the Stoyan-Grabarnik Statis-

tic. Conor Kresin and Frederic Schoenberg. Annals of the Institute of Statistical Mathemat-

ics, 2023.

Nonparametric estimation of recursive point processes with application to Mumps in Pennsyl-

vania. Andrew Kaplan, Junhyung Park, Conor Kresin, and Frederic Schoenberg. Biometrical

Journal, 2021.

xvi



Comparison of Hawkes and SEIR models for the spread of COVID-19. Conor Kresin, Frederic

Schoenberg, and George Mohler. Advances and Applications in Statistics, 2020.

xvii



CHAPTER 1

Introduction

1.1 Overview

This dissertation discusses the properties of point process models for epidemic diseases,

crimes, and other clustered phenomena. Chapter 1 presents a novel computationally efficient

estimator for the parameters of conditional intensity functions used to model point process

data. We call this estimator the Stoyan Grabarnik estimator, and prove its consistency

under quite general conditions. Maximum-likelihood estimation for intensity parameters is

too computationally costly for many data sets of interest. The Stoyan Grabarnik estimator

offers a simple and computationally tractable alternative to likelihood-based approaches, and

in particular facilitates parametric point process modeling for “big data.”

Chapter 2 begins with an introduction to Hawkes and Hawkes-type models. A comparison

of SEIR compartmental models and Hawkes-type models is then presented in the context of

predicting the spread of COVID-19 and other infectious diseases. The chapter weighs the

physical plausibility of the SEIR model against the parsimony and flexibility of the Hawkes

model. The chapter concludes with detailing the mathematical connection between HawkesN

and SEIR models.

Chapter 3 presents a potential outcomes framework for point process data which does

not require discretization or restrictive modelling assumptions. This chapter is primarily

definitional, and contains a small simulation study. Finally, Chapter 4 describes a novel

methodology for bounding the complexity of point process data. To do this, we first represent

1



a sparse Boolean-valued tensor as a realization of an unparameterized point process, and then

apply iterative superpositions of a correctly scaled homogenous Poisson process. The work

within this chapter relies on leveraging superposition limit theorems for Poisson processes.

The chapter concludes with applying the novel methodology to a data set of tomographic

images capturing bullet-struck silicon materials.

Generally, this dissertation argues that there are important connections between point

process theory and information theory and causality that are underdeveloped in the current

literature. It is our hope that computationally efficient estimators like the Stoyan Grabarnik

estimator allow us to model large data and complex probabilistic structures while leveraging

the rich theoretical framework of point processes. In the following chapters, we discuss

the mathematical properties of point processes and methodologies for fitting a model given a

realization of a point process. Point process notation is quite varied across the literature, and

therefore we begin with notational definitions and basic characterizations of the properties

of point processes.

1.2 Preliminaries

Point processes have been characterized in various ways in the foundational point process

literature. For univariate point processes, it is tempting to characterize a point process

as a non-decreasing integer-valued stochastic processes, but such a characterization is not

sufficient for point processes on Rd where d > 1. Point processes have been alternately

characterized as a finite collection of points, but such a characterization suffices only for

finite point processes (Moller and Waagepetersen, 2003).

Most present point process literature characterizes a point process as a Z+ valued random

measure (counting measure), which extends naturally to high-dimensional and infinite point

processes (Daley and Jones, 2003), and a realization of a point process as a collection of

points. Such measures are assumed to be boundedly finite, i.e. a finite number of points

2



fall inside any bounded set. Formally, we notate a point process N characterized by random

measure ξ(·) on state space X where X is a complete separable metric space. Often, we let

X = Rd, or in the context of spatial temporal point processes X = R+ ×Rd. In the context

of Janossy densities, we denote X (n) as the n-fold (Cartesian) product space of X × . . .×X

which is useful to describe the joint distribution of the points of a realization of N , given that

there are n points. The canonical point process state space (accommodating infinite point

processes) is notated N#
X and represents the space of all bounded finite counting measures on

X . We can then define N as the random counting measure mapping from probability space

(Ω, ξ, N) into (N#
X ,B(N#

X )) where B(N#
X ) represents the family of Borel sets that can be used

to define measures on N#
X . In short, every distinct probability measure on (N#

X ,B(N#
X ))

defines a point process (Daley and Vere-Jones, 2007, 2008). In general, throughout this

dissertation, we strive to maintain the notation of Daley and Vere-Jones (2008).

When modelling a point process, we often use the conditional intensity characterization

which, if it exists, is equal to

λ = lim
h↓0

E[N(t+ h) −N(t)|Ht−]

h
. (1.1)

where Ht− represents the history of counting process N up to time t. More formally, Ht−(·)

is a filtration, i.e. an increasing sequence of σ-algebras. Therefore Ht− is the σ-algebra of

events occuring at times up to but not including t. Such a characterization of intensity can

be easily extended to spatio-temporal point processes, and point processes with dimension

d > 3. When the intensity is finite, we note that P(N(x, x+h] > 0) = λh+ o(h) (Daley and

Jones, 2003).

We denote Λ(·) the intensity measure characterizing point process N , and note that

Λ(B) = E[N(B)] for Borel set B, which is to say that Λ(B) is the mean number of points in

B. Given that the underlying state space X is a completely seperable metric space (i.e. the

point cannot be on a non-continuous lattice), Λ(·) has density λ(·) which in the point process

literature is referred to as the intensity function of N . It follows that Λ(B) =
∫
B
λ(x)dx.
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We can intuit the intensity function λ(x)dx of N as the probability that a point is in an

infinitesimal n-ball with volume dx centered on x (Chiu et al., 2013).

The Campbell Theorem, an analogue of Fubini’s theorem, states that for any non negative

and measureable function f : Rd 7→ R+

E

[∑
x

f(x)

]
=

∫
Rd

f(x)Λ(dx) =

∫
Rd

f(x)λ(x)dx (1.2)

given that λ(x) exists (Cronie and Van Lieshout, 2018; Chiu et al., 2013). For a proof of

this theorem, see (B laszczyszyn, 2017, Section 7.1.3).

A point process is simple when P(N({t}) = {0∨1}∀t) = 1. Crucially, Proposition 7.2.IV

of (Daley and Jones, 2003) states that the conditional intensity determines the probability

structure (finite-dimensional distribution) of any simple point process uniquely. This is true

because the conditional intensity determines the family of conditional hazard functions, and

these in turn determine the Janossy densities (discussed in detail in Section 5.1). Therefore,

in modeling point processes, the process is typically assumed simple, and a model for λ is

satisfactory.

Additionally, many results in the below work assume that a given point process is sta-

tionary. Intuitively, a point process is stationary if the parameters and structure governing

the process do not vary over space, i.e. if they are translation invariant. If the process is

on the real line, we can think of this as temporal invariance. Formally, a point process is

considered stationary when for all bounded Borel subsets A1, . . . , Ar of the real line, the joint

distribution of {N(A1 + t), . . . , N(Ar + t)} is independent of t ∈ R (Daley and Jones, 2003).

This definition generalizes to finite dimensional point processes, i.e. a point process in Rd

is stationary if its finite dimensional1 distributions are invariant under simultaneous shifts

(translations): a point process N has the same characteristics on A as bounded subsets of

1Finite dimensional distributions, often referred to as fidi distributions in the point process literature
are probabilities of the form P(N(A1) = n1, . . . , N(Ak) = nk) for positive integers n1, . . . , nk and bounded
Borel subets A1, . . . , Ak. The distribution of N is uniquely determined by the system of all these values for
k = 1, 2, . . . (Chiu et al., 2013).
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Rd translated, A+ u = {x+ u : x ∈ A, u ∈ Rd} (Chiu et al., 2013).

We note that stationarity is often confused with homogeniety, even in point process

literature (for instance, (Chiu et al., 2013) states that the two are synonymous). A point

process is homogenous if the intensity λ is constant. For instance, if N is a homogenous

Poisson point process, E[N(B)] = Λ(B) = λµ(B) where B is a Borel set and µ(·) is the

Lebesgue measure.
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CHAPTER 2

The Stoyan Grabarnik Intensity Estimator

2.1 Background

In this chapter, we propose a novel estimator for the parameters governing spatial-temporal

point processes. Unlike the maximum likelihood estimator, the proposed estimator is fast and

easy to compute, and does not require the computation or approximation of a computation-

ally expensive integral. This parametric estimator is based on the Stoyan-Grabarnik (sum

of inverse intensity) statistic, and is shown to be consistent, under quite general conditions.

Simulations are presented demonstrating the performance of the estimator.

This chapter is structured as follows: We begin with notational definitions necessary for

this chapter in Section 2.3. Section 2.4 formally introduces the Stoyan-Grabarnik statistic

and estimator, and in Section 2.5, we prove the consistency of two Stoyan-Grabarnik-type

estimators. Section 2.6 provides some discussion and examples of the analytical properties

and extensions of the estimator, and Section 2.7 contains a brief simulation study.

2.2 Maximum Likelihood Estimation

A realization of a spatial-temporal point process is often characterized via its conditional

intensity λ, the parameters of which are typically fit via maximum likelihood estimation

(MLE) or Markov chain Monte Carlo (MCMC) methods. Specifically, for a realization

{(ti, xi, yi)}ni=1 = {τi}ni=1 of the point process N , one typically estimates the parameter

6



vector θ by computing

θ̂MLE = arg max
θ∈Θ

(∑
i

log λ(τi; θ) −
∫ T

0

∫ ∫
λ(τ ; θ)dtdxdy

)
. (2.1)

Such estimates are, under quite general conditions, consistent, asymptotically normal, asymp-

totically unbiased, and efficient, with standard errors readily constructed using the diagonal

elements of the inverse of the Hessian (Krickeberg, 1982; Ogata, 1978). Unfortunately, for

many point processes, the integral term on the right in Equation (2.1) is often extremely

difficult to compute (Harte, 2010; Ogata, 1998) especially when the conditional intensity λ

is highly volatile, as in this situation the user must approximate the integral of a highly

variable and often high-dimensional stochastic process, which is not at all easy to do.

Approximation methods proposed for certain processes such as Hawkes processes sug-

gest a computationally intensive numerical integration method (Ogata and Katsura, 1988;

Schoenberg, 2013), but in general the problem of computation or estimation of the integral

term in the log-likelihood can be burdensome (Harte, 2010; Reinhart, 2018). Despite compu-

tational limitations, maximum likelihood remains the most common method for estimating

the parameters of point process intensities (Reinhart, 2018).

We propose an alternative class of estimators based on the Stoyan-Grabarnik summed

inverse intensity statistic introduced in Stoyan and Grabarnik (1991). The Stoyan-Grabarnik

(“SG”) statistic

m̄ =
1

λ
(2.2)

was introduced as the exponential “mean mark” in the context of the Palm distribution of

marked Gibbs processes (Stoyan and Grabarnik, 1991). As a primary property of Equa-

tion (2.2), it is noted in Stoyan and Grabarnik (1991) that the expectation of the sum of

the exponential marks corresponding to the points observed in some region is equal to the

Lebesgue measure µ(·) of that region. For the purposes of this paper, we define the SG

statistic corresponding to a parameter vector θ and a realization {τi}ni=1 of the point process
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N on spatial-temporal region I as

SI(θ) =
∑
i:τi∈I

1

λ(τi; θ)
.

The SG statistic has been suggested as a goodness-of-fit model diagnostic for point processes

(Baddeley et al., 2005), and more recently has been proposed for finding the optimum band-

width for kernel smoothing to estimate the intensity of a spatial Poisson process (Cronie and

Van Lieshout, 2018). Here, we consider a general spatial-temporal point process and suggest

dividing the observation region into cells and estimating the parameters of the process by

minimizing the sum of squared differences between the Stoyan-Grabarnik statistic and its

expected value. We show that the resulting estimator is generally consistent and far easier

to compute than the MLE.

2.3 Formal Setting

For the purposes of the remainder of this chapter, a point process is a measurable mapping

from a filtered probability space (Ω,F ,P) onto N , the set of Z+-valued random measures

(counting measures) on a complete separable metric space (CSMS) X (Daley and Jones,

2003), where Z+ denotes the set of positive integers. Following convention (e.g. Daley and

Jones (2003)), we will restrict our attention to point processes that are boundedly finite,

i.e. processes having only a finite number of points inside any bounded set. For a spatial-

temporal point process, X is a portion of R+ × R2 or R+ × R3 where R+ and Rd represent

the set of positive real numbers and d-dimensional Euclidean space, respectively. The point

process is assumed to be adapted to the filtration {Ft}t≥0 containing all information on the

process N at all locations and all times up to and including time t. In what follows we will

assume the spatial domain of the point process S is a finite and bounded portion of the

plane R2 and denote point i of the process as τi = (ti, xi, yi), though the results here extend

in obvious ways to the case where the spatial domain is a portion of R3.

A process is F -predictable if it is adapted to the filtration generated by the left continuous

8



processes F(−). Intuitively, F(−) represents the history of a process up to, but not including

time t. A rigorous definition of F(−) can be found in Daley and Vere-Jones (2007). Assuming

it exists, the F -conditional intensity λ of N is an integrable, non-negative, F -predictable

process, such that

λ(τ) = lim
h,δ↓0

E[N
(
[t, t+ h) × B(x,y),δ

)
|Ft−]

hπδ2
.

where B(x,y),δ is a ball centered at location (x, y) with radius δ, and Ft− represents the history

of the process N up to but not including time t.

A point process is simple if with probability one, all the points are distinct. Since the

conditional intensity λ uniquely determines the finite-dimensional distributions of any simple

point process (Proposition 7.2.IV of Daley and Jones (2003)), one typically models a simple

spatial-temporal point process by specifying a model for λ. A point process is stationary if

the specified model has a structure which is invariant over shifts in space or time.

An important spatial-temporal point process result sometimes called the martingale for-

mula states that, for any non-negative predictable process f ,

E

[∑
i

f(τi)

]
= E

[∫
Rd

f(τ)λ(τ)dµ

]
;

where the expectation is with respect to P . For a rigorous derivation of the martingale for-

mula using Campbell measures, see Proposition 14.2.1 of Daley and Vere-Jones (2007). This

result is the motivating impetus for exploring the Stoyan-Grabarnik estimator below. The

martingale formula is a generalization of the Campbell formula which accommodates a non-

negative deterministic function f (Cronie and Van Lieshout, 2018) and the Georgii-Nyugen-

Zessin formula which accommodates an analogous equality using Papangelou intensities in

a purely spatial context (Baddeley et al., 2005).
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2.4 The Stoyan-Grabarnik Estimator

Suppose the spatial-temporal domain X is partitioned into p cells {Ij}pj=1. Define the esti-

mator

θ̂ = arg min
θ∈Θ

p∑
j=1

 ∑
i:(τi)∈Ij

1

λ(τi; θ)
− E

 ∑
i:(τi)∈Ij

1

λ(τi; θ)

2

= arg min
θ∈Θ

p∑
j=1

(
SIj(θ) − E

[
SIj(θ)

])2
. (2.3)

Because λ is non-negative and predictable, so is 1/λ, and therefore, by the martingale for-

mula, at the true value of the parameter vector θ∗,

E

 ∑
i:(τi)∈Ij

1

λ(τi; θ∗)

 = E

[∫
Ij

λ(τ ; θ∗)

λ(τ ; θ∗)
dµ

]
= µ(Ij)

where the expectation is with respect to P . Thus the computationally intensive integral

term necessary to find the MLE is replaced with a term which is computationally trivial to

compute, namely the volume of the cell Ij. Therefore, in practice it is convenient to plug in

the volume of Ij for E
[
SIj(θ)

]
, and thus define the SG estimator as

θ̃ = arg min
θ∈Θ

p∑
j=1

 ∑
i:τi∈Ij

1

λ(τi; θ)
− E

 ∑
i:τi∈Ij

1

λ(τi; θ∗)

2

= arg min
θ∈Θ

p∑
j=1

(
SIj(θ) − E[SIj(θ

∗)]
)2

= arg min
θ∈Θ

p∑
j=1

(
SIj(θ) − |Ij|

)2
. (2.4)

The SG estimator is closely related to the scaled residual random field described in

Baddeley et al. (2005). Specifically, for a fixed spatial-temporal kernel density K(·) with

fixed bandwidth b, let

Q(s) =
n∑
i=1

K(s− τi)

λ(τi; θ)
− 1,
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for s any location in space-time. Then if X is the observation window,

E
[∫

X
Q(s)dµ

]
=E

[∫
X

n∑
i=1

K(s− τi)

λ(τi; θ)
dµ(s)

]
− |X | (2.5)

=E

[
n∑
i=1

1

λ(τi; θ)

∫
X
K(s− τi)dµ(s)

]
− |X |

≈E

[
n∑
i=1

1

λ(τi; θ)

]
− |X | (2.6)

=|X | − |X | = 0,

where the approximation in (2.6) stems from the fact that the integral over X of the kernel

density will be close to unity provided the bandwidth is sufficiently small in relation to the

size of the observation window X . Ignoring such edge effects, the SG estimator minimizes

the sum of squares of the integral of this residual field over cells in the partition, but one

may alternatively find parameters θ minimizing some other criterion, such as for example

the integral of Q2(s) over X , or over cells of the partition. Given unbiased edge correction,

(2.5) is exactly equal to zero.

2.5 Consistency

This section establishes the consistency of θ̂ and θ̃, for a simple and stationary spatial-

temporal point process N with conditional intensity λ(τ ; θ), where τ = {t, x, y} is a location

in space-time, and λ depends on the parameter vector θ which is an element of some param-

eter space Θ. Let θ∗ denote the true parameter vector, and suppose N is observed on the

spatial-temporal domain X = [0, T ) × S, where S represents the spatial domain equipped

with Borel measure µ, and X is some CSMS. The following assumptions regarding N , Θ and

S are useful in establishing consistency of the estimators.
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2.5.1 Assumptions

Assumption A1: The spatial observation region S allows a partitioning scheme

S =

p⋃
j=1

Sj

such that µ(Sj) > 0 ∀j ∈ {1, . . . , p}, for some fixed finite number p. We further assume that

p is large enough that for any θ1 and θ2, if θ1 ̸= θ2, then

E[SIj(θ1)] ̸= E[SIj(θ2)] (2.7)

or equivalently

E

[∫
Ij

λ(θ∗)

λ(θ1)
dµ

]
̸= E

[∫
Ij

λ(θ∗)

λ(θ2)
dµ

]
(2.8)

∀j ∈ {1, . . . , p}, where Ij = Sj × [0, T ).

Note on Assumption A1 : The assumption that p is sufficiently large that condition (2.7)

or equivalently (2.8) holds is needed for the identifiability of θ̂ and θ̃. The minimal value of

p to satisfy this condition appears to depend on the underlying structure of the conditional

intensity λ. In practice, a large value of p can be selected to ensure that condition (2.7) is

met, although the computational expense of the estimator increases as p increases, and more

importantly, the efficiency of the estimator appears to decrease as p grows (see Figure 2.5).

For finite datasets p must not be chosen to be too small so as to ensure that N(Ij) > 0 ∀j.

Note also that the cells Sj need not necessarily be connected, closed, or otherwise regular.

Assumption A2: Θ is a complete separable metric space and θ∗ ⊂ Θ. Further, Θ admits a

finite partition of compact subsets {Θ1
T , . . . ,Θ

q
T} such that λ(τ ; θ) is a continuous function

of θ within Θj
T ∀j ∈ {1, . . . , q}.

Note on Assumption A2 : A2 ensures that θ̃, θ̂ ∈ Θ, i.e. that our estimator for θ∗ exists

within the parameter space.

Assumption A3: Given an open neighborhood U(θ∗) around θ∗, λ(τ ; θ∗) − λ(τ ; θ) is uni-

formly bounded away from zero for θ /∈ U(θ∗).
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Note on Assumption A3 : A3 ensures that θ∗ is identifiable. In particular, this assumption

excludes the case where λ does not depend on θ.

Assumption A4: λ is finite and bounded away from zero across all cells Ij, i.e. ∃ζ > 0

such that

ζ <

∫
Ij
λ(θ)dµ <∞

for j in 1, 2, ..., p.

Note on Assumption A4 : This assumption is needed for uniform integrability, and pre-

cludes cases such as λ(τ ;α) = exp(−αt) where only finitely many points occur as T → ∞,

and therefore α is not consistently estimable via the SG estimator (or via MLE, for that

matter). Similarly, because we restrict to stationary point processes, we similarly ensure

that there are never finitely many points that occur as T → ∞ which a parameter to be

estimated is dependent on.

2.5.2 Results

Under Assumptions A1-A4, the estimate θ̂ defined in (2.3) is a consistent estimator of θ∗.

Proof. For any ϵ > 0 and any neighborhood U(θ∗) around θ∗, for all sufficiently large T ,

P(θ̂T /∈ U(θ∗)) < ϵ.

We begin with demonstrating that

M(θ, T ) =

p∑
j=1

 ∑
i:τi∈Ij

1

λ(τi; θ)
− E

 ∑
i:τi∈Ij

1

λ(τi; θ)

2

→
a.s. E[M(θ, T )]

for θ ∈ Θ as T → ∞. For a partition of X with index j, let

Cj(θ, T ) =
∑
i:τi∈Ij

1

λ(τi; θ)
− E

 ∑
i:τi∈Ij

1

λ(τi; θ)

 .
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Cj(θ, T ) is a F -martingale since 1/λ is F−predictable. By Jensen’s inequality, Cj(θ, T )2 is

a F−sub-martingale as g(x) = x2 is a convex function. Letting

M(θ, T ) =

p∑
j=1

Cj(θ, T )2,

M is a F−sub-martingale. It follows from martingale convergence, and the fact that λ is

absolutely continuous as a function of θ from Assumptions A2 and A4, that M(θ, T ) →

E[M(θ, T )] uniformly.

We next demonstrate that

θ∗ = arg min
θ∈Θ

E[M(θ, T )], (2.9)

concluding this result in lines (2.18) and (2.19). Note that for a given cell j in the partition,

E[Cj(θ, T )] =E

 ∑
i:τi∈Ij

1

λ(τi; θ)
− E

 ∑
i:τi∈Ij

1

λ(τi; θ)

 = 0

for all θ ∈ Θ. One can find the second moment, as follows:

E[Cj(θ, T )2] =var(Cj(θ, T )) + E[Cj(θ, T )]2 = var(Cj(θ, T )).

If θ = θ∗, then

var(Cj(θ, T )) =var

 ∑
i:τi∈Ij

1

λ(τi; θ∗)
− E

 ∑
i:τi∈Ij

1

λ(τi; θ∗)


=var

 ∑
i:τi∈Ij

1

λ(τi; θ∗)
− |Ij|


=var

 ∑
i:τi∈Ij

1

λ(τi; θ∗)


=E

 ∑
i:τi∈Ij

1

λ(τi; θ∗)

2−

E ∑
i:τi∈Ij

1

λ(τi; θ∗)

2

=E

 ∑
i:τi∈Ij

(
1

λ(τi; θ∗)

)2

+
∑
i:τi∈Ij

∑
k:τk∈Ij ,k ̸=i

1

λ(τi; θ∗)λ(τk; θ∗)


14



−

E ∑
i:τi∈Ij

1

λ(τ ; θ∗)

2

(2.10)

=E

[∫
Ij

1

λ(θ∗)
dµ

]
+ E

 ∑
i:τi∈Ij

∑
k:τk∈Ij ,k ̸=i

1

λ(τi; θ∗)λ(τk; θ∗)


−

[
E
∫
Ij
dµ

]2
, (2.11)

by applying the Martingale formula to both the first and last terms in (2.10). The middle

cross-term can be evaluated as follows:

E

 ∑
i:τi∈Ij

∑
k:τk∈Ij ,k ̸=i

1

λ(τi; θ∗)λ(τk; θ∗)



=E


∫
Ij

∫
Ij :t<u

1

λ(θ∗, t)λ(θ∗, u)
dN(t)︸ ︷︷ ︸

Predictable w.r.t. filtration Ft<u

dN(u)

 (2.12)

=E

[∫
Ij

∫
Ij :t<u

λ(θ∗, u)

λ(θ∗, t)λ(θ∗, u)
dN(t)dµ(u)

]

=

∫
Ij
E

[∫
Ij :t<u

1

λ(θ∗, t)
dN(t)

]
dµ(u)

=

∫
Ij
E [µ(Sj) · u] dµ(u) (2.13)

=µ(Sj)E

[∫
Ij
udµ(u)

]

=µ(Sj)2
T 2

2

=
|Ij|2

2
. (2.14)

Therefore, combining (2.11) and (2.14),

E[C2
j (θ, T )|θ = θ∗] =E

[∫
Ij

1

λ(θ∗)
dµ

]
− |Ij|2

2
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Solving for the second moment of Cj(θ, T ) when θ ̸= θ∗, one similarly obtains

E[Cj(θ, T )2|θ ̸= θ∗] =var

 ∑
i:τi∈Ij

1

λ(τi; θ)
− E

 ∑
i:τi∈Ij

1

λ(τi; θ)


=var

 ∑
i:τi∈Ij

1

λ(τi; θ)


=E

 ∑
i:τi∈Ij

1

λ(τi; θ)

2−

E ∑
i:τi∈Ij

1

λ(τi; θ)

2

=E

 ∑
i:τi∈Ij

(
1

λ(τi; θ)

)2


+ E

 ∑
i:τi∈Ij

∑
k:τk∈Ij ,k ̸=i

1

λ(τi; θ)λ(τk; θ)


− E

 ∑
i:τi∈Ij

1

λ(τ ; θ)

2

(2.15)

=E

[∫
Ij

λ(θ∗)

λ(θ)2
dµ

]
+ E

 ∑
i:τi∈Ij

∑
k:τk∈Ij ,k ̸=i

1

λ(τi; θ)λ(τk; θ)


− E

[∫
Ij

λ(θ∗)

λ(θ)
dµ

]2
(2.16)

=E

[∫
Ij

λ(θ∗)

λ(θ)2
dµ

]

+ E

[∫
Ij

λ(θ∗, u)

λ(θ, u)

∫
Ij :t<u

λ(θ∗, t)

λ(θ, t)
dµ(t)dµ(u)

]

− E

[∫
Ij

λ(θ∗)

λ(θ)
dµ

]2
≡ g(θ, θ∗, Ij), (2.17)

again applying the Martingale formula to the first and third terms in (2.15). Equation (2.17)

is obtained from (2.16) using the same logic as in lines 2.12-2.13.
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Consider the division of X into two regions: the spatial-temporal locations where

1 <
λ(θ∗, τ)

λ(θ, τ)
Case C1

and

0 < δ1 <
λ(θ∗, τ)

λ(θ, τ)
≤ 1 − δ2 Case C2

for δ1 + δ2 < 1. That is, we can express g(θ, θ∗, Ij) as the sum of three integrals:

g(θ, θ∗, Ij) =
3∑

h=1

g(θ, θ∗, Ij ∩ Ah)

=
2∑

h=1

g(θ, θ∗, Ij ∩ Ah)

where

A1 ={X ∩ {λ(θ, τ) < λ(θ∗, τ)}}

A2 ={X ∩ {λ(θ, τ) > λ(θ∗, τ)}}

A3 ={X ∩ {λ(θ, τ) = λ(θ∗, τ)}} = ∅.

