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FOREWORD 

The National Resource for Computation in Chemistry (NRCC) was 

established as a division of Lawrence Berkeley Laboratory (LBL) in 

October 1977. The functions of the NRCC may be broadly categorized as 

follows: (1) to make information on existing and developing computational 

methodologies available to all segments of the chemistry community, 

(2) to make state-of-the-art computational facilities (both hardware 

and software) accessible to the chemistry community, and (3) to foster 

research and development of new computational methods for application 

to chemical problems. 

Conferences are one facet of the NRCC's program for both obtaining 

and making available information on new developments in computationally 

oriented subdisciplines of chemistry. The goal of this conference was 

to discuss and recommend standards for machine-independent, modular, and 

well documented software suitable for use on the large minicomputers that 

are rapidly becoming available to chemists. 

The conference began with a plenary session comprising talks of 

general interest on various aspects of portability and standardization. 

There was general agreement among the speakers as to the virtues of 

structured programming and the value of software tools in attaining good 

programming practice and portability. Fortran preprocessors were 

recomrnended both as an aid to producing structured programs and as a 

means of attaining machine-independent code. Verification programs, such 

as PFORT, were suggested as tools for testing existing code for portability. 

Two talks in this session dealt with examples of applications in the two 

main areas of interest. Dr. G. Diercksen of the Max-Planck Institute for 

Physics and Astrophysics (Munich) reported on his system of data interfaces 

and data bases for quantum chemistry, and Prof. James Stewart of the 

University of Maryland talked about his efforts in the area of portable 

crystallographic software. 

After the general session, the participants divided into several 

smaller working groups in order to discuss topics and formulate 

recommendations relevant to their own interests. The topics of the 

working groups were: 
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1. Portability considerations and standards 

2, Documentation and coding standards 

3. Machine specification: what is a minimal computer 

configuration? 

4, Quantum chemistry software base 

5, Quantum chemistry data interfaces 

6. Small molecule crystallography 

7, Large molecule crystallography 

Each working group formulated a preliminary report, presented it 

to a general session for discussion, and then reconvened to draft a 

final report. 

The present volume consists of the edited summaries of the invited 

talks, final reports of the working groups, and reports generated by 

subcommittees of the working groups. 

A notable aspect of the conference was the confluence of quantum 

chemists and crystallographers. Professor George Jeffery of the University 

of Pittsburgh expressed the hope of growing exchange between the two groups. 

In his recollection, this was the first such joint gathering to take place 

in over 20 years. It was felt that such exchanges could lead to agreement 

on common formats for related chemical structural data bases, and could 

be of substantial benefit to both fields. 

The crystallographers, who initially divided into small~ and large­

molecule working groups, reconvened as a single working group to draft 

their final report. There was widespread agreement among them on the 

steps that both the NRCC and the crystallographic community should take 

in attaining software standardization and machine-independent portability. 

Several of their recommendations focused on the demonstration of the 

feasibility of standardized programming systems and data formats through 

the NRCC sponsorship of workshops to produce useful crystallographic code. 

They settled upon a specific preprocessor language and set of program 

conventions and data file formats to be used in such pilot demonstrations. 

In the area of quantum chemistry, the working group on the quantum 

chemistry software base drafted a list of progra.m types and program 

capabilities that should be included in a software base. The working 
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group on standard data interfaces prepared a preliminary draft of a 

standard data interface for this software base. A committee was then 

established to develop a detailed standard data interface. This committee, 

which consists of authors and users of major quantum chemistry systems 

such as GAUSSIAN 70, ALIS, and MUNICH. will make final recommendations 

within a year. 

Both the crystallographers and the quantum chemists felt that a 

standard set of bit primitives should be defined. and a committee was 

established to accomplish this, They also agreed on the need for upward 

compatibility of new versions of ANSI Fortran. They recommended that 

NRCC communicate this position to the ANSI Standards Committee X3J3. and 

also sponsor a member on this committee who would lobby for the interests 

of computational chemists. 

The NRCC is indebted to Prof. Frank E. Harris of the University 

of Utah for helping to organize this workshop. to the University of Utah 

for making their facilities available. and to Dr. Nelson H. F.Beebe for 

his efforts in preparing and editing the final conference report. We 

also thank Drs. Arthur J. Olson and John Jo Wendoloski of the NRCC for 

their efforts in organizing this volume. 

The National Resource for Computation in Chemistry is supported 

in part by a grant from the National Science Foundation (Grant No. 

CHE-7721305) and the Basic Energy Sciences Division of the U.S. Department 

of Energy (Contract No. W-7405-ENG-48). 

William A. Lester, Jr. 
Director, NRCC 





EDITORS' NOTE 

The report which follows is the final version of the 
Proceedings of the NRCC Conference on Software Standards in 
Chemistry held at the University of Utah in S t Lake City, 
July 25-27, 1979. The time available for the Conference was 
rather short, and the last morning was devoted to a meeting 
in which each of the working groups presented their final 
reports. Some of these evoked intense discussions, and it 
was felt advisable that the participants should be able to 
review the Proceedings before they were published for the 
general public. In addition, some topics were assigned to 
subcommittees who were requested to prepare written reports 
for this review and for the final Proceedings. 

Consequently, a preliminary version of the Proceedings 
was prepared and distributed to participants in late Nov· 
ember, along with a request that comments and criticisms 
be communicated to the editors by mid-December, Many helpful 
comments were received, and we wish to thank all of those 
who responded. This review has enabled us to improve and 
clarify the presentation in a number of sections, and also 
to remove typographical errors which had escaped our careful 
(we thought) proofreading. Almost the entire manuscript has 
been prepared in machine·readable form. The DEC SPELL 
utility has been used to check for spelling errors, and the 
text has been formatted for publication by the DOCUMENT 
utility. All of the editing has been carried out on the 
DECSYSTEM-20 at the University of Utah, but the final manu 
script has been formatted and printed on the NRCC VAX-Ill 
780 computer. 

A substantial portion of the time allotted for the 
Conference was devoted to sessions of six working groups. 
Participants were free to move from session to session, and 
many took the opportunity to do so, No record was kept of 
who contributed exactly what, so except for subcommittee 
reports, only the name of the chairman appears at the end 
of each working group report. The chairmen had the res~ 
ponsibility of formulating the reports, but in most cases 
many people contributed to the final versions presented here. 
As in any group of people with similar interests, it was 
not always possible to obtain unanimous agreement, and these 
Proceedings should be regarded as a broad consensus from 
which individual participants are free to dissociate them­
selves. 
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In addition to these final proceedings, a set 
preliminary working papers was distributed to the partici­
pants, Final versions for most of these documents are 
included in these Proceedings, Not included, however, is 
the Bibl graphy on Software Portability, and the Programmer's 
Guide to Portable Software, both by N,H.F, Beebe, and 
SFTRAN3, Programmers Reference Manual, by C.L, Lawson and 
J,A, Flynn, These documents are available upon request from 
the NRCC. 

Frank E. Harris 
Nelson H,F. Beebe 
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8:30 am 
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Wednesday, July 25, 1979 

Registration and coffee in Carlson Hall lounge 
(corner of University St and 4-th South on 
University of Utah campus). Sessions in 
adjacent Room 115. Coffee will be available 
in the lounge during all the sessions, and 
additional refreshments may be available at 
scheduled coffee break times. 

W.A. Lester 
WELCOMING REMARKS. 

S E S S ION 1 • A.D. McLean, Chairperson 

9:20 am 
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C.B. Moler 
ROBUST AND PORTABLE MATHEMATICAL SOFTWARE -
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S E S S ION G.A. Jeffrey, Chairperson 
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G.H.F. Diercksen 
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J.M. Stewart 
PORTABLE SOFTWARE, WITH EMPHASIS ON 
CRYSTALLOGRAPHY 
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S E S S ION 4. 

Introduction and formation of working groups. 

Working group sessions for WGl (portability 
standards), WG2 (coding and documentation 
standards), and WG3 (machine specifications). 

Reception (transportation provided). 
Participants make own dinner arrangements. 

Informal discussion of WG1, WG2, and WG3 
subjects and report preparation. 

= = = = = = = = = = = 
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ROBUST MATHEMATICAL SOFTWARE 

Cleve B. Moler 

Department of Mathematics and Statistics 
University of New Mexico 

Albuquerque, NM 87106 

This note covers two topics very briefly: 

--The LINPACK and EISPACK matrix software packages, 

--Machine~dependent 

calculations. 
constants in numerical 

LINPACK is a collection of FORTRAN subroutines for 
analyzing and solving various types of simultaneous linear 
equations. Under development for three years at Argonne 
National Laboratory and three universities, its public 
release was announced in January, 1979. 

The package consists of 40 subroutines in each of 
four data types. Three of the data types single 
precision, double precision and complex -- are standard. The 
fourth -- double precision complex -- is not standard, but 
is available on many machines. Some of the highlights and 
novel features of the package include: 

, --Complete portability and machine independence. 
There are no precision constants or machine-dependent 
parameters of any kind. The programs for the three standard 
data types use the PFORT subset of standard FORTRAN. 

--Uniform subroutine naming convention with names 
that indicate the computation done by the subroutine, rather 
than the method used to do it. 

--Source code formatted by the TAMPR system so that 
it is easy for human readers to understand. 

--Column orientation to enhance performance in 
virtual memory environments. 

--Use of the 
Subprograms, to improve 
enhance performance on 
machine architectures. 

BLAS, or Basic Linear Algebra 
modularity of source code and to 
large matrices and sophisticated 
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~-Basic documentation 
source code. 

included as comments in 

-~Extensive users' manual including examples, 
detailed descriptions of algorithms, discussion of numerical 
properties and timing results. 

--Comprehensive test 
source code. 

drivers distributed with 

-~Fields tests completed on over 20 different 
machines before release. 

~-New algorithms included for estimating matrix 
condition and hence estimating accuracy of computed results. 

--New algorithms implemented for symmetric, but not 
positive definite, matrices. 

--New algorithms included for least 
solutions of overdetermined systems of equations. 

squares 

--Routines included for band matrices, both 
symmetric and nonsymmetric, for triangular matrices, and for 
tridiagonal matrices. 

-~Complex matrices treated on an equal footing with 
real matrices. 

--Careful programming and some new techniques used 
to avoid most overflows and destructive underflows. The 
users' guide [lJ is a 368~page, paperbound book available 
from the Society for Industrial and Applied Mathematics, 33 
South 17th St., Philadelphia. The BLAS are described in [2J. 

EISPACK is a collection of FORTRAN subroutines for 
solving various matrix eigenvalue problems. Most of the 
package consists of extensively-tested translations of Algol 
procedures developed by J. H. Wilkinson, C. Reinsch and 
their colleagues. A few additional programs, not in the 
Wilkinson~Reinsch Algol collection, are also included. 

EISPACK was initially released in 1973 and a 
second, greatly-expanded, version released in 1976. 

Different programs are included for real symmetric 
matrices, real general matrices, complex Hermitian matrices, 
complex general matrices and a few special types of 
matrices. Different programs are also included for handling 
situations when only a few of the eigenvalues or 
eigenvectors are required. 



The source code includes machine-dependent 
constants defining accuracy and radix, but otherwise is 
portable. Versions are available which include the 
constants appropriate for IBM, CDC, Univac, Honeywell and a 
few other machine lines. 

On IBM machines only, a special high-level control 
program known as EISPAC is also available. This program 
simply requires the user to specify a problem and matrix 
type. It dynamically loads the appropriate EISPACK 
routines. 

Execution time efficiency and performance in paging 
operating systems were not the most important considerations 
during the development of EISPACK. It is usually quite 
satisfactory in this respect, but some effort is now 
underway to make some efficiency-oriented improvements in 
some of the key subroutines. 

Basic documentation for EISPACK is included in 
source code comments, and in separate files on the 
distribution tape. In addition, a users' manual comes in 
two parts, [3J and [4J. The source tapes for both LINPACK 
and EISPACK are available from either of two sources: 

National Energy Software Center 
Argonne National Laboratory 
Argonne, IL 60439 

International Mathematical and Statistical Libraries, Inc. 
Sixth Floor, GNB Building 
7500 Bellaire Boulevard 
Houston, TX 77036 

From the point of view of portable software 
production in general, there are significant differences 
between the two packages. EISPACK, at least initially, was 
primarily an Algol-to-FORTRAN translation project. Since 
the Algol procedures included machine-dependent parameters, 
the same parameters occur in the FORTRAN. Consequently, 
there are different versions of EISPACK for different 
machines. The most common such parameter is "MACHEPS", the 
distance from 1.0 to the next largest floating-point number. 
A typical use of MACHEPS is in testing that the off-diagonal 
elements of a matrix being diagonalized are negligible. This 
might be accomplished with a test like 

IF (ABS (A (I, J» . LE. MACHEP* ANORM) 

There are other uses of MACHEPS in EISPACK, but this is the 
most important. 
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LINPACK avoids the portability problems associated 
with machine-dependent constants by changing the form of 
these tests. The neglibility of a matrix element could be 
tested by 

TEST = ANORM + ABS(A(I,J» 
IF (TEST .EQ. ANORM) 

Numerically, these two forms of the test have essentially 
the same effect, but the second form is portable whereas the 
first is not. 

It has been suggested that the second form of the 
test may encounter difficulties on machines where the 
arithmetic register is longer than the storage word, but our 
LINPACK test results indicate this is not a problem. In 
fact, such machines present a serious question as to what 
numerically negligible actually means. 

This kind of test can be made less stringent by 
using code similar to the following: 

BIG = FLOAT(IO*N)*ANORM 
TEST = BIG + ABS(A(I,J» 
IF (TEST .EQ. BIG) ..• 

I have used this kind of convergence test in many 
different numerical algorithms on many different computers. 
I strongly prefer it over the other alternatives such as 
constants in argument lists or data statements, insertion of 
constants by preprocessors, or reference to library 
functions. 

I recommend that anyone interested in portability 
of numerical software seriously attempt to formulate 
algorithms in such a way that this kind of 
machine-independent test can be incorporated. 

Additional discussion and more examples can be 
found in an elementary numerical methods textbook [5J. 

[1J J.J. Dongarra, 
Stewart, "LINPACK 
1979. 
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STRUCTURED PROGfW'1MING 

PURPOSE: FIT THE PROGRAMMING 

PROCESS BETTER TO HUMAN 

CA PABILITIESI 

AIDS THE HUMAN ACTIVITIES OF 

DESIGNING 

IMPLEMENTING 

READING AND UNDERSTANDING 

t·1AI NTAI N I NG AND 

MODIFYING PROGRAMS & 
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STRUCTURED PROGRAM~lING 

& STRUCTURED FORTRAN 

A VERY BRI HI 

1966 COMM ACM BOEHM & JACOPINI 

1968 COMM ACM DIJKSTRA; 88GO TO STATEMENT 

CONSIDERED HARMFUL" 

1970 - STRUCTURED FORTRAN 

PREPROCESSORS APPEAR 

MEISSNER & REIF SURVEY: 

OVER 60 STRUCTURED FORTRAN PREPROCES 

ROCESSORS BEING USED ROUTINELY 

IN MANY FORMALLY MANAGED 

PROGRAMMING PROJECTS 0 
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STRUCTURED PROGRAMMING 

10 MODULARITY, 

EACH MODULE (SUBPROGRAM; PROCEDUR 0) NO LONGER 

THAN ONE PRINTED PAGE; IoEo 20 TO 50 LINESo 

2, TOP-DOWN ORGANIZATION OF CODEu 

30 USE OF SINGLE-ENTRY; SINGLE-EXIT CONTROL STRUCTURESu 
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DO (INPUT) 
DO UNTIL (QUIT) 

DO (CO~iPUTE) 

DO (OUTPUT) 
END UNTIL 

DO FOREVER 

END 

DO (INPUT) 
(QUIT) EXIT 

DO (CDr1PUTE) 
DO (OUTPUT) 
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SINGLE-ENTRY J SINGLE-EXIT CONTROL STRUCTURES 

DO WHILE ( ) 

IF ( ) THEN 

DO FOR 1:= 10 
I 
END FOR 

ELSE 

DO WHILE ( ) I . 
END WHILE 

END IF 

END WHI 
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FORTRAN 66 

IF ( J oLEo 3) GO TO 10 
X =: U + V 

Y =: U = V '* H 
GO TO 20 

10 X:=:.A+ B 
Y =: A - B 

20 CONTINUE 

FORTRAN OR SFTRAN3 

IF ( J oLEa 3 ) THEN 
X := A + B 

Y := A - B 

x =: U + V 

Y=U-V'*W 

END IF 

x =: U + y 
y=: U-Y'*W 



FORTRAN 

CASE 
SMALL J 

-13-

~oo LI NES OF COD~ 

~oo LI NES COD~ 

END IF 

CASE OF 
LARGE J 



SFTRAN3 

CASE OF 
SMALL J 
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IF (J GLEG3) THEN 

DO(CASE SMALL .J) 

ELSE 

DO(CASE OF LARGE J) 

END IF 

PROCEDURE ( OF S~lALL J) 

[100 LINES CODE] 
END PROC 

PROCEDURE (CASE J) 

[100 LIN CODE] 
END PROC 

E 

LARGE J 
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SFTRAN3 

-15-

IF( X ,LT, 1, ) THEN 
DO (CASE X < 1 ) 

IF (X ,LT, 10,) THEN 
DO (CASE 1 ~ X < 10 ) 

ELSE IF ( X .LT. 100.) THEN 
DO (CASE 10 ~ X < 100 ) 

ELSE 
DO (CASE 100 ~ X ) 

END 

PROCEDURE ( CASE X < 1 ) 

END PROC 
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1 4 

SFTRAN3 

CASE 1 

, 
CASE 2 

, 
CASE 3 

, 
CASE 4 

, 
CASE OTHER 

, 
END CASE 
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INDEXED lOOP 

EQRTRAN 66 AND FORTRAN 77 

DO 10 I = NIJ N2 

3 

10 CONTINUE 

SETRAN3 

DO FOR I = Nl; N2 

, 
END FOR 

F66 
1; EXPRESSIONS FOR Nl; N2; AND N3, X X 
2. PERMIT N3 0; X X 
3, POSSIB TO LOOP ZERO TIMES o X X 
40 EXECUTE REMOTE CODE S ENCEo X X 
50 NON~INTEGER LOOP INDEX X 