We proceed by evaluating cases C1 and C2 separately for notational simplicity. In Case C1,

we show that E[Cj(θ, T )2|θ = θ∗] < E[Cj(θ, T )2|θ ̸= θ∗] as follows:

E[Cj(θ, T )2|θ ̸= θ∗] =E

[∫
Ij

λ(θ∗)

λ(θ)
· 1

λ(θ)
dµ

]

+ E

[∫
Ij

λ(θ∗, u)

λ(θ, u)

∫
Ij :t<u

λ(θ∗, t)

λ(θ, t)
dµ(t)dµ(u)

]

− E

[∫
Ij

λ(θ∗)

λ(θ)
dµ

]2

>E

[∫
Ij

1

λ(θ)
dµ

]
+ E

[∫
Ij

1 ·
∫
Ij :t<u

1 · dµ(t)dµ(u)

]

− E

[∫
Ij

λ(θ∗)

λ(θ)
dµ

]2
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=E

[∫
Ij

1

λ(θ)
dµ

]
+

|Ij|2

2
− E

[∫
Ij

λ(θ∗)

λ(θ)
dµ

]2
. (2.18)

Therefore, E[Cj(θ, T )2|θ = θ∗] < E[Cj(θ, T )2|θ ̸= θ∗], since given the assumptions of Case

C1,

E

[∫
Ij

1

λ(θ)
dµ

]
+

|Ij|2

2
− E

[∫
Ij

λ(θ∗)

λ(θ)
dµ

]2

> E

[∫
Ij

1

λ(θ∗)
dµ

]
+

|Ij|2

2
−

(∫
Ij
dµ

)2

.

Equivalently,

E

[∫
Ij

λ(θ∗) − λ(θ)

λ(θ∗)λ(θ)
dµ

]
>E

[∫
Ij

λ(θ∗)

λ(θ)
dµ

]2
− E

[∫
Ij

λ(θ∗)

λ(θ∗)
dµ

]2
,

and by the assumption of Case C1,

E

[∫
Ij

λ(θ∗)

λ(θ)
dµ

]2
− E

[∫
Ij

λ(θ∗)

λ(θ∗)
dµ

]2
> 0.

Assumption A3 guarantees that ∃δ0 > 0 such that λ(θ∗) − λ(θ) > δ0 and therefore this

condition is satisfied given Assumption A4.

In Case C2, as T → ∞

E[Cj(θ, T )2|θ ̸= θ∗] > E

[∫
Ij

δ1
λ(θ)

dµ

]
+

(δ1 · |Ij|)2

2
− E

[∫
Ij

(1 − δ2)dµ

]2
(2.19)

and therefore E[Cj(θ, T )2|θ = θ∗] < E[Cj(θ, T )2|θ ̸= θ∗], since

E

[∫
Ij

δ1
λ(θ)

dµ

]
+

(δ1 · |Ij|)2

2
− 2(1 − δ2)

2 |Ij|2

2
> E

[∫
Ij

1

λ(θ∗)
dµ

]
− |Ij|2

2

|Ij|2
(
δ21 + 2δ2 − 1

2

)
> E

[∫
Ij

λ(θ) − δ1 · λ(θ∗)

λ(θ∗)λ(θ)
dµ

]
. (2.20)

Note that ∀δ1 ∈ (0, 1), ∃δ2 ∈
(

2−1
(

1 −
√

2
√
δ21 + 1

)
, 1
)

, so the LHS of relation (2.20) is

positive. The RHS is non zero by the assumption of Case C2 and the fact that
∫
λ(θ)dµ is

18



non-zero as given by Assumption A4. As M(θ, T ) is the sum of Cj(θ, T )2 for each partition

j ∈ {1, . . . , p}, we can therefore conclude that for any θ̌ /∈ U(θ∗), ∃δ > 0 such that

inf
θ∈Θ

{
E[M(θ̌, T ) −M(θ∗, T )]

}
> δ.

Finally, by Assumption A2, and given thatM(θ̂, T ) → E[M(θ∗, T )] uniformly, and infθ∈Θ
{
E[M(θ̌, T ) −M(θ∗, T )]

}
>

δ as proven above, we conclude that for sufficiently large T (or equivalently, sufficiently large

space-time volume |X |) and ∀α, ϵ > 0,

P(θ̂ /∈ U(θ∗)) =P
(
M(θ̂, T ) ≤ inf

θ∈U(θ∗)
{M(θ∗, T )}

)
<P
(
M(θ̂, T ) ≤M(θ∗, T ) − α

)
=P
(
M(θ∗, T ) −M(θ̂, T ) ≥ α

)
≤P
(
M(θ∗, T ) − E[M(θ∗, T )] ≥ α

3

)
+ P

(
M(θ̂, T ) − E[M(θ̂, T )] ≥ α

3

)
+ P

(
E[M(θ∗, T ) −M(θ̂, T )] ≥ α

3

)
=
ϵ

2
+
ϵ

2
+ 0.

The estimator

θ̃ = arg min
θ∈Θ

p∑
j=1

 ∑
i:τi∈Ij

1

λ(τi; θ)
− |Ij|

2

is a consistent estimator for θ∗. This estimator will be henceforth referred to as the SG

estimator.

Proof. This results can be proven using the same method as in the proof of Theorem 1. A

brief sketch of the proof is given below. When θ = θ∗,

E

 ∑
i:τi∈Ij

1

λ(τi; θ)

 = |Ij|.

19



Define

M̃(θ, T ) =

p∑
j=1

 ∑
i:τi∈Ij

1

λ(τi; θ)
− |Ij|

2

,

and note that although M̃(θ, T ) is not generally a sub-martingale, M̃(θ∗, T ) is. It follows

as in the proof of Theorem 1 that M̃(θ∗, T )
a.s.→ E[M̃(θ∗, T )], and by absolute continuity of λ

with respect to θ, this convergence is uniform. Similarly,

arg min
θ∈Θ

E[M(θ, T )] = arg min
θ∈Θ

E[M̃(θ, T )] = θ∗

because

E[C̃j(θ, T )2|θ = θ∗] = var(C̃j(θ, T )2|θ = θ∗)

where C̃j is defined analogously to Cj in Theorem 1, and

E[C̃j(θ, T )2|θ ̸= θ∗] =E

[∫
Ij

λ(θ∗)

λ(θ)2
dµ

]

+ E

[∫
Ij

λ(θ∗, u)

λ(θ, u)

∫
Ij :t<u

λ(θ∗, t)

λ(θ, t)
dµ(t)dµ(u)

]

− 2|Ij|E

[∫
Ij

λ(θ∗)

λ(θ)
dµ

]
+ |Ij|2

≥ E[Cj(θ, T )2|θ ̸= θ∗]. (2.21)

Relation (2.21) follows directly from the fact that

|Ij|2 ≥ 2|Ij|E

[∫
Ij

λ(θ∗)

λ(θ)
dµ

]
− E

[∫
Ij

λ(θ∗)

λ(θ)
dµ

]2
.

From this one concludes exactly as in Theorem 1 that for any ϵ > 0, for sufficiently large T ,

P(θ̃ /∈ U(θ∗)) < ϵ.

2.5.3 Discussion

In practice, a partitioning scheme and a set value of p must be decided upon before com-

puting θ̃ for realization N given a specified model λ. Analogous partitioning problems in
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the context of quadrature schemes needed for numerical approximation of likelihoods have

been discussed, see Berman and Turner (1992); Baddeley et al. (2004). A general solution

or methodology for constructing a partitioning scheme which yields maximally accurate SG

estimates is a difficult problem and future work.

Asymptotically, a very general class of partitioning schemes is sufficient to produce con-

sistent SG-type estimates of the parameters of conditional intensity functions. As previously

noted, cells are not assumed to be connected, closed, regular, or disjoint. The primary

consideration for choosing a partitioning scheme in an asymptotic context is finding p large

enough such that Assumption A1 is met and identifiability is ensured.

We therefore suggest that practitioners choose a simple partitioning scheme (e.g. a grid

or Voronöı tessellation based on some subset of points in N) and some p > 2c where c

is the cardinality of θ. For relatively larger realizations of a process, p > c2 may be an

appropriate choice. This suggestion is only informed by trial and error via simulation of

Hawkes, Cox and Poisson processes across various p for a given partitioning scheme. In the

case of Poisson processes, it appears that for a Poisson intensity expressed as a polynomial,

p = c+ 1 and any grid partitioning scheme is sufficient to produce consistent SG estimates,

where c is the number of polynomial coefficients to be estimated. We note that in general,

computational expense increases as p increases. Further there appears to be a bias-variance

trade off wherein larger p results in less bias but more variance, see Figure 2.5. Resultant

bias and variance as a function of the number of parameters estimated, number of points

realized, and selected p is the subject of future work.
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2.6 Examples: Estimation of Poisson Processes

2.6.1 Homogeneous Poisson Process

Suppose N is a homogeneous Poisson process, i.e. λ = θ for some θ ∈ R+. In this simple

case an analytical solution for the SG estimator θ can be derived.

θ̃ = arg min
θ∈R+

p∑
j=1

 ∑
i:τi∈Ij

1

θ
− |Ij|

2

= arg min
θ∈R∞

p∑
j=1

(
N(Ij)
θ

− |Ij|
)2

and setting the derivative to zero:

0
!

=
∂

∂θ

(
p∑
j=1

(
N(Ij)
θ

− |Ij|
)2
)

= −2

p∑
j=1

(
N(Ij)
θ

− |Ij|
)(

N(Ij)
θ2

)

=

p∑
j=1

(
N(Ij)2

θ3
− N(Ij) · |Ij|

θ2

)
.

Thus θ̃ satisfies ∑p
j=1N(Ij)2

θ̃3
=

∑p
j=1N(Ij) · |Ij|

θ̃2
.

1

θ̃

p∑
j=1

N(Ij)2 =

p∑
j=1

N(Ij) · |Ij|.

θ̃ =

∑p
j=1N(Ij)2∑p

j=1N(Ij) · |Ij|
(2.22)

Equation (2.22) has an interesting geometric interpretation. For the positive integer

vector N = N(I1), . . . , N(Ip) and the positive real vector I = |I1|, . . . , |Ip| we can express

λ(θ̃) as ∑p
j=1N(Ij)2∑p

j=1N(Ij) · |Ij|
=
||N ||22
N · I

=
||N ||22

||N ||2||I||2 cos(α)
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=
||N ||2

||I||2 cos(α)
. (2.23)

Note that cos(α), the angle between N and I, is constrained to 0 ≤ cos(α) ≤ 1 due to the

signs of N and I.

Equation (2.23) provides insight into the nature of the partitioning scheme chosen. As N

and I become closer to orthogonal, cos(α) approaches 0, forcing λ(θ̃) to become arbitrarily

large. Alternatively, if N and I are parallel, cos(α) = 1 and in this case

λ(θ̃) =
||N ||2
||I||2

=

√∑p
j=1N(Ij)2∑p
j=1 |Ij|2

. (2.24)

Equation (2.24) achieves the minimum value that λ(θ̃) can attain over α ∈ [0, 1], and is

possible if there exists β ∈ R such that N(Ij) = β · |Ij| for all j ∈ {1, . . . , p}. It immediately

follows that a partitioning scheme P minimizes Equation (2.24) if it is chosen such that

N(Ij) ∝ |Ij| for all j. This suggests that in the homogeneous Poisson case, ideally the

partition will have roughly equal numbers of points per unit area in each cell.

Note a special case of Equation (2.24). If p = 1, then∑p
j=1N(Ij)2∑p

j=1N(Ij) · |Ij|
=
N(X )

|X |
= θ̂MLE.

In this special case, the SG estimator is equivalent to the MLE and therefore inherits the

desirable properties of the MLE such as consistency, asymptotic normality, asymptotic un-

biasedness and efficiency (Ogata, 1978). For instance, if N has 100 points in an observed

spatial-temporal region X such that µ(X ) = 20, then θ̂ = 100/20 = 5, as expected.

2.6.1.1 Inhomogeneous Poisson with Step Function Intensity

We now assume that N has conditional intensity

λ(τ ; θ) =

p∑
j=1

γj1{τ ∈ Ij}

23



for γj ∈ R+ and θ = {γ1, ..., γp}. Thus N is homogeneous Poisson within each cell, but with

an intensity varying from cell to cell.

The properties of similar processes have been discussed in the context of Poisson Voronoi

Tessellations (PVTs) (B laszczyszyn and Schott, 2003, 2005). Total variation error bounds for

approximation of an inhomogeneous Poisson process via a mixture of locally homogeneous

Poisson processes are provided in B laszczyszyn and Schott (2003), where the error is due

to the “spill-over” or overlap of optimal cell partitioning. Further, the existence of an

approximation for such a decomposition is described using a modulated PVT (B laszczyszyn

and Schott, 2003, Proposition 4.1).

In this case, the SG estimator must satisfy

γ̃ = arg min
γ∈Rp

+

p∑
j=1

 ∑
i:τi∈Ij

(
p∑
j=1

γj1{τ ∈ Ip}

)−1

− |Ij|

2

.

γ̃ in this case is a vector of the p estimates γ̃j. Each γ̃j is itself a SG estimator corresponding

to a disjoint homogeneous Poisson process on the observation region Ij. Following the same

reasoning as in the homogeneous Poisson case, the resulting estimator reduces to when the

partitioning scheme is such that Ij is the only cell, i.e. the observation region is equal to

a single cell and p = 1. We can therefore express the solution for the estimated coefficient

within a single cell as

γ̃j =
N(Ij)
|Ij|

and again is equivalent to the MLE and therefore in this case the SG estimator, like the

MLE, is consistent, asymptotically normal, asymptotic unbiased and efficient (Ogata, 1978).

As each estimator γ̃j is consistent, we can conclude that the sum γ̃ is also consistent by

Slutsky’s Theorem.
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2.6.2 Inhomogeneous Poisson with Polynomial Intensity

Suppose now that N is a Poisson process with polynomial intensity

λ(θ) =
ν∑
k=0

θkτ
k

with θk ∈ R ∀k. In practice, we can assume that λ is a polynomial of degree ν. Intensities of

this class, i.e. intensities represented as an infinite polynomial, represent all possible inho-

mogeneous Poisson intensities, as intensities are by definition continuous functions. Should

we start with some function λ which we wish to approximate as polynomial ρ, we could

construct such a function via Bernstein polynomials.

A direct proof demonstrating that λ(θ) can be consistently estimated using the SG es-

timator is not obvious. This is because the first (below underbracketed) term of Equation

2.25 cannot be simplified nicely.

{θ̃0, θ̃1, . . .} = arg min
θ∈R∞

p∑
j=1


∑
i:τi∈Ij

1∑∞
k=0 θkτ

k
i︸ ︷︷ ︸
−|Ij|


2

(2.25)

It would be desirable to achieve a simplification of the following nature:

= arg min
θ∈R∞

p∑
j=1

(
N(Ij)∑∞
k=0 θkτ

k
j

− |Ij|

)2

(2.26)

which occurs if all points are located within the same place within each partition. If we can

assume the points are located in the same place in a partition (or that some point within is

sufficiently “characteristic” of the location of all points in a partition), we can really simplify

Equation 2.25 further to

= arg min
γ∈Rp

+

p∑
j=1

(
N(Ij)
γj

− |Ij|
)2
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i.e. the homogeneous within a partition approach. This is because
∑∞

k=0 θkτ
k
j has some

constant value within a partition given this assumption.

In order to achieve a simplification like Equation 2.26, all points within a given partition

need to be located at a single coordinate. Such a process would likely not be of interest to us

in practice, and would also violate simplicity assumptions. We therefore consider this case

as likely implemented as an approximation. Given the assumption that it is reasonable to

assume all points within a given partition can be aggregated meaningfully, a single coordinate

within such a partition must be chosen to be representative. Options for aggregate locations

within cell Ij include τ̄j i.e. the mean of points in partition j, median(τj), or τ ◦j , the

coordinates of the centroid of the partition. Section 2.7 provides results which demonstrate

τ̄j and τ ◦j produce consistent estimates, but for notational simplicity, we choose τ ◦j , i.e.

τ ◦1 = G(I1), τ
◦
2 = G(I2), . . . , τ

◦
p = G(Ip)

where G(A) represents the coordinates of the centroid of (convex) A. Note this convexity as-

sumption is a restriction upon the more general partitioning scheme described in Assumption

A1 above. Such a restriction is not necessary if we choose the mean or median aggregating

statistic. Despite this, choosing centroid coordinates as representative of a partition is intu-

itively appealing given we are effectively assuming that the points within that partition are

homogeneous.

We can then express Equation 2.26 as follows, assuming some polynomial intensity func-

tion of degree ν <∞:

{θ̃0, θ̃1, . . . , θ̃ν} ≈ arg min
θ∈Rν

p∑
j=1

(
N(Ij)∑ν

k=0 θk
(
τ ◦j
)k − |Ij|

)2

and note that within any given partition j,
∑ν

k=0 θk
(
τ ◦j
)k

= γj for some constant γj ∈ R.

{γ̃0, γ̃1, . . . , γ̃p} ≈ arg min
γ∈Rν

p∑
j=1

(
N(Ij)
γj

− |Ij|
)2
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and as seen in Section 2.6.1.1, we can solve directly to find

γ̃j =
N(Ij)
|Ij|

for all j ∈ {1, . . . , p} indexed partitions. Now, we denote γ⊤ =
[
γ̃1 . . . γ̃p

]
. We can write

γ =


γ̃1

γ̃2
...

γ̃p

 =



N(I1)
|I1|
N(I2)
|I2|
...

N(Ip)
|Ip|

 =



∑ν
k=0 θkτ

◦
1
k∑ν

k=0 θkτ
◦
2
k

...∑ν
k=0 θkτ

◦
p
k



=


1 τ ◦1 . . . τ ◦1

ν

1 τ ◦2 . . . τ ◦2
ν

...
...

...

1 τ ◦p . . . τ ◦p
ν




θ0

θ1
...

θν

 = τθ

Because partitions Ij are assumed to be distinct, their centroids τ ◦j are distinct, and therefore

not all equal to 0 or 1, and we can therefore conclude that τ is a basis spanning the polynomial

vector space P . Therefore, if p = dim(P ) we can trivially solve the linear system of equations

in Equation 2.6.2 to find

θ̃ = τ−1γ.

If p > dim(P ), then we have an over-determined system, which will not necessarily be

consistent. Note that this will only happen in an asymptotic context, as given finite T , we

will rarely have exact linear dependence.

We can find the expectation of our estimator as follows:

E[θ̃] =E[τ−1γ] = τ−1E[γ] = τ−1



N(I1)
|I1|
N(I2)
|I2|
...

N(Ip)
|Ip|

 = τ−1


γMLE
1

γMLE
2

...

γMLE
p

 (2.27)
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Similarly, variance is calculated as

Var(θ̃) =Var(τ−1γ) = τ−1Var(γMLE)τ−1⊤.

Consistency of θ̃ is demonstrated via simulation in Section 2.7, and a formal proof follows

from the properties of inhomogeneous Poisson processes, and the consistency of MLE, see

Ogata (1978).

2.7 Simulation Study

As a proof of concept, we demonstrate that the SG estimates tend to be reasonably accurate

and become increasingly accurate as T gets large for a variety of simple point processes.

The R code for the studies can be found in Section 7.1.2. Figure 2.1 shows a simulated Cox

process directed by intensity

λ(t, x, y) = eαx + βey + γxy + δx2 + ηy2 +W (x, y)

on [0, 1]× [0, 1]× [0, 1], where θ = {α, β, γ, δ, η} and W (x, y) is a two-dimensional Brownian

sheet. The estimated intensity using the SG estimator of θ closely resembles the true intensity

even though T is only 1.
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Figure 2.1: Clockwise from top left: (a) Simulated Cox process with intensity dependent on

a two-dimensional Brownian sheet. (b) The true intensity

λ(t, x, y) = eαx + βey + γxy + δx2 + ηy2 +W (x, y)

on [0, 1]×[0, 1]×[0, 1], where W (x, y) is a two-dimensional Brownian sheet with zero drift and

standard deviation σ = 50. The true parameter vector θ = {α, β, γ, δ, η} = {−2, 3, 4, 5,−6}.

(c) The estimated intensity using the SG estimator of θ.

Figure 2.2 shows a simulated Hawkes process on the unit square and in time interval

[0, 1000] with conditional intensity

λ(t, x, y) = µ+ κ
∑
i:ti<t

g(t− ti)h(x− xi, y − yi),

where g(t) = 1/α on [0, α], h(x, y) = 1/(πr2) for r ∈ [0, β]. Here the parameters to be

estimated are θ = {µ, κ, α, β} and the true values are {1, 0.5, 100, 0.1}. As with the Cox
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process, the conditional intensity estimated using the SG estimator is a close approximation

of the true conditional intensity for the Hawkes process.
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Figure 2.2: Conditional intensity of a simulated Hawkes process with

λ(t, x, y) = µ+ κ
∑
i:ti<t

g(t− ti)h(x− xi, y − yi)

where g(t) = 1/α on [0, α] and h(x, y) = 1/(πr2) for r ∈ [0, β] on [0, 1] × [0, 1] × [0, T ].

θ = {µ, κ, α, β} = {1, 0.5, 100, 0.1}. Clockwise from top left: (a) True conditional intensity

at time T = 100. (b) Conditional intensity estimated via SG, at time T = 100. (c) True

conditional intensity at time T = 1000. (d) Conditional intensity estimated via SG, at time

T = 1000.
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Figure 2.3 shows a comparison of the root mean square error (RMSE) and R computa-

tion time for MLE and SG estimates of the process simulated in Figure 2.2 observed on

[0, 1] × [0, 1] × [0, T ] for various values of T . For this comparison, the integral approxima-

tion technique detailed in Schoenberg (2013) is used for MLE and p = 42 is chosen for the

SG-estimator.

Figure 2.3: Comparison of estimate accuracy and computational (time) expense for MLE

and SG-estimators. Conditional intensity of a simulated Hawkes process with

λ(t, x, y) = µ+ κ
∑
i:ti<t

g(t− ti)h(x− xi, y − yi)

where g(t) = 1/α on [0, α] and h(x, y) = 1/(πr2) for r ∈ [0, β] observed on [0, 1]×[0, 1]×[0, T ].

θ = {µ, κ, α, β} = {1, 0.5, 100, 0.1}. Left: root mean square error (RMSE) of parameter

estimates for MLE and SG-estimates across various T . Right: computational runtime in

seconds for computing MLE and SG-estimates.
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Figures 2.4 and 2.5 shows the behavior of SG estimates as T increases for an inhomoge-

nous Poisson process on [0, T ]× [0, 1]× [0, 1]. We simulated six partitioning schemes ranging

from p = 12 to p = 322, and various values of increasingly large T . We chose intensity

λ(t, x, y) = αx2 + βy2 + γx+ δy + ϵ,

where the vector of parameters to be estimated is

θ = {α, β, γ, δ, ϵ} = {1/3, 2/3, 1/2, 1/4, 1/5}.

The conditional intensity specified has t constant to avoid an explosive process, or a process

where too few points are observed as T gets larger. The estimates of θ are seen to converge

to θ as T → ∞.

Figure 2.4: Intensity λ(t, x, y) = x2/3 + (2y2)/3 + x/2 + y/4 + 1/5 estimated using p = 322

partitions. Parameter estimates become increasingly accurate as T → ∞. Horizontal dotted

lines indicate true parameter values.
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Figure 2.5: Estimates of a single parameter for a Poisson process with intensity λ(t, x, y) =

x2/3 + (2y2)/3 + x/2 + y/4 + 1/5. Note that if p = 1 or p = 4, estimates are not accurate as

Assumption A1 is violated.