LINK =: LOCI 
DO WHILE (LINK oNEs 0) 

A =: DATA (LINK) 
o 

o 

LINK =: LIST NK) 
END WHI 

LOGICAL QUIT 
DO FOREVER 

READ (5#IOOO#QUIT =: END) A;B;C 
IF (QUIT) EXIT 

, 
END FOREVER 

UNTIL (DIFF i LE. EPS) 

o 

DIFF =: 0 H 

END UNTIL 
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DO BLOCK 

DO FOR I = 1~ N 

IF ( JBEQ$ KEY (1) ) THEN 
DO ( FOUND J AT INDEX I ) 

EXIT BLOCK 

END IF 

END FOR 

DO ( J NOT IN TABLE ) 

END BLOCK 
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EVOLUTION 
SFTRAN LANGUAGE AND PREPROCESSORS 

SFTRANI JOHN FLYNN J JPL 

1976 SFTRAN2 JOHN FLYNN J JPL 

1977 LRC SFTRAN FORD & FESSLER; 
NASA LEWIS RESEARCH CENTER 
CLEVELAND 

DECEMBER 1978 SFTRAN3 JPL UNIVAC 1108 

J E 1979 IBr1 & DEC 20 
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THE SFTRAN3 PREPROCESSOR 

PORTABLE BASELINE VERSION 

5 (IN) 

(IN) 

6 (IN) 

12 (OUT) 

14 (OUT) 

15 (OUT) 

INPUT SOURCE 

INCLUDE MODULES 

SIGNON & SIGNOFF MESSAGES 

INDENTED SFTRAN3 LISTING 

GENERATED FORTRAN CODE 

ERROR MESSAGES J IF ANY 

INSTALLATION REQUREMENTS 

MACHINE SP IFIC SUBROUTINES CHGET3 & CHPUT3 

TO UNPACK & PACK A SINGLE CHARACTERu 

CHANGE 3 FORMAT STATEMENTS 

CHANGE SOME DATA STATEMENTS IN A 

BLOCK DATA SUBPROGRAM 

NEED "END=LABEL" IN FORTRAN COMPILER 



1, Introduction 

Programming 

N. L. Schryer 

Bell Laboratories 
Murray Hill, New Jersey 07974 

Most programmers are continually confused. The programming language they are using 
won't let them easily say what needs saying. Once written, the program won't compile. When 
it finally gets into execution, it aborts in some hidden place and doesn't say why. Then, when 
execution ends normally, the results are dreadfully wrong. Finally, after much effort, the pro­
gram correctly runs for its creator. The programmer then ships the program off to a colleague 
across the ocean who can also use it. The colleague then reports that the program won't com­
pile on the local machine. After many very-long-distance phone calls, it runs correctly abroad. 
The colleague then complains that the program runs far too slowly. 

The above scenario is probably all too familiar to most programmers. It is so familiar, 
that people don't even realize the confusion it indicates. So much of life is lived under such 
circumstances, that people simply accept it into their programming lives. 

Most people believe that their behavior, in many areas, falls barely short of perfection. 
They aspire to grand goals, and, lacking a guardian angel to tell them they have failed, assume 
they have succeeded. Programming is different, however. The guardian angel (named IBM, 
UNIV AC, etc.) never fails to remind us of our failings as programmers. Indeed, at times the 
guardian angel seems to rather enjoy this role of informer. 

The rules by which programming perfection is judged are so complex, diverse and massive 
that no single human being can remember, let alone digest, them alL Luckily, the machine can 
remember such rules. The machine can also enforce many such rules. Those rules which can 
be enforced mechanically are rules we can tell whether we have broken. For example, rather 
than thinking we have a linguistically portable program, we can know it is portable. 

This paper is about those rules of programming which can be mechanically verified by 
existing software tools. Such rules and tools form a very successful methodology for program­
ming. 

and Tools 

In this section, some rules of the programming game are given and the tools which sup~ 
port them are described. 

Portability 

This is a fundamental rule which guarantees maximal impact at minimal cost by making a 
program developed on one machine available to "all" machines. This exceedingly lofty goal is 
made concrete by using FORTRAN as the programming language. This rather unclean, ancient 
language is the only existing language with a subset which is supported by nearly all scientific 
computing centers. Other, prettier languages can only aspire to what FORTRAN has accom­
plished in portability. 

The PFORT [3] subset of 1966 ANSI FORTRAN is portable and the PFORT Verifier [3] 
is a program which checks a given program unit for adherence to the PFORT subset. A pro­
gram which successfully passes through the PFORT Verifier will compile on virtually any 
machine with a production FORTRAN compiler. That doesn't necessarily mean the program 
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will run correctly, only that it will compile without a hitch. 

The PFORT Verifier and the DAVE package [1] both perform checks which help ensure, 
but do not guarantee, that the program will also run correctly on all machines. For example, 
inter-program communication via calls and COMMON are checked for consistency and correct­
ness, undefined variables are flagged, etc. 

A program unit which has been passed through the PFORT Verifier and DAVE is both 
portable and syntactically correct. The program may not do what you want it to, but what it 
does do, it does correctly and consistently. 

Good Languages 

Many programmers want to tear their hair and put on sack-cloth and ashes when faced 
with programming in FORTRAN, This is indeed the penance required for obtaining portability, 
a very worthy goal. However, there is help available. The programmer need not write the 
FORTRAN personally, rather, a program will write it. This may be accomplished by using one 
of the very large number of FORTRAN pre-processor languages available. Most of these have 
an Algol-Pascal flavor with if ... else, while and other modern control structures. Writing in 
such languages is much simpler and less prone to error than writing in FORTRAN. The pre­
processor turns your nice modern program into ancient (yet vibrantly alive) FORTRAN. Only 
two pre-processors will be mentioned here, and these only because the author has 
seen them used by large populations successfully. They are Ratfor [4] and Efl [2]. If they are 
not immediately available in your shop, ask around, some useful pre-processor is nearby. Use 
it, you and your career will benefit. 

There is a devilish and useful program called STRUCT [6] which does the inverse of what 
a pre-processor does: it converts FORTRAN into Ratfor. This makes the logical structure of 
the software apparent. It also often makes errors in logic obvious. STRUCT is invaluable 
when maintaining old FORTRAN programs. Once passed through STRUCT, they are written 
in a modern language and much easier to understand and modify. STRUCT-like programs for 
other pre-processor languages are in the works. Ask around in your shop about them. 

Easier JlJeltnll!l!i 

All too often, when a program dies, its last words are something like 

ERROR IHC123 at location 123ABC. 

Even with several dictionaries andlor interpreters, such a message is usually useless. It typi­
cally means that the machine has encountered an addressing error in subprogram WOOPS. 
Why and how got into such a predicament is left woefully unsaid. The standard pro­
grammer response is to put some print statements into WOOPS and the subprogram that called 
it. 

Several computer manufacturers now offer a debugging facility, symbolic dumping, which 
makes this response unnecessary. Such symbolic dumping facilities give the chain of cans, 
from the main program, that led to the trouble. Also, for each program in the chain, all vari­
ables are listed by name and symbolic value (real, integer, ... ). This information is usually 
sufficient to diagnose and repair the problem. Thus, one run with a symbolic dump serves the 
purpose of many runs without. 

Honeywell provides this service and the Lawrence Radiation Lab at Livermore is working 
on providing it on CDC and Cray hardware. If your manufacturer doesn't support symbolic 
dumps, scream loudly until it does. 



-24-

Complete testing of a program is beyond our present capabilities. However, we can tell if 
all paths through a program have been exercised by a data set. Since the vast majority of bugs 
involve blocks of code and/or combinations of Irs not previously exercised, such information 
is invaluable. 

Leon Osterweil and Lloyd Fosdick at the University of Colorado are working on profiler 
and instrumentation packages. These flag program paths not exercised during execution, report 
execution frequency of statements, allow testing of the internal status of a program (asser­

, etc. While not yet fully complete, elements of these packages are available now. 
Another portable profiling mechanism has been described by Sande in [5]. 

A great buzz-word these days is efficiency. Use of the phrase 

"I am making the program more efficient." 

should notify the programmer's colleagues and supervision that the programmer is going to 
at the wheel, since the programmer never seems to notice. Nowhere in life is the maxim 

"If it ain't broke, don't fix it" more applicable than programming. 

The purpose of making a program more efficient is to get the correct answer faster. In 
it usually means getting the correct answer not much faster using unspeakable coding 

Even worse, sometimes it results in getting the wrong answer faster. 

There are tools - timers - that can tell whether a program is efficient, and if it is not, 
where the inefficiencies are. Many manufacturers have timing mechanisms which give both the 
local and global On and below) time spent within each subprogram, and the number of times 
each subprogram was called. The profiler [5] can also time programs, and it is portable. If no 

uses more than 30% or so of the time, then there is usually no need to change any 
one subprogram. Use a timer to find out where the run-time is being spent, and optimize 

with) only those subprograms. 

can also be used to check the computational complexity of the implemented algo­
rithm. If the algorithm is, say, Gaussian elimination for dense, general 11 by 11 matrices, then it 
should run in ) time. Running and timing the program with n = 1,2,4,8,16, ... will 

it behaves as it should. 

3. Corlldl!llsion: the Tools do it 

The following programming paradigm lets the tools do their job for you. It has been used 
very by a number of mathematical programming groups. 

Write the program in RATFOR, EFL, .... 

Put it through the PFORT verifier and/or DAVE to check inter-program communi­
cations. 

using symbolic dumps. 

Test using Profilers and Instrumenters. 

Timers and Profilers, find out where the run-time is being spent, and optimize 
with) only those subprograms. 

Note that each of the above steps produces a higher quality program and documents it. This 
may be referred to later (or concurrently) by the programmer, colleagues, 

and successors. 
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COMPUTER GRAPHICS SOFTWARE 

James E. George 

Mesa Graphics 

Los Alamos, NM 
Integrated Software Systems Corporation 

San Diego, CA 

Today's renewed popularity of computer graphics is 
largely due to decreasing costs and increasing capabilities 
in hardware and software, as well as a growing awareness of 
the utility of computer graphics to many applications. This 
is evident in the expanding computer graphics industry and 
the activities of ACM's Special Interest Group on Computer 
Graphics (SIGGRAPH). 

A pocket on the cover of these Proceedings contains 
a computer~generated color microfiche representing what is 
possible TODAY, not TOMORROW. All original material was 
produced on standard hardware with a variety of graphics 
software. Many of these software packages (DISSPLA, GINO-F, 
etc.) are compared in a recent SIGGRAPH Newsletter (Computer 
Graphics 12, Nos. 1 and 2, 1978). 

Generally, modern graphics software is portable 
(i.e. can be moved to various machines and is available on a 
wide range of machines) and device independent (i.e. can 
drive any graphics device even the one you have). 
Additionally, these packages are usually distributed as a 
subroutine library and thus the user must be able to program 
to utilitize them; DISSPLA and GINO-F are good examples. 

Newer products, such as TELLAGRAF and MAPPER, 
provide the naive computer user with a graphics capability 
for examining his data or creating professional quality 
illustrations. In the long run, these user-oriented 
packages will be heavily utilized for business applications 
and technical illustrations. 
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called programs, which perform well-defined tasks. In 
computational quantum chemistry it is generally agreed to 
distinguish between, for example, integral evaluation 
programs, Hartree-Fock programs, integral transformation 
programs, molecular property programs, etc. In most cases 
there exists more than one version for each of these 
programs. Some of the versions differ in the algorithm 
chosen to solve the mathematical problem. Other versions 
may di r in the computer code implementation chosen to 
optimize for different physical problems. These different 
versions of a program may be best suited for different 
applications. Each of these programs processes and 
generates lists of data. In some cases these data lists may 
become extremely large and data handling may become a severe 
problem that needs special attention. In the past, most of 
the program systems have been developed in different groups, 
independently and in parallel. They have been designed for a 
variety of different computer hardware and system software 
and have very often been optimized by making extensive use 
of certain system- dependent features. In all cases, 
different structures have been used to pass information and 
data between programs. 

The enormous progress in computer technology, in 
particular in recent years, has led to the development of 
increasingly larger and faster computer systems, as well as 
of powerful "minilY computers, both with a strongly decreased 
cost-to-performance ratio. Simultaneously the research in 
computer science has explored new ways to use these large 
and powerful computer resources more intelligently and more 
economically. Both developments have had very strong 
feedback on computational molecular physic$. The increase 
in raw computer speed has made it possible to study 
molec ar systems in better approximations and with higher 
accuracy, and to study more complex molecular systems. The 
availability of large, directly-addressable main storage and 
of randomly-accessible, large-capacity external storage has 

lowed the implementation of well-known algorithms, which 
were not feasible before, and has led to the development of 
new physical models and to solution of the related 
mathematical problems. As a consequence, physical models, 
mathematical algorithms, and computer implementations have 
become outdated faster and faster. Most groups have not 
been able to keep up with this fast development in 
computational quantum chemistry. It is therefore impossible 
to have incorporated in an individual program system all the 
major new developments over a longer period. The 

lability of reasonably-priced and powerful "mini" 
c ers has created wide interest among researchers who 
are not experts in the field of quantum chemical 
c culations in order to supplement their theoretical or 
ex rimental work. To serve these demands, a variety of 
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EXTERNAL STANDARD DATA STRUCTURES 
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G.H.F. Diercksen and W.P.Kraemer 
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D8000 Munchen 

West Germany 

Abstract 

External Standard Data Structures and I/O interface 
service functions will be described as a programming tool to 
pass data between different programs. The objective for the 
design of external standard data structures has been to 
guarantee a maximum mutual independence of the individual 
programs. The objective for the design of the I/O interface 
has been to guarantee a maximum independence of the user 
programs from the system I/O functions. The external data 
structures and I/O service functions described have been in 
use for many years in the MUNICH Molecular Program System. 
They have been found flexible, open-ended, and easy and 
convenient to use and implement in a higher-level 
programming language. 

1. Introduction 

Over the past decade, a number of large program 
systems for computation in chemistry have been developed. 
Each of these program systems involves the continuous 
efforts of a number of scientists and needs many, many years 
of work for development. It therefore constitutes a large 
investment for the contributing authors and for the 
sponsoring agencies. 

When computers became generally available about 
twenty years ago and work in the field actually started, no 
or only little experience was available about the problems 
faced in computational molecular physics and in computer 
science. The development of large program systems in 
molecular physics has led to a set of generally accepted 
standard procedures and computer implementations for solving 
the mathematical problems inherent in the physical models to 
be treated. 

Most of these large program systems can be 
separated into logically-independent modules, traditionally 



programs are necessary that 
"minill computer systems and 
the different purposes. 

can be run on the different 
can be freely combined to serve 

In view of these developments, and due to the high 
investments in computer programs, it has become strongly 
advisable to tackle the problem of program portability and 
linking. Flexible program linking can be easily achieved by 
defining standard data structures for communication and data 
transfer between different programs. Because of the large 
amount of data to be passed between some programs, these 
have to be stored on external standard data lists resident 
on some large capacity storage device other than directly 
addressable main storage. External standard data lists 
guarantee the independence of different programs within a 
program system. They allow each individual scientist to 
combine different programs according to his own needs, i.e. 
according to the problem to be studied and to the computer 
resources available. 

2. Requirements 

External standard data lists are a basic design 
feature of the MUNICH Molecular Program (MMP) System. They 
were implemented first in 1970 and have been used with great 
success since then. The external standard data lists have 
undergone a number of major modifications since being 
introduced, in particular during the early program design 
phase. The following discussion is based on our present 
experience. 

External standard data lists must be convenient and 
easy to use in order to be widely accepted as a programming 
tool. In particular, all explicit data handling, like 
writing, reading, searching, positioning, checking, copying, 
and compressing must be performed by utility routines. This 
has the advantage that all device- or system~dependent I/O 
coding is restricted to the set of utility programs, which 
greatly increases the portability of the actual programs. 
[See Figure IJ. 

We start the discussion of the detailed structure of 
the external standard data lists by specifying the following 
requirements: 

Rl •• External standard data lists have to contain all 
data and control information uniquely defining all 
data stored and the path and methodes) by which 
these data have been generated; that is, external 
standard data lists have to be self~defining. 
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R2 •• External standard data lists have to be 
identifiable INDEPENDENT of their actual position 
on the external device (data set, file, etc.). 

R3 .. External standard data lists have to be open~ended. 

R4 .• External standard data lists have to be structured 
into multi-level logical units of data. The 
logical units of data on the first level must be 
identifiable independent of their actual position, 
those on the other levels must be identifiable by 
position; that is, external standard data lists 
have to be modular. 

R5 •• External standard data lists 
compression without explicit 
content. 

have to allow 
knowledge of 

data 
the 

n6 .. External standard data lists have to be copyable 
without knowledge of the content. 

For convenience and easy reference, external 
standard data lists which fulfill the above requirements 
will be called Standard Data Interfaces eSDI's) and logical 
units of data identifiable independent of position will be 
called Standard Data Sections (SDS's). 

Some additional remarks are necessary and useful to 
clarify the formal requirements specified. As a typical 
example, we consider the Standard Data Interface containing 
the results of a Hartree-Fock calculation. Primarily one 
thinks of the results of an analytical Hartree-Fock 
calculation as the eigenvalues and eigenvectors resulting 
from the diagonalization of the Hartree-Fock matrix. But it 
is perfectly clear that these eigenvalues and eigenvectors 
are only defined with respect to the Hamiltonian operator 
the Hartree~Fock matrix has been calculated for, and within 
the orbital space the wavefunction has been expanded in. 
Therefore all data defining the Hamiltonian operator and the 
orbital space must be stored together with the eigenvalues 
and eigenvectors of the Hartree~Fock calculation to form a 
(self~defining) Standard Data Interface. All of this 
information will be necessary if the wavefunction is to be 
analyzed or to be used in some further calculation. 