Figures 2.6 and 2.7 show the behavior of aggregated SG-type estimates as T increases

for an inhomogenous Poisson process on [0, T ]× [0, 1]× [0, 1]. Similar to Figures 2.4 and 2.5,

we simulated six partitioning schemes ranging from p = 12 to p = 322, and various values of

increasingly large T . We chose the same intensity

λ(t, x, y) = αx2 + βy2 + γx+ δy + ϵ,

where the vector of parameters to be estimated is

θ = {α, β, γ, δ, ϵ} = {1/3, 2/3, 1/2, 1/4, 1/5}.
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Figure 2.6: Similar to Figure 2.5, but with a aggregated SG estimator within an optimization

routine, as opposed to directly solving for coefficients like in Figure 2.8. The aggregation

statistic used is the mean, τ̄j.

Figure 2.7: Similar to Figure 2.6, but using the centroid τ ◦j .

Finally, in Figure 2.8 we estimated coefficients for the process λ(t, x, y) = 3x+6y+5xy+10

using an analytic solution for the approximated SG estimator, as discussed in Section 2.6.2.

For this example, we chose the mean τ̄j as our aggregating statistic. We show a visualization

of results where p = 4, although any ṗ > p = 4 suffices for identifiability requirements,

limited only by computational precision for a floating point number needed for computation

of τ−1.
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Figure 2.8: Here we see estimated coefficients for the process λ(t, x, y) = 3x+ 6y+ 5xy+ 10

using an analytic solution for the approximated SG estimator.

2.8 Conclusion and Future Work

The SG estimator is very simple and efficient computationally and, like the MLE, is a

consistent estimator for a wide class of point process models. We recommend its use as a

complement to the MLE, in the many cases where the integral term in the loglikelihood is

computationally burdensome to estimate accurately. This may be especially true for the

rapidly emerging cases of big data where the observed number of points is very large and/or

the spatial observation region is very large or complex. In situations where MLE is preferred

but is sensitive to the choice of starting values in the optimization, a practical option may
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be to use the SG estimator as a starting value.

Future research should focus on how best to choose the nature and number of cells in

the partition when implementing SG estimation. For example, in some cases efficiency gains

might be achieved via data-dependent partitioning schemes, such as Voronoi tessellations.

Our preliminary investigations suggest, however, that any reasonable choice of partition will

do, provided p is large enough to satisfy Assumption A1. Partitions for the case where the

spatial dimension is 3 or higher are also important areas for future study.

As mentioned in Section 2.4, the SG estimator proposed here minimizes the sum of

squares of the integral of the residual field over cells in a partition, but another area for

future research would be to consider alternatively minimizing some other criterion, such as

for example the integral of Q2(s). Such an alternative may avoid the need for choosing a

rather arbitrary partition, but would replace this with the need to choose a bandwidth for

the kernel smoother.

Another possibility for estimating point process parameters is via partial log-likelihood

maximization (Diggle et al., 2010), and like the SG estimator, such estimators also do not

require the computation or approximation of the integral term in the ordinary log-likelihood.

As noted in the discussion in Diggle (2006), the partial log-likelihood estimate may be less

efficient than the MLE but can be much easier and faster to compute. Future studies should

investigate the advantages and disadvantages of such estimators relative to the SG estimator,

both in terms of accuracy and computation speed.
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2.10 Addendum: Consistency of MLE

Proof of the consistency of the MLE estimator for the conditional intensity of point processes

is detailed in (Ogata, 1978). We now present a structural summary of Ogata’s proof. Ogata

assumes that an observed realization is from a simple and stationary1 point process, char-

acterized by a finite measure on a compact seperable metric space. Ogata further assumes

that the the second moments exist and are finite for all θ ∈ Θ, the parameter space of the

log likelihood.

Ogata argues consistency by leveraging properties of a predictable process in the context

of the expected value of a log likelihood ratio (commonly referred to as Kullback-Leibler

divergence). We now sketch out Ogata’s proof, using Ogata’s notation. Let ϕ be a set of

points from a realization of a point process, and

λ(t, ϕ) = lim
δ→0

P (N([t, t+ δ)) > 0|H−∞,t)

λ∗(t, ϕ) = lim
δ→0

P (N([t, t+ δ)) > 0|H0,t) = E[λ(t, ϕ)|H0,t]

where Hs,t is the σ-algebra generated by {N(u, t] s.t. s < u ≤ t}. We then denote {λθ(t, ϕ) s.t. θ ∈

Θ ⊂ Rd} as the family of conditional intensities for simple stationary processes {Pθ s.t. θ ∈

Θ} and due to simplicity and stationarity, this correspondence is unique. Ogata denotes the

1Together, stationarity and simplicity guarantee orderliness, see (Daley and Vere-Jones, 2007).
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log-likelihood

L∗
T (θ) = −

∫ T

0

λ∗(t, ϕ)dt+

∫ T

0

log λ∗(t, ϕ)dN(t)

for realization ϕ on interval [0, T ]. Finally, θ̂T denotes the maximizing θ ∈ Θ of L∗
T (θ) for

ϕ observed from point process Pθ0 , i.e. θ0 is the true parameterization. For notational

conciseness, Ogata uses a log-likelihood under information from the “infinite past” denoted

as

LT (θ) = −
∫ T

0

λ(t, ϕ)dt+

∫ T

0

log λ(t, ϕ)dN(t).

For the purposes of consistency of the MLE, this infinite past log-likelihood is trivially

replaced with its “finite past” equivalent.

Ogata notes as a primary lemma, Lemma A2 necessary for proof of consistency the

following: if ξ(t, ϕ) is a stationary and predictable process with a finite second order moment,

then

lim
T→∞

1

T

∫ T

0

ξ(t, ϕ)dt = E[ξ(0, ϕ)] = lim
T→∞

1

T

∫ T

0

ξ(t, ϕ)
dN(t)

λθ0(t, ϕ)
.

As secondary lemma, Lemma B 3 necessary for Ogata’s proof of consistency, we present the

expected value of the ratio of the log likelihood:

E[Λ1(θ0; θ)] = E
[∫ 1

0

(λθ(t, ϕ) − λθ0(t, ϕ))dt+

∫ 1

0

log

(
λθ0(t, ϕ)

λθ(t, ϕ)

)
dN(t)

]
and note that by a typical log-concavity argument, E[Λ1(θ0; θ)] ≥ 0 with equality iff λθ(t, ϕ) =

λθ0(t, ϕ) a.s.

Lastly, we define a neighborhood U of θ denoted U = U(θ) such that for all θ′ ∈ U

|λθ′(0, ϕ)| ≤ Λ0(ϕ) and | log λθ′(0, ϕ)| ≤ Λ1(ϕ)

where Λ0(ϕ),Λ1(ϕ) are random variables with finite second moments - as seen above, Λ in

this context is the (log) likelihood ratio.

2Lemma 2 in (Ogata, 1978).

3Lemma 3 in (Ogata, 1978).
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With this notation in hand, we present an annotated sketch of Ogata’s proof. Statement:

θ̂T
p→ θ0 as T → ∞. Proof (sketch): Because λθ is predictable for all θ ∈ Θ, we know that

as the neighborhood U(θ) → {θ},

E
[

inf
θ′∈U

λθ′(0, ϕ)

]
→E [λθ(0, ϕ)]

E
[
λθ0(0, ϕ) log

(
λθ0(0, ϕ)

supθ′∈U λθ′(0, ϕ)

)]
→E

[
λθ0(0, ϕ) log

(
λθ0(0, ϕ)

λθ(0, ϕ)

)]
.

Define an open neighborhood around the true parameter(s) θ0, U0. Then we know

that for any θ ∈ Θ \ U0, we can find some ϵ > 0 such that E[Λ1(θ0; θ)] ≥ 3ϵ because

λθ1(0, ϕ) = λθ2(0, ϕ) ⇐⇒ θ1 = θ2, which in turn implies that the Kullback-Liebler diver-

gence E[Λ1(θ0; θ)] > 0 ⇐⇒ θ0 ̸= θ.

It is therefore possible to choose U such that

E
[

inf
θ′∈U

λθ′(0, ϕ) − λθ0(0, ϕ) + λθ0(0, ϕ) log

(
λθ0(0, ϕ)

supθ′∈U λθ′(0, ϕ)

)]
→E

[
λθ(0, ϕ) − λθ0(0, ϕ) + λθ0(0, ϕ) log

(
λθ0(0, ϕ)

λθ(0, ϕ)

)]
(2.28)

≥E
[∫ 1

0

(λθ(t, ϕ) − λθ0(t, ϕ))dt+

∫ 1

0

log

(
λθ0(t, ϕ)

λθ(t, ϕ)

)
dN(t)

]
− ϵ (2.29)

=E[Λ1(θ0; θ)] − ϵ.

The final term of (2.28) simplifies in (2.29) because

E
[∫ T

0

ξ(t, ϕ)dN(t)

]
=E

[∫ T

0

ξ(t, ϕ)λθ0(t, ϕ)dt

]
which is true for any finite predictable process ξ (Meyer, 2006).

We can cover Θ \ U0 with a finite number of neighborhoods of θs, Us for some s less

than or equal to the cardinality of ϕ. Because infθ′∈U λθ′(0, ϕ) and supθ′∈U λθ′(0, ϕ) are both

predictable processes we can see that for any ϵ > 0, there exists T0(ϵ) = T0 such that for any

T > T0,

1

T
LT (θ0) − sup

θ∈Us

LT (θ) (2.30)
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=
−1

T

(∫ T

0

λθ0(t, ϕ)dt+

∫ T

0

log λθ0(t, ϕ)dN(t)

)
(2.31)

+ sup
θ∈Us

1

T

(∫ T

0

λθ(t, ϕ)dt+

∫ T

0

log λθ(t, ϕ)dN(t)

)
=

1

T

∫ T

0

(
sup
θ∈Us

λθ(t, ϕ) − λθ0(t, ϕ)

)
dt+

1

T

∫ T

0

log

(
λθ0(t, ϕ)

supθ∈Us
λθ(t, ϕ)

)
(2.32)

≥ 1

T

∫ T

0

(
inf
θ∈Us

λθ(t, ϕ) − λθ0(t, ϕ)

)
dt+

1

T

∫ T

0

log

(
λθ0(t, ϕ)

supθ∈Us
λθ(t, ϕ)

)
(2.33)

≥
(
E
[∫ 1

0

(λθ(t, ϕ) − λθ0(t, ϕ))dt+

∫ 1

0

log

(
λθ0(t, ϕ)

λθ(t, ϕ)

)
dN(t)

]
− ϵ

)
− ϵ (2.34)

=E[Λ1(θ0; θ)] − 2ϵ (2.35)

≥3ϵ− 2ϵ (2.36)

≥ϵ. (2.37)

Note that T0 is dependent on the realization ϕ. It follows that there exists T1 = T1(ϵ, U0)

such that for all T > T1,

sup
θ∈U0

LT (θ) ≥ sup
θ∈Θ\U0

LT (θ) + ϵT.

This implies that θ̂ ∈ U0, concluding the proof. We note (as does Ogata) that the same

machinery is valid if we replace λ with ∗ and LT with L∗
T .

In summary, Ogata’s proof relies on using a bounded neighborhood around θ0. This

bound relies on the log likelihood and associated log likelihood ratio. Ogata leverages the

fact that the conditional intensity is a predictable function, and argues that the expected

log likelihood ratio is greater than ϵ for any θ outside the neighborhood of θ0, therefore

deriving his result from the converse. Crucially, his result relies on two lemmas: Lemma

A, the so-called martingale property applied to likelihood functions, and Lemma B, which

states that the expected log likelihood ratio is equal to zero iff the conditional intensities

are the same (Kullback-Leibler).
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CHAPTER 3

Hawkes-Type Models and Their Compartmental

Equivalents

3.1 Hawkes Models

The Hawkes model or self-exciting point process model is commonly used to model clustered

point patterns in applications such as seismology, finance, crime, and infectious diseases

(Daley and Jones, 2003; Reinhart, 2018; Ogata, 1988; Cauchemez et al., 2006). A spatial-

temporal Hawkes process is specified by the model

λ(s, t|Ht−) = M(s)︸ ︷︷ ︸
background rate

+K

∫
t′<t

g(s− s′, t− t′)︸ ︷︷ ︸
triggering density

dN(s′, t′) (3.1)

= M(s) +K
∑

(s′,t′):t′<t

g(s− s′, t− t′),

for s ∈ X ⊆ R2 and t ∈ [0, T ), where λ(s, t|Ht) is the conditional rate at which points

(events) are expected to accumulate around spatial-temporal location (s, t), given informa-

tion on all previous events Ht. As discussed in Chapter 1, the conditional intensity uniquely

characterizes the finite-dimensional distribution of any simple point process (see Prop. 7.2.IV

of (Daley and Jones, 2003)), and thus equation (3.1) fully specifies the model. The function

g is typically assumed to be a density, i.e. to be nonnegative and to integrate to 1 over all

time and space, and is called the triggering density. Common choices for g are the expo-

nential or Pareto densities in time, and the Gaussian or Pareto densities in space (Reinhart,

2018). The constant K is called the productivity. Provided g is a density function, K is the

expected number of points triggered directly by each point, and is thus closely connected to
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the reproduction number in compartmental models such as SEIR. Each background point,

associated with µ(s), is expected to generate K+K2 +K3 + ... = 1/(1−K)−1 = K/(1−K)

triggered points. As a result, in a Hawkes process, the expected fraction of background points

is 1−K. Extensions on the triggering function such as inhibitory or non-linear relations are

discussed in (Chen et al., 2017).

Given a dataset consisting of n points within a space-time observation region B, the

parameters in Hawkes processes are typically fit by maximum likelihood estimation (MLE),

where one obtains parameter estimates θ̂ maximizing the log likelihood, see Equation 2.1.

The resulting estimates have desirable properties. For instance, Ogata (1978) showed that

the MLE θ̂, is, under standard conditions, asymptotically unbiased, consistent, asymptoti-

cally normal, and asymptotically efficient, with standard errors readily constructed using the

diagonal elements of the inverse of the Hessian of L evaluated at θ̂ (Ogata, 1978). Further,

if the fitted model is missing some relevant covariates, under general conditions the MLE

will nevertheless be consistent, provided the effect of the missing covariates is small (Schoen-

berg, 2016). The triggering function can also be estimated non-parametrically (Marsan and

Lengline, 2008), and some authors have also estimated the background rate µ(s) nonpara-

metrically, e.g. (Zhuang et al., 2004; Park et al., 2019). Bayesian methods can also be used

to estimate parameters and quantify uncertainty in Hawkes process models (Rasmussen,

2013; Mohler et al., 2013). Recently, Hawkes processes have been extended to accommodate

a recurrent neural network (RNN) setting wherein predicted event intensities are estimated

conditional upon the hidden state of the network based on past events (Mei and Eisner,

2016).

A host of other variations of the Hawkes model have been proposed (Rizoiu et al., 2018;

Chiang et al., 2020). The HawkesN model, as defined in (Rizoiu et al., 2018), has a Hawkes

conditional intensity scaled by the proportion of events which can still occur after time t,

in order to account for the dynamic decrease in the number of susceptible individuals in a
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given location (Rizoiu et al., 2018):

λ(t) = (1 − Ic(t)/N)(µ+K
∑
t′<t

g(t− t′)). (3.2)

In the context of a Hawkes process modeling the spread of an infectious disease, Ic(t) is the

cumulative number of infections that have been recorded up to time t and N is the total

population size.

Hawkes models and their slight variants such as the epidemic-type aftershock sequence

(ETAS) model (Ogata, 1988, 1998), HawkesN (Bertozzi et al., 2020; Rizoiu et al., 2018;

Mohler et al., 2020), and the recursive model (Schoenberg et al., 2019) have been shown to

be useful in modeling infectious diseases such as Ebola (Kelly et al., 2019; Park et al., 2020),

chlamydia (Schoenberg, 2020), SARS (Cauchemez et al., 2006; Wallinga and Teunis, 2004),

measles (Farrington et al., 2003), meningococcal disease (Meyer et al., 2014), and Rocky

Mountain Spotted Fever (Schoenberg et al., 2019). Hawkes models have also been shown to

be the best fitting models for forecasting seismicity in rigorous, purely prospective earthquake

forecasting studies such as the Collaboratory for the Study of Earthquake Predictability

(CSEP) (Clements et al., 2011, 2012; Zechar et al., 2013; Bray et al., 2014; Gordon et al.,

2015; Schorlemmer et al., 2018).

3.2 Modeling Contagious Disease Spread

Various Hawkes triggering functions are equivalent to compartmental models which can

be represented as systems of ordinary differential equations. For instance, the equivalence

between SIR models and HawkesN with an exponential kernel is described in (Rizoiu et al.,

2018, 2017). We explore this relationship in the remainder of this chapter, in the context of

contagious disease spread data.

The SARS-CoV2 (Covid-19) pandemic spread from China to at least 188 countries or

regions in the first six months of 2020 (Dong et al., 2020). The characteristics of the Covid-
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19 virus have been estimated and forecasted by numerous researchers with highly variable

results. Estimates of properties such as reproduction rate (or time-varying reproduction

number), numbers of individuals infected, hospitalization rates, fatality rates, and efficacy of

containment measures have varied widely (Baud et al., 2020; Ferguson et al., 2020). Accurate

real-time estimates of the spread of Covid-19 are difficult to achieve without population-wide

testing (Day, 2020; Bertozzi et al., 2020). Nevertheless, it is important for researchers to

accurately estimate and forecast the dynamics of Covid-19 so that optimal public policy

measures and other responses can be adopted.

Several different frameworks have been proposed for modeling the spread of Covid-19,

including compartmental models such as the SEIR (Susceptible → Exposed → Infectious

→ Removed) differential equation model, and branching point process models such as the

Hawkes point process model (Rizoiu et al., 2018; Jewell et al., 2020; Bertozzi et al., 2020;

Chiang et al., 2020). This paper compares these two approaches for forecasting Covid-

19. Relative to Hawkes models, SEIR models and their variants have been used far more

widely to describe the Covid-19 pandemic (Bertsimas, 2020; for Health Metrics and , IHME;

Gu, 2020b; Laboratory, 2020) as well as other infectious diseases such as Ebola (Lekone

and Finkenstädt, 2006) and SARS (Dye and Gay, 2003). However, recent studies have

suggested that Hawkes models may be more accurate (Yang, 2019). For general discussion

of mathematical and statistical models of epidemiological phenomena, see (O’Neill, 2010;

Grassly and Fraser, 2008).

The remainder of this chapter is structured as follows. Following a review of SEIR models

in Section 3.2, we compare their advantages and disadvantages with that of Hawkes models,

especially with respect to forecasting Covid-19 cases or deaths in Section 3.4. In Section 3.5,

we detail the mathematical connection between Hawkes processes and SEIR models, and in

Section 3.6 we provide concluding remarks.
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3.3 The SEIR Model

SEIR models and their variants have been widely used to model and forecast the spread

of many contagious diseases including Covid-19 (Vishal Tomar, 2020; Yamana et al., 2020;

Bertsimas, 2020; Gu et al., 2020; Lemaitre et al., 2020; Guido Espana, 2020; Gu, 2020a;

Phil Arevalo et al., 2020; Michael L. Mayo et al., 2020; Gu, 2020b). Such models employ

a wide variety of modifications to the classic SEIR model, including using Bayesian infer-

ence (Michael L. Mayo et al., 2020), machine learning (Gu, 2020b), mobility networks and

ensemble approaches (Guido Espana, 2020), and mixed-effects curve fitting (Vishal Tomar,

2020) to fit parameters, as well as slight compartmental variants like SuIER which account

for unreported cases (Gu, 2020a). Other models explicitly define scenarios for government

interventions or enforcement of public health policies in specific populations (Lemaitre et al.,

2020; Bertsimas, 2020; Gu et al., 2020).

SEIR models assume that individuals within each category, or compartment (suscepti-

ble, exposed, infectious, and recovered), share pertinent characteristics, and the size of the

population of interest N is equal to the total number of individuals in the compartments

(Kermack and McKendrick, 1927). SEIR models are a slight extension of SIR (Susceptible

→ Infectious → Removed) models, generalized to account for the fact that there is an incu-

bation time for some infectious diseases like Covid-19, during which the exposed host may

be asymptomatic and thus not recorded as infected. SEIR models can be either determinis-

tic, in which case they are comprised of a system of differential equations, or stochastic, in

which case they are based on a Markov chain framework. Given large populations, sufficient

initial spread, and enough time, the deterministic framework should resemble the stochastic

framework in expectation, assuming properly specified models (Rizoiu et al., 2018).

Deterministic SEIR models, such as that described in Figure 3.1, can provide a reasonable

approximation of the characteristics of a contagious disease such as Covid-19. There are

numerous variations, but the basic idea conveyed in Figure 3.1 common to compartmental
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Susceptible

Exposed

Infectious

Recovered

dS
dt

= Λ − µ · S − β·I·S
N

dE
dt

= β·I·S
N

− (µ+ α)E

dR
dt

= γ · I − µ ·R

dI
dt

= α · E − (γ + µ)I

Figure 3.1: Diagram of the deterministic SEIR model. Definitions: N is a constant number

of individuals in a susceptible population, β · I is equal to the force of infection, Λ equal

to birth rate, µ equal to death rate, γ equal to mortality rate, α−1 equal to the average

incubation period. Such a model has reproduction number K = α·β
(µ+α)(µ+γ)

.

models is that there is some rate at which people shift from one portion of the population

to another, e.g. from the susceptible population to the exposed population, and these rates

may be fixed or allowed to vary over time subject to certain constraints. Deterministic

models such as that shown in Figure 3.1 can be extended to allow parameters governing

the force of infection, number of cases by symptom onset, and death rate, with movement

between compartments commonly specified as binomial random variables. Such a model has

been suggested for the transmission of Ebola, for instance (Lekone and Finkenstädt, 2006).

Number of cases or deaths are commonly specified as a negative binomial random variable

(Levin and Andreasen, 1986; Hernández et al., 2020).

Perhaps the most common method for estimating compartmental infectious disease model

parameters is by using Bayesian estimation (Ozanne et al., 2019; Clancy et al., 2008). Prior

parameters are often decided on using subject matter experts (Michael L. Mayo et al.,

2020) or parameters fit to prior outbreaks (Frasso and Lambert, 2016). Bayesian SEIR
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models have been employed to model infectious diseases such as Ebola (Frasso and Lambert,

2016), Visceral Leishmaniasis (Ozanne et al., 2019) and Covid-19 (Michael L. Mayo et al.,

2020). Prior distributions are typically specified by compartment. For instance, Frasso et

al. specified number of deaths as beta-distributed, duration of incubation as normal, and

observed cases as negative binomial (Frasso and Lambert, 2016). Disease characteristics such

as reproduction number has been modelled within the context of SIR models with a gamma

prior (Clancy et al., 2008). Joint posteriors are then solved for using a MCMC approach

such as Metropolis-Hastings or Gibbs sampling (Clancy et al., 2008; Lekone and Finkenstädt,

2006).

Stochastic versions of the SIR and SEIR models allow researchers to include the effect of

networks of individuals, but specification and parameter estimation can be more challenging

(Artalejo et al., 2015). Various stochastic SEIR models have been developed to model

Covid-19 data. A stochastic SEIR model with parameters fit using grid search, which may

be viewed as a relatively agnostic machine learning approach, was implemented in (Gu,

2020b), and a stochastic SEIR model hybrid with agent-based simulation was suggested in

(Laboratory, 2020). The compartmental approach of the SEIR model is slightly modified

to accommodate under-detection and differentiated government intervention in the DELPHI

model (Bertsimas, 2020). Their flexibility notwithstanding, the difficulty in estimating time-

varying parameters in real time for stochastic SEIR models is well known, especially for large

populations (Montagnon, 2019).

Parameters in SEIR models are often estimated using opinions of expert epidemiologists

or using data from other locations or past epidemics (Chowell and Nishiura, 2014). This is

attractive in the sense that expert opinion is integrated, but there is ample opportunity for

bias as well as mis-specification, and the parameter estimates have a covariance structure

that can be difficult to estimate. Further, non-identifiability is a known problem for compart-

mental models (Godfrey and Chapman, 1990). Although there exists algebraic approaches

for testing identifiability such as exhaustive modeling (Walter and Lecourtier, 1981), such
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methods are not implemented in any of the above referenced Covid-19 SEIR models. Cru-

cially, estimated SEIR parameters in the early stages of a epidemic (before peak infection)

have been shown to be structurally nonidentifiable (Sauer et al., 2020).

3.4 Comparison of Point Process and Compartmental Models

Hawkes and SEIR models both offer flexible (and somewhat complementary) frameworks

for modeling infectious diseases. Hawkes models allow for nonparametric estimation of the

triggering function g, as well as spatial covariates, and an intrinsic network-effect. SEIR

models offer a far more physically plausible framework for describing Covid-19 relative to

the Hawkes model. Specifically, SEIR models allow for specification of stochastic movement

between compartments based on previous epidemics and expert opinions. The compart-

mental model framework allows for natural implementation of known networks within the

population of interest (Montagnon, 2019). Further, quantities of interest to epidemiologists

and policy makers such as infection rate within a population can be imputed using SEIR

models (Lekone and Finkenstädt, 2006).

Within the context of a SEIR model, the spread or transmission of an infectious disease

such as Covid-19 occurs via Markovian diffusion which, under certain regularity conditions,

ultimately converges to a stationary distribution. In the context of a Hawkes model, back-

ground events trigger future events, and these trigger subsequent events, ultimately resolving

due to the decay of the chosen triggering function if the productivity is less than one. A

Hawkes process with K > 1 is not stationary (Stabile and Torrisi, 2010). The HawkesN

model is a stationary process for K > 1.

The link between Hawkes-like and stochastic SIR models is explored in detail in (Rizoiu

et al., 2018), where it is shown that an exponentially decaying triggering function chosen for

a finite population Hawkes model (HawkesN) coincides in expectation with the number of

individuals infected in a stochastic SIR model as it approaches stationarity. This connection
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between SIR and Hawkes models was explored in particular in the context of Covid-19

(Bertozzi et al., 2020), where it was shown that the HawkesN and SIR models converge

if the triggering function is exponential and the reproduction number in the SIR model is

constant (Bertozzi et al., 2020). SIR and HawkesN models are shown to provide similar fit

to Twitter re-tweet diffusions in (Rizoiu et al., 2018).

One may also compare features such as the doubling time for both Hawkes and SIR/-

SEIR models. In the early exponential growth stage, the doubling time for SIR is τ =

log(2)/(γ(R0 − 1)) (Allen, 1994). The relationship between estimates of R0 and doubling

time for simulations of compartmental models is summarized in (Merler et al., 2013). The

parameter K is intuitively similar to R0, as it represents the expected number of events

triggered by a previous event. The doubling time for HawkesN models as a function of K

is shown next to the doubling time of a SIR model as a function of R0 in Figure 3.2. It

should be noted that doubling time for Hawkes models quickly approaches zero for K > 1,

justifying the finite population correction present in the HawkesN in the context of modeling

infectious diseases such as Covid-19 (Rizoiu et al., 2018).
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Figure 3.2: Average doubling time for HawkesN model with β = 1
4
, I0 = 10, population

size N = 106, and using mean intensity over 100 simulations per K (notated R0 for SIR).

Doubling time is defined as t such that N(t) = 20.
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Hawkes models offer computationally inexpensive parametric and non-parametric esti-

mates for important characteristics of infectious diseases such as Covid-19. Due to computa-

tional difficulty, and model-specification convenience, both SEIR and Hawkes models often

make assumptions such as fixed population size, or homogeneity individuals within com-

partments. Despite this, the difficulty of specifying large population size stochastic SEIR

models in real time is not trivial. In general, Hawkes models seem to be far simpler to im-

plement than SEIR-type models, and in a pandemic such as the spread of Covid-19, where

resources can be scarce and policies and health-allocations must be made in real-time, quick

and accurate short term forecasts are highly valuable (Worden et al., 2019).

Relative to Hawkes processes, SEIR models are more natural mathematical representa-

tions of the spread of contagious diseases. However, in implementation SEIR models often

require estimation of more parameters and structural modifications. As discussed above,

with increased complexity, there is more opportunity for bias and random errors in parame-

ter estimates, as well as large covariances between pairs of parameter estimates, and in some

cases problems of identifiability (Evans et al., 2005; Roosa and Chowell, 2019). Even more

pressingly, each component of the model is susceptible to mis-specification, which can result

in highly variable estimates and large forecasting errors (Hengartner and Fenimore, 2018;

Osthus et al., 2017).

Problems such as these can be particularly severe in the case of Covid-19, where available

data used to fit parameters can rely can have substantial errors, due to undercounted infected

populations and testing policies that vary over time and space (Kucinskas, 2020). Both

Hawkes and SEIR models assume a homogenous population and do not explicitly account

for testing errors, but Hawkes and HawkesN models appear to perform better than their

SEIR equivalents for modeling the spread of infectious diseases (see Table 3.1 below).
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3.4.1 Comparison of Existing Covid-19 Prediction Results

SEIR models appear to be far more widely used by State and Federal agencies for forecasting

Covid-19 cases and deaths, with a notable exception being the State of New Jersey which

is primarily using a multivariate Hawkes model (New Jersey COVID-19 Information Hub,

2020). Table 3.1 summarizes results comparing the accuracy of Hawkes models and their

variants with SEIR models and their variants for forecasting infectious diseases. Point pro-

cess models have been found to forecast incidence of mumps in Pennsylvania better than

compartmental SVEILR models (Kaplan et al., 2020). Further, point process models have

been found to improve fit and forecasting performance relative to SEIR models when applied

to incidence of pertussis in (Yang, 2019). Yuan et al. find substantially improved accuracy

of Hawkes models over SEIR models for forecasting Covid-19 in the European Union, Cali-

fornia, New York, and for the United States as a whole (Yuan, 2020).

Hawkes models are directly compared to SIR and SEIR models to explain the spread

of Covid-19 in California, Indiana, and New York in (Bertozzi et al., 2020). The Akaike

information criterion (AIC) is used to evaluate the candidate models, and by this metric,

HawkesN performs more poorly relative to its compartmental counterparts for Covid-19

death data, and with mixed results for Covid-19 case data. However, fitted parameters are

found to vary materially across locations, and relative fit of parameters across models is

concluded to not be strongly indicated. Rather than concluding on the merits of either type

of model, the authors note the difficulty of using limited data at the beginning of an epidemic

such as that of Covid-19 (Bertozzi et al., 2020).

In the context of the Covid-19 pandemic, compartmental models such as SIR and SEIR

have been noted to generally have low accuracy for long-term forecasts, and machine learning

models have been proposed as a superior alternative (Ardabili et al., 2020). Compartmental

models also may be poorly calibrated for forecasting more than five days out: forecast

numbers of Covid-19 cases in Italy six days in the future based on the SEIR model were 14%
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Data Better Fit Worse Fit Reduction RSME Authors

Pertusis in NV Recursive Hawkes SEIR 19% (Yang, 2019)

Mumps in PA
Recursive Hawkes SVEILR 38%

(Kaplan et al., 2020)
Hawkes SVEILR 26%

Covid-19 in CA
SEIR Hawkes

(∗) (Bertozzi et al., 2020)Covid-19 in IN

Covid-19 in NY Hawkes SEIR

Covid-19 in CA

Hawkes SEIR

63%

(Yuan, 2020)
Covid-19 in NY 21%

Covid-19 in US 31%

Covid-19 in EU 27%

Covid-19 in US Hawkes Variants SEIR (∗∗) (Chiang et al., 2020)

Ebola in W. Africa Hawkes SEIR 38% (Park et al., 2020)

Table 3.1: Prior results comparing the forecasting accuracy of point process and compart-

mental models for infectious diseases. Errors reported are the root mean squared error

(RMSE) and (∗∗) mean absolute error of daily forecasts. Model selection using (∗) Akaike

Information Criterion (AIC) and (∗∗) Normalized Discounted Cumulative Gain.

too low on average (Ardabili et al., 2020). Various compartmental models for forecasting

Covid-19 yield slightly different projections of future cases or future deaths (Ryan Best,

2020). However, estimates of variability vary widely, with prediction interval widths often

varying by a factor of 3 (Bertsimas, 2020; for Health Metrics and , IHME).

Some variation is to be expected in both mean predicted deaths and size of prediction

interval between the models as each are designed differently, and with varying assumptions.

Estimates of the initial reproduction number Rt for COVID-19 vary around 3.28 (1.4, 6.5)
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(Pan et al., 2020). Of course, values of Rt are observed to vary substantially depending on

social distance policies. In China, estimates of Rt decreased from 2 to 1 when public health

measures were put in place (You et al., 2020). Estimates of Rt in Singapore correspondingly

decreased over time by between 78.2% and 99.3% (Jewell et al., 2020). Similar results were

observed in Europe as a result of public health measures (Flaxman et al., 2020).

SEIR forecasts of future confirmed cases or deaths depend critically on estimates of the

total numbers of asymptomatic or mildly symptomatic cases, which are highly uncertain

(Sood et al., 2020; Bendavid et al., 2020) and extremely difficult to estimate accurately

(Lumley, 2020; Srinivasan, 2020). Jewell et al. (Jewell et al., 2020) note that more detailed

and complex models may be more sensitive to assumptions regarding the incubation and

infectious periods and other estimates of transmission characteristics. Further, SIR and SEIR

models are highly sensitive to assumptions regarding social movement and the estimated

impacts of containment policies (Pinter et al., 2020). SIR and SEIR models are known to be

particularly sensitive to assumptions about the distribution of latent and infectious periods

(Lloyd, 2001; Wearing et al., 2005). Further, as discussed above, nonidentifiable parameters

can be an issue for compartmental models, and methods for dealing with nonidentifiability

of parameters tend to work better for simpler models than for more complex compartmental

models (Roosa and Chowell, 2019).

3.5 Further Connections Between Hawkes and SEIR Models

The productivity constant K in the Hawkes model is the obvious analogue of the reproduc-

tion rate R0 in SEIR, with both interpretable as the expected number of direct transmissions

per infected individual. Further, several variations of the Hawkes process in Equation 4.1

have deeper connections to SEIR-type compartmental models. The point process governed

by Equation 3.2 is a continuous time analog of a discrete stochastic SIR model when g(t) is

specified as exponential (Rizoiu et al., 2018). When g(t) is chosen to be gamma distributed,
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the Hawkes process also can approximate staged compartment models, like SEIR, if the

average waiting time in each compartment is equal (Lloyd, 2001). More complex paramet-

ric (or non-parametric) inter-infection time distributions g(t) may be employed within the

Hawkes process framework in situations where disease dynamics cannot be captured by a

SIR or SEIR model. In the early exponential growth stage of an epidemic, before finite

population and social distancing effects play a role, the linear Hawkes process in Equation

4.1 can readily be used to model new infections (see Figure 3.3).
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Figure 3.3: Left: (Red) SEIR differential equation dS/dt = −βSI/N , dE/dt = βSI/N−µE,

dI/dt = µE−γI, dR/dt = γI, where β = γR0, γ = .1, K = 2, µ = 1, and N = 5·108. (Blue)

linear Hawkes process λt = µ+
∑

t>ti
Kg(t− ti) fit to the SEIR curve of new infections using

non-parametric expectation-maximization (Mohler et al., 2020). Right: Non-parametric

histogram estimate for g(t) corresponding to the Hawkes process fit.

While the Hawkes process can approximate SEIR in some situations with an appropriately

chosen kernel g(t), queue-Hawkes processes (Daw and Pender, 2018) can also be used to

model an exposed latent class of events. Let N be population size, NE
t be the cumulative sum

of infections (whether recovered or not) up to time t. Then we may define a hybrid model

incorporating features of both SEIR and Hawkes, which we call a SEIR-Hawkes process,
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where the intensity of newly exposed cases is given by

λE(t) =

(
1 − NE

t

N

)∑
t>tIj

Kγ exp

(
− γ(t− tIj )

)
, (3.3)

and the times of infection are generated via

P (tIj > tEj + c) =

∫ ∞

c

µ exp

(
− µ(s− tEj )

)
ds. (3.4)

Realizations of the SEIR-Hawkes process can be generated via Lewis’ thinning method

for simulation (Ogata, 1981; Lewis and Shedler, 1979). We first simulate an upper-bounding

Hawkes process with intensity

νE(t) =
∑
t>sIj

Kγ exp

(
− γ(t− sIj )

)
. (3.5)

P (sIj > sEj + c) =

∫ ∞

c

µ exp

(
− µ(s− sEj )

)
ds. (3.6)

Because the Hawkes process in Equation 3.5 has a branching process representation (Hawkes

and Oakes, 1974), the process can be simulated iteratively; for each event pair (sIj , s
E
j ), by

1. Generating a Poisson random variable M with mean K .

2. Generating l = 1, ...,M events with inter-event times sEl − sIj given by an exponential

random variable with parameter γ.

3. Generating l = 1, ...,M events with inter-event times sIl − sEl given by an exponential

random variable with parameter µ.

Thinning then proceeds sequentially by accepting each event pair (sIj , s
E
j ) with probability

λE(sEj )/νE(sEj ) where λE is computed using only accepted events in the history and νE is

computed using all simulated events. In Figure 3.4 we simulate the SEIR-Hawkes process

with parameters µ = 1, γ = .1, K = 2, N = 1000 and NE
0 = 10 (tE1 = ...tE10 = 0)

and compare to the forward-Euler approximate solution (dt = .01) of a SEIR differential

equation dS/dt = −βSI/N , dE/dt = βSI/N − µE, dI/dt = µE − γI, dR/dt = γI, where

β = γK.
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Figure 3.4: SEIR differential equation simulation (red) and 50 realizations of the SEIR-

Hawkes process. Parameters for the SEIR model are K = 2, µ = 1 for the E → I rate,

γ = .1 for the I → R rate, and population size N = 1000.

3.6 Conclusion

The SEIR model is currently far more widely used to model epidemic diseases such as

Covid-19 than the Hawkes model, and its parameterization is physically plausible, with

parameters that are readily interpreted in the epidemiological community. The SEIR model

also appears to forecast epidemics adequately in most cases, especially in the early spread

of the disease. However, the Hawkes model seems to offer more accurate forecasts for case

data, with approximately 20-30% smaller errors on average. Among the several reasons

listed in Section 3.4 for this discrepancy, the most significant seem to be mis-specification

in the SEIR model and its sensitivity to errors in estimates of latent quantities such as the

number of asymptomatic individuals and the distribution of incubation times. In general,

when maximal accuracy is desired, models for forecasting observations should typically be

only as complex as necessary to represent the main features of interest in the data, with
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minimal dependence on unobserved or noisy data (Kelly et al., 2019).

There are close connections between SEIR and Hawkes models, and indeed the two types

of models can be constructed to be equivalent or to converge to one another in special

cases. The SEIR-Hawkes model described here may provide further linkage between the

two paradigms in cases where one seeks the accuracy of point process modeling without

sacrificing the physical plausibility and interpretation of SEIR parameters, and the model is

shown here to emulate characteristics of SEIR models closely.

Further, doubling time of cumulative cases is of interest to epidemiologists as a statis-

tic for monitoring disease spread during a pandemic. For commonly used compartmen-

tal models such as SIR (susceptible, infectious, removed), analytical solutions for doubling

time exist as a function of the underlying parameters. In particular, such a representa-

tion is dependent on the reproduction number R0 which can be analogized to K for a

Hawkes-type model (Chiang et al., 2020). Hawkes-type models are not stationary when

K ≥ 1, and therefore, doubling time for HawkesN models is of interest. See Figure 3.5.

Figure 3.5: Doubling time of cumulative events as a function of K and t, for a HawkesN

model with population of 5 · 105 and an exponential kernel with θ = 0.25.
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CHAPTER 4

A Potential Outcomes Framework for Point Process

Data

4.1 Introduction

A cohesive potential outcome framework for point process data is missing from the current

literature. Recent attempts to use point process data (wherein points fall in continuous as

opposed to discretized space) and point process models make highly restrictive modelling

assumptions and ultimately rely on discretization of data, for instance, see Papadogeorgou

et al. (2020). In this chapter, we present a novel framework and accompanying simulation

study for general point process models in a potential outcomes framework.

4.2 A Preliminary Framework and Notation

We propose a causal interpretation for spatio-temporal point process data observed on win-

dow X = A×B× [0, T ] for A×B ⊆ R2 and T ∈ R+. We assume a single constant treatment

τ ∈ R was implemented at some time t ∈ [0, T ] in some subset of A × B. We partition X

into cells I1, . . . , Ip such that ∪pi=1Ii = X and Ij ∩ Ik = ∅ ∀j ̸= k and assign treatment to

the cells indexed by some possibly nonrandom subset of the indices 1, . . . , p.

An observed data set ϕ is a realization of point process Φ. We represent Φ as the

superposition of two processes Φ0 and Φ1, i.e. Φ = Φ0 ∪ Φ1. Φ0 and Φ1 represent the

“control” and “treatment” processes, which do not share identical state spaces (although
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the union of their state spaces is X ). We only observe Φ0 on “control cells” and we only

observe Φ1 on “treatment cells.” Therefore ϕ is an “incomplete” observation: we only observe

the partial treatment and partial control process (similar to so-called fundamental problem

of causal inference). In determining a treatment effect, we must therefore assume (or prove)

that we have enough information about Φ0 and Φ1 to simulate it meaningful across X in the

cells where each respective process was not observed.

4.3 Visualization

We now present a series of visualizations meant to clarify the above framework. For ease

of visualization, we choose purely spatial processes, and for maximal simplicity, we defined

both the control and treatment processes as homogenous Poisson. Point processes with more

complicated intensities are discussed in Sections 4.4.

Figure 4.1: The simulated control process, a homogeneous Poisson process specified with

intensity λ = 1.
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Figure 4.1 shows the true unobserved and observed control process. Note that in practice,

for a given data set ϕ, we would only have the observed control process. Similarly, Figure

4.2 shows the true unobserved and observed treatment process.

Figure 4.2: The simulated treatment process, a homogeneous Poisson process with intensity

λ = 4 (τ , the treatment effect, is 3).

If we superimpose the treatment process on the control process, we can see the complete

(observed and unobserved) treatment and control processes, see Figure 4.3. Note that this

is not the same as ϕ.
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Figure 4.3: This represents what we would see if we could simultaneously observe both

treatment and control.

The actual process observed, ϕ is a realization of Φ, which is dependent on how we

partition our state space X . In this example, we have arbitrarily chosen X = [0, 5] × [0, 5].

We can partition X using any scheme so long as the partitions are non overlapping and the

union of all partitions is equal to X . Figure 4.4 shows two options:
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Figure 4.4: Options for partitioning X .

We also have the option of data-dependent options, such as the Voronoi tessellation (see

Figure 4.5) based on the control process seen in Figure 4.1. Note that in this case, a Voronoi

Figure 4.5: Voronoi tessellation of X

tessellation based on entire control process (both observed and unobserved) is artificial; in
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actual data sets, only the observed portion of the control process will be present. This

illuminates the kind of ouroboros paradox inherent to our framework in the purely spatial

context (spatio-temporal data escapes this dilemma – we can choose data-dependent cells

on all observed data prior to treatment effect being applied). Optimal partitioning of X

Figure 4.6: M.C. Escher’s “Drawing Hands.” Image credit: BYU Museum of Art.

to ensure accurate estimation of treatment effect should likely be data-dependent (with the

exception of the homogenous Poisson case). Treatment assignment therefore dictates where

we observe each process (i.e. in which cells we observe control and treatment, respectively).

Such a scheme may make sense for some point process data: for instance if crimes are

represented as marked spatio-temporal points, and some crimes are thought to trigger future

crimes (perhaps modelled by a Hawkes process), then it would make sense to partition based

on triggering crimes. Note that typically, points are not labelled as a background or triggered

point in the point process literature, but real life data sets often do include such labels.

For this example, we continue with the Voronoi tessellation of X and randomly assign

treatment status for each cell using Bernoulli(p = 1
2
) assignment. Note that given sufficient

data, p can approach 0 or 1, and we can still accurately estimate τ . Further note that non-

randomized treatment schemes are well documented in the potential outcomes literature

(Lee, 2008; Rubin, 2005).

We then keep the subset of points from the control process that fall into the control cells,
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and the subset of points from the treatment process that fall into the treatment cells. The

union of these two subsets is equal to ϕ, i.e. the observed data, see Figure 4.7 (top-left).

Figure 4.7: Top left: a single realization of ϕ (the observed data from both the control and

treatment processes. Top right: unobserved data (these points are effectively “dropped.”

Bottom left: observed and synthetic data, superimposed.

We then need to simulate the unobserved portions of the control and treatment processes.

We can do this by assuming a parametric model for each process and fitting via MLE, using

the data for each corresponding process in the cells it is observed in. For instance if X is
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partitioned into 10 cells, and the control process is observed in cells with {1, 2, 7, 9}, then

using the data in cells {1, 2, 7, 9}, we can synthetically generate the control process we would

expect to observe in cells {3, 4, 5, 6, 8, 10}. Note that such MLE estimates are consistent and

asymptotically efficient, given correct model specification (Ogata, 1978). These simulated

processes are referred to as the synthetic treatment and control. Finally, we present the

full data set which we will use to estimate the treatment effect τ . The “full data” seen in

Figure 4.8: Synthetic treatment and control processes, it using MLE estimates of homogenous

poisson process intensities, superimposed upon ϕ, the observed process.
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Figure 4.8 is the union of observed treatment and control data with simulated treatment data

(where control was assigned) and simulated control data (where treatment was assigned).

We notate this full data (observed superimposed by synthetic) as ϕ ∪ ϕ̂ = ϕ∗.

4.3.1 Estimation of Treatment Effect

Given a partitioning I1, . . . , Ip of X , we can calculate the treatment effect τ as the average

difference in the counting measures of partitions for observed and synthetic data. Potential

outcomes are simply defined as the counting measure of a given partition.

We present the spatio-temporal case formulas, noting that if the data is purely spatial as

presented in the previous section, the second time dependent integral disappears. Assuming

that treatment is assigned once at a known time, we characterize the potential outcomes

(after treatment at time t∗) as

YIj ,t∗ = N (Ij ∩ (t∗, T ]) ≈
∫
Ij

∫ T

t∗
dN

which is to say the counting measure of some cell Ij after treatment. We then estimate the

average treatment effect as the different counting measure for treated cells and synthetic

control equivalent, or non treated cells and synthetic treated equivalent.

Given treatment at time t∗ for a process observed up to time T , we estimate the average

treatment effect τ as

τ̂ =
1

p

p∑
j=1

∣∣∣∣N(Ij ∩ (t∗, T ], Ij ≡ C) −N(Ij ∩ (t∗, T ], Ij ≡ T)

∣∣∣∣
Note that C denotes “control” and T denotes “treatment.” Either the first or second quantity

can be easily estimated in expectation to fill in as a synthetic control: for example, if

treatment occurred in cell Ij, we can estimate the synthetic control at time l as

N(Ij, t∗) +

∫
Ij s.t. t∗<t≤l

λCdµ

where µ represents the Lebesgue measure and λC represents the conditional intensity func-

tion4 of the control process.
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Of further note, a “spatially scaled” version of the same measure could be of some interest:

τ̂ ′ =
1

k

k∑
p=1

1

µ(Ij ∩ (t∗, T ])

∣∣∣∣N(Ij ∩ (t∗, T ], Ij ≡ C) −N(Ij ∩ (t∗, T ], Ij ≡ T)

∣∣∣∣
Obviously, such a scalar is not necessary in the case that all cells are of equal size. This

spatially scaled version is “unitized,” i.e. it represents a unit treatment effect. For instance,

if the treatment effect τ = 3, then we would expect 3 more points per unit of space time in

treatment partitions.

4.3.2 Interpretation

Before interpreting the above example, we note that the above framework does not allow

us to tackle two related problems: The first is the problem of distinguishing inhomogeneity

from clustering. This first problem is closely related to the problem of model selection within

point process theory. The second is determining the “causal effect” of a single point in a

given realization, as discussed in (Papadogeorgou et al., 2020). A counterfactual defining

this second problem could be, “if there was a point here, given this realization, how we we

expect the other points to be different.” In such a framework, points themselves “cause”

other points, or at least effect the location of other points.

We instead focus here on the relatively simpler problem of estimating a treatment effect

using point process models and a spatially (or spatio-temporally) defined treatment mecha-

nism. From the framework we have described above, we can make a conclusion about how

the average difference of the counting measure for control and non control processes changed

across partitions, given some treatment effect specified across a subset of the partitions. A

counterfactual defining this problem could be “given this realization, if we were to change

the partitioning of the underlying state space, how would the number of points in a given

partition increase/decrease.”

A major limitation of this interpretation is that point processes are typically assumed to

occur in continuous space, and therefore there are infinite potential outcomes without some
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level of aggregation. The remedy applied here is partitioning the underlying state space, but

as mentioned above, the level and method of aggregation (i.e. data dependent partitioning)

is not straight forward.

4.4 Simulation Study

We now present two (somewhat arbitrary) simulation studies. The R code for below simulated

results can be found in Section 7.1.1.

4.4.1 Inhomogeneous Poisson

For each iteration, we simulate a realization ϕ of process Φ on state space X = [0, 10]× [0, 10]

as an inhomogenous Poisson characterized by control intensity λC = 1.50x + 0.55y + 2 and

λT = 1.50x + 0.55y + 2 + τ where τ = 5 is the prescribed constant treatment effect. Note

that this parametric form was chosen arbitrarily, as were coefficients.

After simulating both processes, we tessellate X into a grid of quadrats (partitioning does

not change across iterations), and randomly assign treatment to cells using Bernoulli assign-

ment with p randomly drawn from a discrete uniform distribution Unif({0.1, 0.2, . . . . , 0.8, 0.9}).

We then created synthetic data for non observed cells via MLE (after dropping the unob-

served subset of ϕ), and estimated τ as described above, seen in red in Figure 4.9. As a

benchmark for how well we fit synthetic data, we also calculated the treatment effect based

on ϕ (which includes both observed and unobserved data), seen in green in Figure 4.9.

The error shown in Figure 4.10 represents the distribution of the differences in estimating

τ based on using fitted synthetic data (SATE) versus unobserved data superimposed on

observed data (i.e. ϕ, which is never available in real life).
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Figure 4.9: True constant treatment effect τ = 5. Red: Treatment effect estimated using

observed and fitted synthetic data, τ̂SATE = 4.911187. Green: Treatment effect using

observed and unobserved data, τ̂ATE = 5.005975. All difference between ATE and true

treatment effect due to stochastic variation.

Figure 4.10: Difference between SATE and ATE estimates of τ .