On a Standard Data Interface containing the results 
of a Hartree~Fock calculation, various lists of data are 
stored which form logical units of data. Typical examples 
of these are nuclear, orbital, and electronic configuration 
parameters, eigenvalues and eigenvectors. It is necessary 
and convenient to be able to access the logically 
independent units of data separately and independently of 
their actual position on the Standard Data Interface. Each 
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of these logical units of data is therefore stored as a 
separate Standard Data Section. Some of these Standard Data 
Sections contain data referring to more than one program 
variable. For example, the list of nuclear parameters will 
contain the nuclear coordinates and the nuclear charges. In 
the present example, both lists are stored in the same 
Standard Data Section as positional data lists. 

This raises the question if individual Standard Data 
Sections, or trees of Standard Data Sections are to be 
preferred over pOSitional data lists for storing the values 
of individual, but logically strongly-related variables. In 
general, experience has shown that the creation of too many 
Standard Data Sections may cause inconveniences in the data 
handling and that storing the values of different, 
logically-connected program variables as positional data 
lists within the same Standard Data Section is preferable 
and cannot be completely avoided. In particular, trees of 
Standard Data Sections increase the inconvenience in data 
searching and positioning without offering any advantages 
over the single-level Standard Data Interface for the 
purpose of passing information between different programs. 

Standard Data Interfaces may contain extremely long 
data lists, in particular symbolic and numerical integral 
and matrix element lists. In such cases it may be necessary 
to compress the data lists in a convenient way to minimize 
the data transfer and the external storage request. Very 
elaborate data compression techniques have been developed 
for different purposes and are used at present in most large 
program systems. To restrict the data communication between 
programs to the level of protocols and I/O utility programs 
to insure optimum mutual program independence, these packing 
procedures have to be incorporated into the I/O utility 
programs and have to be reduced for practical reasons to a 
minimum number of versions. 

3. Structure 

The specified requirements for the structure of 
Standard Data Interfaces can be easily met by sequential 
data lists and the extensive use of labels. Direct-access 
data structures (not direct-access devices) have never been 
seriously considered for Standard Data Interfaces, because 
direct-access data structures are very highly 
device-dependent. Moreover, direct-access data structures 
offer no advantages over sequential data structures for 
Standard Data Interfaces that warrant this consideration in 
this context. (To avoid any misunderstanding, it will be 
recalled that the primary purpose of Standard Data 
Interfaces is the data transfer between programs.) 
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Standard Data Interfaces are completely determined 
by the definition of their logical structure, their labels, 
and their data contents. For any actual implementation, 
these definitions have to be rigorously described in 
appropriate protocols. Because this paper is restricted to 
a discussion of the basic structure of Standard Data 
Interfaces rather than to a discussion of the technical 
details of the implementation, formulation and writing down 
of rigorous protocols has been avoided. We start with the 
definition of the logical structure of Standard Data 
Interfaces. 

Dl •• A Standard Data Record (SDR) is defined as one 
logical string of alphanumeric data preceded by and 
including an SDR label (SDRL). 

D2 .• A Standard Data Section (SDS) is defined as a 
sequence of any number of Standard Data Records 
preceded by and including an SDS Label (SDSL). The 
Standard Data Section Label itself is an SDR. An 
SDS is closed indirectly by the start of the next 
SDS, or by an end-of-file mark. 

D3 •• A Standard Data Interface (SDI) is defined as a 
sequence of any number of Standard Data Sections, 
preceded by and including a SDI Label (SDIL). An 
SDI is closed indirectly by the start of the next 
SDI, or by an end-of-file mark. 

We continue by describing the structure of the 
various labels and by listing the information that has to 
become part of the labels. All information that is optional 
for the correct functioning of the Standard Data Interface 
is marked accordingly. For all information finally 
specified in the appropriate label protocols, values must be 
supplied to guarantee the correct functioning of the 
Standard Data Interface features. 

Ll •• A Standard Data Record Label (SDRL) consists of a 
fixed number of integer variables. The SDRL should 
include the following information: 

SDR Flag 
SDR # 
SDR Type 
SDR Data Length 
SDR Length 



L2 •. A Standard Data Section Label (SDSL) consists of 
one SDR identified by a unique and reserved SDR 
Flag. The SDS Label should include the following 
information: 

SDS Name 
SDS Extent # 
SDS Date and Time (optional) 
SDS Data ID 

L3 .• A Standard Data Interface Label (SDIL) consists of 
one SDS identified by a unique and reserved SDS 
Name. The SDS Label may include any number of 
SDRls called label hlocks. All of the label blocks 
have to be of identical structure and should 
include the following information: 

SDI Name 
Installation ID 
Author ID 
Computer ID 
Program ID 
Program Release # 
Program Update # 
Program Generation Date 
Date and Time 
Data ID 
Maximum External Record Size 

(optional) 
(optional) 
(optional) 
(optional) 
(optional) 

(optional) 

The meaning of most of the label information is 
self~explanatory. Obviously, the meaning and range of the 
variables, and the reserved values have to be rigorously 
defined in the appropriate protocols. We concentrate here 
on the mandatory label information; that is most important 
for the correct functioning and the sensible use of 
available facilities of Standard Data Interfaces. 

The SDR Flag variable is a key feature of the 
Standard Data Interface structure. The SDR flag is to be 
used to distinguish between SDRls containing label 
information and those containing actual problem data. The 
SDR flag is used in addition to mark the end of Standard 
Data Sections and the position of data lists in it. By use 
of the SDR flag, tree structures of Standard Data Sections 
may be constructed if this should be considered necessary at 
some time. By the sensible use of non-reserved values for 
the SDR flag, the user can build positional sublists of 
practically any complexity and any level of depth. In 
actual programming this flexibility has been found to be 
extremely useful in building logical data structures for 
defining checkpoints in Standard Data Sections. Because the 
SDR flag is used for marking the end of all data lists, it 
has not been found necessary nor useful to introduce trailer 



labels for Standard Data Sections and Interfaces. 

The SDR Type variable has been introduced to allow 
a flexible definition of different SDR types, according to 
the type of the stored data. This flexibility is of 
particular importance for the definition of SDR types 
containing data stored in non-standard formats which have to 
be converted to standard data formats (encoded/decoded) 
according to special algorithms (e.g. data compression). 

The SDR Data Length specifies the data length in 
units of the data type. The Standard Data Record length is 
calculated by the I/O utility program from the data length 
and type in some suitable units common to all SDR's. 

In actual application programming, it has been 
found most useful to have a set of SDR Label pOSitions 
reserved for the user. Such label positions are in 
particular convenient for storing additional checkpoint and 
restart information that is only of meaning within the 
generating program. Of course it may be questioned if any 
control of this kind over label pOSitions should be given to 
the user. It is advocated here that all control over the 
label that does not destroy the integrity of the Standard 
Data Interface should be left to the user. 

A SDS Extent # variable has been introduced to link 
and to distinguish between SDS's with identical names. It 
has been found necessary to introduce SDS extensions to be 
able to store data on a Standard Data Interface after the 
associated SDS has been closed by another SDS. For example, 
such situations may arise, if expectation values have to be 
calculated from the same set of wavefunctions and stored on 
the same Standard Data Interface for parameters that have 
previously not been specified. 

The SDS Name is used to identify the individual 
SDS's and therefore has to be unique. It is directly used 
by the application program to refer to the individual SDS's. 

Tpe SDI Label may contain any number of label 
blocks (SDILBK). The first label block in the list is 
called the active label block and its information refers to 
the present SDI. The other label blocks in the list are 
c led concatenated label blocks. The information in each 
of the concatenated label blocks refers to one of the SDI's 
used in constructing the present SDI. This SDI Label 
structure allows a unique description of the history of all 
data stored on the present SDI. The SDI Name of the active 
label block is used to identify the individual SDI's and 
therefore has to be unique. 
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4. I/O Interface 

It has been pointed out previously that all SDI 
handling has to be performed by calls to an appropriate I/O 
interface. This restricts all actual I/O statements which 
are generally strongly dependent on the computing 
environment to the I/O interface and thus facilitates the 
maintenance and the adoption of the SDI handling to 
different computing environments. This guarantees a maximum 
mutual independence and portability of programs. 

The following interface 
necessary and sufficient for all 
All administration of the lower 
lists has been left completely to 

functions have been found 
purposes of SDI handling. 

level SDS positional data 
the individual programs. 

The I/O interface service functions may be 
subdivided into three groups, according to the "structures" 
they act on, namely SDI, SDS, and SDR functions. These I/O 
interface service functions are summarized in the following 
list. 

Generate an SDI label block 
Locate an SDI 
Read next SDI label block 
Copy an SDI label block 

Generate an SDS label 
Locate an SDS 
Skip to next SDS 
Copy an SDS 

Write an SDR 
Read an SDR 
Copy an SDR 

(GENSDI) 
(LOCSDI) 
(RDXSDI) 
(COPSDI) 

(GENSDS) 
(LOCSDS) 
(NXTSDS) 
(COPSDS) 

(WRTSDR) 
(RDSDR) 
(COPSDR) 

These I/O Interface service functions and their 
arguments have been compiled in the following table. The 
mnemonics are expected to be self-explanatory from the 
context. 



-36~ 

Function Argument List 

GENSDI FILENO, SDINAM, SDILBK, ... 
LOCSDI FILENO, SDINAM, SDILBK, RTCODE 
RDLSDI FILENO, SDINAM, SDILBK, RTCODE 
COPSDI FILEFR, FILETO, SDINAM, SDILBK, RTCODE 

GENSDS FILENO, SDSNAM, SDSEXT 
LOCSDS FILENO, SDSNAM, SDSEXT, RTCODE 
NXTSDS FILENO, SDSNAM, SDSEXT, RTCODE 
COPSDS FILEFR, FILETO, SDSNAM, SDSEXT, RTCODE, 

BUFFER, LBUFFER 

WRTSDR FILENO, SDRFLG, SDRNO, SDRTYP, ULABEL, 
DATA, LDATA 

RDSDR FILENO, SDRFLG, SDRNO, SDRTYP, ULABEL, 
DATA, LDATA 

COPSDR FILEFR, BUFFER, LBUFFER, FILETO, RTCODE 

In addition a general utility function is needed 
that allows one to analyze and convert SDI's. This utility 
must include functions to list the contents of the SDI 
selectively in appropriate different formats and to convert 
SDI's from unformatted to formatted data structure and back, 
allowing for example data interchange between different 
computing installations. 

It has been found necessary to include into the I/O 
interface three file handling functions, namely end-of-file, 
rewind file, and skip to end-of-file. 

5. Summary 

The logical structure and function of the Standard 
Data Interfaces and the service functions of the related I/O 
interface have been described. The Standard Data Interfaces 
and the I/O interface have been implemented and used in the 
MUNICH Molecular Program System for a number of years. The 
details have been defined in the necessary protocol and are 
part of the program documentation. They have been found easy 
to implement in a higher level language (FORTRAN), flexible 
and open-ended with respect to modifications, and easy and 
convenient to use. They guarantee complete independence 
between individual programs and increase the programs' 
portability. The Standard Data Interfaces described are 
structured and contain the necessary information to serve as 
a Data Information System. For easy and convenient data 
analysis, the Standard Data Interfaces should be converted 
to and handled by a suitable and commonly-available Data 
Base Management System. 
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PORTABLE SOFTWARE 
WITH EMPHASIS ON CRYSTALLOGRAPHY 

James M. Stewart 

Department of Chemistry 
Fellow of the Computer Science Center 

University of Maryland, 
College Park, MD 20742 

I am riding on a limited express, 

One of the crack trains of the nation. 

Hurtling across the prairie into the blue 
haze and dark air 

Go fifteen all-steel coaches holding 

a thousand people. 

(All the coaches shall be scrap and rust 
and all the men and women laughing 

in the diners and sleepers shall pass to ashes.) 

I ask a man in the smoker where he 
is going, and he answers "Omaha". 

This 
perspective the 
sessions. 

HLimitedl! by Carl Sandberg 

quotation is 
philosophical 

an attempt 
discussions 

to put into 
of the morning 

The subject I wish to address now, in addition to 
philosophy is the nitty-gritty of our experience with and 
our proposed methods of preparing transportable software. 
Mind you, not so much of the nitty-gritty that I get into an 
altercation of the kind that Diercksen ended in. He 
established that, if you reveal too much about what you've 
done in computing, people immediately are able to get to 
you. Even knowing that, I will not try to conceal all the 
details of what we have accomplished and that we hope to 
accomplish in the future. 

The XRAY system is a set of programs that has been 



produced in a number of editions. The codes extend back to 
1960. There was an XRAY63, XRAY70, XRAY73 and the latest is 
called XRAY76. These codes run on a variety of machines. 
They are written in what we call PIDGIN FORTRAN. PIDGIN 
FORTRAN used our experience in the frustration of moving 
from machine to machine to simulate PFORT. There were a 
number of us at the University of Washington in the early 
days who were involved first on the IBM 604, then the IBM 
650 and finally, before we graduated and were dispersed, on 
the IBM 709. When all the effort had been applied it came to 
my attention that I didn't have access to a 709 anymore, but 
that we had written codes that were very specific to the 
709. I discovered that probably, and it proved to be true, 
we would never get back in our lifetimes machine time 
savings corresponding to the time and care lavished on the 
machine language coding done on the IBM 709. We had created 
some really remarkable codes that had a half~life of a year 
or so that had taken about two years to get to work the 
first time. 

Thus PIDGIN FORTRAN was evolved as we scrambled to 
recode our first efforts so they would run on our CDC, 
UNIVAC, HONEYWELL, IBM, ICL, DEC and other machines we found 
in our new surroundings. 

Now with the announcement of FORTRAN 77 I have 
realized that we are on the threshold of another upheaval in 
coding. The changes which have been presented in the 
earlier papers today portend greater changes than those that 
occurred when we went from machine language to FORTRAN II. 
In fact, it is sufficiently different that we must decide 
how we are going to move to preserve our libraries of 
application programs in a manner that will give us 
continuity. The continuity that we gain should then conserve 
our programming effort and allow us to move forward to more 
demanding problems rather than being put back to square one 
every time a new generation of computers and computer 
software come to pass. 

To accomplish this goal in crystallographic 
programming we have defined a new system, which we call 
XTAL. The coding for this system is being carried out in 
RATMAC which is a FORTRAN based preprocessor. 

We agree very strongly with the previous 
presentations at this meetings that this is the way that we, 
as working scientists can preserve our software. We believe 
that this method of coding can give us a library of 
checked-out programs that will tend to remain checked-out. 

Now choosing a preprocessor, I think, is a kind of 
social problem. It has all kinds of ramifications. Everyone 



who once has chosen or written his own preprocessor will 
naturally favor that one. The previous speaker pointed out 
there were 60 or more in existence. I didn't realize there 
were so many. We stumbled into RATFOR by Kernighan and 
Plauger because of the book Software Tools, and very quickly 
came to favor it. 

Bob Munn, who workS, as I do, at the University of 
Maryland got a copy of the Kernighan and Plauger book and 
brought it to my attention. (Those of you who believe in 
other preprocessors will enjoy punching out on him after 
this presentation.) I found Software Tools to be a lovely 
thing: it is really a fine preprocessor for the kinds of 
things we wish to accomplish in writing XTAL. The most 
important feature that it has is the MACRO function. Bob 
combined the macro function with the RATFOR preprocessor and 
made the whole a one pass preprocessor RATMAC. 

Now I must confess that I can look at structured 
programming and I can take it or leave it. I do not 
believe, as I mentioned during a previous presentation, that 
structured programming helps the programmer. It may help 
improve the quality of programs: it may help make the 
FORTRAN optimizer look good, it may make it easier to debug 
or to correct. But it puts constraints on the programmer 
that force him to work harder than before to get it right 
the first time. As a matter of fact the first time Jim 
Holden and I tried to write a line counting routine we spent 
an inordinate amount of time because we couldn't believe 
that "you can't go back". It was just illogical after 20 
years of FORTRAN programming. We finally realized that you 
sometimes have to make the same statement twice in a program 
and that that was an overhead of structured programming to 
be lived with. 

As we knuckled under to the additional 
constraints, however, we found that many of our old codes 
became more compact as the structured discipline became 
clearer to us. 

We 
really trash, 
view it puts 
a compact and 

discovered in our old codes things which were 
and when analyzed from the !!top-down" point of 
the disCipline on one to produce the result in 
flowing way. 

What really turned us on, however, was the MACRO 
processor. This is a thing that you can live with if 
portability is your goal. This is because we can set up 
MACROS which contain all the kinds of statements we know 
cause difficulty in moving from machine to machine. 

Either by running codes through PFORT or by the 



experience of moving codes from machine to machine we know 
that there is a subset of FORTRAN for every version which is 
not transportable to other machines. The use of MACROS for 
these !1 controversial" FORTRAN statements allows pushing them 
back one level. The problems of READ and WRITE, how many 
bits in a word, how many words in an I/O buffer length, can 
all be specified in MACROS. We then write our RATMAC 
programs to use the MACROS and adapt just the MACROS at each 
new installation. We have also created a set of subroutines 
which are structured on these MACROS and carry out the 
function of a sub~monitor of any operating system. We call 
these subroutines the NUCLEUS of the XTAL system. These are 
!!primitives" which handle I/O, word packing, bit 
manipulation, etc, etc. 

If the MACROS are properly tuned we have at once 
general transportable FORTRAN code and machine specific, 
operating system tailored code! I ! 

For example on the debate that occurred after Dr. 
Diercksen's presentation: you tune the MACROS to give 508 
words per binary read~write if you're running on CDC, to 
1024 on certain IBM systems, or whatever will be most 
efficient at a given shop. You can either specify in the 
MACROS that the writer will be FORTRAN READS or WRITES if 
you set the MACROS that way, or you can invoke an "executive 
requestll on the given machine and avoid the FORTRAN library 
completely where that is advantageous. The MACROS give us 
that kind of flexibility. 

We have, as an underlying principle in XTAL 
defined a crystallographic data base. The methodology is 
very similar to that presented here earlier. The data base 
must contain those physical quantities which 
crystallographers really need to use in the solution, 
refinement, and publication of single crystal structures. I 
believe the nature, contents and structure of data bases is 
the point about which there is the most hope for agreement. 
It should be possible to agree on the structure and contents 
of a data base. Furthermore if the work is done carefully, 
the data base should be open~ended enough that it can be 
expanded in the future to take care of oversights in the 
present. 

The crystallographers met at the University of 
California at La Jolla earlier this year and tried to see 
what could be done about the point now raised in this 
conference. The greatest agreement was reached on what 
quantities are needed in a crystallographic data base and on 
a fairly universal way of creating it. We are now writing a 
set of programs in RATMAC for creating such a data base for 
crys lographic data processing. The working programs are 



written in RATMAC and draw on MACROS and the nucleus 
subroutines to read, °massage' and write the data base. 

When we wrote in PIDGIN FORTRAN, we did what I saw 
on a slide show in a previous presentation. We put in 
comments which said, in effect, "This is a machine specific 
F'ORTRAN statement" or "This is machine specific as all hell; 
use it at your own risk". Then we might supply in the 
comments some hints as to what you might do on your HITACHI 
or TELEFUNKEN and left it at that. This presents a real 
problem since every week or so we had to find these special 
comments and add new ones that said 11360 level H compiler 
can't cope with this statement" or that sort of thing. We 
obviously wanted to get away from that by turning to RATMAC. 

The next part of this talk is to say something 
about RATMAC since it is clear from what has gone before 
that not everyone is familiar with Kernighan and Plauger or 
Munn's work in setting up RATMAC for us to use in developing 
XTAL. 

RATMAC comes from "RATional fortran with MACros". 
And it is the son/daughter of RATFOR and MACRO. The loop 
structures that are used in RATFOR are very similar to the 
ones described earlier today. Computer scientists are 
always searching for new forms. They have tenure 
conSiderations, too. You heard a chemist ask IIwhy can't we 
just have FORTRAN IV and be done with it? What's all this 
FORTRAN 77 nonsense?" 

This feeling tends to be very strong among those 
of us who do applications programming. 

RATMAC nee RATFOR as a structured language uses 
brackets { } as its means of defining blocks of code; thus 
one says 

FOR (I = 1; I.LE.IOO; I = I + 1) 
{ 

<statement block> 
} 

The range of the FOR statement is defined by the open and 
close curly brackets. Similar to FORTRAN you write 

DO J :: 1, 100 
{ 
<statements of DO loop> 
} 

We have prepared in addition to the excellent 
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Software Tools by Kernighan and Plauger a RATMAC primer 
TR-B04 of the Computer Science Center of the University of 
Maryland. 

statement 
including 
statement 
compiler. 

What the preprocessor does is to change the 
blocks into the FORTRAN code by additionally 

the appropriate GO TO's and CONTINUE's with their 
numbers which may be passed to the local FORTRAN 

One particularly attractive feature of the 
preprocessor is the "free form". That is, unlike FORTRAN, 
you simply type anywhere on the line, and comments separated 
by a special character can be placed right on the line with 
the statement. 

Another feature of RATMAC which is useful is the 
fact that it recognizes digraphs. These allow the extension 
of special characters to machines which do not allow certain 
special characters. The curly brackets required to define 
statement blocks do not exist on an 026 keypunch. I still 
work in the horse and buggy era with a keypunch. I don't 
have a fancy terminal like Munn has. His is even hard-wired 
to the 1108 concentratorl What he has provided for us dark 
agers is a digraph $( is seen as § while $) is seen as t. 
So I can use my keypunch and he can use his super terminal 
and RATMAC copes just fine. 

The MACRO's are the useful software tool as far as 
portability is concerned. They allow the replacement of a 
simple string with a much different FORTRAN statement. A 
MACRO may, furthermore, have up to nine arguments. 

MACRO:(MXBTWD:,60) # on CDC 
MACRO: (MXBTWD: ,32) # on IBM or VAX 
MACRO:(MXBTWD:,36) # on UNIVAC 

This allows simple substitution in the RATMAC code where the 
bits-per-word is important. 

A more powerful example of MACRO use is in 
some function such as word packing. The RATMAC statement 

INTPAK:(I,W,10,5) 

means move the low-order 5 bits of integer I into bits 14, 
13, 12, 11, 10 of real W. The MACRO: INTPAK: looks like 
this on CDC: 

MACRO: (INTPAK:, [$2 = SHIFT(SHIFT(MASK($4),$4) $# 
.AND.$1,$3).OR.(.NOT.SHIFT(MASK($4),$3+$4).AND.$2)])# 



while on UNIVAC it would look like: 

MACRO: (INTPAK:,[KIK = 36-$3-$4; FLD(KIK,$4,$2) = $lJ)# 

These examples are just intended to hint at the 
power of this preprocessor and to show how it gives one the 
power to do those things which at once generalize the code 
at the programming level, and then make it specific when it 
is passed to the local FORTRAN compiler. 

There are a good number of built-in MACROS that 
are described in Software Tools that give one many excellent 
f~atures to use in forming general transportable code. The 
following example taken from the XTAL system shows what a 
RATMAC program looks like in our interpretation of the 
language. I hope it's well enough commented so that one may 
get the flavor of the method. Remember that each string 
that ends with a colon (:) invokes a MACRO, none of which 
are shown here. 
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'# 
'# 

SUBROUTINE 
SYSCOM: 

AA08(NSP,HEADER,LGH,KEY,PR)'# 
LINE OUTPUTTER AND PAGINATOR 
NSP""SPACES BEFORE FIRST LINEOUT 
KEY""1 OP HEAD CONDIT./BUFF NOW 
KEY"'2 HEAD AND BUFFER NOW INTEGER K,NSP,LEN,KEY,LGH,PR 

CHARACTER: HEADER(l) 
REAL FMT(2) 
DATA F~1T/340313., 380313.1 

IF(PR.LE.OTPRMX) 
$( # 
LEN ~ MINO(LGH,IOCHR:) 

IF«KEY.EQ.l).AND.(LINRM.GT.O» K~2 
ELSE IF«KEY.EQ.2).AND.(LEN.GT.0» K~2 
ELSE K=l 

IF«LINCT~NSP-K.LT.O).OR. 
(LINCT.LT.LINRM» 

$ ( # 
LINCT '" MXLNPG: 
NEXTPAGE: 
MPAGE =MPAGE+l ;NPAGE =NPAGE+l 
BFOTFP(l)""MPAGE ;BFOTFP(2)=NPAGE 
NCODEFLD:(BFOTFP,1,BFTITL,FMT,2) 
LINEOUT:(PR ,BFTITL,IOCHR:) 
LINEFMT: 
LINEOUT:(PR ,BLNKWD,l) 
LINCT ~ LINCT-2 
IF(LEN.GT.O) 
$ ( # 
LINCT = LINCT~l 
LINEOUT:(PR,HEADER,LEN) 
$) # 
IF(KEY.LE.2) LINCT "" LINCT-l 
$) # 

ELSE 
$ ( # 
LINCT "" LINCT-NSP-K 
POR(K"'l; K.LE.NSP; K"'K+l) 
LINEOUT:(PR,BLNKWD,l) 
IF«LINRM.GT.O).OR.(KEY.GE.2» 
$ ( # 
IF(LEN.GT.O) # 
LINEOUT:(PR,HEADER,LEN) 
ELSE LINCT "" LINCT + 1 # 
$) '# 
IF(KEY.EQ.l) LINRM "" 0 # 
ELSE LINRM "" MAXO(LINRM-K-NSP,O) # 
$) # 

'# 
'# 
'# 
'# 
# 
'# 
# 

KEY"'3 OP HEADER ONLY NOW 
PR "" REQUESTED OUTPUT PRIORITY 
HALL, STEWART SEPT. 1978 

IS PRIORITY ACCEPTABLE 

# SET LINE LENGTH 
# 
# 
# 
# 
# 
# 
# 

SET NO. OF LINES TO BE OUTPUT 
SET NO. OF LINES TO BE OUTPUT 
SET NO. OF LINES TO BE OUTPUT 

TEST IF SUFFICIENT LINES LEFT 
OR EXCEEDS PRESET LINEROO~l CNT 

# RESET LINE COUNT 
# SKIP TO TOP OF NEXT PAGE 
# INCR. CURRENT/TOTAL PAGE COUNTS 
# STORE IN OUTPUT BUFFER 
# PUT PAGE COUNTS IN TITLE LINE 
# PRINT THE PAGE HEADING 
# FORMAT FOR LINEOUT: 
# PRINT A BLANK LINE 
# DECRENENT LINE COUNTER 
# TEST IF HEADER TO BE PRINTED 

# DECREMENT LINE COUNT 
# PRINT THE HEADER INFORMATION 

# ANTICIPATE BFOTLN LINE OUTPUT 

# 
# IF NOT A NEW PAGE 

# DECREMENT LINE COUNTER 
# GENERATE SPECIFIED BLANK LINES 
# PRINT A BLANK LINE 
# TEST IF HEADER TO BE FORCED 

# PRINT THE HEADER INFORMATION 

# 

RESET LINRM COUNTER 
RESET LINR~l COUNTER 
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IF(KEY.LE.2) # TEST IF LINE BUFFER OUTPUT 
$ ( # 
LINEOUT:(PR BFOTLN,10CHR:) # PRINT THE OUTPUT CHAR BUFFER 
MOVEBYTE:(BLNKWD,l,BFOTLN,l,MXCHLN:,l) # BLANK OUTPUT BUFFER 
$) # # 
$) # # 
RETURN # 
END # 
SYSTEMHEADER: (DR04) # 
SUBROUTINE DR04(ARG,Tl,T2,RESULT) # 
# SUBROUTINE DR04 MAKES A FOUR POINT INTERPOLATION OF SCATTERING FACTORS 
# FROM TABLES, ARG IS SIN THETA OVER LAMBDA, RESULT IS F(J) BASED ON 
# XRAY76 PROGRAM RDIN OF S OCT 1968, THE TABLE Tl MUST EXTEND 3 ENTRIES 
# BEYOND THE GREATEST VALUE OF ARGUMENT USED. (CAVEAT: CALLING PROGRAM# 
# MUST ASSURE THIS CONDITION) # 
# NO PRESUMPTION ON INTERVAL STEPS OF TABLES 
# # 
# 22 JUNE 1978 J,M,STEWART ANDR,DOHERTY 
REAL ARG,RESULT,Tl(SO),T2(SO),DIF(S),SMALL # 
INTEGER K,I,J # 
DATA SMALL/O ,0001/ # 
K ~ 1 # 
WHILE(ARG,GT.T1(K» K~K+1 # SEARCH FORWARD UNTIL ARGUtlENT 

# IS LOCATED IN SIN THETA OVER 
# LAMBDA TABLE, AT THIS POINT 
# Tl(K) IS VALUE GREATER THAN OR 
# EQUAL TO ARG, SO BACK OFF ON K 

IF(ABS(ARG-Tl(K»>SMALL) # AVOID CLOSE ENCOUNTERS OF THE 
$( # 

K '" K-l 

FOR(I=l; 1<"'3; 1=1+1) 
$( # 
J '" K+I 
DIF(I)"'(T2(K)*(Tl(J)-ARG)-T2(J)* 
(Tl(K)-ARG»/(Tl(J)-Tl(K» 

# FIRST KIND 
# THE ARGUMENT IS IN THE INTERVAL 
# Tl(K) TO Tl(K+l) 
# 

# 
$# 

# 
$) # 
DIF(4)=(D1F(1)*(Tl(K+2)-ARG)-DIF(2)* $# 
(Tl(K+l)-ARG»/(Tl(K+2)-Tl(K+l» # 
DIF(S)=(DIF(1)*(Tl(K+3)-ARG)-DIF(3)* $# 
(Tl(K+l)-ARG»/(Tl(K+3)-Tl(K+l» # 
RESULT=(DIF(4)*(Tl(K+3)-ARG)-DIF(S)* $# 
(Tl(K+2)-ARG»/(Tl(K+3)-Tl(K+2» # 
$) # 
ELSE RESULT = T2(K) 
RETURN 
END 

# 
# 
# 
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In summary I wish to say that both RATMAC and XTAL 
are quite portable. We supply RATMAC and XTAL in a magnetic 
tape. It can be bootstrapped and then tuned to the local 
computer. 

It's portable. It's optimizable. It's small. 
RATMAC is under 9K words. The XTAL system is shooting for 
7K words plus data arrays which will be problem size 
dependent. (Speaking in an overlap sense, not a virtual 
memory sense!) 

All in all, I'm enthusiastic about the method, and 
I hope others will see merit in it, too. 

For those of you who are not convinced about these 
matter, I will leave you with the following refrain from 
Pope: 

Vice is a creature of such horrid mien, 
as needs be hated, needs be seen. 

But seen too oft, 
familiar with her face, 

we first endure, 
then pity, 

then embrace! 
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REPORT OF WG1 

PORTABILITY CONSIDERATIONS AND STANDARDS 

There was little disagreement among the 
participants that FORTRAN is now, and will be for quite some 
time, the major language in which chemical software is 
written. The primary concern of Working Group 1 was the 
shifting standards of the FORTRAN language. Without a 
stable world-wide language base, portability becomes not 
simply difficult, it becomes impossible. Therefore, the 
group unanimously agreed that the NRCC should sponsor a 
member of the ANSI X3J3 FORTRAN Standards Committee. This 
person should be an effective lobbyist, willing to spend a 
significant amount of time protecting the interests of 
computational chemists. Among these interests is the strict 
preservation of upward compatibility in the language, 
including common current practices not included in the 1966 
Standard. There is considerable concern that the 1977 
Standard has violated this principle. 

A subcommittee was set up to evaluate other areas 
of concern and their report is attached. In addition, two 
other reports were submitted and are included. 

Concerning preparation of portable programs, two 
areas were addressed: tools to prepare and maintain portable 
code, and the use of standard libraries. 

The group recommends that the NRCC support and 
distribute a macro preprocessor to handle machine 
dependencies. The facilities offered by preprocessor macros 
for the definition of machine-dependent constants should 
also be available via SUBROUTINE or FUNCTION calls. The 
selection of the actual preprocessor was left to the NRCC. 
[Editors' hote: Working Group 6 has made a specific 
recommendation to the NRCC on this topic.] 

The group also recommended that the NRCC acquire 
portable software maintenance tools, although there was 
considerable concern that such tools would be used to alter 
and distribute "unauthorized" versions of programs. 

Finally, many computational chemists are unaware of 
many of the conversion and certification aids available to 
assist in producing portable code. To assist the general 
chemistry community in this area, it is recommended that the 



NRCC prepare a short annotated list of software tools 
currently in use, and indicate where they may be obtained. 
Appropriate places to publish may be Chemical and 
Engineering News and Physics Today. 

With respect to the use of standard libraries, it 
is recommended that the NRCC support and encourage the use 
of LINPACK, EISPACK, and the Basic Linear Algebra 
Subroutines (BLAS). The use of generic names that do not 
specify preclslon is also recommended. This means that S 
and D prefix letters in the BLAS would be changed to R (for 
Real). 

The need for standard routines providing 
direct~access usage is recognized. A subcommittee to 
develop a series of standard calls was established, and 
their report will be included in the Conference Proceedings. 

WG1 Chairman 
Stephen Elbert 

SUBCOMMITTEE REPORT 1 

The purpose of standards is to enhance portability 
and unify common usage. The effect of the revised 1977 ANSI 
FORTRAN Standard (and future planned enhancements) is to 
continually change the nature of FORTRAN 66. Working 
chemists need a stable language in which changes are upward 
compatible. We would like the NRCC to support the 
continuing of FORTRAN 66, and support the position that 
future reVlSlons be upward compatible from FORTRAN 66. 
Upward compatible enhancements that we would like added are: 

1) End~of-file checking on READ statements 

2) Uniform direct-access of files 

3) Quotes to define Hollerith data, as well as nnH ..• 
character counting 

4) ENCODE/DECODE in some form 
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In addition, we wish to reiterate that the 
Hollerith data type should be kept. The NRCC should contact 
the American National Standards Committee (X3J3) and make 
this view known. This simple language (FORTRAN 66) should be 
kept simple. 

Subcommittee on FORTRAN of WG1 
[report accepted by entire WG1] 
Lawrence Andrews and Norman Schryer 

POSITION PAPER ON PROGRAMMING LANGUAGES 

We suggest that the NRCC, as a representative of 
the chemical computing community, monitor attempts to 
standardize or define programming languages. We have 
specific interests to be protected in this field, in common 
with some other VERY large users. For our purposes, a 
usable programming language MUST have the following standard 
features: 

1) Full support of double precision, complex, and double 
precision complex data 

2) Variable dimensions in procedure arguments 

3) Separately compiled procedures 

4) Direct-access I/O 

5) Efficient processing of simple indexed loops 

In addition to the above mandatory features, we would like 
to see such things as: 

1 ) Structured code 

2) Structured data 

3 ) Packed data 

4) Dynamic storage 



It is so very important that we do not lose 
ground in this area. We strongly recommend that any changes 
to the FORTRAN standard be upward compatible. The proposed 
FORTRAN 77 standard is a major problem in this respect. 
NRCC could pOint out, both to the ANSI Standards Committee 
X3J3 and to other major users such as DOE and the National 
Laboratories, the millions of dollars and the man-years that 
will be required to convert existing major programs to 
FORTRAN 77. 

Lynn TenEyck 

POSITION PAPER ON FORTRAN 

of FORTRAN makes it 
the language of choice 

time. While upward 
the language evolves, 
certain features not 

The universal availability 
likely that this language will remain 
for chemical computing for a long 
compatibility must be maintained as 
modern programming techniques require 
envisioned in the original definition 
and evaluation of some possible FORTRAN 

of FORTRAN. A list 
extensions follows. 