4.4.2 Hawkes Process

We proceed with a simulation study of two Hawkes processes. A univariate Hawkes process

is characterized by the following intensity:

λ(t|Ht−) = µ︸︷︷︸
background rate

+κ

∫
t′<t

g(t− t′)︸ ︷︷ ︸
triggering density

dN(t′) (4.1)
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= µ+ κ
∑

(t′):t′<t

g(t− t′),

where λ(t|Ht−) is the conditional rate at which points (events) are expected to accumulate

around spatial-temporal location t, given information on all previous events Ht−.

We chose an exponential kernel function for g, with control process parameters (µ =

1, α = 3, β = 6) and treatment process (µ = 1, α = 4, β = 6), i.e. αC + 1 = αT. Note that

changing α in this way is akin to decreasing κ. Further note that all or any parameters may

be changed and consistent results can still be obtained via simulation. We chose state space

X = [0, 5 · 101].

We then calculated the true treatment effect based on our parameters and state space.

Recall from Section 2.1 that we can find our true treatment effect by taking the difference

of the integrals of our treatment and control intensities with a normalization factor.

τ ‘ =
1

|X |
(E[N(X )C] − E[N(X )T])

=
1

|X |

(∫
X
λCdµ−

∫
X
λTdµ

)
≈ 1

|X |

(
µC · |X |
1 − αC

βC

− µT · |X |
1 − αT

βT

)
=0.99

This value is visualized as a dotted blue line in Figure 4.11. Note that we use the integral

approximation detailed in (Schoenberg, 2013).

We then proceed to tesselate X using kmeans on a random sample of points where the

population is the superimposed simulated control and treatment processes. Note that this

population contains both observed and unobserved data, and therefore this data-dependent

tessellation is somewhat artificial. Simple intervals on X also provided consistent results.

We then randomly assigned treatment as in Section 3.1, and created synthetic data for non

observed cells via MLE. We then estimated our treatment effect for 996 observations.1 The

1If less than two points were observed in a given cell, we did not perform fitting via MLE and the iteration
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results are summarized in Figure 4.11. The accompanying errors are summarized in Figure

4.12.

Figure 4.11: The true treatment effect is represented by the blue dotted line. ATE is

represented by the red line, and as before, all difference between ATE and the true treatment

effect is due to stochastic variation. SATE, what a scientist could measure in real life, is

represented by the green line. Note that SATE consistently captures the treatment effect,

albeit with higher variance than ATE. The purple line represents a naive approach: count

the observed points for each cell, normalize counts for the size of the cells, and take the

difference between control and treatment cells. This naive approach significantly under

performs relative to SATE, as it fails to capture the “triggering” nature of the underlying

data generating Hawkes process.

was dropped. This happened four times.
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Figure 4.12: Here we see the errors for the various methods described in the above figure.

4.4.2.1 Notes

Intuitively, it seems that for most accurate measurement of treatment effect, we need to

tessellate our state space such that as many points as possible that are triggered by a

background point fall in to that background point’s tile. Two possible remedies are as

follows: (1): edge correction on a tile by tile basis, see Chapter 1, Section 4 of (Mecke and

Stoyan, 2000) and (2): bound error by the expected number of points to fall outside of a

given tile.

In general, it seems that if points do not have relationships with other points outside their

tile, this current causal framework should provide accurate and consistent measurement of

treatment effect. Essentially, we should strive for “inhomogeneous-Poisson-y-ness” between

the tiles, and “anything goes” within the tiles (as long as it can be fit via MLE or some

similar method). Therefore without smart data-dependent tessellation, the current method

seems at least theoretically better for inhomogeneous Poisson rather than Hawkes or Gibbs
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processes where the points have spatial or temporal relationships.

Drawing from the potential outcome literature, there are various quantities of interest

worth labelling. As discussed above, a Hawkes process intensity can be decomposed into

a background rate and a triggered rate. These two elements can be thought of as “non-

interactive” and “interactive” components, analogous to direct and indirect effect, as defined

in (Hudgens and Halloran, 2008), respectively. As total effect is equal to the sum of indirect

and direct effect, a process such as an inhomogeneous Poisson where points do not interact

with each other, implies a total effect equal to the direct effect (i.e. a indirect effect equal to

0). Such a direct effect (background rate, in the case of a Hawkes process) can be estimated

using linearly fit covariates, as discussed in (Park et al., 2021), which can reduce interference

(Hudgens and Halloran, 2008).

4.5 Conclusion and Future Work

In future work, we plan to explore how the contagion effect can be limited by data dependent

tessellation of observation region. For instance, in the context of Hawkes models, with suffi-

ciently large cells and an exponential triggering kernel with parameters such that triggered

points were close by, contagion effect would be nonexistent. As an application, we plan to use

retaliatory gang crime data, building on the results of Mohler et al. (2011). This application

will require further theoretical augmentation of the framework laid out in this chapter, as

the treatment assignment mechanism underlying this crime data is non-random.
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CHAPTER 5

Measuring Complexity of Tensor Representations of

Point Process Data

5.1 Point Process Representations of Tensors

Tensors are natural mathematical representations of many important data types ranging

across many fields including imaging and computer vision, signal processing, linguistics,

geology, and physics. Tensors are arrays of spatial dimension (termed “order” in the tensor

calculus literature) d ≥ 3. Because tensors are often large and computationally expensive

objects, they are often unwieldy and require cumbersome operators and notations.

Varying approaches to approximation, decomposition, and summary of tensors exist in

the literature. Section 5.3 introduces tensors, tensor notation, and basic properties of tensors

and tensor operators, as well as attempts to draw analogies and contrasts between tensor

and matrix algebra, before discussing a common tensor factorization. Discussion of tensor

factorizations is pertinent because it is a relatively straightforward context to introduce

tensor notation and operations, and because factorization is the primary method to obtain

a compact representation of a complicated data object.

The properties of the rich theoretical framework developed around point processes has

been under-utilized in the context of practical application to real life data science problems

due to the fact that such applications commonly involve big data. As discussed in Section 2.4,

commonly implemented model fitting methods for point processes such as MLE are highly

computationally intensive for many large datasets or for processes with complex or volatile
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structures. We propose a new methodology using point processes to represent tensors, and

provide a brief literature review of existing work and proposed future work.

5.1.1 Point Process Representation of Tensors

It is our primary interest to increase the utility, decipher-ability, and information extraction

of tensors. We focus on relatively simple problem of measuring the amount of information

in sparse, boolean-valued tensors, although our proposed method can be generalized to real-

valued tensors (as a marked point process equivalent, or where elements are thresholded,

creating boolean-valued tensors). A tensor of order d can be thought of as a d-dimensional

array (where each element is indexed with d-indices). In the context of a sparse boolean-

valued tensor, all elements are equal to 0 or 1, and most are equal to 0. Therefore it is

natural to think of elements equal to 1 as points with spatial location equal to their index.

Tensors are an inherently rich data type, and tensor representations of graphs (or graph-

ical representations of tensors), as well as neural networks, and other areas of interest are

well-discussed in the literature (Duchenne et al., 2011; Novikov et al., 2015). Why represent

tensors as a point process? Doing so is a natural bridge away from often incomprehensible

data to known parametric forms, and crucially, point processes retain the spatial relation-

ships between non-zero elements. It should be noted that point process representations of

tensors lose their value when d ≤ 2 or for tensors where the total number of elements is

not large. When d ≤ 2, we can leverage the properties of matrices and vectors, and the

computational burden is less and interpretability is greater. Point process representations

of high-dimensional tensors has been recently explored in the context of taxis (Pang et al.,

2017), workforce management (Shen et al., 2008), and neuro-imaging (Tagliazucchi et al.,

2016). Theoretical properties of point process representations of tensors is recently discussed

in Xu et al. (2018); Zhe and Du (2018).

We restrict ourselves to the case of sparse boolean-valued tensors of order d ≥ 3 where

the number of elements is large. We further restrict our problem of interest to determining
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Figure 5.1: As we iteratively superpose homogenous poisson processes with a fixed intensity

λ, we come closer to filling the state space with a uniform random distribution, i.e. a process

with maximum entropy.

the complexity, or information content, of such tensors. To do so, we employ the following

iterative process:

1. Start with sparse boolean-valued tensor T of order d. Approximate T as a realization

of a simple point process Φ1 with unknown intensity λ and state space X ⊂ Rd.

2. Fit a homogenous Poisson process to Φ1 (i.e. fit λ̂ ∈ R+).
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3. Superimpose a realization of homogenous Poisson process with intensity λ̂ on Φ1, and

call the resulting process Φ2.

4. Continue superimposing realizations of the homogeneous Poisson process, generating

Φ3, . . . ,Φs until the divergence is less than some tolerance level ϵ, i.e. until D(Φs||Ψ) <

ϵ where Ψ is a homogenous Poisson process with intensity (s+ 1)λ̂.

Although fitting an inhomogenous Poisson process in step 1 is attractive, it is likely

computationally expensive, and more importantly, reliant on qualitative assumptions. Hy-

pothetically, if we could parameterize an a point process process representative of X we

could skip to step 4 and quickly find the the tensor information content. However, steps 2

and 3 are not computationally expensive, or difficult to implement, and therefore allow us

to bypass an qualitative assumption about the underlying structure of X . We propose that

this workaround can be intuited as paradoxical information loss : to measure the content of

datum without making parametric assumptions, we can back-solve by measuring how much

information we can lose through entropy-increasing operations like superposition. We note

that the point process representing X must be interpreted as a discretized approximation

(due to the fact the elements of X have indices in N).

5.1.2 Literature Review

“In a loose sense, each of the operations of superposition, thinning, and random translation

is entropy increasing; it is not surprising then that among point processes with fixed mean

rate, the Poisson process has maximum entropy...” (Daley and Vere-Jones, 2008)

The primary tools for this project rely upon the intersection of point process and infor-

mation theoretic results. Literature discussing the entropy of point processes is relatively

limited: first McFadden characterized point process entropy (McFadden, 1965), then Papan-

gelou gave results for the approximation of the discrete entropy of stationary point processes

(Papangelou, 1978).
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Dayley and Vere Jones provided a chapter of their seminal point process theory text con-

cerning the properties of point process entropies (Daley and Vere-Jones, 2008, Chapter 14.8).

This chapter primarily busies itself the question of approximating the expected entropy of

a finite simple point process from finite samples. Convergence in the L1 norm between ex-

pected and true entropies is established based on the convergence of the pseudolikelihoods.

Further, this chapter primarily characterizes the entropy of point processes as a function of

their (conditional) intensities, which is natural as point process likelihoods are commonly

characterized as such. However, for our current purposes, we are not interested in parame-

terizing intensities in the context of entropy estimation, and therefore these results remain

interesting, but only useful for future work.

Ultimately, there is a dearth of recent results connecting modern information theory and

point processes - so much so, that the few articles discussing the overlap of the fields mention

the lack of recent publications (Koliander et al., 2018; Baccelli and Woo, 2016; Clark, 2019).

We hope to exploit this relative paucity with finding some relatively accessible results.

The primary application of this project is point process representations of tensor data, an

idea discussed in the context of various applications in the literature (Pang et al., 2017; Shen

et al., 2008; Tagliazucchi et al., 2016; Xu et al., 2018; Zhe and Du, 2018). Point processes

are a very natural way to characterize some tensor objects, and information theoretic results

allow statisticians to glean valuable data from such objects even in high dimensional settings.

We now begin with the notational framework for extracting the information content of point

process realizations embedded in tensors (or more generally d-dimensional manifolds).

5.1.3 Characterizing Point Process Entropy

Characterizing the entropy of a point process requires some care. We therefore begin our

discussion of point process entropy by building intuition about the maximum entropy of

the uniform distribution, and entropy in the context of classic random variables. Entropy,
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introduced by Shannon (Shannon, 2001), is defined as

H(X) = E[I(X)] = −
n∑
i=1

P(xi) logP(xi) (5.1)

for random variable X and outcomes x1, . . . , xn, where I(X) is the “information content”

of X. It is easy to see that entropy is maximized when X ∼ Unif, which we can check by

taking the Lagrangian:

L = −
n∑
i=1

pi log pi − λ

(
n∑
i=1

pi − 1

)
pi = exp(−1 − λ) derivative w.r.t. pi

1 =
n∑
i=1

pi derivative w.r.t. λ

⇒ 1 =n exp(−1 − λ)

1

n
=p̂i

Plugging in p̂i to Equation 5.1, we see that H(X) = log n for the uniform distribution.

Similarly, for a uniform distribution on the unit hypercube in Rd, the entropy is equal to

H(X) = log nd.

For a homogenous Poisson process of n points on some bounded and finite space, the

points (un-ordered) are uniformly distributed. Therefore in a spatial sense, a homogenous

Poisson process represents the maximum entropy within the class of point processes with

a given average rate (via their defining characteristic of complete spatial randomness). For

more information, see Chapter 6 of Cinlar (2013) (connection between uniform distribution

and Poisson processes), as well as Section 7.6 of Daley and Vere-Jones (2008) and Proposition

14.8.I of Daley and Vere-Jones (2007) (maximum entropy of Poisson processes). We strive

to present a formal proof, simplifying the more general results contained in (Daley and Vere-

Jones, 2007; Harremoës, 2001; Baccelli and Woo, 2016) that within the class of all Poisson

point processes, homogenous Poisson processes have the maximum entropy.
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In place of such a proof, we present here a simplified proof that among simple, stationary

point processes which admit a Janossy density, homogenous point process have maximum

entropy (Thm V.1. Baccelli and Woo (2016)). Janossy densities are defined for point pro-

cesses with N <∞ points in Euclidean space Rd, and are a natural representation of general

finite point processes characterized in Conditions 5.3.1 Daley and Vere-Jones (2007).1

A Janossy measure Jn(·) is a convenient and necessary measure to represent a likelihood

for a stochastic un-ordered set such as a point process. We note that in general, we are

not interested in finding the probability that specific labelled points are within some region

A ⊆ X , but rather that n points are within A. This means that any distribution Πn(·) used

to characterize a point process of interest must be symmetric for any partition {Ai} of X .

We can then note that

Π∗
n(A1 × · · · × An) =

1

n!

∑
Πn(Ai1 × · · · × Ain)

where Π∗
n(·) represents the symmetrized equivalent of Πn(·) and the summation is across all

n! permutations i1, . . . in of the un-ordered points 1, . . . , n (each permutation is given equal

weight) (Jánossy, 1950). We can then write that

Jn

(
n×
i=1

Ai

)
=
pn
n!

∑
Πn(Ai1 × · · · × Ain) = n!pnΠ∗

n

(
n×
i=1

Ai

)
.

This representation is flexible, permutation invariant, and natural to the context of point

processes, but also rich in interpretation: if X = Rd, and we let jn(x1, . . . xn) represent the

density of Jn(·) with respect to the Lebesgue measure µ, the jn(x1, . . . xn)dµ(x1) · · · dµ(xn) is

1These coniditions can be summarized as

• Points are in complete separable metric space X . Seperable: a topological space which contains
countable dense subset, e.g. any space that is finite or countably infinite. Complete: Any Cauchy
sequence (elements get arbitrarily close) of points in a space has a limit which is also in that space,
i.e. there are no “holes” within or at the boundary of said space.

• A distribution {pn} for n ∈ N determines the total number of points, such that
∑

n pn = 1.

• ∀n ∈ N, Πn(·) is a probability distribution on the Borel sets X (n) = X × . . .×X (Cartesian product)
determining the joint distribution of the location of the points of the process given that N = n.
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the probability that there are exactly n points in the process, one in each of the n infinitesimal

regions (xi, xi +dµ(xi)) (Daley and Vere-Jones, 2007). Further, we can see that when n = 0,

j(∅) = p0, given the convention 0! = 1. Lastly we note that∫
×n

i=1 Ai

jn(x1, . . . xn)dµ(x1) · · · dµ(xn) = n!pn

and as a consequence, jn is sufficient for backing out Π∗
n and pn (van Lieshout, 2010). These

properties allow us to represent the likelihood of a realization x1, . . . , xn of a point process

on a bounded Borel set A ∈ Rd where n = N(A) and N(·) is the counting measure as

L(x1, . . . , xn) = pn · n!Π∗
n(x1, . . . , xn) = jn(x1, . . . , xn).

This final relation between likelihood and the Janossy density representation of a point

process allows us to write down the entropy of a point process Φ on A as follows:

G(Φ) =
−1

n!

n∑
i=1

∫
×n

1 A

jn(x1, . . . , xn|A) log (jn(x1, . . . , xn|A)) dµ(x1) · · · dµ(xn)

=
−1

n!

n∑
i=1

∫
×n

1 A

L(x1, . . . , xn) log (L(x1, . . . , xn)) dµ(x1) · · · dµ(xn)

= − E [log(L(x1, . . . , xn)]

We can the express the entropy of a point process more generally in the notation of Daley

and Vere-Jones (2007) on a measure space (Ω,A, µ) and P ≪ µ a probability distribution

on the A. This notation is useful for leveraging the superimposition theorems in Chapter 11

of Daley et al. (2008) Daley and Vere-Jones (2008). Using this notation,

G(P ;µ) = −
∫
Ω

Λ(ω) log Λ(ω)µ(dω)

= −
∫
Ω

log Λ(ω)P(dω)

= − EP [log Λ]

represents the entropy of P with respect to reference measure µ and Λ(ω) = dP/dµ is

the Radon-Nikodym derivative of P with respect to µ. We note that if µ = Q for some
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probability measure Q (the Lebesgue measure is not a probability measure as µ(Rd = ∞),

then

G(P ;Q) = −
∫
Ω

log
dP
dQ

P(dω)

which is the KL divergence between probability measures P and Q. Such notation is unfor-

tunately necessary to accommodate the fact that for a point process, the number of points

is random, and therefore we must take the entropy with respect to the underlying count-

ing measure. The (unnormalized) reference measure specified in Chapter 14 of Daley et al.

(2008) for simple point processes is exp(T )Poi(λ, T ) where Poi(λ, T ) is the the probability

measure of a Poisson process with constant intensity λ on the interval (0, T ) (Daley and

Vere-Jones, 2007, 2008). The larger point is that sometimes we are interested in the entropy

relative to a measure commensurate with the structure of the space on which the underlying

process is defined.

For the purposes of this review, we prefer the less general notation of G(Φ). We note

that point process entropy G(Φ) is neither Shannon nor differential entropy as it is not fully

discrete or continuous. To this point, G for a single realization ϕ = {x1, . . . , xn} of Φ on

bounded space A ⊂ X can be decomposed into three parts: the sum of the discrete and

continuous entropies, less a constant factor for the redundancy (intersection) of the two.

G(Φ) = H(n)︸ ︷︷ ︸
Shannon

+E[ h(ϕ|n)︸ ︷︷ ︸
differential

] − E[log(n!)] (5.2)

G(P ;µ) = −
∞∑
k=0

pk log pk −
∞∑
k=1

pk

∫
A(k)

Π∗
k(ϕ) log(k!Π∗

k(ϕ))dx1 . . . dxk (5.3)

G(P ;Q) = −
∞∑
k=0

pk log
pk
qk

−
∞∑
k=1

pk

∫
A(k)

Π∗
k(ϕ) log

(
Π∗
k(ϕ)

q∗k(ϕ)

)
dx1 . . . dxk (5.4)

G(P) = −
∞∑
k=0

P(n = k) logP(n = k) +
∞∑
k=0

P(n = k)h(ϕ|n = k) (5.5)

We provide these alternative notations in an effort to have a demonstrate the equivalences

of those proposed in McFadden (1965); Papangelou (1978); Daley and Vere-Jones (2008).
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These two under-bracketed components in Equation 5.2 can be intuited as the entropy

commensurate with the number of points observed and the entropy commensurate with the

location of said points, and are referred to as the numerical and locational entropies, respec-

tively in the point process literature (McFadden, 1965). The log(n!) term can be intuited as

the loss of information attributed to not knowing which particle is in which location (Daley

and Vere-Jones, 2008). Note that G(Φ) is scale dependent due to the differential entropy

term. See Proposition III.1 of Baccelli and Woo (2016) for further discussion of this decom-

position, and Papangelou (1978) for in-depth discussion of point process entropies in the

context of likelihoods.

For a finite inhomogenous Poisson process Φ ⊂ A ⊆ Rd, we can wrote the log likelihood

as

logL(x1, . . . , xn) =
n∑
i=1

log λ(xi) −
∫
A

λ(x)dx

where is the intensity of Φ (Daley and Vere-Jones, 2007). It then follows that for a homoge-

nous Poisson process Φλ, wherein λ is constant,

G(Φλ) = λµ(A)(1 − log λ) (5.6)

where µ(·) is the Lebesgue measure. If such a process is observed on R on some bounded

interval (0, T ], we can write G(Φλ|(0,T ]) = λT (1 − log λ) (of note, this formula contains an

error on page 565 of (Daley and Vere-Jones, 2008), and is correctly presented in McFadden

(1965)). It is directly shown by FcFadden that G(Φλ) is the maximum entropy for a given

intensity λ. The proof presented below relies on a simpler method, and is presented in

Baccelli and Woo (2016).

As described in Baccelli and Woo (2016), we can extend the definition for point process

entropy to a global entropy rate. For a sequence of bounded convex sets A ∈ B(Rd), Al ⊆

Al+1 l ∈ N, we can define a global entropy rate per unit volume

G(Φ) = lim
l→∞

G(Φ|Al
)

µ(Al)
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although the existence of G(Φ) is not guaranteed. Conditions of existence are of interest, and

to be pursued in the future. Existence is guaranteed for stationary processes (Papangelou,

1978; Daley and Vere-Jones, 2008).

We can extend the notion of a point process entropy to accommodate a point process

analogue of KL divergence (Baccelli and Woo, 2016):

KL(Φ1||Φ2) =EΦ1

[
log

(
LΦ1(x1, . . . , xn)

LΦ2(x1, . . . , xn)

)]
and find the “distance” between two point processes. Specifically, we are interested in finding

the maximum entropy for simple point processes subject to the constraint that the mean

intensity λ is fixed, as seen in (McFadden, 1965). We derive as follows for simple point

process Φ and point process Πλ
n with fixed mean intensity λ which share common support

in B(Rd):

KL(Φ||Πλ
n) =EΦ

[
log

(
LΦ(x1, . . . , xn)

LΠλ
n
(x1, . . . , xn)

)]
=E[LΦ(x1, . . . , xn)] − E[LΠλ

n
(x1, . . . , xn)]

= −G(Φ) − (−G(Πλ
n))

=G(Πλ
n) −G(Φ) ≥ 0 (∗)

G(Πλ
n) ≥G(Φ)

where the (∗) inequality is due to the fact that the log is a concave function and Jensen’s

inequality (Cover, 1999). Equality in the final line is only achieved when when Φ has constant

intensity λ, which is to say that the homogenous Poisson process achieves maximum entropy.

Dayley et al. (2008) directly show that Equation 5.3 is maximized by (1) showing that the

first term of Equation 5.3 is maximized by the Poisson distribution subject to the conditions

that
∑∞

k=0 pk = 1,
∑∞

k=1 kpk = µ and ∀k k ≥ 0 and (2) showing that conditional on k, the

integrand in the second term of Equation 5.3 is maximized when the symmetric distribution

is a uniform distribution on X (k) (Daley and Vere-Jones, 2008, 14.8.2(a)).
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To briefly summarize: we see in Equation 5.2 that point process entropy can be split in to

two primary components - the numerical (Shannon) and locational (differential) entropies.

It is intuitive that the numerical entropy, i.e. the number of points or the cardinality of

a realization, is maximized by a Poisson distribution, and the locational entropy is max-

imized by a d-dimensional uniform distribution (McFadden, 1965; Daley and Vere-Jones,

2008). Therefore, we can maximize Equation 5.2 by letting the underlying point process be

a homogenous Poisson point process (Prabhakar and Bambos, 1995).

In conclusion, this means that we can use a homogenous Poisson process as a reference

process (as it is maximally entropic among the family of possible processes) and consider the

change in entropy between an unknown starting process and this reference process as the

information loss across iterative superimpostions. This is valuable because the information

loss is a function of the the underlying process (whether parameterized or not), an indicator of

the model’s intrinsic predictability (Daley and Vere-Jones, 2007). Although not the original

intent of the author, this fact could allow for model selection of the underlying unknown

process, a property which we hope to explore in the future.

5.1.4 Estimation of Point Process Entropy

Why go to these lengths to show that the homogenous Poisson process achieves maximum

entropy given the constraint of fixed intensity? We are interested in finding the information

content of a point process representation of a tensor object. To “back-out” this information

content, we compare it to the most uncertain (i.e. maximum entropy) member of our point

process representation’s assumed family.

Given that we are interested in comparing an unparameterized process (assumed to be

a simple stationary point process) to a homogenous Poisson process, the natural question

is how do we measure dissimilarity or divergence. Several attractive options include: KL

divergence, which is easy to interpret in an information theoretic context, and the tensor-

equivalent of the Frobenius norm, which is the natural operator in the tensor context for low
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rank tensor approximation (defined in Section 5.3).

We discuss here the method of comparison we think simplest, which is closely related to

the KL divergence: we compare the entropies of the iteratively superimposed point processes.

Because the points in the superimposed process are obviously stochastic in nature, the tensor-

equivalent of the Frobenius norm is only of interest to us in expectation. This presents

challenges for a single realization dataset if we want to avoid making parametric assumptions.