ESSENTIAL 

1) Upward compatibility with the 1966 FORTRAN ANSI Standard 

2) Data structures and arrays of structures 

3) Character string variable type 
(move and compare, at least). 
between character strings and 
helpful (e.g. ENCODE/DECODE). 

4) Bit manipulation primitives 

and associated operators 
Facilities for conversion 

other types would also be 

5) Dynamic allocation of central memory 

DESIRABLE 

1) Control structures 

2) Declaration of precision in terms of digits of accuracy 

3) Vector, matrix zero, move, multiply primitives 



UNDESIRABLE 

1) Multiple ENTRY 

2) Extended range of a DO 

George N. Reeke, Jr. 
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REPORT OF WG2 

CODING AND DOCUMENTATION STANDARDS 

The discussions of Working Group 2 led to the 
following conclusions and recommendations. 

1. NRCC should acquire, use, promote, and evaluate the 
FORTRAN preprocessors RATFOR/RATMAC and SFTRAN3. All 
the participants in this meeting familiar with these 
systems strongly recommend them as valuable tools for 
the production of high-quality, portable scientific 
software. 

2. Editors, document formatters, and word processors are 
also valuable but, as these are frequently provided with 
the local system, there is less need for NRCC to become 

,involved in providing standard tools for the chemical 
community. (The group did not discuss other software 
maintenance tools such as update systems.) 

3. As much of the documentation as possible should be 
machine readable. Use of the full ASCII character set, 
particularly lower case letters, is to be encouraged, 
although this may lead to portability problems, 
particularly where CDC machines are involved. It is 
strongly recommended that an external, hard-COPY 
description of the character set used accompany 
distribution tapes. This might also be included in 
comments at the beginning of the listing. 

4. Documentation continues to be inadequate, partly because 
professional recognition commensurate with the amount of 
effort required for good documentation is rare. "You 
can't put a program write-up on your vita." 

Formal, detailed documentation standards or guidelines 
would do little to alleviate the problem, and might 
actually aggravate it in some cases. 

However, good documentation should certainly be 
encouraged. We recommend that NRCC refuse to distribute 
programs that do not have at least minimal documentation 
including: 

(a) what does it do 
(b) description of input 
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(c) description of output 
Cd) an example 
(e) restrictions and limitations of problem 

scope and size 
(f) computer type and resources required 

5. It is recommended that NRCC form a committee to specify 
primitives for bit and character manipulation. This 
committee might well find that satisfactory 
specifications have already been made by other 
professional groups, particularly the "Purdue Workshop" 
of the Process Control Society. 

6. Use of the matrix software collections EISPACK and 
LINPACK and the related vector software YiBasic Linear 
Algebra Subprogramsll (BLAS) is recommended. These are 
described in more detail in the paper by Moler in these 
workshop proceedings. The source code for all three 
collections is available through the mathematical 
software distribution service of IMSL, International 
Mathematical and Statistical Libraries, in Houston. 
EISPACK and LINPACK are also available to institutions 
with Department of Energy connections through the 
National Energy Software Center at Argonne. 

7. NRCC should publish a list of useful software available 
from other sources. An NRCC Newsletter article on the 
software tools available with the UNIX operating system 
would also be valuable. 

8. NRCC should represent the interests of chemists to the 
FORTRAN standards committee. 

9. The documentation, distribution, and maintenance of 
modified software was discussed at length, but no firm 
conclusions were reached. Several people felt that the 
computing chemistry community has been lax in reporting 
modifications of software to the original authors. 
Others felt strongly that the original author, or a 
properly delegated representative, should be the sole 
distributor of modifications and documentation, but not 
everyone agreed. 

WG2 Chairman 
Cleve Moler 
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REPORT OF WG3 

HARDWARE GUIDELINES FOR PROGRAM PORTABILITY 

The discussions of Working Group 3 concerned 
hardware requirements for quantum chemistry and 
crystallographic computations. In particular, an attempt was 
made to specify a practical "minimal program environment'! 
for FORTRAN program portability. For example: how much main 
memory should a programmer assume he has to work with? How 
much disk space and what type of access method is needed? 
What level of precision is appropriate for his problem? 

Answers to these questions will largely determine 
the practical portability of apparently portable programs 
(e.g., those that have passed a PFORT test). 

Many syntactically~portable programs are not 
portable in practice because of their lavish and inflexible 
use of resources. Such practices as fixing dimensions of 
arrays at their maximum values rather than using dynamic 
dimensioning, ignoring the possibility of exponent underflow 
or overflow on machines having limited exponent ranges, and 
wasteful use of disk storage severely, and usually 
needlessly, limit the utility of many programs. 

Ideally, programs should adjust to their 
environment, and there are techniques existing to facilitate 
this. Probably the most important is run-time dynamic 
storage allocation, which allows a program to adjust its 
memory requirements on the basis of information supplied at 
run time rather than compile time. Such programs tend to 
handle both small and large problems efficiently. Similarly, 
disk space requirements can be minimized by using various, 
usually problem-dependent, data compression methods. 

Separate hardware recommendations are given below 
for quantum chemistry and crystallography because (1) the 
two disciplines have requirements disparate from others in 
the field, and (2) much small molecule work in 
crystallography is done on private 16-bit minicomputers 
while essentially all ab initio quantum calculations are 
carried out on 32-bit or larger machines (operating largely 
in a timesharing mode during prime time, and in a batch mode 
at other times). 



The working group felt that its recommended 
"minimums ll would not be unduly restrictive or cause 
inefficiency, PROVIDED one started with the constraints 
clearly in mind. It was recognized that for algorithms which 
cannot be efficiently implemented under these restrictions, 
a lesser degree of portability has to be accepted. In most 
cases, however, several alternative implementations are 
possible: the preferred one uses the least resources, and 
thus stands the best chance of being portable. 

Due to a shortage of time, the committee did not 
consider the impact of special purpose hardware (such as 
array processors, vectorized functional units, and 
multiprocessor configurations) on program portability. 

MINIMAL HARDWARE CONFIGURATIONS FOR PROGRAM PORTABILITY 

1. DIRECTLY~ADDRESSABLE REAL MEMORY: 

QC Programs should run in less than 32K working precision 
words (256K bytes on byte-oriented machines). 24K would 
be even more desirable if the program is to be used in 
a timesharing environment and if reasonable turnaround 
is expected. When more memory is available programs 
should be able to use it effectively, either to 
increase the efficiency of the calculation, or to 
handle larger problems. 

CR - 65K bytes (or 32K 16-bit words) for small molecule work 
(100 atoms or less). For large molecules, 256K bytes 
should be adequate. 

2. MEMORY ORGANIZATION: 

a) Virtual memory ~ for portability, virtual memory should 
equal real memory. This is in contrast to the usual 
rule of thumb "working set memory size equals real 
memory size" that applies for efficient program 
execution. To facilitate transporting to non-virtual 
environments, a segment or overlay loader approach to 
memory management is strongly recommended even if a 
segment loader is not available (e.g., the VAX 11/780). 
Alternatively, a job step form of memory management 
should be used. 

b) Multilevel memory - a one-level memory organization is 
preferred, since only CDC uses the two-level, large 
core-small core (LCM-SCM) organization. Present CDC 
FORTRAN compilers require explicit allocation of 
variables to LCM which presents problems with respect 
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to both portability and dynamic storage allocation. 
However, in many cases one can avoid explicit 
random~access references to LCM and use it almost as 
effectively as a zero-access time I/O device, which is 
an intrinsically more portable form of use. 

3. FLOATING POINT WORD LENGTH: 

QC A 32-bit floating-point format is completely 
unacceptable for most ab initio computations. Double 
precision should be standard for real variables for all 
IBM~like hardware. The 48-bit floating point of Harris 
computers is adequate -- indeed, perhaps optimum 
while the 36-bit single precision of DEC-IO/20, Univac, 
etc., is usable only with extreme care. Semiempirical 
and empirical models can usually be computed quite 
satisfactorily with 32-bit single precision 
floating-point arithmetic. 

CR - 32-bit floating point is generally adequate. 

4. FLOATING POINT EXPONENT RANGE: 

QC - Algorithms should be designed for an exponent-of-ten 
range of approximately +/-37, i.e., an 8-bit exponent 
field, since this old obsolete IBM format is still in 
wide use. The newest machine of consequence to use this 
format is the VAX 11/780. Exponent overflow and 
underflow are seldom problems on CDC hardware, and only 
occasionally cause problems on IBM systems. They 
continue to be a problem on other short word length 
machines, however. 

CR - A similar recommendation applies, but in practice 
exponent problems seldom arise. 

5. ROUNDING VS. NO ROUNDING FOR FLOATING POINT OPERATIONS: 

60-64 bit - Rounding preferred but not of much importance in 
practice due to the high precision being used. 

32-36 bit - Rounding highly desirable but not generally 
available. 

6. INTEGER WORD LENGTH: 

QC 32 bits is optimum (determined by IBM-like 
architectures). Integers greater than 32 bits should 
not be used on machines with longer word lengths (CDC, 
Harris, Univac, DEC-IO/20). A 16-bit integer, though 
feaSible, would be extremely wasteful of memory on long 
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word length machines and is therefore also not 
recommended. Further, most FORTRAN compilers for the 
larger 16~bit minicomputers now support a long integer 
format (INTEGER*4). However, if the compiler supports 
a short integer which is adequate for some purposes, 
and if storage is at a premium, then it may be used. 
This may detract from the portability of the code. 

CR ~ 16-bit signed is generally acceptable on smaller 
systems. A 32-bit integer is preferred for large 
molecule work. 

7. AMOUNT OF DISK SPACE AVAILABLE AS LOCAL FILE SPACE FOR AN 
EXECUTING JOB: 

QC 20-30 Mbytes mlnlmum should be available. For large 
scale CI calculations, one should assume that 50~100 
Mbytes will be available. Programs should not assume 
any particular form of file organization and/or layout 
on disk for either sequential or random-access file 
types. FORTRAN sequential file I/O is highly portable, 
but direct access I/O is sufficiently non-standard that 
it still should be isolated to facilitate conversion. 
Disk storage requirements can generally be considerably 
reduced by using some form of data compression on large 
files (e.g., molecular integrals or formula tape). 
Ideally, all such compression should be localized in 
the access routines and be transparent to the user. 

CR - 1-2 Mbytes without an on-line data base. May be floppy 
based. Up to several hundred Mbytes with a full data 
base. 

8. MAGNETIC TAPE: 

QC Assume in general that tape files are first copied to 
disk before being used. That is, tapes should not be 
considered as being on-line to the program. 

CR ~ On private systems one slow drive is apt to be 
available, but its on-line use as an extension of local 
storage is apt to be awkward and non-portable. 

WG3 Chairman 
Stanley Hagstrom 
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REPORT OF WG4 

QUANTUM CHEMISTRY SOFTWARE BASE 

The initial integrated software system for quantum 
chemistry developed by the NRCC may not be optimal, since in 
the beginning compromises must be made. This natu 
tendency is aggravated by the rapid development of new 
methods and codes in such areas as multiconfiguration 
self~consistent~field (MCSCF) theory, configuration 
interaction (CI) techniques, and the coupled cluster method. 
However, the expected benefits of such a system, both to the 
computational chemistry community as a research tool and to 
the staff of the NRCC as a prototype chemistry software 
system, far outweigh the negative impacts of the 
compromises. 

The quantum chemistry software system currently in 
use falls into two separate, but indistinct, classes: (1) 
semi-empirical systems (CNDO, INDO, MINDO, Extended Huckel, 
etc.), which are based on various integral approximations 
and which assume a restricted form of the wavefunction, and 
(2) ab initio systems (MELD, ALCHEMY, GAUSS78, etc.) which 
compute all of the integrals and allow a general form for 
the wavefunction. Although the programs in these two systems 
often overlap, and duplication could be minimized if they 
were made 'plug compatible!, initially it may be best to 
maintain the historical separation of the two systems. The 
reasons for this include not only manpower limitations, but 
also the limitations of the semi~empi cal methods in using 
the more general forms of the electronic wavefunction 
available in the ab initio systems. Since the 
semi-empirical systems are usually 'complete' packages, at 
least as far as their range of validity is concerned, we 
will concentrate here on the specification of the ab initio 
system. 

Modern ab initio quantum chemistry software systems 
generally consist of two subsystems of program modules: 

(1) the MAINLINE programs, which are used to 
calculate the electronic wavefunction and which are 
usually executed in a linked sequence, and 



(2) the AUXILIARY programs, 
electronic wavefunctions to 
to plot orbitals, etc. These 
on a stand-alone basis. 

which manipulate the 
calculate properties, 
programs are often run 

Although we considered primarily the MAINLINE 
programs, we wish to stress that widespread application will 
be found only for a complete system consisting of both the 
MAINLINE and AUXILIARY subsystems, with proper communication 
links. 

The· MAINLINE Subsystem 

The first aspect of the MAINLINE subsystem 
considered was the user input/output. This is the part of 
the system that users come into contact with daily, and 
clearly it should be designed to mlnlmlze the effort 
involved in the preparation and debugging of data decks. 

The user input should be free-form to allow the 
data set to be conveniently constructed at a terminal. This 
can be accomplished in (at least) four ways, by 

(1) using the LIST-DIRECTED READ option, 

(2) using the NAMELIST option, 

(3) developing an interactive program which queries 
the user for the parameters necessary to construct 
the data set, and 

(4) special-purpose scanner build into the code. 

It is felt that the last option, the development of 
an interactive data file constructor, offers the best means 
of freeing the users from the more tedious aspects of data 
set preparation. It is not intended, however, for the data 
set constructor to define any of the parameters of the 
calculation other than the normal defaults. 

For the user output two different schemes were 
considered: (1) one file containing all of the output, and 
(2) two files, one containing a summary of the output and 
another containing all of the output. In the first scheme, 
each line of output is coded with a priority level, with the 
highest priorities being assigned to the most important 
output. The user may then use a text editor to obtain a 
listing at the terminal of only those parts of the output 
file of interest: for normal operation this may consist of 
only the highest priority output (equivalent to the summary 
output in the second scheme). However, in case of a program 
abort the user can, by specifying a lower priority, obtain 



additional output. In fact, the entire output file can be 
retrieved in this way. The entire output file is also 
printed on microfiche. This output should be in 72-column 
format. 

In 
generated: 

the second scheme, two output files are 

* a' summary file, in 72~column format, which 
contains the dayfile (job log file) and a summary 
of the results of the calculation; and 

* a full output file in 132~column format on 
microfiche, which contains all of the output of 
the calculation(s). 

In this way the user can view the summary file at a 
terminal to determine the essential results of a 
calculation, while receiving the full results at a later 
date on microfiche. This method has the disadvantage that, 
in the case of a program abort, only the summary output file 
may be available for debugging purposes. 

Let us now consider the programs involved in the 
MAINLINE subsystem, specifying the characteristics 
considered to be the most desirable in the various modules. 
Existing programs whose characteristics closely match those 
suggested, are listed at the end of the section. 

INTEGRALS Programs 

Function: To compute the one- and two-electron 
energy integrals over the basis functions. 

Characteristics should include: 

* Handling (s,p,d,f) basis functions, combining the 
components to obtain integrals over the usual d­
and f- functions. 

* Built-in standard basis sets (exponents and 
contraction coefficients). 

* Allowance for general contraction of the basis 
functions. 

* Geometry input in both cartesian and 'bond 
length-bond angle' coordinates. 
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* Capability of calculating integrals over 
effective core potentials. 

There is no 
the above features; 
features are found 
MELD programs. 

integral program which combines all of 
however, selections of all of these 
in the HONDO, BIGGMOLI and the 

SCF Programs 

Function: To compute the optimum orbitals (and 
configuration coefficients) given a particular electronic 
configuration (or a set of such configurations). 

There are three different types 
field (SCF) programs to be considered: 
generalized valence bond (GVB), and 
self-consistent-field (MCSCF). 

HARTREE-FOCK Programs 

of self-consistent 
Hartree-Fock (HF), 
multiconfiguration 

There are three general types of Hartree-Fock 
programs: 

(1) those 
format, 

using the integrals in supermatrix 

(2) those with loops driven by the integral labels, 
and 

(3) those with loops driven by the integrals 
themselves. 

Which program is optimal depends on the parameters 
(degree of symmetry, number of basis functions, etc.) of the 
calculation. Initially only one type of program [type(l) or 
(2)J should be chosen; later it may become important to add 
other types to the system. 

Characteristics should include: 

* Handling both closed and open shell cases, with a 
general spin-coupling in the latter case. 

* Use of non-orthogonal orbitals for open shell 
singlets with orbitals of the same symmetry. 

* Handling unrestricted Hartree-Fock calculations, 
with the calculation of <S**2). This will 
undoubtedly be a separate program. 



The Hartree~Fock programs in the MELD and ALCHEMY systems 
and the GVB(ONE,TWO) programs satisfy the above criteria 
(except for the use of non~orthogonal orbitals for open 
shell singlet states). 

GENERALIZED VALENCE BOND Programs 

Characteristics should include: 

* Allowing both perfect~pairing and more general 
spin-couplings. 

* Assembling all Hamiltonians in one pass on the 
integral file. 

* Allowing multiple correlating functions for each 
electron pair. 

The GVB(ONE,TWO) and SOGVB programs satisfy many of 
the above criteria. Unfortunately, they are not currently 
available from the authors. 

MULTI CONFIGURATION SELF~CONSISTENT-FIELD Programs 

Two major techniques are currently being used to 
solve the MCSCF equations: a new technique based on the 
generalized Brillouin Theorem and the conventional 
Hamiltonian technique. The techniques based on the Brillouin 
theorem should be implemented first, as they appear to avoid 
many of the problems encountered in the Hamiltonian 
techniques. A program based on the Hamiltonian approach can 
be added later. 