We can easily calculate the maximum entropy upper bound, as we have an analytic solution

for the entropy of a homogenous Poisson process Φ∗ (see Equation 5.6). However, we do

not have such an expression for the (nonparameterized) process Φs+1. Therefore, we must

nonparametrically estimate G(Φs+1).

To nonparametriaclly estimate the entropy of a point process, we have two options. We

can nonparametrically estimate the Janossy density (likelihood), or we can nonparametrically

estimate the terms of Equation 5.2. Here we opt for the second choice, leaving the first to

future work. But before doing so, we take a brief detour to re-introduce Shannon entropy,

and the relations it shares (and lacks) with its “continuous extension,” differential entropy.

Differential entropy is defined as

h(X) =

∫
S
f(x) log f(x)dx (5.7)

where S represents the support of continuous random variable X. Introduced by Shannon

(Shannon, 2001), differential entropy was put forth as the continuous analogue of discrete

(often referred to as Shannon) entropy. In fact, Shannon did not derive differential entropy

from first principles like he did with discrete entropy, and rather replaced the summation

with an integral (Jaynes, 1957). Such an assumption is not totally unfounded, and here we

sketch out the most obvious relation between differential and discrete entropy (Section 8.3

Cover (1999)). If we bin X into bins of length ∆, then by the mean value theorem, for each

bin, there exists xi such that

f(xi)∆ =

∫ (i+1)∆

i∆

f(x)dx = P(X∆ = xi) = pi
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and we can denote X∆ = xi as a binned (quantized) equivalent of X. Then we can see

H(X∆) = −
∑

i∋xi∈supp(X∆)

pi log pi

= −
∑
i

f(xi)∆ log(f(xi)∆)

= − ∆

(∑
i

f(xi) log(f(xi)) + log ∆
∑
i

f(xi)

)
= − ∆

∑
i

f(xi) log(f(xi)) − log ∆

and therefore that

lim
∆→0

H(X∆) = h(X) − log ∆

providing f(x) log f(x) is Riemann-integrable. It can be shown using a similar quantiz-

ing proof that the differential entropy is closely related to the information dimension of a

stochastic process (Geiger and Koch, 2019; Cover, 1999).

In our case of interest, f is often not Riemann-integrable. Luckily, a much simpler (and

more point process-centric) relation between discrete and differential entropy can be found.

Equation 5.7 is commonly interpreted as h(X) =
∫
S f(x) log f(x)dµ(x) where µ(·) is the

Lebesgue measure. However, we can see that if instead we assume X ∈ S is discrete and

denote N(·) as the counting measure,

h(X) = −
∫
S
f(x) log f(x)dN

= −
∑
x∈S

f(x) log f(x)

=H(X)

For a continuous uniform random variable with support [0, T ], we see that

h(X) = −
∫ T

0

1

T
log

1

T
dx = log T
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which on the face of it is exactly what we would expect when comparing to the discrete

counterpart solved for above. However, we can see that if T < 1, h(X) < 0, and therefore that

the differential entropy can take negative values, in effect reducing its “information content”

interpretation. In general, although tempting, we cannot think of differential entropy as the

limiting expression for discrete entropy - in fact it can vary from the discrete entropy by

a potentially infinite offset. Further, differential entropy is not invariant under change of

variables (Cover, 1999). Jaynes suggested an alternative to differential entropy called the

limiting density of discrete points (LDDP), which is constructed on the belief that continuous

entropy should be derived by taking the limit of increasingly “dense” discrete distributions

(Jaynes, 1957). Given that the cardinality of the support S of random variable X is equal

to n, the LDDP is approximately log(N)− log(r) +h(X) where r is the length of an interval

where the limiting number of points is constant. The LDDP is invariant under change of

variables.

Because differential entropy does not share properties of discrete entropy such as invari-

ance to change of variables or non-negativity, it is not a good measure of absolute informa-

tion, but rather relative information. From an information theoretic perspective, continuous

random variables have probability of zero of taking on specific values, and therefore require

an infinite number of bits to encode (they have infinitely long decimal representations and

therefore convey infinite information). However, the fact that differential entropy can take

negative values is a intuitive feature: if we to know the data on a level less than one unit

(bin, in the discrete case), then entropy goes down as we are more informed, but if we were

to make the unit size smaller, than we would once again know less and the entropy would rise

(Cover, 1999). For instance, in the above example of a continuous uniform random variable,

if we T < 1 then h(X) < 0, but if we scale T by some constant α such that αT ≥ 1 then

h(X) ≥ 0.

We now turn to the question of estimating the relative entropies of our homogenous

Poisson reference process and the unparameterized point process (i.e. the point process
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representation of a tensor object) which we iteratively superimpose homogenous Poisson

processes upon. We note that necessary to estimate the point process entropy of our reference

process (which we denote xref = {xref1 , . . . , x
ref
m }) as we have a parametric form for it.

Estimating the point process entropy G(ϕ) requires estimating the two entropic compo-

nents of Equation 5.2, i.e. the Shannon and differential entropy. As discussed above, the

Shannon component for a single realization is constant - once observed, point process Φ has

a non random number of points. Therefore we cannot estimate the Shannon component

(meaningfully) without assuming some kind of parametric structure for Φ. We remedy this

issue by bounding G(ϕ) by assuming that the number of points is a homogenous Poisson

process, i.e. the entropy maximizing ground process. More formally, given ψ a realization

of a homogeneous Poisson process,

G(ϕ) =H(n) + h(ϕ|N(ϕ) = n) − log(n!)

≤G(ψ) + h(ϕ|N(ϕ) = n) − h(ψ|N(ψ) = n)︸ ︷︷ ︸
difference in differential entropies

.

Because we have an analytic representation of H(ψ), this allows us to reduce our problem

of interest to estimating the differential entropy component h(ϕ|nϕ).

Assuming that the first entropic component of Equation 5.2 is that of a homogenous

Poisson process is a large concession in that it is cutting out a meaningful amount of infor-

mation intrinsic to the process generating ϕ. An alternative is to assume that Φ has a “time

dimension” upon which we can partition Φ into sub-processes Φ1 ∪ . . . ∪ Φp. Assuming that

each partitioned process is sufficient to describe the overall behavior of counting measure

of the general process (an assumption which we have no reason to believe generally holds

for any Φ) we can use N(Φi) for all i ∈ 1, . . . , p to nonparametrically estimate H(nϕ) us-

ing a histogram estimator. If no apparent “time dimension” exists, we could alternatively

partition across a random dimension.

If many (or even more than one) realizations of Φ are observed, the problem of estimating

H(nϕ) disappears, but the general context of our current problem of interest is centered only
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on a single realization. For now, we proceed with the upper bound solution (i.e. we plug in

H(nψ) for H(nϕ)).

Nonparametric estimation of differential entropy is well-discussed in the literature, and

several attractive estimations exist. Excellent summaries of nonparametric entropy estima-

tion can be found in (Beirlant et al., 1997; Paninski, 2003). The below discussed estimates

are consistent (given various and varying conditions), but all are biased. Actually, there is

no unbiased estimator of differential entropy unless we know that our sample set contains at

least one sample from each class (Paninski, 2003; Montgomery-Smith and Schürmann, 2014).

Several so called plug-in estimates exist using kernel density estimates, histogram-type esti-

mates, and cross-validation estimates (Joe, 1989; Beirlant et al., 1997). Recent results have

demonstrated the consistency of kernel estimation for homogenous marked Poisson processes

(Alonso-Ruiz and Spodarev, 2017). The properties of entropy estimates based on sample

spacings, such as the m-spacing estimate are also well discussed (Hall, 1984). While spacing

options have attractive asymptotic properties, they do not extend into a multi-dimensional

context. Other options such as estimates based on geodesic minimal spanning trees (Costa

and Hero, 2006) and Cesaro averages of longest match lengths (Kontoyiannis et al., 1998)

are also well documented.

Another promising option for estimating differential entropy nonparametrically is using

a nearest-neighbors approach. A nearest neighbor approach is intuitively attractive because

in a uniform distribution, we would expect the distances between points and their nearest

neighbors to be less variable. First introduced (in Russian) by Kozachenko and Leonenko, the

nearest neighbor differential entropy estimator is commonly referred to as the KL estimator

(not to be confused with Kullback-Leibler divergence) (Kozachenko and Leonenko, 1987).

Kozachenko and Leonenko show consistency and asymptotic unbiasedness of their estimator.

We notate the KL estimator as follows:

Ĝ(ϕ) =
1

n

n∑
i=1

log(nρn,i) + log(2) + CE (5.8)
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where ρn,i = minj ̸=i,j≤n ||xi − xj|| and CE is the Euler constant.

As a brief aside, nearest neighbor approaches are attractive from a point process stand-

point because they are well explored within the point process literature and theoretical

framework. We denote the d-dimensional equivalent of ρ above as

Dx(r) = 1 − P(N(B(x, r)) = 1|x) (5.9)

where B(x, r) is a d-dimensional ball centered on x with radius r. We term Equation 5.9 the

nearest neighbor function. For a Poisson process Φ on Rd with intensity measure Λ, we can

write

Dx(r) =1 − exp(−Λ(B(x, r)))

=1 − exp(−λµ(B(x, r)) if Φ homogenous

where µ(·) represents the Lebesgue measure. Further, Equation 5.9 is closely related to the

so-called F,J, and K functions which have rich theoretical properties for summarizing point

processes and inhibition or clustering between points (Van Lieshout, 2011).

The KL estimator was extended to a k-nearest neighbors approach (Singh et al., 2003),

and many other modifications have followed to reduce bias and increase convergence rate

(Berrett, 2017; Lombardi and Pant, 2016). We propose to use a k−nearest neighbors differ-

ential entropy estimator to estimate h(ϕ|nϕ).

5.1.5 Superposition Limit Theorems

We are interested in gaining understanding of the rate of convergence for the point process

entropy of the iteratively superimposed upon Φ to the point process entropy of the reference

homogenous Poisson process. This rate of convergence depends on the sparsity of the starting

point process. It is our hope that gaining understanding of this convergence can yield insight

into the efficacy of a complexity number as described above.

In order to approach such a result, we can first tackle the following related question:
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Given starting process Φ1, let Ps be the intensity measure of the iteratively superimposed

process

Φ = Φ1 ∪

(
s⋃

k=1

Ψ
pois(λ̂)
k

)
. (5.10)

Note s and Φ are dependent on tolerance ϵ. Let Q be the intensity measure of Ψ, a homoge-

nous Poisson process with intensity (s+1)λ̂. By construction, ∀ϵ > 0, lims→∞ |Ps−Q|TV → 0.

This only assumes that the starting tensor has finite elements. We can show this using tri-

angular arrays (Cinlar and Agnew, 1968; Schuhmacher, 2005). Note that strong convergence

in variation norm is defined as where ||ξ||TV = ||µn − µ||TV

||ξ||TV = sup
P (X )

#P (X )∑
i=1

|ξ(Ai)|

as in Daley and Vere-Jones (2008).

More recently, Wasserstein distance has been used to measure the distance between a

superposition of dependent point processes and a Poisson process (Schuhmacher, 2005), and

the squared Hellinger distance (which is closely related to the variation norm mentioned

above) between two measures is another option.

Ultimately, we want to know if considering homogeneous Poisson process Ψ,

|Ps −Q|TV → 0 ⇐⇒ |G(Ps) −G(Ψ)|1 → 0. (5.11)

Assuming that this is true, we are interested in the rate of convergence as our application

of interest deals with a finite number of superpositions. Specifically want to bound the rate

of convergence of G(Φ) → G(Ψ) as a function of the sparsity of starting process Φ1 and ϵ.

This requires a nuanced definition for a robust measure of sparsity.

Simple results about the superposition of point processes can be found in Chiu et al.

(2013), and many of the results contained therein are self-apparent. Specifically, for two

homogenous Poisson processes Φ1 and Φ2 with intensities λ1 and λ2, we can define the

superposition of the two processes as the set theoretic union Φ = Φ1 ∪ Φ2 (assuming that
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Φ1∩Φ2 = ∅), and see that Φ is also a homogenous Poisson process with intensity λ = λ1 +λ2

(Daley and Vere-Jones, 2007). This is simply because the sum of independent Poisson

distributions is Poisson. Less obviously, the nearest neighbor function of Φ can be expressed

as

DΦ(r) = 1 − λ1
λ

(1 −DΦ1(r))(1 −Hs,2(r)) +
λ2
λ

(1 −DΦ2(r))(1 −Hs,1(r))

where Hs,1(r) is the spherical contact distribution function for Φ1 and Hs(r) = 1 − (1 −

Hs,1(r))(1 −Hs,2(r)) (Van Lieshout and Baddeley, 1996).2

Further, Dayley and Vere Jones provide a chapter to limit theorems for superpositions

(Daley and Vere-Jones, 2008, Chapter 11.2). In this chapter, conditions are described for the

convergence of independent superpositions of point processes to a Poisson process limit. The

theorems can be roughly thought of as equivalent to those of sums of independent identically

distributed random variables. In particular, Theorem 11.2.III proves (and provides condi-

tions for) convergence to a Poisson process. Example 11.2(a) describes conditions for weak

convergence of superpositions to follow a Poisson process (Daley and Vere-Jones, 2008). The

results in Daley et al (2008) are augmented by Cinlar’s papers on the necessary and sufficient

conditions for the superposition of point processes to result in a renewal process (Cinlar and

Agnew, 1968) or a d-dimensional Poisson process (Çinlar, 1968). Convergence of superposed

uniformly sparse point processes (to a Poisson process) is discussed in (Goldman, 1967).

In general, limit theorems for superpositions use triangular arrays, with the added as-

sumption that such arrays are uniformly asymptotically negligible (Daley and Vere-Jones,

2008, Chapter 11.2), and rely on assumptions like the infinite divisibility of the underlying

processes (Daley and Vere-Jones, 2008, Chapter 11.1),(Ripley, 1976). The results in this

2For some convex and compact set B in Rd, with µ(B) > 0 and o ∈ B, we define the sphereical contact
distribution function as HB(r) for point process Φ as

HB(r) = 1− P(Φ(B(o, r) = 0)

which is interpreted as the distribution function of the distance from o to the nearest point of Φ (Chiu et al.,
2013).
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section are mentioned only as a brief preliminary survey of tools which can hopefully be

applied in our future study of our problem.

5.2 Application: Damage in Ballistic-Struck Materials

We present the motivating problem which lead to our study of the entropy of embedded

point processes in tensor objects and Euclidean space. Entropy has been used as a measure

of complexity in images (Yu and Winkler, 2013), but the method of entropy estimation

is crucial, as a simple histogram approach loses all spatial information, meaning that a

very low information image can have high estimated entropy (Feldman and Crutchfield,

2003). Nearest neighbor based estimates of image entropy do not possess this disadvantage.

However, in our below proposed method, we use a histogram estimator of entropy because

we do not look at total-image entropy but rather fiber-wise “column-voxel” entropy. For

such an approach, the spatial information is not as meaningful - rather we are just trying to

estimate how variable the cracking is across layers for a projected two-dimensional location.

Entropy thresholding for images, as implemented below, has been used and studied exten-

sively (Chang et al., 1994). Feature extraction for images using point processes is discussed

in Lafarge et al. (2009), but not implemented in the below methodology as we are not as

interested in feature extraction as estimation of image complexity as a proxy for amount of

cracking.

Evaluation of image complexity via fractal methods is discussed in Lam et al. (2002), but

not implemented here as we opted for a simpler and more interpretable method. Excellent

summaries of the theory surrounding entropy of images with dimension greater than two

underlying our method can be found in Larkin (2016); Thum (1984).
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5.2.1 Data Description

Our team developed a statistical methodology to visualize and summarize the amount of

damage in a three-dimensional material, both locally and globally.

We began with large three-dimensional images, provided in the NIFTI format. Initially

two images were provided, each approximately three gigabytes. The first of these images,

labelled “17-0789-4” will be used as the primary example in this description of our method-

ology. In July 2020, a second dataset of 39 images was provided, each of substantially higher

resolution. These images range in size from four gigabytes to more than eleven gigabytes,

substantially increasing the computational complexity of our methods; further details are

provided below.

The Neuroimaging Informatics Technology Initiative (“NIFTI”) file type is widely used

for biomedical imaging data. It has a wide array of features for a given image-object including

affine coordinate definitions relating voxel indices to their respective corresponding spatial

locations; easily queried header elements and an approximated voxel-distance array; scaling

for voxel size; and large amount of existing libraries and packages in R and c++. There is

a large body of literature discussing tumor identification and other related studies using

NIFTI data objects, see Bandyopadhyay and Paul (2013); Xia et al. (2016). In R, the NIFTI

data objects can be unlisted in to a three-dimensional array which is approximately three

gigabytes. Each image is a composite of 2000 two-dimensional “slices” of a bullet-deformed

material, as seen in Figure 5.2.

5.2.2 Problem Description

From the raw image data, we

1. Identified fracture boundaries;

2. Differentiated (and labelled) vest material, background, and fracture boundaries;
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3. Visualized labelled data in 2 and 3 dimensions;

4. Assessed uncertainty associated with labelling; and

5. Estimated total fracturing, i.e. damage to the material.

Various applications in seismology, radiology, dentistry, and material sciences, all docu-

ment approaches to similar problems, i.e. the problem of quantifying irregular boundaries

or fractures. Crack propagation is explored in the contexts of dental ceramics in Wang

et al. (2015) and concrete foundations in Scherrer et al. (2017). Seismic acoustic events from

cracking is explored in Barés et al. (2018). Fatigue crack growth rate in a machine learning

context is discussed in Wang et al. (2017). So-called “statistical fractography” is discussed

in the context of steel fracturing in Jamwal et al. (2013). MRI segmentation using learned

Gaussian mixtures for tumor identification is discussed in Xia et al. (2016). This review

revealed that although there exists related research in a wide array of applications, most

results discussed are based on ad-hoc methods.

Given the literature reviewed, we opted to employ the following method to our problem

of interest: canny edge detection with variable tuning parameters across slices and Lloyd’s

algorithm (similar to k-means) for label classification of the edge-detected images.

5.2.3 Findings

Using canny-edges and Lloyd’s algorithm, we labelled three classes {0, 1, 2} representing

background, material and material-background boundary (i.e. fracture) on a slice-by-slice

basis. After edge detection, we arrive at an image like Figure 5.3 for each slice. Of note,

significant parameter tuning for thresholding of the gradient step and the σ parameter of the

Gaussian blur step is needed to achieve relatively high quality edge detection across slices.

Once edges are detected, we label the classes with Lloyd’s algorithm, resulting in an

image like Figure 5.4 for each slice. After looping through the entire array and generating
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an image analogous to Figure 5.4 for each slice, we form a composite visualization of the

three-dimensional image in two dimensions. To do this, we need to “flatten” the voxels

in a column or row, effectively projecting the image down from three to two dimensions.

We experimented with various “flattening functions” including sum, average, and variance,

before settling on entropy. Entropy represents the average number of bits of information

per column-voxel. A column-voxel that has a higher entropy means that there are more

labels, and a longer minimum unique code-length. Therefore, we propose that entropy is a

meaningful proxy for damage on a given column-voxel. Similar approaches are discussed in

Wang and Shen (2011).

Figures 5.5 and 5.10 are two-dimensional visualizations of the damage in the associated

three-dimensional image objects. The primary goals of such visualizations is to provide

accessible information for evaluating where and to what extent the material is damaged.

Figure 5.6 is a perspective plot of the flattened entropy projection. We believe that a plot

similar to this one could prove most valuable to a non-statistician who is attempting to

attain a qualitative understand of material damage relative to the preceding plots. Figure

5.9 represents a simpler plot of the damage associated with the flattened entropy projection

objects.

Lastly, we propose a simple statistic to capture the global damage of the material: the

mean of the flattened voxels. For image “17-0789-4”, this statistic evaluates to x̄ = 1.093571,

indicating a relatively high level of damage. Table 5.2 presents various summaries of the

damage to the materials for each of the 39 images obtained. Our process of using the

entropy function to project into a lower dimension (i.e. flatten the three-dimensional image

objects) allows us to capture and summarize the distortion caused by the projectile striking

the material. Our ensemble approach appears to be both practical and novel.
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5.2.4 Measuring Image Complexity

Alternatively, we employed a different methodology, as discussed in Section 5.1.1. Beginning

with the respective three dimensional labeled images, we dropped (made equal to zero) all

labels except those indicating probable cracking. These non-zero elements are then inter-

preted as representing points with corresponding spatial location equal to their respective

voxel indices. This allows for a sparse representation of the labeled image, and for us to

interpret the labeled image as a realization of some unparameterized point process.

Our goal is to measure the information content (as a proxy for cracking) contained in the

labeled image. We can do this by first fitting a homogeneous Poisson (completely spatially

random) process to our starting labeled image represented as a point process. We do this

because (1) a homogeneous Poisson process is maximally entropic, and (2) an appropriately

scaled homogeneous Poisson can then be iteratively superimposed on our starting process.

As superposition is an entropy-increasing operation, we can measure the relative entropy

across iterations, which is equivalent to the “information loss.”

We perform iterative superpositions until we cannot discern our iteratively superimposed

process from a true (maximally entropic and appropriately scaled) reference homogeneous

Poisson process. We can measure how different our iteratively superimposed process is from a

reference process using a KL analogue for point processes. We need to choose some tolerance

level ϵ, where after the KL divergence is less than ϵ, we stop performing superpositions. The

number of necessary iterations to achieve tolerance level ϵ, which we call s, is the resulting

damage summary statistic.

We then tuned the the tolerance parameter ϵ, which regulates how many iterative su-

perpositions are needed for a given starting image. The resulting damage summary statistic

from the complexity measure approach is a positive integer s, corresponding to the number

of superpositions necessary to make the KL divergence between the iteratively superimposed

process and a true homogeneous Poisson process less than . Therefore, choosing smaller
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results in larger S, but not necessarily more informative s.

We found that ϵ = 10−2 seems to work best for predicting the damage statistic obtained

via the mean flattened entropy value. However, there is no best choice of ϵ that correlates

best with second shot energy absorption. We believe that this is due to the fact that

different images have different resolutions as well as different size plates. This problem can

be minimized by finding an “optimal ϵ” based on the density of voxels. Table 5.2 summarizes

the resolutions and the approximate values of which predict second shot energy absorption

most accurately.

Practically, values of “optimal ϵ ” are chosen as follows: ϵ ≈ V · 10−10 where V is the

number of voxels per square inch. The complexity statistic is not as correlated to second

shot energy absorption as the flattened entropy damage statistic, but as it uses an entirely

different methodology and therefore we believe that it adds a valuable piece of predictive

information.

5.2.5 Future Work

Time complexity of our ensemble methodology is dominated by the canny edge detection

step. Edge detection for a two-dimensional slice with m× n pixels has O(mn log(mn)) time

complexity. Therefore the images provided in July 2020 are significantly more time intensive

to process. For instance, an eleven gigabyte image takes roughly nine times longer to process

than a three gigabyte image.

Furthering the time cost, the images provided in July 2020 are taken with a different

scanning procedure, resulting in new parameter tuning for the canny edge detection step,

which must be performed manually. Although initial parameter tuning has allowed us to pro-

cess and summarize the July 2020 images, we are interested in further parameter tuning for

better edge detection. The most sensitive step to parameter tuning in our current ensemble

method is the slice-by-slice Canny edge detection. Specifically, any edge detection algorithm
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needs to be denoised (especially given the ultra-high resolution of the images provided). To

denoise appropriately, we needed to explore the k × k Gaussian filter across k. Of even

greater importance, we varied the MinThreshold and MaxThreshold parameter values which

are used in the final Hysteresis step of Canny edge detection. These thresholds dictate which

labelled edges are kept, specifically challenging edges between the min and max thresholds to

see if they are connected to other “strong edges.” To effect this parameter tuning, we need to

implement a manual grid search, varying k, MinThreshold, and MaxThreshold across slices

and then changing parameters based on visual inspection of the associated visualizations.

We are also interested in developing our methodological approach to summarize flattened

images by fitting a point process to a thresholded image. Thresholding images in the context

of general computer vision problems is discussed in Cheng et al. (2000). Practically, thresh-

olding a flattened image entails creating a binary matrix which contains elements which are

true only if the entropy value for that specific element is greater than the threshold value.

We can choose a threshold value of mean(entropy value)+1 standard deviation. This allows

us to represent the “points” which have an entropy value greater than the threshold value

(where the points’ coordinates are the indices of the matrix which have true values). Fig-

ure 5.7 demonstrates such a thresholded point process. This step allows us to re-formulate

a flattened image as a point process. In the future, we are interested in fitting an inho-

mogenous Poisson intensity via maximum likelihood. This will allow us to create valuable

summary statistics for the amount of damage done to the vest. We are interested in explor-

ing quantities such as expected value and variance for each of the 39 images, and any future

data.
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5.2.6 Figures and Tables

Figure 5.2: Slice 6 1400 of image “17-0789-4”. Each slice is a 459×1814 grayscale image

taken with a specialized CAT scan machine. A brief note on slice-naming convention: “6”

refers to the image object, and “1400” refers to the slice number, 0 being the “bottom” of

the material and 1999 the “top.”.
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Figure 5.3: Slice 6 1400 with edges detected using canny edge detector.
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Figure 5.4: Slice 6 1400 with labels.
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Figure 5.5: Entropy-projection of all 2000 slices of Image 6 .
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Figure 5.6: Perspective plot of flattened Image 6 . z-axis represents entropy, x and y axes

represent the coordinates of the two dimensional flattened image.
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Figure 5.7: Thresholded inhomogenous poisson process representing Figure 5.5 as a point

process.
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Figure 5.8: Top left: slice 6 1400 of the point process approximation of labeled image 17-

0789-4 (compare to Figure 5.4). Top middle to bottom right: Iterative superpositions of an

appropriately scaled homogeneous Poisson process.
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Figure 5.9: Damage plot of image TAS 5x7 SiC10D 3 DICOM.
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Figure 5.10: Levelplot of the flattened entropy projection of TAS 5x7 SiC10D 3 DICOM.

This image has an average pixel entropy value of 1.2083, indicating a relatively high level of

damage.
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5.3 Addendum: Tensor Notation

Tensors are d−dimensional arrays, and can be thought of as a generalization of the pro-

gression from scalars to vectors and vectors to matrices. They are a convenient and natural

mathematical representation for many data types arising in fields such as image processing

and computer vision, signal processing, linguistics, geology and physical sciences, and topic

modelling.

Tensor objects can be approached as a class which includes the higher-dimensional gen-

eralizations of the subclasses of scalars, vectors and matrices. The dimension of a tensor is

referred to as the tensor order or mode throughout the literature. Tensors of order zero are

scalars, tensors of order one are vectors, and tensors of order two are matrices. Practically,

we can think of the order of a tensor as the minimum number of indices required to represent

a higher dimensional array. If this description is intuitively unappealing, we can equivalently

say that tensors of order d are generalized matrices with dimension d. Finally if this de-

scription is also unsatisfactory, we can vaguely say that tensors are array objects with order

equal to their spatial dimension. Tensors of order three and greater are of primary interest

throughout this paper as they possess “generalized” properties of vectors and matrices.

Most statisticians have inadvertently created and manipulated tensor objects of order

three when creating lists of matrices. Tensors of order three, as opposed to a list of matrices,

encapsulate the higher dimensional relationship between matrices, analogous to a matrix

capturing the intra-relation between vectors, as opposed to a list of vectors. It is often

valuable to operate within the tensor framework as doing so paves the way for data com-

pression and analysis via tensor decompositions such as the Canonical Polyadic (CP) and

Tucker Decompositions. Complexity-reducing decompositions are often a necessity from a

computing standpoint: a tensor of order d has nd elements, which through decomposition

can be represented with O(nd) complexity, given certain conditions.
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5.3.1 Basic Tensor Notation

A tensor has of order d has d fibers, which are defined as the subarrays or “subtensors” with

one index fixed. If d = 3, the fibers of the tensor are columns, tubes, or rows. Similarly, a

slice is defined as the subtensors where two indices are fixed, all others free. If d = 3, the

slices of a order d tensor are matrices.

Figure 5.11: (clockwise from top) frontal slices, row fibers, tube fibers, and column fibers of

a tensor of order three.

5.3.2 Outer Product Representation of Tensors

As discussed above, a tensor of order d has indices {1, . . . , d}. For each index i ∈ {1, . . . , d},

we have a sub-index set Ii = {1, . . . ni}, and the Cartesian product I = I1×. . .×Id. Therefore

a tensor X ∈ RI1×...×Id has order d and elements xi1 , . . . , xid . Drawing a connection with a

more familiar linear algebra representation, we note that RI is equivalent to the vector space

{x = (xi)i∈I ∋ xi ∈ R}

where we can the order of a tensor in this space as the cardinality of I. Indeed, we can see

that for X ,Y ∈ RI , αX ∈ RI for α ∈ R, 0 ∈ RI , and X + Y commutes. Therefore, we

can see that the set of tensors over the reals is in fact a vector space, and that the many

wonderful properties of vector spaces apply.

This vector space representation of a tensor can be explicitly notated as the outer product
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or tensor product X := x(1) ⊗ . . .⊗ x(d) or more compactly as

X :=
d⊗
i=1

x(i).

Further, we can define the tensor space T as the tensor product of indices over the reals, i.e.

T =
d⊗
i=1

RIi = span{x(1) ⊗ . . .⊗ x(d) ∋ x(i) ∈ RIi} = RI .

r0.5

X
=

x(1)

x(2)

x(3)

Using this notation, we define

x(1) ⊗ . . .⊗ x(d)

as rank one or elementary tensor. Rank one tensors can be thought of as the DNA, or

“atomic” building blocks, of all tensor objects. Abusing notation, we can analogize rank

one tensors as the baseis for the larger tensor space T . Similarly, we can think of rank one

tensors as analogous to prime numbers, which by the fundamental theorem of algebra make

up all natural numbers. Crucially, not all tensors in X ∈ T can be written as an rank one

tensor, but all can be represented as a multilinear combination (sum) of rank one tensors in

T . If x(i) ∈ RI1×...×Id = RI for i = 1, ..., d, and

X = x(1) ⊗ x(2) ⊗ ...⊗ x(d),

where Xi1,...,id = x
(1)
i1

· x(2)i2 ...x
(d)
id

, then we say that X is a rank-1 tensor.

Stepping back, we explicitly define the outer product operator, as it is the crucial operator

for the below mentioned tensor decompositions. The outer product of two vectors v, w is a
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matrix M such that rank(M) = 1 ∀v, w. Explicitly,

v ⊗ w = vw⊤ =


v1w1 v1w2 · · · v1wm

v2w1 v2w2 · · · v2wm
...

...
. . .

...

vnw1 vnw2 · · · vnwm


which is obvious of rank equal to one. This follows immediately from the fact that

rank(vw⊤) ≤ min{rank(v), rank(w⊤)} ≤ 1.

To ease the transition between these the rank one matrix and outerproduct representation,

it can be shown that there is an isomorphism between matrices and tensors of order two, see

Hackbusch (2012).

Expanding upon this example, we can say that a tensor is the tensor product (identical

to the outer product, save for context) for two vector spaces V,W , with basis

v =
[
v1 v2 · · · vn

]⊤
and w =

[
w1 w2 · · · wm

]⊤
.

A tensor, then, is by definition a map T (v, w) = vTw⊤ and a rank one tensor formed from

v, w has the form vw⊤, where the multilinear transformation T is the identity.

In conclusion, the tensor product operator allows us to extend the notion of underlying

vector spaces to tensor objects, using a multilinear transformation. With the tensor product

representation, we have introduced the concept of rank one tensors, which form the under-

lying building blocks for tensors. Crucially, all tensors can be expressed as a multilinear

combination of rank one tensors.

5.3.3 Rank Extension, the Frobenius Analog, and Low Rank Approximation

A natural question arises after the above description of tensor products and rank one tensors:

what is a rank r tensor? A rank r tensor is defined as a tensor which is the multilinear
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combination (sum) of at least r rank one tensors. This definition illuminates the fact that

rank one tensors are the higher dimensional generalization of vector baseis in linear algebra.

Formally, a tensor X of rank r and order d can be expressed as

X =
r∑
i=1︸︷︷︸

multilinear
combination

d⊗
ν=1

x(i)ν︸ ︷︷ ︸
rank one
tensors

where x
(i)
ν ∈ X(i), and X(i) is the corresponding vector space for x(i). Obviously, a tensor

can also be expressed by any larger representation rank tensor (by adding zeros, or terms

which telescope out).

The above definition of tensor rank naturally appeals to the notion of a low rank approx-

imation to tensor X , i.e. finding a tensor Y of rank k < r such that ||X − Y|| is minimized.

To approach this problem, we define the tensor analog for the Frobenius norm:

||X ||F =

(∑
i∈I

x2i1...id

) 1
2

=

(
I1∑
i1=1

· · ·
Id∑
id=1

x2i1...id

) 1
2

.

Unfortunately this problem is ill-posed, as discussed in De Silva and Lim (2008). Unlike the

singular value decomposition in linear algebra, in which the best rank r+1 approximation of

a matrix could be found by using the best rank r approximation, plus some rank one matrix,

it is not generally true that the best rank r+ 1 approximation of a tensor is the best rank r

approximation, plus some rank one tensor. Further, the best rank r+1 tensor approximation

(as found by a CP decomposition, discussed below) is not guaranteed to be strictly better

than (or for that matter worse or the same) than the best rank r approximation.

Given that tensors of higher order often require large amounts of memory, and oper-

ations on such tensors are computationally intensive if not intractible, it is important to

utilize tensor decompositions which allow for reduction in complexity. Analogous to a ma-

trix rank decomposition, the Canonical Polyadic (CP) decomposition factorizes a tensor into

a multilinear combination (i.e. sum) of rank one tensors. For instance, a tensor of order
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three

X =
r∑
i=1

3⊗
ν=1

x(i)ν

has the follow rank r CP decomposition:

X
+ . . .+=

x
(1)
1

x
(r)
1

x
(1)
2

x
(r)
2

x
(1)
3

x
(r)
3

Figure 5.12: a tensor X of order three, decomposed into r rank one tensors.

In practice, determining r is NP-hard problem (see Hillar and Lim (2013)), and as discussed

above, the best rank k approximation is not guaranteed to be better than k− 1 approxima-

tion. In fact, best rank-k approximations may not always exist. Such tensors are termed

degenerate. If r is unknown, the equality in Figure 5.12 should be replaced with ≈. An

exact CP decomposition of a d-order tensor X such that rank(X ) = r can be expressed as

X =
∑r

i=1

⊗d
ν=1 x

(i)
ν , or more commonly, as X =

∑r
i=1 λi

⊗d
ν=1 x

(i)
ν where the X(i)’s have

been normalized to length one (λ ∈ Rr).

We define X(j) = [x
(1)
j · · · x(r)j ] as the factor matrices for each j ∈ {1, . . . , d}. Referencing

Figure 5.12, we can say that the X(2) factor matrix would be have columns equal to the

pink vectors, X(2) would be have columns equal to the blue vectors, and X(3) would be have

columns equal to the purple vectors. We compactly notate

X = [[λ;X(1), . . . , X(d)]]

which is termed throughout the literature as the Kruskal form.

Matrix decompositions are not unique (without constraints), but CP decompositions of

tensors often are. If the k−rank (defined as the maximum k s.t. any k columns are linearly

independent) of the factor matrices achieves the following sufficient condition, we know our
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CP decomposition of rank r is unique:

d∑
i=1

K(X(i)) ≤ 2r + (d− 1)

where K : X 7→ k is the function that returns the k−rank of matrix X.
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Image Mean Squared Sum Variance Maximum X-Dim Y-Dim Z-Dim

TAS 5x7 B4C 10D-1 DICOM 1.2717 308831.7604 0.8326 3.4657 1273 1202 1517

TAS 5x7 B4C 10D-2 DICOM 1.2465 309521.7814 0.9091 3.4340 1268 1172 1496

TAS 5x7 B4C 10D-4 Top 1.1791 275083.4999 0.9104 3.4012 1189 1301 1519

TAS 5x7 B4C 10D-5 DICOM 1.2706 294517.4122 0.8200 3.3673 1282 1159 1506

TAS 5x7 B4C 10D-6 DICOM 1.2276 294210.0818 0.8682 3.3673 1319 1215 1504

TAS 5x7 SiC-10D-1 DICOM 1.2501 286855.1963 0.7700 3.2958 1168 1304 1479

TAS 5x7 SiC-6D-1 DICOM 0.8355 109455.3097 0.4613 3.2189 1286 1129 1474

TAS 5x7 SiC-6D-2 Top 1.2251 284519.1009 0.7701 3.3322 1302 1155 1460

TAS 5x7 SiC-6D-3 DICOM 1.2042 253087.7758 0.7327 3.3322 1284 1209 1458

TAS 5x7 SiC-6D-4 DICOM 1.2103 256687.7021 0.7275 3.1781 1338 1199 1449

TAS 5x7 SiC-HB8-10D-2 DICOM 0.9342 141329.3633 0.5709 3.1781 1310 1151 1615

TAS 5x7 SiC-HB8-6D-4 DICOM 0.6113 62359.3976 0.4504 3.1781 1368 1228 1678

TAS 5x7 SiC-HB80-10D-5 0.8629 116436.9566 0.6571 3.3673 1118 1298 1615

TAS 5x7 SiC-HB8-6D-2 DICOM 0.7361 75713.0710 0.5884 3.5553 1304 1161 1718

TAS 5x7 SiC-HB8-6D-3 DICOM 0.9141 149154.1019 0.6569 3.2581 1299 1194 1661

TAS 5x7 SiC-HB8-6D-5 DICOM 0.8755 94622.8471 0.6536 3.1781 1294 1119 1526

TAS 5x7 SiC-10D-2 DICOM 1.2726 293903.5913 0.7216 3.2189 1266 1172 1450

TAS 5x7 SiC-10D-3 DICOM 1.2073 223611.2049 0.7099 3.2958 1289 1202 1526

TAS 5x7 SiC-10D-4 DICOM 1.2669 270607.6889 0.7025 3.2189 1268 1220 1522

TAS 5x7 SiC-10D-5 DICOM 1.1365 226341.8570 0.7447 3.2189 1316 1228 1512

TAS 5x7 SiC-6D-5 DICOM 1.2083 166873.1911 0.5746 3.1781 1309 1281 1603

TAS 5x7 SiC-HB80-10D-1 DICOM 0.9272 125924.2789 0.7192 3.2581 1285 1151 1582

TAS 5x7 SiC-HB80-10D-3 DICOM 0.7524 89638.1580 0.5506 3.2189 1311 1251 1791

TAS 5x7 SiC-HB80 6D-1 DICOM 0.9569 201393.7600 0.5307 3.4965 1372 1216 1927

TAS 6x10 B4C-10D-1 DICOM 1.2217 218548.9832 0.7942 4.2341 1684 1846 1807

TAS 6x10 B4C-10D-2 DICOM 1.3381 238789.5118 0.7266 4.7707 1534 1834 1772

TAS 6x10 B4C-10D-3 DICOM 1.2709 252697.3287 0.7134 3.9703 1501 1805 1697

TAS 6x10 B4C 10D-4 DICOM 1.3319 262375.8576 0.7583 4.0775 1496 1778 1686

TAS 6x10 B4C-10D-5 DICOM 1.2485 215223.8321 0.8514 4.6634 1516 1830 1780

TAS 6x10 B4C-15D-1 DICOM 1.2264 223967.0777 0.7826 4.3944 1512 1899 1838

TAS 6x10 B4C-15D-2 DICOM 1.2170 215029.5090 0.7616 4.2485 1505 1899 1725

TAS 6x10 B4C-15D-3 DICOM 1.1820 212881.4869 0.7246 4.1897 1525 1894 1735

TAS 6x10 B4C-15D-4 DICOM 1.1490 179095.1215 0.7110 4.4886 1506 1866 1726

TAS 6x10 B4C-15D-5 DICOM 1.1406 187337.5070 0.7082 4.3438 1515 1845 1719

TAS 6x10 B4C-20D-1 DICOM 1.1207 166895.8585 0.7695 4.5218 1646 1971 1800

TAS 6x10 B4C-20D-2 DICOM 1.2045 206768.4530 0.7685 4.1589 1500 1930 1797

TAS 6x10 B4C-20D-3 DICOM 1.1588 184323.0376 0.7504 4.3944 1505 1859 1751

TAS 6x10 B4C-20D-4 DICOM 1.2813 222837.2316 0.7811 4.3438 1516 1834 1720

TAS 6x10 B4C-20D-5 DICOM 1.3989 307085.0710 0.8880 4.5109 1512 1872 1910

Table 5.1: Statistical summary of the 39 provided images. Summary statistics provided

are average, squared sum, variance and maximum of flattened entropy pixel values. The

X, Y and Z-dimensions are the width and height of each slice, and the number of slices,

respectively.
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Image Name ē X-Dim Y-Dim Z-Dim Voxels Ceramic Size V Optimal ϵ∗ s|ϵ∗

TAS 5x7 SiC-HB8-6D-4 DICOM 0.6113 1368 1228 1678 2.8189E+09 5x7 8.05E+07 0.00805 13

TAS 5x7 SiC-HB8-6D-5 DICOM 0.8755 1294 1119 1526 2.2096E+09 5x7 6.31E+07 0.00631 36

TAS 5x7 SiC-HB80-10D-5 0.8629 1118 1298 1615 2.3436E+09 5x7 6.70E+07 0.00670 37

TAS 5x7 SiC-6D-1 DICOM 0.8355 1286 1129 1474 2.1401E+09 5x7 6.11E+07 0.00612 46

TAS 5x7 SiC-HB8-6D-3 DICOM 0.9141 1299 1194 1661 2.5762E+09 5x7 7.36E+07 0.00736 49

TAS 6x10 B4C-20D-3 DICOM 1.1588 1505 1859 1751 4.8989E+09 6x10 8.16E+07 0.00817 62

TAS 5x7 B4C 10D-6 DICOM 1.2276 1319 1215 1504 2.4103E+09 5x7 6.89E+07 0.00689 62

TAS 5x7 SiC-HB80-10D-3 DICOM 0.7524 1311 1251 1791 2.9373E+09 5x7 8.39E+07 0.00839 70

TAS 5x7 SiC-HB8-6D-2 DICOM 0.7361 1304 1161 1718 2.6010E+09 5x7 7.43E+07 0.00743 73

TAS 5x7 SiC-10D-4 DICOM 1.2669 1268 1220 1522 2.3545E+09 5x7 6.73E+07 0.00673 78

TAS 5x7 B4C 10D-2 DICOM 1.2465 1268 1172 1496 2.2232E+09 5x7 6.35E+07 0.00635 79

TAS 5x7 SiC-HB8-10D-2 DICOM 0.9342 1310 1151 1615 2.4351E+09 5x7 6.96E+07 0.00696 81

TAS 6x10 B4C-10D-2 DICOM 1.3381 1534 1834 1772 4.9853E+09 6x10 8.31E+07 0.00831 81

TAS 5x7 SiC-6D-5 DICOM 1.2083 1309 1281 1603 2.6880E+09 5x7 7.68E+07 0.00768 88

TAS 6x10 B4C-20D-4 DICOM 1.2813 1516 1834 1720 4.7822E+09 6x10 7.97E+07 0.00797 88

TAS 5x7 SiC-6D-3 DICOM 1.2042 1284 1209 1458 2.2633E+09 5x7 6.47E+07 0.00647 89

TAS 6x10 B4C-15D-2 DICOM 1.217 1505 1899 1725 4.9300E+09 6x10 8.22E+07 0.00822 90

TAS 6x10 B4C-15D-1 DICOM 1.2264 1512 1899 1838 5.2774E+09 6x10 8.80E+07 0.00880 91

TAS 6x10 B4C-20D-5 DICOM 1.3989 1512 1872 1910 5.4062E+09 6x10 9.01E+07 0.00901 91

TAS 6x10 B4C-10D-5 DICOM 1.2485 1516 1830 1780 4.9382E+09 6x10 8.23E+07 0.00823 92

TAS 6x10 B4C-15D-3 DICOM 1.182 1525 1894 1735 5.0113E+09 6x10 8.35E+07 0.00835 94

TAS 5x7 SiC-HB80-10D-1 DICOM 0.9272 1285 1151 1582 2.3398E+09 5x7 6.69E+07 0.00669 95

TAS 5x7 SiC-HB80 6D-1 DICOM 0.9569 1372 1216 1927 3.2149E+09 5x7 9.19E+07 0.00919 95

TAS 5x7 SiC-10D-5 DICOM 1.1365 1316 1228 1512 2.4435E+09 5x7 6.98E+07 0.00698 107

TAS 6x10 B4C-15D-4 DICOM 1.149 1506 1866 1726 4.8504E+09 6x10 8.08E+07 0.00808 107

TAS 6x10 B4C-20D-2 DICOM 1.2045 1500 1930 1797 5.2023E+09 6x10 8.67E+07 0.00867 107

TAS 6x10 B4C-20D-1 DICOM 1.1207 1646 1971 1800 5.8397E+09 6x10 9.73E+07 0.00973 109

TAS 5x7 SiC-6D-4 DICOM 1.2103 1338 1199 1449 2.3246E+09 5x7 6.64E+07 0.00664 110

TAS 6x10 B4C-15D-5 DICOM 1.1406 1515 1845 1719 4.8049E+09 6x10 8.01E+07 0.00801 111

TAS 6x10 B4C-10D-1 DICOM 1.2217 1684 1846 1807 5.6174E+09 6x10 9.36E+07 0.00936 114

TAS 5x7 B4C 10D-4 Top 1.1791 1189 1301 1519 2.3497E+09 5x7 6.71E+07 0.00671 118

TAS 5x7 SiC-10D-3 DICOM 1.2073 1289 1202 1526 2.3644E+09 5x7 6.76E+07 0.00676 119

TAS 5x7 B4C 10D-5 DICOM 1.2706 1282 1159 1506 2.2377E+09 5x7 6.39E+07 0.00639 127

TAS 6x10 B4C-10D-3 DICOM 1.2709 1501 1805 1697 4.5977E+09 6x10 7.66E+07 0.00766 129

TAS 6x10 B4C 10D-4 DICOM 1.3319 1496 1778 1686 4.4846E+09 6x10 7.47E+07 0.00747 130

TAS 5x7 B4C 10D-1 DICOM 1.2717 1273 1202 1517 2.3212E+09 5x7 6.63E+07 0.00663 131

TAS 5x7 SiC-10D-2 DICOM 1.2726 1266 1172 1450 2.1514E+09 5x7 6.15E+07 0.00615 131

TAS 5x7 SiC-6D-2 Top 1.2251 1302 1155 1460 2.1956E+09 5x7 6.27E+07 0.00627 134

TAS 5x7 SiC-10D-1 DICOM 1.2501 1168 1304 1479 2.2526E+09 5x7 6.44E+07 0.00644 138

Table 5.2: From left to right: ē denotes the mean flattened entropy pixel value, Voxels

represents the total number of voxels (elements) in a given tomographic image, Ceramic

Size is the size of the silicon material in inches, V is the number of voxels per square inch,

ϵ∗ is the optimal stopping criteria threshold given V , and x|ϵ∗ is the number of iterative

superpositions to reach convergence to homogeneous Poisson. s is the complexity number,

and an alternative statistic to ē for estimating damage.
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CHAPTER 6

Concluding Remarks

Many of the canonical datasets in the point process literature are necessarily small due to

data collection limitations, or model fitting restrictions. For instance, perhaps the most

famous point process data set, finpines, is comprised of observations of trees which re-

quired the data collector to walk around in a forest, manually measuring height and trunk

circumference statistics for each tree (Stoyan and Penttinen, 2000).