Characteristics should include: 

* Allowing a general configuration 
capability of generating the 
internally. 

list, with the 
configurations 

* Unique partitioning of the 'doubly occupied' 
orbitals into core and valence orbitals. 

* Calculation of the density matrix. 

The MCSCF program in ALCHEMY and the ALIS program 
essentially satisfy the above criteria. 



INTEGRAL TRANSFORMATION Programs 

Function: To transform the one~ and two~electron 
integrals over basis functions to the corresponding 
integrals over molecular orbitals. 

In its optimum form, the integral transformation 
program requires N**5 mathematical operations. Within this 
class two general subclasses can be identified: 

(1) those with N**2 memory requirements, and 

(2) those with N**3 memory requirements. 

Again, the optimum algorithm to use in a particular 
application depends on the calculational parameters, such as 
the number of basis functions and truncation of the virtual 
orbital space. Eventually, both types of programs should be 
made available. 

Characteristics should include: 

* Allowing all doubly occupied orbitals in the CI 
calculation to be transformed away. 

* Allowing for 
of integrals 
calculations. 

the calculation of only those types 
occurring in the first-order CI 

The transformation programs written by Elbert and 
by Raffenetti appear to be satisfactory, although neither 
takes advantage of the simplications which occur when 
transforming the integrals for first-order CI calculations. 
Elbert is planning to remedy this. 

CONFIGURATION INTERACTION Programs 

Function: To construct and diagonalize the 
Hamiltonian matrix over a specified set of configurations. 

Two general types of CI programs are currently in 
use. Type (a) constructs the Hamiltonian matrix from the 
configuration list, type (b) from a formula tape. Type (a) 
programs are more efficient for one-time calculations 
(constructing the formula tape can be both a time- and 
storage-consuming process); and should be implemented first. 
Type (b) programs are most efficient if a calculation is 
going to be repeated many times, say at different 
geometries. 



Characteristics should include: 

* Handling a general configuration list. 

* Providing for A(k) and/or B(k) selection. 

* Arranging the configuration list so that 
configurations can be deleted from the end of the 
list (useful for extrapolation). 

For the diagonalization step, either in~core 
(GIVENS, etc.) or out-of-core (SHAVITT, DAVIDSON) methods 
can be used. The decision on which method to use can be 
made within the program. 

The MELD and CALTECH CI programs are type (a) 
programs which satisfy most of the above criteria, while the 
CI program in ALCHEMY is of type (b). 

In addition to the above general CI programs, there 
are specialized, and highly~efficient, CI programs such as 
the direct CI programs of Roos and Siegbahn, and the 
self-consistent electron pairs program of Meyer, Dykstra, 
and Schaefer. After a general CI program has been 
implemented, these programs should be added to the system as 
soon as possible. 

PERTURBATION THEORY Programs 

Function: to calculate the many-body perturbation 
theory energy correction to some finite order. 

Typically, the programs in use are based on 
spin-unrestricted Hartree-Fock wavefunctions, and calculate 
the energy correction to second, third, or fourth order. The 
second- and third-order energy corrections can always be 
calculated fully, but in those cases of fourth order, it is 
sometimes necessary to leave out the terms requiring O(N**7) 
arithmetic operations, where N is the number of basis 
functions. Presently, the Battelle Columbus programs and 
Gaussian 78 implement these procedures. The Battelle 
programs go beyond fourth order, and could be made 
publically available. The Gaussian 78 package is organized 
so that only a partial transformation of the two-electron 
integrals need be done. Also, the program produces the 
third-order energy in the first iteration of a direct CI 
calculation. 
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COUPLED CLUSTER Programs 

The coupled cluster method is based on a molecular 
formulation of techniques first used in nuclear physics. 
Calculations are usually restricted to double substitutions, 
and are referred to as CCD. The method employs a 
wavefunction that allows for all double substitutions, 
including those simultaneous substitutions that are omitted 
in a CI with double substitutions. As in the perturbation 
procedures, CCD calculations are carried out in the 
spin-unrestricted framework for open~shell molecules. This 
method is currently implemented in Gaussian 78 and in the 
Battelle Columbus program j where single excitations are also 
included. The technique is iterative in nature, and 
requires about the same amount of effort as a direct CI 
calculation. The final CCD energy contrasts with the CI 
energy by being size-consistent but not variational. 

WG4 Chairmen 
Thorn Dunning and Stephen Binkley 
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REPORT OF WG5 

QUANTUM CHEMISTRY DATA INTERFACE 

The questions addressed by Working Group 5 were: 

1. What are the modules in a quantum electronic structure 
system? 

2. How must these modules be connected to achieve a general 
system? 

3. Where does input to each module come from? How many 
output files should it have? 

4. How can we decide on details of program coupling so that 
individual modules can be plugged together without 
rewriting the programs? 

5. Of all parts of an electronic structure calculation, 
assumptions about the organization of the two-electron 
integral tape have potentially the greatest impact on the 
program structures of individual modules. Is there any 
way to standardize the structure of the two-electron 
integral files on the standard data interfaces to avoid 
unresolvable problems? 

1. Quantum Chemistry Program Modules 

The following list of modules was determined to be 
those into which an electronic structure system could be 
divided so that standardization of communication protocols 
is a reasonable possibility. 

a) System-wide Input Module 

b) Integral Generation 

c) SCF (RHF, UHF, MCSCF, GVB) 

d) Transformation Program 

e) Post-Hartree-Fock (CI, CC, MBPT, RSPT, SCEPA) 

f) Properties, including graphics 
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2. Order of Module Execution 

Standard interfaces betweenmodules must provide 
for the execution of programs in normal order: 

Input~>Integrals->SCF->Transformation->Post-HF->Properties 

as well as loop 
optimized: 

modes in which basis functions are 

------,.,...-
t t ;----~---, 

I 
I 

I ! 
Input->Integrals->SCF->Transformation->Post-HF->Properties 

~ , 
L __ + ___ I 

3. Module Input/Output 

Standard interfaces between modules will consist of 
several structured f es passed from previously-executed 
modules to the next. In addition, !Icard!! or IYline lf input 
specific to the module currently executing will be allowed. 
A single structured output file will contain the results of 
the module executed and be used for input to the next 
module. A normal printed output is allowed. An arbitrary 
number of temporary scratch files may be used by the module. 

4. Specification of the Standard Data Interfaces 
between Modules 

The specification of a standard data interface 
between program modules to achieve module insertability 
(plug-compatibility) is extremely detailed and must be 
specified and implemented on several real programs before a 
useful universal standard can be proposed. For example, an 
electronic structure computing system might contain the 
following information on the SCF data interface: 

1) basis function type (GTO, STO, elliptic STO, etc.) 
2) nuclear coordinates 
3) nuclear charges 
4) center names 
5) orbital centers 
6) orbital exponents 
7) contraction matrix 
8) tolerances 
9) number of d functions 



10) statistics about: number of nonzero integrals 
number of discarded integrals 
CPU times for integral 

computation 
11) type of SCF method used (RHF, UHF, GVB, MCSCF) 
12) eigenvectors 
13) eigenvalues 
14) total energy 
15) electronic configuration 
16) orbital energies 
17) convergence criteria and method of computation 

etc. 

Is this all of the information which should appear 
at the end of an SCF calculation? Is it too much 
information? What specific formats should these records 
occupy? 

Answers to these detailed questions cannot be 
established by a two-hour discussion. Therefore the 
following proposal was adopted. 

specify 
of the 
between 
modules 
in item 

A working group must be established by the NRCC to 
both the structure, service functions and contents 
standard data interfaces (logical and physical) 

the modules identified in item 1 such that the 
are capable of functioning in the orders prescribed 
2 • 

The final recommendations of the working group are 
to be submitted for publication in the International Journal 
of Quantum Chemistry, and other relevant journals, no later 
than one year after the working group is convened. It is 
anticipated that the working group consist of authors of 
major quantum chemistry systems such as GAUSSIAN 70, ALIS, 
MUNICH, etc. 

Work on the specifications of standard data 
interfaces is expected to proceed in the following manner: 

(3 weeks) 

(1 week) 

(2 months) 

1. The working group chairman will solicit 
suggestions for Standard Data Interfaces 
eSDI's) from all chemists interested in 
electronic structure computations. 

2. Specifications of the MUNICH system's 
Standard Data Interfaces and others are 
distributed to group members. 

3. Each group member modifies the best SDI 
specifications to meet his program needs. 
No implementation of an SDI is attempted 
at this pOint. 



(3 days) 4. A working group meeting is convened 
and a trial standard is agreed upon. 

C3 months) 5. Group members implement the trial 
standard in their program systems. 

(4 days) 6. A working group meeting is convened and 
a proposed implementable standard is agreed 
upon. A draft of a publication standard is 
prepared. 

(2 weeks) 7. The chairman revises the draft and 
submits it for publication. All group 
members are co-authors. 

5. A Specific Recommendation for the Standard Data 
Interface Working Group 

Currently, two-electron integrals (ij/kl) are 
stored on files in many different formats. Possible 
classifications include: 

(1) Order-unspecified 
stored on the file 
integral. Zero (or 
not stored. 

labelled integrals (ij/kl) are 
with a label IJKL specifying the 
approximately zero) integrals are 

(2) Ordered integrals (no packing or compression, hence 
no labels need to be stored) 

(3 ) 

(a) canonically ordered integrals--integrals are in 
the order i)=j, k)=l, ij>=kl 

(b) canonically ordered in symmetry blocks 

(c) exchange (triplet) ordered integrals--
i)=j>=k>=l, with 1, 2, or 3 integrals stored 
for a given IJKL location. 

Cd) distribution ordered (used 
transformations) i>=j, k)=l. 
ij, all kl required for the 
available. 

Ordered Packed Integrals. 

in two-electron 
Hence for a given 

transformation are 

Same as (2 ) except 
integral files have zeros removed by any of a number 

(compression) of packing schemes such as skip counts, 
labelling, etc. 

Except for the two-electron integral file, 
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assumptions about the particular structure of files 
processed by electronic structure modules have little impact 
on the design of the modules. However, many efficient 
modules assume that two-electron integrals will be presented 
in a special order. Modification of these programs to 
accept unordered integrals is impractical because the 
algorithm used is dependent for efficiency upon ordered 
integrals. 

After considerable discussion took place weighing 
the benefits and potential inefficiencies possible, WG5 
recommends that the SDI Working Group consider requiring 
that each module submitted to NRCC for inclusion in the 
electronic structure system be able to accept as input 
unordered, labelled two~electron integrals. Programs which 
require ordered integrals must supply a sort from unordered 
format to ordered format as part of the module. Each module 
may also have additional capabilities for accepting 
appropriately ordered integrals and omitting the sort. 

Most working group members have agreed to provide 
and maintain the ability to process unordered, labelled 
two-electron integrals between the modules specified in item 
1 in their own programs if it is adopted as part of the SDI. 

WG5 Chairman 
George Purvis 
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COMBINED REPORTS OF WG6 AND WG7 

SMALL AND LARGE MOLECULE CRYSTALLOGRAPHY 

This report is from the crystallographers of the 
conference and is the consensus of Working Groups 6 and 7. 
The report is concerned with portability and standardization 
of crystallographic programs, data bases, and computer 
graphics. The report is divided into a preamble which states 
the purpose of all this and a main body consisting of 
recommendations, to both the NRCC and the crystallographic 
community, as to how it may be accomplished. The body of 
the reports follows this outline: 

I. Comments on FORTRAN standardization and portability. 

II. Adoption of the RATMAC programming language. 

III. Crystallographic data baBes. 

A. The Binary Data File. 
B. The IUCr formatted file. 

IV. Adoption of standardized programming conventions. 

V. Standardization for crystallographic computer graphics. 

VI. The NRCC to serve as a clearing house for distribution 
of crystallographic programs. 

VII. NRCC sponsored workshops to promote standardization in 
programming and data structures. 

PREAMBLE 

All crystallographic laboratories in the United 
States have, or have access to, extensive libraries of 
computer programs which implement the existing methods used 
in x-ray diffraction and crystal structure analysis. Why, 
then, do we need to define software and data format 
standards now, when we have lived without them for twenty­
five years? The answers are: 

1. To facilitate exchange of programs among laboratories 
using a wide variety of processors. 



2 • To enable programs written 
different purposes to access 
file. 

by different people 
a common, standard 

for 
data 

3. To avoid the waste of scientific manpower which has 
occurred in the past whenever an institution or company 
has decided to change its mainframe computer. 

4. To minimize the dislocations which will occur if the 
currently used FORTRAN compilers are phased out in favor 
of later versions. 

5. To insure that as new methods in crystallography are 
invented and developed, they are programmed in languages 
that are as portable and machine-independent as 
possible. Methods which can be immediately recognized 
are (a) less empirical treatments of extinction and 
thermal diffuse scattering; (b) more powerful direct 
methods, especially applicable to large molecules; (c) 
more sophisticated charge-density analysis methods; (d) 
more sophisticated thermal motion analysis to deal with 
segmented and anharmonic motion, both for small and 
large molecules; (e) improved non-linear least squares 
methods for refinement and (f) production of 
device-independent software for molecular graphics. 

RECOMMENDATIONS 

I. Comments on FORTRAN standardization and portability. 

We strongly recommend that any changes to the 
FORTRAN standard be upward compatible. The proposed FORTRAN 
77 standard is a major problem in this respect. NRCC should 
point out, both to the ANSI Standards Committee X3J3 and to 
such other major users as DOE and the National Laboratories, 
the millions of dollars and the man-years that will be 
required to convert existing major programs to FORTRAN 77. 
In addition, the NRCC should sponsor a member of the ANSI 
FORTRAN Standards Committee. In order to enhance the 
portability of all FORTRAN programs, NRCC should encourage 
programmers to use PFORT as a screening tool. All FORTRAN 
codes supported and distributed by NRCC should be 
accompanied by a PFORT verification report (Ryder, B.G., 
Software-Practice & Experience, Vol.4, 359-377 (1974». 

II. RATMAC Programming Language. 

In order to proceed with the development of 
portable crystallographic software, a path must be chosen. 
We feel that the use of a preprocessor language will ease 
adaptation to different processors and dialects of FORTRAN, 
and will aid in the generation of rational, understandable 
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code. We recommend the use of RATMAC (Munn and Stewart, 
Technical Report TR-675, University of Maryland Computer 
Sciences Center), a macro-enhanced version of RATFOR 
(!lSoftware Tools," B.W. Kernighan and P. J. Plauger, 
Addison-Wesley, 1976) for crystallographic software 
development. We have focused on RATMAC for several major 
reasons: 

1. RATMAC is in the public domain and can be distributed 
without licensing fees. 

2. RATMAC has been developed and will be maintained by a 
group that is primarily concerned with crystallographic 
software portability. 

3. RATMAC has a full set of capabilities as a structured 
programing language. 

4. RATMAC allows for machine-specific dependencies to be 
handled through macros. 

5. There already exists a core set of RATMAC routines for 
handling the recommended binary data file for 
crystallographic applications. 

We recommend that NRCC distribute RATMAC and its 
associated documentation. This documentation is to include 
a user manual, an installation guide and a set of macros 
designed to achieve machine- and operating-system 
independence. 

NRCC should publicize in Journals and Newsletters 
the availability of these materials. 

III. Data Base Structure. 

A. Binary Data File. 

Whenever possible crystallographic software should 
be written to use a common data structure. This will 
greatly improve program portability. The Binary Data File 
designed by Stewart et ale for the XTAL80 system is 
reasonably compact, self-documenting, open-ended and comes 
with portable subroutines to read, write, edit, and maintain 
the system. This data structure should be used by as many 
programs as possible whether or not they are part of the 
XTAL80 system. NRCC should encourage this practice by 
distributing the appropriate software and documentation. 



B. The IUCr Formatted File. 

The International Union of Crystallography at 
the 1978 General Assembly formed a working group to 
define an international standard for archival storage and 
exchange of crystallographic data. The effort is 
necessary to remove human errors from the chain which 
transmits data from the researcher to the archival data 
bases. The results of the deliberations of the IUCr's 
working group (see Appendix ) are to be presented to the 
1981 General Assembly and if they are adopted, 
publication of crystal structures in the IUCr's journals 
will require presentation of all data in this format 
upon an acceptable medium. The NRCC must remain aware 
of the progress of these deliberations and should 
encourage programmers to provide tools to read and write 
the IUCr Standard Data File for easy data interchange. 

NRCC should maintain 
between disciplines which are producing 
structural data bases to ensure that 
as easily interchangeable as possible. 

IV. Standardized Programming Conventions. 

communication 
related chemical 

their formats are 

For greatest ease of coding and use, it 
is recommended that sets of related routines be coded 
according to standardized programming conventions to form 
integrated program systems. Such systems offer the 
advantage of standard data structures, a consistent 
control structure, and availability of well~tested 
subroutines for standard funtions. 

In order to demonstrate the efficacy and 
promote the acceptance of standard programs and data 
structures the NRCC should financially support the 
development of a pilot system of crystallographic 
programs to match the requirements of both small 
and large computers. The standardization and coding 
conventions of the XTAL80 system should be adopted for 
this purpose. In certain areas different algorithms 
will be necessary for the two types of machines. By and 
large such algorithms exist and should be incorporated 
into an integrated system centered around the recommended 
binary data file structure. 



-78-

for all comers to criticize. 
problem is multiple iaomo 
macromolecular structures. The 
problem are well understo 
importance to a s ficant c 

An ropriate significant 
s re acement phas of 

ore tic aspects of the 
the problem is of great 

ty of users, and there is 
ram ch solves this no completely satisfactory 

problem. 

1 • 

structure of the works 

PartiCipation should be 
sc lsts including s c 
Munn. 

1 ted to 
ically P 

d be as follows: 

no more ten 
saors Stewart 

2. The workshop should be held at the NRCC, which has a 
VAX-l1/780 and one other major c er system. The 
other computer system presents d iculties th res ct 
to portability. The code d be developed and 
debugged on the VAX, which has good tools for program 
development, and portabili verified on the second 
system. 