Figure 6.1: A canonical point process dataset (Stoyan and Penttinen, 2000). Trees in 10m

× 10m window. Circles represent trees with radius proportional to tree height. Accessed via

the spatstat package (Baddeley et al., 2004).
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In the so-called age of big data, many point process datasets can be found embedded

in location tracking data, satellite imagery data, etc, and we believe that point processes

offer a valuable option as a highly compressed mathematical representation of data. There

are important connections between point processes and information theory and causality

that are underdeveloped in the current literature. Computationally efficient estimators like

the SG estimator allow us to model large data and complex probabilistic structures while

leveraging the rich theoretical framework of point processes. Ultimately, we want to model

the forest - not the trees.
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CHAPTER 7

Appendix
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7.1 Code

7.1.1 Causal Simulation Study

The below code simulates our causal study with spatial inhomogenous Poisson processes.

library(spatstat)

library(tidyverse)

library(parallel)

statespaceOmega<-c(0,10,0,10)

partitionsOmega<-quadrats(X=statespaceOmega, nx = statespaceOmega[2])

condInten1<-function(x,y) {1.5*x+0.55*y+2}

TE<-5

condInten2<-function(x,y) {1.5*x+0.55*y+2+TE}

run_iter<-function(i, statespace, partitions, partitionsDynamic,

condInten_treatment, condInten_control){

simProcess1<-rpoispp(condInten1,win = statespace)

simProcess2<-rpoispp(condInten2,win = statespace)

if(partitionsDynamic==T){

superProcess<-superimpose(simProcess1,simProcess2)

dataTess<-sample(1:superProcess$n,size=superProcess$n/(TE*statespace[2]))

partitions<-dirichlet(superProcess[dataTess])

}

treatprob<-sample(seq(0.1,0.9,length.out = 9),size=1)

treatmentInd<-sample(c(0,1), replace=TRUE, prob=c(treatprob,1-treatprob),

size=partitions$n)
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tilesControl<-cut(simProcess1,partitions)

pointTilesControl<-as.numeric(tilesControl$marks)

marksTilesControl<-c()

for(i in 1:length(pointTilesControl)){

marksTilesControl[i]<-pointTilesControl[i]

*(1-treatmentInd[pointTilesControl[i]])

}

marks(simProcess1)<-marksTilesControl

observedProcess1<-subset(simProcess1,marks!=0)

tilesTreatment<-cut(simProcess2,partitions)

pointTilesTreatment<-as.numeric(tilesTreatment$marks)

marksTilesTreatment<-c()

for(i in 1:length(pointTilesTreatment)){

marksTilesTreatment[i]<-pointTilesTreatment[i]*

treatmentInd[pointTilesTreatment[i]]

}

marks(simProcess2)<-marksTilesTreatment

observedProcess2<-subset(simProcess2,marks!=0)

statespaceControl<-as.owin(partitions[marksTilesControl])

statespaceTreatment<-as.owin(partitions[marksTilesTreatment])

process1<-ppm(unmark(observedProcess1),~condInten_control,

clipwin=statespaceControl)

process2<-ppm(unmark(observedProcess2),~condInten_treatment,

clipwin=statespaceTreatment)

simfitted1<-rmh(process1,w=statespaceTreatment)
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simfitted2<-rmh(process2,w=statespaceControl)

obPlusSim1<-cut(superimpose(unmark(observedProcess1),simfitted1),

partitions)

obPlusSim2<-cut(superimpose(unmark(observedProcess2),simfitted2),

partitions)

tileCountsSate<-c()

for(i in 1:partitions$n){

tileCountsSate[i]<-sum(as.numeric(obPlusSim2$marks)==i)-

sum(as.numeric(obPlusSim1$marks)==i)

}

SATE<-(partitions$n/((statespace[2]-statespace[1])*

(statespace[4]-statespace[3])))

*mean(tileCountsSate)

tileCounts<-c()

for(i in 1:partitions$n){

tileCounts[i]<-sum(pointTilesTreatment==i)-sum(pointTilesControl==i)

}

ATE<-(partitions$n/((statespace[2]-statespace[1])*(statespace[4]-

statespace[3])))

*mean(tileCounts)

errorTE<-ATE-SATE

return(data.frame(ATE, SATE,errorTE))

}

set.seed(0)

results<-mclapply(1:10^5, run_iter, statespace=statespaceOmega,
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partitions=partitionsOmega, partitionsDynamic=F,

condInten_treatment=condInten2, condInten_control=condInten1,

mc.cores=detectCores())

%>% bind_rows()

The below code simulates a Hawkes process via thinning Ogata (1981) in the function

simulate uni hawkes(), allows for a Hawkes process to be fitted via MLE in the function

loglhawkLewis(), and then conducts the simulation study.

simulate_uni_hawkes <- function(mu, alpha, beta, t_max) {

arrivals <- c()

s <- 0

t <- 0

lambda_star <- mu

s <- s - log(runif(1)) / lambda_star

t <- s

dlambda <- alpha

arrivals <- c(arrivals, t)

while (s < t_max) {

U <- runif(1)

s <- s - log(U) / lambda_star

u <- runif(1)

if (u <= (mu + dlambda * exp(-beta * (s - t))) / lambda_star) {

dlambda <- alpha + dlambda * exp(-beta * (s - t))

lambda_star <- lambda_star + alpha

t <- s

arrivals <- c(arrivals, t)

}

}
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return(arrivals)

}

loglhawkLewis <- function(theta, historyZ, BigT) {

mu <- theta[1]

K <- theta[2]

beta <- theta[3]

eps <- 10 ^ -7

if ((min(mu, K, beta) < eps) | (K > (1 - eps))) {

return(Inf)

}

sumlog <- log(mu)

intlam <- mu * BigT + K * length(historyZ)

const <- K * beta

for (j in 2:length(historyZ)) {

sumterm <- 0

for (i in 1:(j - 1)) {

sumterm <- sumterm + exp(-beta * (historyZ[j] - historyZ[i]))

}

lamj <- mu + const * sumterm

if (is.na(lamj) | (lamj < 0)) {

return(Inf)

}

sumlog <- sumlog + log(lamj)

}

loglik <- sumlog - intlam

return(-1.0 * loglik)

}
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statespaceOmega <- c(0, 5 * 10 ^ 1)

condInten1 <- list(mu = 1, alpha = 3, beta = 6)

TE <- 1

condInten2 <- list(mu = condInten1$mu, alpha = condInten1$alpha + TE, beta =

condInten1$beta)

trueEff <-((condInten2$mu * statespaceOmega[2]) / (1 - condInten2$alpha /

condInten2$beta) -

(condInten1$mu * statespaceOmega[2]) / (1 - condInten1$alpha /

condInten1$beta)) / (statespaceOmega[2] - statespaceOmega[1])

numCells <- 2.5 * 10 ^ 1

partitions <- seq(statespaceOmega[1], statespaceOmega[2], length.out = numCells

+ 1)

partitionsDynamic <- T

nIters <- 1 * 10 ^ 3

effx <- list()

set.seed(1)

for (iter in 1:nIters) {

simProcess1 <- simulate_uni_hawkes(mu = condInten1$mu, alpha =

condInten1$alpha, beta = condInten1$beta, t_max = statespaceOmega[2])

simProcess1<-simProcess1[simProcess1<statespaceOmega[2] &

simProcess1>statespaceOmega[1]]

simProcess2 <- simulate_uni_hawkes(mu = condInten2$mu, alpha =

condInten2$alpha, beta = condInten2$beta, t_max = statespaceOmega[2])

simProcess2<-simProcess2[simProcess2<statespaceOmega[2] &
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simProcess2>statespaceOmega[1]]

treatprob <- sample(seq(0.2, 0.8, length.out = 10), size = 1)

if (partitionsDynamic == T) {

superProcess <- sort(c(simProcess1, simProcess2))

dataTess <- sample(1:length(superProcess), size = length(superProcess) *

treatprob)

numCenters <- min(numCells, length(superProcess[dataTess]-1))

clusts <- kmeans(superProcess[dataTess], numCenters)

cellDef <- c()

for (i in 1:(length(clusts$centers) - 1)) {

cellDef[i] <- (sort(clusts$centers)[i + 1] - sort(clusts$centers)[i]) / 2 +

sort(clusts$centers)[i]

}

partitions <- c(statespaceOmega[1], cellDef, statespaceOmega[2])

}

treatmentInd <- 0

while(((sum(treatmentInd) == 0) | (sum(treatmentInd) == (length(partitions) -

1)))){

treatmentInd <- sample(c(0, 1), replace = TRUE, prob = c(treatprob, 1 -

treatprob), size = length(partitions) - 1)

}

pointTilesControl <- as.numeric(cut(simProcess1, partitions))

marksTilesControl <- c()

for (i in 1:length(pointTilesControl)) {
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marksTilesControl[i] <- pointTilesControl[i] * (1 -

treatmentInd[pointTilesControl[i]])

}

allows

observedProcess1 <- simProcess1[marksTilesControl != 0]

pointTilesTreatment <- as.numeric(cut(simProcess2, partitions))

marksTilesTreatment <- c()

for (i in 1:length(pointTilesTreatment)) {

marksTilesTreatment[i] <- pointTilesTreatment[i] *

treatmentInd[pointTilesTreatment[i]]

}

observedProcess2 <- simProcess2[marksTilesTreatment != 0]

controlStatespace <- list()

treatmentStatespace <- list()

parsC <- 1

parsT <- 1

for (i in 1:length(partitions)) {

bottomEdgeC <- sort(unique(partitions[marksTilesControl]))[i]

for (j in 1:length(partitions)) {

if (bottomEdgeC == partitions[j] & !is.na(bottomEdgeC)) {

controlStatespace[[parsC]] <- c(bottomEdgeC, partitions[j + 1])

parsC <- parsC + 1

}

}

bottomEdgeT <- sort(unique(partitions[marksTilesTreatment]))[i]

for (j in 1:length(partitions)) {

if (bottomEdgeT == partitions[j] & !is.na(bottomEdgeT)) {
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treatmentStatespace[[parsT]] <- c(bottomEdgeT, partitions[j + 1])

parsT <- parsT + 1

}

}

}

canFit <- length(observedProcess1) > 1 & length(observedProcess2) > 1

if (canFit == T) {

controlIntervals <- do.call(rbind.data.frame, controlStatespace)

controlT <- sum(controlIntervals[, 2] - controlIntervals[, 1])

treatmentIntervals <- do.call(rbind.data.frame, treatmentStatespace)

treatmentT <- sum(treatmentIntervals[, 2] - treatmentIntervals[, 1])

mleObs1 <- optim(runif(3), loglhawkLewis, historyZ = observedProcess1,

BigT = controlT)

fitObs1 <- mleObs1$par

mleObs2 <- optim(runif(3), loglhawkLewis, historyZ = observedProcess2,

BigT = treatmentT)

fitObs2 <- mleObs2$par

} else {

fitObs1 <- NA

fitObs2 <- NA

}

if(sum(is.na(c(fitObs1, fitObs2)))==0) {

simfitted1 <- simulate_uni_hawkes(mu = fitObs1[1], alpha = fitObs1[2] *

fitObs1[3], beta = fitObs1[3], t_max = statespaceOmega[2])

simfitted1<-simfitted1[simfitted1<statespaceOmega[2]]
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if(length(simfitted1)==0) {

simfitted1 <- c(0)

}

simfitted1Subset <- c()

for (i in 1:length(simfitted1)) {

for (j in 1:length(treatmentStatespace)) {

if (simfitted1[i] < treatmentStatespace[[j]][2] & simfitted1[i] >

treatmentStatespace[[j]][1])

simfitted1Subset <- c(simfitted1Subset, simfitted1[i])

}

}

simfitted2 <- simulate_uni_hawkes(mu = fitObs2[1], alpha = fitObs2[2] *

fitObs2[3], beta = fitObs2[3], t_max = statespaceOmega[2])

simfitted2<-simfitted2[simfitted2<statespaceOmega[2]]

if (length(simfitted2) == 0) {

simfitted2 <- c(0)

}

simfitted2Subset <- c()

for (i in 1:length(simfitted2)) {

for (j in 1:length(controlStatespace)) {

if (simfitted2[i] < controlStatespace[[j]][2] & simfitted2[i] >

controlStatespace[[j]][1])

simfitted2Subset <- c(simfitted2Subset, simfitted2[i])

}

}

full1 <- sort(c(observedProcess1, simfitted1Subset))

full2 <- sort(c(observedProcess2, simfitted2Subset))
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allintervals <- c(controlStatespace, treatmentStatespace)

tileCountsSate <- c()

tileCounts <- c()

for (i in 1:length(allintervals)) {

tileInt <- allintervals[[i]]

tileCountsSate[i] <- (sum((full2 < tileInt[2]) & (full2 > tileInt[1]))

- sum((full1 < tileInt[2]) & (full1 > tileInt[1])))

tileCounts[i] <- sum(pointTilesTreatment == i) -

sum(pointTilesControl == i)

}

SATE <- mean(tileCountsSate) / (statespaceOmega[2] - statespaceOmega[1])

* (length(partitions) - 1)

ATE <- mean(tileCounts) / (statespaceOmega[2] - statespaceOmega[1]) *

(length(partitions) - 1)

estError <- ATE - SATE

trueError <- SATE - trueEff

naive <- length(observedProcess1) * (1 / controlT) -

length(observedProcess2) * (1 / treatmentT)

naiveError <- naive - trueEff

effx[[iter]] <- c(SATE, ATE, naive, estError, trueError, naiveError)

}

else{effx[[iter]] <- rep(NA,6)}

if (iter %% 10 == 0) {
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print(iter)

}

}

estEFX <- do.call(rbind.data.frame, effx)

estEFX <- estEFX[complete.cases(estEFX),]

7.1.2 Stoyan Grabarnik

The below code fits coefficients to simulated Poisson processes with polynomial intensities

using the Stoyan Grabarnik estimator.

library(spatstat)

set.seed(1)

#Hyperparameters

statespaceWindow <- c(0, 1, 0, 1)

#Intensity function

condIntenSim <- function(x, y, params) {

params[[3]] * params[[1]] * x + params[[3]] * params[[4]] * x ^ 2 +

params[[3]] * params[[2]] * y + params[[3]] * params[[5]] * y ^ 2 +

params[[3]] * params[[6]]

}

condInten <- function(x, y, params) {

params[[1]] * x + params[[4]] * x ^ 2 + params[[2]] * y +

params[[5]] * y ^ 2 + params[[6]]

}
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#Function for Stoyan Grabarnik Estimation

SGest <- function(theta, processForFit, partitionScheme, stateSpace, timeT) {

argParams <- as.list(theta)

#argParams[[3]] <- timeT #CHANGED THIS HERE

#SHOULD BE SPACE TIME OF CELL

oneRect <- ((stateSpace[2] - stateSpace[1]) * (stateSpace[4] -

stateSpace[3]) / partitionScheme$n ) * timeT

lMeasures <- rep(oneRect, partitionScheme$n)

pointInverseIntensities <- c()

for (i in 1:processForFit$n) {

pointInverseIntensities[i] <- 1 / condInten(x = processForFit$x[i],

y = processForFit$y[i], params = argParams) #CHANGED FUNCTION HERE

}

tileInverseIntensities <- c()

for (j in 1:length(lMeasures)) {

tileInverseIntensities[j] <- sum(pointInverseIntensities[processForFit$marks

== j])

}

SG <- sum((tileInverseIntensities - lMeasures) ^ 2)

}

###########SIMULATE###########

#Vector of T’s

#bigT <- floor(10^seq(0,6,length.out = 10))

bigT <- floor(10^seq(1,6.75,length.out = 20))

superprocesses <- vector(mode=’list’, length=length(bigT))

nproc<-c()
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for(i in 1:length(bigT)){

start.time<-Sys.time()

params0 <- list(xparam = 1/2, yparam = 1/4, tparam=bigT[i],

x2param = 1/3, y2param = 2/3, constparam = 1/5)

superprocesses[[i]]<-rpoispp(condIntenSim, params = params0,

win = statespaceWindow)

nproc[i]<-superprocesses[[i]]$n

}

###########FIT###########

#For partitioning with finer or coarser grid

#(each value equal to sqrt(number cells))

partitionSchemes<-c(1,2,4,8,16,32)

#Storage container (list of lists) for simulation values

estimatedParams <- vector(mode=’list’, length=length(partitionSchemes))

scheme<-1

for(p in partitionSchemes){

partitions<-quadrats(X=statespaceWindow, nx = p)

j<-1

for (k in bigT) {

simProcess <- superprocesses[[j]]

tiles <- cut(simProcess, partitions)

marks(simProcess) <- as.numeric(tiles$marks)
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SGfit <- optim(

runif(length(params0)),

SGest,

processForFit = simProcess,

partitionScheme = partitions,

stateSpace = statespaceWindow,

timeT=k

)

estimatedParams[[scheme]][[j]] <- c(SGfit$par)

print(c(scheme,j))

j<-j+1

}

scheme<-scheme+1

}

###########VISUALIZE###########

sgEsts<-vector(mode=’list’, length=length(partitionSchemes))

for(i in 1:length(sgEsts)){

sgEsts[[i]]<-do.call(rbind.data.frame, estimatedParams[[i]])

}

#par(mfrow=c(1,1))

sgEstDf1<-sgEsts[[1]][,1]

sgEstDf2<-sgEsts[[1]][,2]

sgEstDf3<-sgEsts[[1]][,4]

sgEstDf4<-sgEsts[[1]][,5]

sgEstDf5<-sgEsts[[1]][,6]
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if(length(partitionSchemes)>1){

for(i in 1:(length(partitionSchemes)-1)){

#for(i in 1:9){

sgEstDf1<-cbind(sgEstDf1,sgEsts[[i+1]][,1])

sgEstDf2<-cbind(sgEstDf2,sgEsts[[i+1]][,2])

sgEstDf3<-cbind(sgEstDf3,sgEsts[[i+1]][,4])

sgEstDf4<-cbind(sgEstDf4,sgEsts[[i+1]][,5])

sgEstDf5<-cbind(sgEstDf5,sgEsts[[i+1]][,6])

}

}

#library(RColorBrewer)

#MyCol <- brewer.pal(n=length(partitionSchemes[subcols]),name="RdBu")

MyCol <- rainbow(length(partitionSchemes))

MyLab <- c(paste(floor(partitionSchemes)))

par(mfrow=c(2,3))

matplot(x=log10(bigT),y=sgEstDf1,type=’l’,lty=1,lwd=1.25,col=MyCol,

ylab="Est X Param, deg=1",xlab="log(T)",ylim=c(-1,1)+params0$xparam)

abline(h=params0[[1]],lty=1,lwd=0.5)

matplot(x=log10(bigT),y=sgEstDf2,type=’l’,lty=1,lwd=1.25,col=MyCol,

ylab="Est Y Param, deg=1",xlab="log(T)",ylim=c(-1,1)+params0$yparam)

abline(h=params0[[2]],lty=1,lwd=0.5)

matplot(x=log10(bigT),y=sgEstDf3,type=’l’,lty=1,lwd=1.25,col=MyCol,

ylab="Est X Param, deg=2",xlab="log(T)",ylim=c(-1,1)+params0$x2param)

abline(h=params0[[4]],lty=1,lwd=0.5)
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matplot(x=log10(bigT),y=sgEstDf4,type=’l’,lty=1,lwd=1.25,col=MyCol,

ylab="Est Y Param, deg=2",xlab="log(T)",ylim=c(-1,1)+params0$y2param)

abline(h=params0[[5]],lty=1,lwd=0.5)

matplot(x=log10(bigT),y=sgEstDf5,type=’l’,lty=1,lwd=1.25,col=MyCol,

ylab="Est Const Param",xlab="log(T)",ylim=c(-1,1)+params0$constparam)

abline(h=params0[[6]],lty=1,lwd=0.5)

plot.new()

legend("center",MyLab,fill=c(MyCol),ncol=1,title="Partitions",cex=2)

7.1.3 Stoyan Grabarnik (Centroid and Histogram)

The below code fits coefficients to simulated Poisson processes with polynomial intensities

using the histogram and centroid-based equivalents of the Stoyan Grabarnik estimator.

SGestHist <- function(theta, processForFit, partitionScheme,

stateSpace, timeT) {

argParams <- as.list(theta)

#SHOULD BE SPACE TIME OF CELL

oneRect <- ((stateSpace[2] - stateSpace[1]) * (stateSpace[4] -

stateSpace[3]) / partitionScheme$n ) * timeT

lMeasures <- rep(oneRect, partitionScheme$n)

pointInverseIntensities <- c()

for (i in 1:partitionScheme$n) {
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partitionProcess <- processForFit[processForFit$marks == i]

if(partitionProcess$n!=0){

#move mean calculation outside of function to optimize

pointInverseIntensities[i] <- (1 / condInten(x =

mean(partitionProcess$x), y = mean(partitionProcess$y),

params = argParams))*partitionProcess$n

}else{

pointInverseIntensities[i] <- 0

}

}

SG <- sum((pointInverseIntensities - lMeasures) ^ 2)

}

SGestCentroid <- function(theta, processForFit, partitionScheme,

stateSpace, timeT,centroidProcess) {

argParams <- as.list(theta)

oneRect <- ((stateSpace[2] - stateSpace[1]) * (stateSpace[4] -

stateSpace[3]) / partitionScheme$n ) * timeT

lMeasures <- rep(oneRect, partitionScheme$n)

pointInverseIntensities <- c()

for (i in 1:partitionScheme$n) {

partitionProcess <- processForFit[processForFit$marks == i]

xcentval<-centroidProcess$x[centroidProcess$marks == i]

ycentval<-centroidProcess$y[centroidProcess$marks == i]

if(partitionProcess$n!=0){

pointInverseIntensities[i] <- (1 / condInten(x = xcentval,

y = ycentval, params = argParams))*partitionProcess$n
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}else{

pointInverseIntensities[i] <- 0

}

}

SG <- sum((pointInverseIntensities - lMeasures) ^ 2)

}

7.1.4 Stoyan Grabarnik (Analytical Solution)

The below code fits coefficients to simulated Poisson processes with polynomial intensities

using an approximation and analytical solution detailed in Section 2.6.2.

condIntenSim <- function(x, y, params) {

params0$tparam * params0$xparam * x +

params0$tparam * params0$x2param * x ^ 2 +

params0$tparam * params0$yparam * y +

params0$tparam * params0$y2param * y ^ 2 +

params0$tparam * params0$yxparam * y * x +

#params0$tparam * params0$yx2param * y * x ^ 2 +

#params0$tparam * params0$y2xparam * y ^ 2 * x +

params0$tparam * params0$y2x2param * y ^ 2 * x ^ 2 +

params0$tparam * params0$constparam

}

bigT <- floor(10^seq(1,6.5,length.out = 50))
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superprocesses <- vector(mode=’list’, length=length(bigT))

nproc<-c()

for(i in 1:length(bigT)){

start.time<-Sys.time()

params0 <- list(xparam = 3,

yparam = 6,

tparam=bigT[i],

x2param = 4,

y2param = 7,

yxparam = 5,

#yx2param = 2,#DEGREE 3

#y2xparam = 4, #DEGREE 3

#y2x2param = 1.5,#DEGREE 4

constparam = 10)

superprocesses[[i]]<-rpoispp(condIntenSim, params = params0,

win = statespaceWindow)

nproc[i]<-superprocesses[[i]]$n

print(i)

}

thetasxy<-vector(mode=’list’, length=length(bigT))

for(j in 1:length(bigT)){

partitions<-quadrats(X=statespaceWindow, nx =3, ny=3)

simProcess <- superprocesses[[j]]

tiles <- cut(simProcess, partitions)

marks(simProcess) <- as.numeric(tiles$marks)
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integrandsP<-c()

volP<-c()

meansPx<-c()

meansPy<-c()

for(i in 1:partitions$n){

partitionProcess <- simProcess[simProcess$marks == i]

integrandsP[i]<-partitionProcess$n

volP[i]<- (area(statespaceWindow) / partitions$n ) * bigT[j]

meansPx[i]<-mean(partitionProcess$x)

meansPy[i]<-mean(partitionProcess$y)

}

gammasP<-integrandsP/volP

MeanMatrix<-matrix(nrow=partitions$n, ncol=partitions$n)

MeanMatrix[,1]<-meansPy^1

MeanMatrix[,2]<-meansPy^2

MeanMatrix[,3]<-meansPx^1

MeanMatrix[,4]<-meansPx^2

MeanMatrix[,5]<-meansPy^1 * meansPx^1 #xy

MeanMatrix[,6]<-meansPy^2 * meansPx^1 #xy^2

MeanMatrix[,7]<-meansPy^1 * meansPx^2 #x^2 y

MeanMatrix[,8]<-meansPy^2 * meansPx^2 #x^2 y^2

MeanMatrix[,9]<-rep(1,length(meansPx))

thetasxy[[j]]<-c(solve(MeanMatrix,tol = 1e-50)%*%gammasP)
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print(j)

}

thetaSolvedxy<-do.call(rbind.data.frame, thetasxy)

scaleRlim<-10

par(mfrow=c(3,3))

plot(x=log10(bigT), y=thetaSolvedxy[,2],main="Y^2",

ylab="Solved Coef",ylim=params0$y2param+scaleRlim*c(-1,1))

abline(h=params0$y2param)

plot(x=log10(bigT), y=thetaSolvedxy[,1],main="Y^1",

ylab="Solved Coef",ylim=params0$yparam+scaleRlim*c(-1,1))

#,ylim=10*c(1,-1)+params0$x3param)

abline(h=params0$yparam)

plot(x=log10(bigT), y=thetaSolvedxy[,4],main="X^2",

ylab="SolvedCoef",ylim=params0$x2param+scaleRlim*c(-1,1))#,ylim=c(-100,100))

abline(h=params0$x2param)

plot(x=log10(bigT), y=thetaSolvedxy[,3],main="X^1",

ylab="Solved Coef",ylim=params0$xparam+scaleRlim*c(-1,1))#,ylim=c(0,1))

abline(h=params0$xparam)

plot(x=log10(bigT), y=thetaSolvedxy[,5],main="XY",
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ylab="Solved Coef",ylim=params0$yxparam+scaleRlim*c(-1,1))

abline(h=params0$yxparam)

plot(x=log10(bigT), y=thetaSolvedxy[,6],main="X Y^2",

ylab="Solved Coef",ylim=0+scaleRlim*c(-1,1))#,ylim=10*c(1,-1)+params0$x3param)

abline(h=0)

plot(x=log10(bigT), y=thetaSolvedxy[,7],main="X^2 Y",

ylab="Solved Coef",ylim=0+scaleRlim*c(-1,1))#,ylim=c(-100,100))

abline(h=0)

plot(x=log10(bigT), y=thetaSolvedxy[,8],main="X^2 Y^2",

ylab="Solved Coef",ylim=0+scaleRlim*c(-1,1))#,ylim=c(0,1))

abline(h=0)

plot(x=log10(bigT), y=thetaSolvedxy[,9],main="Const",

ylab="Solved Coef",ylim=params0$constparam+scaleRlim*c(-1,1))#,ylim=c(0,1))

abline(h=params0$constparam)

mtext(bquote("SG Estimation of Inhomogeneous Poisson " ~

lambda==3*x+6*y+4*x^2+7*y^2+5*x*y+10), side = 3, line = -2, outer = TRUE)

7.1.5 Stoyan Grabarnik: C code for Hawkes Process Intensity

The below code is a function that can be used in optim() for quick parameter estimation of

Hawkes processes. Credit to Frederic Schoenberg.

#include <R.h>
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#include <Rmath.h>

void sgc (double *lon, double *lat, double *t, int *n,

double *T, double *theta, int *grid, int *m, double *result){

int i,j,w;

double sum1, r2, mu, K, a, b, lam, area;

mu = theta[0]; K = theta[1]; a = theta[2]; b = theta[3];

*result = 0.0;

area = *T / *m;

for(i=0; i < *m; i++){

sum1 = 0.0;

for(j=0; j < *n; j++){

if(grid[j] == i){

lam = mu;

for(w = 0; w < j; w++){

r2 = (lon[j]-lon[w])*(lon[j]-lon[w]) +

(lat[j]-lat[w])*(lat[j]-lat[w]);

lam += K * b * exp(-1.0 * b * (t[j]-t[w])) * a / 3.141593 *

exp(-1.0 * a * r2);

}

sum1 += 1/lam;

}

}

}

*result += (sum1 - area)*(sum1-area);

}
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