The schedule for the workshop d be: 

1. The morning of the rst be devoted to a 

2 . 

3 

RATMAC XTAL80 tutori er of the day 
would be devoted to ysis of various methods of MIR 
phasing and phase refinement, and section of those to 
be incorporated in the new pram. 

The second day would be devot 
criticism of exist programs and 
selection of specifications 

third 
documentation. 
be defer 

wo d be devoted to 
Some documentation 

to analysis 
methods, 

and 
a 

ave 1 des and 
tails will have to 

4. The 
cod 

rth, fifth and sixth d s would be devoted to 
d and test the code on VAX. 

5 • The seventh 
documen ion 

ram. 

day would be devot 
and pre ration of a 

to 
note 

c etion 
descr 

6. Par ill (or lack thereof) can be ve ied 
in two 

This re res the foIl support from 

1 • portation and ea for visit scientists. 

of 
the 

a 



-77-

To encourage this the NRCC should: 

a. sponsor prototype workshops designed to: 

1) acquaint interested parties with the methodology 
of the XTAL80 system 

2) design programs 
3) write documentation 
4) write actual programs 

b. support the distribution of updated versions of the 
University of Maryland XTAL80 primer and reports. 

V. Standardization of Computer Graphics. 

To insure portability of computer graphics programs 
there is a need to establish programming standards and 
develop a standard data base for use with interactive 
graphics. This need is underscored by the proliferation of 
various graphics devices, many of which have quite different 
implementation software. 

To promote device independence, NRCC should 
encourage users to follow the proposed graphics standard by 
SIGGRAPH (Computer Graphics 13 #3) and should sponsor a 
presentation of the SIGGRAPH standards at an ACA meeting. 

VI. NRCC Clearing House for Distribution Of Crystallographic 
Programs. 

The NRCC should exercise leadership in encouraging 
the adoption of the programing and data file structure 
standards mentioned above. This will best be done by the 
NRCC acting as a clearing house for all programs but 
providing support only for programs which meet the above 
standards. In addition, programs developed under NRCC 
sponsorship or funding must meet the software standards in 
order to be distributed. 

VII. NRCC Sponsored Workshops. 

A. Macromolecular Workshop 

The best possible demonstration of the power and 
flexibility of a program system is an actual portable 
implementation which can be widely distributed and tested by 
all interested parties. We propose that the specific virtues 
and portability of RATMAC and the Binary Data File be 
demonstrated by holding a workshop to produce working code 
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2. Secretarial assistance with documentation. 

3. Free access to the VAX with 9-track tape, at least five 
constantly available video terminals and a line printer. 

4. Access to the second computer system, on the scale of 
several hours equivalent VAX time. 

5. Distribution and publicity for the resulting software 
and documentation. 

The macromolecular special interests at this 
meeting regard this as a very high priority. The proposed 
workshop should be held in late October or early November. 

B. Small Computer Workshop 

A workshop for small computer (32K 16~bit words) 
users, along the lines outlined for the large molecule 
workshop, should be held in the spring of 1980. The 
workshop should be held at NRCC, using the VAX 11/780 in the 
RSX-11 compatibility mode. Not more than 12 scientists in 
the field, including Professors Stewart and Munn, should be 
present. The workshop should be approximately one week in 
length. Tutorials to familiarize the participants with 
RATMAC and the XTAL80 Binary Data File should be held during 
the first day of the week. A day should then be devoted to 
the development of machine-specific macros. 

The remainder of the workshop will be spent 
developing generally-useful crystallographic codes. One such 
code would be a full-matrix least-squares routine. It is 
suggested that Dr. R. A. Sparks and Dr. A. C. Larson 
should participate in the development of this routine. A 
second code would be the adaptation of the search-match 
routine for the Powder Diffraction File to small machines; 
this work would be extremely useful and would have immediate 
applicability in several hundred laboratories. Dr. G. G. 
Johnson Jr., who designed the existing system, should take 
part in this work along with one or two others. The 
development work on these routines is not mutually exclusive 
and could be done concurrently. Together the two routines 
would represent a very significant step forward in the small 
computer field in crystallography. 
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c. Graphics Workshop 

workshop 
programs. 

NRCC should sponsor a crystallographic graphics 
devoted to both small and large molecule graphics 

The objectives of such a workshop would be: 

a. To review existing graphics software systems of various 
types, 

b. To thoroughly acquaint the participants with the 
SIGGRAPH Standard, 

c. To develop standard data structures and methods for 
handling the special types of data needed for 
interactive graphics. 

Attendance should be limited to active programmers in the 
field and should be at a location where there are suitable 
graphics facilities. 

WG6 and WG7 Chairmen 
Eric Gabe and Stephen Freer 
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A ROSTER OF SOFTWARE TOOLS 

by 

Nelson H.F. Beebe 
Departments of Physics and Chemistry 

University of Utah 
Salt Lake City, UT 84112 

Tel: (801) 581-5254 

During the course of the conference, a number of 
participants requested that a roster of software tools be 
developed for inclusion in the Conference Proceedings, the 
NRCC Newsletter, and possibly others. The preliminary 
review of the proceedings by the participants resulted in a 
number of suggestions which have been incorporated in this 
roster. Errors ~nd omiSSions remain the responsibility of 
the author. 

For each of the software tools discussed here, I 
have tried to include information about what they do and 
why, where the programs can be ordered, what they cost, and 
whether or not there are restrictions as to their use. For 
some, I have also taken the liberty of inserting some 
personal evaluations. Although this certainly may introduce 
personal biases, I feel that the comments may nevertheless 
prove useful to readers considering acquisition of some of 
these tools. 

It is worth noting here that an organized effort is 
getting underway for the development of portable software 
tools, in the form of the TOOLPACK project. TOOLPACK is 
only a few months old, and probably will not have produced 
significant amounts of software before at least a couple of 
years have passed. Another development is the recent 
announcement (Comm. ACM 22, (No.9), 545 (1979)) of a U.S. 
National Bureau of Standards effort to compile information 
about the use and availability of software tools. A third 
item of interest is the NBS contract announcement 
(NB79SBCA0128) for a FORTRAN 77 Analyzer, similar in some 
respects to the PFORT Verifier, but with enhanced 
capabilities. 

Some of the following tools are noted 
available from the author of this roster. They 
provided on a master software tools tape which 

as being 
will be 

is being 



prepared, and will be available for unrestricted 
distribution for the cost of mailing a tape. Arrangements 
can be made for transfer of some of the smaller tools via 
intercomputer dialup through a file~transfer program on the 
DECSYSTEM~20, and also through the high~speed ARPA network. 

FLECS 

FLECS (FORTRAN Language with Extended Control 
Structures) is a preprocessor developed by Terry Beyer at 
the University of Oregon. It offers decision structures 
IF ••• , UNLESS .•• , WHEN ••• ELSE ••. , CONDITIONAL and SELECT 
(similar to PASCAL CASE statement), and looping structures 
DO, WHILE, UNTIL, REPEAT WHILE, and REPEAT UNTIL. It also 
has internal procedures. Statement formatting is rather 
rigid. FLECS has been distributed to over 300 sites, and is 
in the public domain. It may be freely modified and 
redistributed without restriction. Implementations for more 
than twenty different computing systems are available. It 
is available for a cost of $225 (USA) or $250 (non-USA) from 

Computing Center 
University of Oregon 
Eugene, OR 97403 

Tel: (503) 686- It394 

The original author is no longer available for consultation 
on FLECS, due to its popularity. 

RATFOR 

The RATFOR preprocessor, developed by Brian W. 
Kernighan and Peter J. Plauger, and a number of software 
tools written in RATFOR are thoroughly discussed in their 
book "Software Tools" (Addison~Wesley, 1976), which should 
be required reading for everyone who is engaged in 
scientific software development. The RATFOR preprocessor and 
all the associated software tools are available on magnetic 
tape from the publisher. However, this is no longer the 
recommended source for these materials. Since their 
publication, a number of improvements have been made to the 
preprocessor and the accompanying tools. Notable among 
these is the macro extension to RATFOR, called RATMAC, 
developed by Robert J. Munn and James M. Stewart at the 
University of Maryland, and described elsewhere in the 
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Conference Proceedings. A Software Tools Users Group has 
been formed, and a Software Tools Communications newsletter 
is now being produced. The editor is 

Debbie Scherer 
Computer Science and 
Applied Mathematics Department 
Lawrence Berkeley Laboratory 
University of California 
Berkeley, CA 94720 

Tel: (415) 486-5881 

and one can be added to the mailing list simply by writing 
to her. The Software Tools Users Group is developing a 
master tape containing all of the tools, and this will be 
available for a modest handling charge. 

SFTRAN/3 
======== 

SFTRAN/3 is a structured FORTRAN preprocessor 
developed by Charles L. Lawson and John A. Flynn at the Jet 
Propulsion Laboratory of the California Institute of 
Technology in Pasadena. It offers decision structures 
IF ••. THEN ••• ELSE and DO CASE, and looping structures DO FOR, 
DO WHILE, DO UNTIL, DO FOREVER, and DO BLOCK. There are 
CYCLE and EXIT statements for skipping to the next loop 
cycle or jumping out of a control structure. There is also 
a procedure facility. Of all the structured FORTRAN 
preprocessors that I have seen, SFTRAN appears to give the 
clearest code. 

Mach readable documentation and source code are 
available from C.L. Lawson at JPL or from N.H.F. Beebe at 
the University of Utah. By early spring, 1980, we hope to 
have a formal distribution service established with versions 
for a number of different machines. 

SPARKS 
====== 

SPARKS is a structured FORTRAN preprocessor 
developed by Ellis Horowitz and Sartaj Sahni to illustrate 
algorithms in their books "Fundamentals of Data Structures" 
(Computer Science Press, 1976) and "Fundamentals of Computer 
Algorithms" (Computer Science Press, 1978). It is in the 
public domain, and may be obtained from the authors for a 



charge of $20 by writing to 

Dr. Ellis Horowitz 
SPARKS Users Group 

~84-

Computer SCience, Powell Hall 
University of Southern California 
Los Angeles, CA 90007 

The PFORT Verifier 

The PFORT Verifier is a program which can be used 
to automatically verify that other FORTRAN software adheres 
to a subset of 1966 ANSI FORTRAN called Portable FORTRAN. 
Portable FORTRAN has been described by one of its authors, 
Barbara G. Ryder, in an article "The PFORT Verifier", 
Software ~~ Practice and Experience 4, 359-377 (1974). 

The Verifier not only carries 
of individual program units, but also 
communication through argument lists 
something which few FORTRAN compilers 
from two sources: 

out syntax checking 
checks inter-routine 
and COMMON blocks, 
do. It is available 

Quantum Chemistry Program Exchange 
Room 204 
Department of Chemistry 
Indiana University 
Bloomington, IN 47401 

Tel: (812) 337-4784 

Ms. Irma Biren 
Computing Information Services 
Bell Laboratories 
600 Mountain Avenue 
Murray Hill, NJ 07974 

Tel: (201) 582-3000 

From either source, the charge is $30 which covers 
the cost of a 600 ft magnetic tape, documentation, and 
postage. Bell Laboratories has recently placed the PFORT 
Verifier in the public domain, and requires only that 
recipients retain the copyright notice in the code. Users 
are free to distribute their copies of the Verifier. 

The PFORT Verifier is itself written in PFORT, and 
installation requires only the writing of two short 
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subroutines for the packing and unpacking of characters, 
plus possibly changing a couple of assignment statements 
defining I/O units in the MAIN program. The Installation 
Guide recommends rewriting subroutine MAPCHR to use a table 
lookup, rather than a linear search; on both IBM and DEC 
machines, I have found that this makes no more than a two 
percent difference in execution time, and the exercise is 
probably not worthwhile. It is, however, worthwhile to 
increase the dimension of array DSA(*) in COMMON /CTABL/ 
from 5000 to about 10000, and change the assignment 
statement defining LDSA in the main program. If the local 
loader balks at COMMON blocks of different lengths, then 
dimension changes must be made in the 37 other routines 
which re rence /CTABL/. If this change is not made, a 
program unit longer than about 300 lines tends to result in 
a table overflow which causes the Verifier to skip further 
processing on that unit. 

DAVE 

DAVE is a FORTRAN tool developed at the University 
of Colorado in Boulder by Leon Osterweil and colleagues. Its 
purpose is to perform global data flow analysis of FORTRAN 
programs, checking for use of variables before 
initialization. There is apparently a considerable overlap 
with some of the functions of the PFORT Verifier. A survey 
article by L.D. Fosdick and L.J. Osterweil about data flow 
analysis and DAVE has been published in Computing Surveys 
(Vol. 8, No.3, pp. 305-330, September 1976). 

DAVE is in the public domain, and can be ordered 
from its authors at 

Department of Computer Science 
Campus Box 430 
University of Colorado at Boulder 
Boulder, CO 80309 

Tel: (303) 492~0111 

An order form and questionnaire will be sent on 
request. The cost is $100, which covers a magnetic tape, 
documentation, and postage. The distributors tailor a 
version of DAVE to the recipient's computer, since it uses 
extensive bit-field packing to save its elaborate data 
structures in minimal storage. In addition, FORTRAN 
random-access I/O facilities are required. This may require 
the user to simulate the CDC OPENMS/READMS/WRITMS/CLOSMS 
random-access I/O routines. 
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DAVE is a large program, and normally runs as four 
separate job steps. On the CDC 6400, these require memory 
sizes of 40K, 114K, 121K, and 135K octal words, 
respectively. The User's Manual is about 250 pages long, 
and contains detailed information on how to use DAVE, and on 
how it works. This should greatly facilitate user 
modifications to the system. DAVE has been distributed to 
more than 100 installations, and recipients are free to 
modify and distribute it further. 

DAVE by and large expects the input FORTRAN code to 
adhere to 1966 ANSI FORTRAN. However, it does accept a few 
extensions, among them the PROGRAM and IMPLICIT statements 
and array initialization by array name in DATA statements. 
This should ease the processing of quantum chemistry 
software which frequently makes heavy use of these 
extensions, and is in sharp contrast to the PFORT Verifier 
which abandons processing of a program unit when it finds an 
unrecognizable statement. 

STRUCT 

STRUCT is a utility which promises to be of great 
use in cleaning up existing FORTRAN code. From a program 
unit written in ordinary FORTRAN, it attempts to produce a 
structured FORTRAN equivalent, wherever this is possible. 
Of course, it is quite easy to write GO TO statements in 
such a way that no human, and no program either, could ever 
unravel the flow of control, so the usefulness of STRUCT may 
be in inverse proportion to the complexity of the input 
FORTRAN code. 

STRUCT was developed by Brenda S. Baker at Bell 
Laboratories and has been described by its author in some 
detail in the literature (Conference Record of the Third ACM 
Symposium on Principles of Programming Languages, 113~126 
(1976)). STRUCT is written in the language C. C is a 

level language intended for systems programming. It 
was designed by Dennis Ritchie and is used for about 95% of 
the programming in the UNIX operating stem. UNIX is one 
of only two operating systems which have been successfully 
ported to machines of drastically different architecture. 
Another Bell Laboratories scientist, Steve Johnson, has 
developed a portable compiler for C. This compiler produces 
an output pseudo-code which can then be assembled or 
interpreted into machine code for the host computer. 
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UNIX system (Release 7 or later), but academic institutions 
can obtain the entire UNIX system from Bell Laboratories for 
a very modest cost. UNIX is most widely used on the larger 
models of the ubiquitous PDP-II computer, and readers at 
universities will probably be able to find on-campus 
computers which may already be using UNIX. 

Basic Linear Algebra Subroutines (The BLAS) 

The BLAS were 
project (see below), 
BLAS are available on 
have been described in 

developed as part of the LINPACK 
and FORTRAN versions of some of the 
the LINPACK distribution tape. They 
the following articles: 

C.L. Lawson, R.J. Hanson, D.R. Kincaid and F.T. 
Krogh, "Basic Linear Algebra Subprograms for 
Fortran Usage,!! Assoc. Comput. Mach. Trans. on 
Math. Software, 5, 308-323 (1979). (Also available 
as Sandia Laboratory Report SAND 77-0898, 
Albuquerque, 1977.) 

J.J. Dongarra and A.R. Hinds, "Unrolling Loops in 
and Experience 9, FORTRAN", Software Practice 

219-226 (1976). 

The BLAS consist of 38 FORTRAN-callable subroutines 
for common operations of numerical linear algebra. These 
include: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

copy a vector 
swap two vectors 
dot product of two vectors 
constant times a vector 
constant times a vector plus a vector 
set up Givens rotation 
apply Givens rotation 
set up modified Givens rotation 
apply modified Givens rotation 
2-norm (Euclidean length) 
index of element with maximum absolute value 

The complete set of FORTRAN BLAS, plus assembly 
language versions for the IBM 360/370, CDC 6000/7000/Cyber, 
and UNIVAC 1108 machines, as well as an extensive test 
program, are available from 
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International Mathematical and Statistical 
Libraries, Inc. 
Sixth Floor, GNB Building 
7500 Bellaire Boulevard 
Houston, TX 77036 

Tel: (713) 772~1927 

The distribution charge of $45 covers the postage 
charges and a magnetic tape containing documentation and 
software. 

Assembly language versions of the BLAS for the 
DECSYSTEM-10 and -20 computers with hardware double 
precision are available on the Utah Software Tools tape. 

PORT Library Framework 

Bell Laboratories has developed a large portable 
mathematical subroutine library, called the PORT Library, 
which is being marketed for a sizable fee. A special 
nucleus of subroutines, called the PORT Library Framework, 
was developed for the parametrization of the environment and 
for run-time allocation of working storage from a large 
array in COMMON. This nucleus is available from 

International Mathematical and Statistical 
Libraries, Inc. 
Sixth Floor, GNB Building 
7500 Bellaire Boulevard 
Houston, TX 77036 

Tel: (713) 772-1927 

The distribution charge of $45 covers the postage 
charges and a magnetic tape containing documentation and 
software. The material is all in the public domain and 
passes the PFORT Verifier, as required for publication in 
the ACM Transactions on Mathematical Software (TOMS). 

The PORT Library has been described by P.A. FOX, 
A.D. Hall, and N.L. Schryer in an article "The PORT 
Mathematical Subroutine Library", TOMS 4, 104-126, 177-188 
(1978). Machine parameters are included in comment 
statements for the following computing systems: 

* Burroughs 1700/5700/6700/7700 
* CDC 6000/7000/Cyber 
* CRAY 1 
* Data General Eclipse S/200 



* 
* 
* 
* 
* 
* 
* 
* 
* 
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DEC-I0 (KA and KI processors) 
DEC PDP-II (both 16-bit and 32-bit INTEGER support) 
HARRIS Slash 6/Slash 7 
Honeywell 600/6000 
IBM 360/370 
Interdata 8/32 
SEL Systems 85/86 
UNIVAC 1100 (FTN V Compiler) 
XEROX SIGMA 5/7/9 

Support for other machines is easily added. P.A. 
Fox has recently made available to the author constants for 
the DEC VAX 11/780 which have been used for installing the 
PORT Framework on the NRCC VAX computer. 

EISPACK/2 
=::::::::::::=:: 

EISPACK/2 is the second release of the Eigenvalue 
System Package developed by the National Activity to Test 
Software (NATS). It is based heavily on Algol procedures 
developed during the 1960's and published in the journal 
Numerische Mathematik. These were finally collected by J.H. 
Wilkinson and C. Reinsch in their book "Handbook for 
Automatic Computation, Vol. II. Linear Algebra" 
(Springer-Verlag, 1971). The principal references for 
EISPACK/2 are: 

B.T. Smith, J.M. Boyle, J.J. Dongarra, B.S. 
Garbow, Y. Ikebe, V.C. Klema and C.B. Moler, 
"Matrix Eigensystem Routines EISPACK Guide", 
Springer Lecture Notes in Computer Science, Vol. 6, 
2nd edition, 1976. 

B.S. Garbow, J.J. Dongarra, C.B. Moler and B.T. 
Smith, "Matrix Eigensystem Routines EISPACK 
Guide Extension", Springer Lecture Notes In 
Computer Science, Vol. 51, 1977. 

EISPACK/2 is available from two sources: 

International Mathematical and Statistical 
Libraries, Inc. 
Sixth Floor, GNB Building 
7500 Bellaire Boulevard 
Houston, TX 77036 

Tel: (713) 772-1927 



National Energy Software Center 
Argonne National Laboratory 
9700 South Cass Avenue 
Argonne, IL 60439 

Tel: (312) 972-2000 

The charge from IMSL is $75. Principal 
Investigators holding Department of Energy grants c~n obtain 
software from NESC without charge. EISPACK/2 is in the 
public domain, and there are no restrictions on its 
dlstribution. Some 22 routines contain assignment 
statements setting the machine preclslon or the machine 
radix. Since these are different for each computer, special 
versions must be ordered, or one must laboriously make the 
changes by hand. The double precision versions require 
double precislon complex arithmetic (COMPLEX*16). 

I have prepared both single and double preclslon 
versions which do not require double precision complex 
arlthmetic, and which obtain their machine constants from 
functions in the PORT Library Framework. I have also made a 
few minor corrections in order to make both single and 
double preciSion versions pass the PFORT Verifier. Both 
versions are available on the Utah Software Tools tape. 

LINPACK 

LINPACK is a collection of routines for solving 
in-core systems of linear equations, as well as for 
computing matrix inverses and the Singular value 
decomposition. It is perfectly portable, and contains no 
machine-dependent constants whatever. It is available from 
the same sources as EISPACK/2 for the same costs. The 
principal reference is 

J.J. Dongarra, J.R. Bunch, C.B. Moler, and G.W. 
Stewart, YlLINPACK Users' Guide", SIAM Publications, 
(33 South 17th St, Philadelphia, PA 19103, Tel: 
(215) 564-2929), 1979. 

The publishers maintain a maillng list of 
purchasers, and automatically send out error corrections for 
the LINPACK Users' Guide. 
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FORSTA 

The Harwell Subroutine Library contains a 
subroutine OE02A which can be used to automatically insert 
statement frequency counters in FORTRAN programs. I have 
modified and extended this to also optionally insert timing 
traps at entry and exit. The resulting utility, FORSTA (for 
FORTRAN STAtistics), can be quite useful in tracking down 
just which parts of a program are used most heavily and are 
therefore candidates for closer scrutiny with a view to code 
optimization. The statistics, which appear in both tabular 
and histogram form, can also assist in detecting sections of 
code which are either not executed at all, or are not 
entered the expected number of times. The statistics can be 
output at any time to a user-specified file, so that dumps 
can be taken at predetermined times to avoid losing all the 
information in the event of the job aborting. FORSTA is 
available on the Utah Software Tools tape. 

EDIT 

EDIT, for want of a better name, is a program which 
cleans up FORTRAN programs. Features include: 

* indenting of loops 

* reassignment of statement numbers in ascending 
order 

* blocking of comments by delimiter lines 
increase visibility 

to 

* conversion of quote-delimited strings, " ••• ", to 
Hollerith strings, nnH .•. 

* conversion of FORTRAN II I/O statements to 
FORTRAN IV 

* changing preclslon of functions and constants 
(single, double, and quadruple precision) 

EDIT has been used on several hundred thousand 
lines of FORTRAN code, including several large quantum 
chemistry systems such as IBMOL, MOLECULE, POLYATOM, HONDO, 
and BIGGMOLI. Programs like EDIT have come to be called 
"pretty-printers", and such utilities for BASIC, PL/l, 
PASCAL, LISP, REDUCE, and ALGOL 60 have appeared in the 
computing science literature. Another FORTRAN 
pretty-printer named TIDY is apparently available for CDC 



machines, at 
VIM Doc L4. 
about TIDY, 
portability. 

least, as part of the CDC Users Group Library, 
I have not yet seen specific documentation 
and cannot comment on its facilities or 

Macro Processors 

Assembly language programmers have for many years 
routinely used macro facilities to assist in the usually 
rather tedious job of writing assembly code. A macro is 
essentially a template for automatic production of similar 
sections of code, usually with minor substitutions of names, 
and sometimes with conditional selection of alternate code 
sequences. This is a frequent requirement in assembly 
language programming, but macro facilities can also be 
useful in higher-level languages. A simple example occurs 
in dealing with symmetric matrices stored in 
lower-triangular packed form. The index of the (1,J) 
element is obtained from the expression (1*(1-1»/2 + J, 
where I must not be less than J. If I is less than J, then 
I and J must be interchanged in the expression. In 
principle, one could write 

IJ = (MAXO(I,J)*(MAXO(I,J)-1»/2 + M1NO(I,J) 

to do the index computation in one line, but the code 
produced by most FORTRAN compilers for this is usually far 
from ideal, so instead one usually sees the sequence 

IF (I - J) 10,20,20 
10 IJ = (J*(J-1»/2 + I 

GO TO 30 
20 IJ = (1*(1-1»/2 + J 
30 

This is tedious and error prone, and also badly clutters the 
code. Most macro processors would permit a macro, say 
PINDEX, to be defined, allowing a simple invocation in the 
form 

IJ = PINDEX(I,J) 

which would actually result in generation of the IF and GO 
TO statements necessary to compute the index in-line. 

Macro expansion of course requires at least one 
pass through the program text, and there are thus at least 
four different stages at which the macro processing could be 
applied. 
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The first of these could be in a text editor during 
the actual creation of the source code, assuming it is done 
on-line. This would offer certain conveniences for writing 
the code, but once the text was finally saved on a file, 
references to the macros would be replaced by their 
expansions, and one would then be back with the cluttered 
code situation. 

The second place a macro processor could be used is 
as an integral part of a software maintenance system. This 
would have the advantage that the macro processing could be 
language independent, and indeed, might even be used to 
operate on input data, rather than program text. 

The third 
invoked prior to 
independent. 

place is as an independent processor 
compilation. This too could be language 

The fourth alternative is integration into the 
language compiler, so that each statement is scanned for 
macro substitutions before being analyzed for compilation. 
This has been the traditional approach with macro processors 
embedded in assemblers, and a compile-time macro facility is 
actually included as part of the language definition for 
PL/l. This approach has the disadvantage that the macro 
facilities are usually restricted by the syntax of the 
language in which they are embedded. 

In practice, I/O often accounts for a major portion 
of the execution time in text processing systems, and the 
first, second, and fourth alternatives reduce the cost by 
doing the macro processing at the same time as other 
required processing is going on. The third alternative 
incurs the additional overhead of an extra pass over the 
code, but is the best candidate for a portable 
implementation. At some installations, it might be 
acceptable to also integrate such a stand-alone macro 
processor into an editor, software maintenance system, 
language preprocessor, or compiler, so that it could be made 
available without incurring possibly unacceptable additional 
overhead of a separate job step. 

There are a great many macro processors around, for 
they are usually simple enough that they can be implemented 
in the order of 500 to 2000 lines of code, making them good 
candidates for student projects or "quick and dirtyYi weekend 
implementations. Most are designed with particular host 
languages in mind, and few are portable, although some have 
been designed expressly to increase portability by acting as 
bootstrap languages and preprocessors. 



Macro processors fall into essentially two distinct 
categories. The simplest are those that are basically 
substitutional; macro invocations are usually flagged by 
special characters, as for example the percent sign is used 
in PL/l's macro facilities (%IF, %DO, ••• ). Each macro 
invocation usually contains one or more arguments which are 
used to replace symbolic parameters. Thus the PINDEX macro 
noted above might be invoked in one place as PINDEX(I,J) and 
in another as PINDEX(MU,NU), with MU and NU appearing in the 
same places that I and J do in the macro expansion. 

The second category is the pattern-matching macro 
processor which is more general and powerful, and usually 
also slower. Pattern~matching processors usually contain 
the substitutional facilities of the simpler processors as 
well. As an example of their use, suppose that one had a 
FORTRAN program written using expressions involving COMPLEX 
variables, and that double precision complex arithmetic had 
been determined to be necessary, but was not supported by 
the local FORTRAN compiler. A pattern-matching macro 
processor could be used to recognize arithmetic expressions 
and turn them into code sequences which used real 
arithmetic. Thus the statements 

COMPLEX A, B, C ,D 
A = CEXP(D)/(B*C) 

might be automatically converted by the pattern matcher to 
the sequence 

DOUBLE PRECISION A(2),B(2),C(2),D(2),TEMPl(2),TEMP2(2) 
CALL DCEXP (TEMPl,D) 
CALL DCMULT (TEMP2,B,C) 
CALL DCDIV (A,TEMPl,TEMP2) 

An extensive discussion of macro processors may be 
found in the books 

"Software Portability", Ed. P.J. Brown, Cambridge 
University Press (1977). 

P.J. Brown, "Macro Processors and Techniques for 
Portable Software ", Wiley (1974). 

W.M. Waite, "Implementing Software for Non~Numeric 
Applications", Prentice~Hall (1973). 

Brown and Waite both discuss a pattern-matching 
macro processor called STAGE2 which was developed by Waite, 
and a listing of about 3700 lines of code for the entire 
STAGE2 system is contained in an appendix of Waite's book. 
About 1/3 of this code is in Portable FORTRAN, and the 
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remaining 2/3 is bootstrapped from the FORTRAN code portion. 

A simpler substitution macro processor called M6 
was developed by M.D. McIlroy and W.S. Brown of Bell 
Laboratories and is included as part of the ALTRAN symbolic 
and algebraic manipulation language (see below). M6 consists 
of about 600 lines of Portable FORTRAN and has been 
implemented on many different computers. M6 influenced the 
macro facilities of D.M. Ritchie's language C used for the 
UNIX system, and these were adopted by Kernighan and Plauger 
and implemented in RATFOR in their book Software Tools. 
This macro processor in turn was substantially improved and 
extended by R.J. Munn and J.M. Stewart at the University of 
Maryland. Their RATMAC preprocessor combines the macro 
processor with RATFOR and was mentioned in the RATFOR 
section of this roster. 

For computational chemists, the macro processors 
likely to be most easily available and maintainable are the 
M6 processor and the RATMAC preprocessor. Neither offers 
pattern-matching facilities, but then neither are these 
required as often as simple substitutional facilities. 
Programming for portability can be greatly aided by a macro 
processor which can take care of the code sections which 
require knowledge of details of the implementation and host 
computer. 

MATLAB 
====== 

MATLAB is an interactive matrix laboratory 
developed by Cleve Moler at the University of New Mexico. It 
incorporates routines from both EISPACK/2 and LINPACK and is 
written entirely in FORTRAN for wide portability. MATLAB 
provides the user with convenient facilities for on-line 
computations using scalars, vectors, and matrices. It can 
be used like a simple desk calculator, but is actually much 
more powerful. It has its own input language which permits 
users to program computations much as they would program in 
FORTRAN or PASCAL. It differs substantially from these in 
that variables are defined only when they are introduced at 
run-time, and they can be redefined in type as well as in 
value at any time. In this respect, MATLAB resembles the 
language APL, but requires neither special symbols nor 
cryptic notations familiar only to those schooled in the 
language. 

A convenient facility of MATLAB is the ability to 
store and retrieve data and programs from external files, so 
that it is quite easy to produce matrices in a FORTRAN 



program, and then save them on a file for use with MATLAB. 
MATLAB also has commands for saving and restoring its entire 
environment, so that one can go horne and corne back the next 
day, picking up exactly where one finished the day before. 

MATLAB can be obtained for a modest handling charge 
from its author: 

Cleve B. Moler 
Department of Mathematics and Statistics 
University of New Mexico 
Albuquerque, NM 87106 

Recipients are free to modify and further 
distribute MATLAB if they wish to do so. MATLAB is rather 
easy to install. At the University of Utah, about one day's 
work w,as required to get it operational in a form where it 
could be used conveniently and interface to the DECSYSTEM~20 
file system by file name, rather than by FORTRAN unit 
number. A copy of MATLAB with the DECSYSTEM~20 interface is 
also available on the Utah Software Tools tape. 

Module Cross~Reference Utilities 

When working with large software systems, or even 
small ones which are unfamiliar, it can be enormously useful 
to have available "calls" and "called by!! cross~reference 
lists. These can of course be made up by hand, but this is 
both tedious and error~prone, and the labor can be 
prohibitive with systems having hundreds of subroutines. 
Some people make a practice of including in comment 
statements for each routine a list of called routines, and 
it may then be possible to make selective "callsY! listings. 
The "cal byY! listings are not as easily obtained, and it 
is inadvisable to list in comments in a given routine the 
names of all those routines which call it, since such lists 
are bound to rapidly get out of date. 

Linkage editors and loaders have all the 
information necessary to build IIcalls Yl and "called byl! 
cross~reference lists, but I not yet seen an operating 
system in which these listings are available in a convenient 
form. The compiled code is the logical place to build the 
tables from, since the listings can be automatically 
regenerated each time the load library is updated, and one 
can thus always be assured of their correctness. 

I therefore developed a FORTRAN program on the CDC 
6400 which works with the SCOPE, KRONOS, and NOS operating 



systems for all CDC 6000, 7000, and Cyber models, and 
constructs these listings from a library file. The listings 
are formatted in neat tables, using only 65 columns, with 
the intention that a "C'I can easily be inserted in Column 1, 
so that they can become part of the main program 
documentation. This program, MAP, reads object code files 
which are naturally extremely machine-dependent, and the 
code was written rather machine-dependently. However, apart 
from the extraction of symbols from loader control blocks in 
the object code, the rest of the program concerned with 
sorting and printing the cross-reference lists could have 
been done without knowledge of the underlying machine. 

When I moved back to an IBM operating system, I 
rewrote MAP from scratch, and had to use some assembly 
language, since IBM FORTRAN does not provide access to 
membe~s and directories of partitioned data sets in which 
IBM load libraries are stored. The symbol sorting and 
listings were arranged to be more-or-less independent of the 
underlying system, and the resulting utility has been named 
PDSMAP. 

Since then, I have moved on to a DEC-20, and have 
modified PDSMAP to become LIBREF, which should work on both 
the TOPS-10 and TOPS-20 operating systems for the DEC-10 and 
20 computers. Although MAP, PDSMAP, and LIBREF are all 
machine-dependent, their output listings are identical, and 
I have found them absolutely indispensable in my own 
software development. MAP, PDSMAP, and LIBREF are available 
from the author on the Utah Software Tools tape. 

DOCUMENT 

DOCUMENT is a machine-independent FORTRAN document 
formatter, intended for the maintenance of software 
documentation which is kept in machine-readable form, along 
with its associated software. Output of DOCUMENT is intended 
to be printed on an ordinary line printer, preferably one 
having lower-case letters. 

In practice, it is useful to distribute DOCUMENT 
along with other software, and to include both the raw input 
documentation files, and a printer-ready copy of the output 
of DOCUMENT. In this way, neat documentation is available 
immediately, and as soon as the software has been installed 
(which usually requires modifications of some sort), the raw 
document can be updated to reflect the local changes. 
Features of DOCUMENT include 
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variable line widths and page sizes selectable 
at run time 

optional right-margin justification by blank 
padding (just like this report) 

automatic page numbering with one or two header 
and/or footer lines 

bibliography formatting 

easy subscripts and supersc pts 
line above or below) 

(printed one 

* backspacing for overstriking (frequently not 
available on ASCII line printers, however) 

* 

* 
* 

underlining 

automatic centering of text 

easy-to-type 
derivatives, 
limited by 
printers 

mathematical text (sums~ integrals, 
products, and limits), although 

·the inflexibility of most line 

DOCUMENT is available from the author on the Utah 
Software Tools tape. 

FMTFOR 

FMTFOR is a utility program which processes FORTRAN 
programs, outputting variable names in specification 
statements in alphabetical order in neat columns. Although 
this may seem like a "frill", I have come to regard it as 
one of my most useful tools. The file use-count statistics 
on our DECSYSTEM-20 show that it has been used on average 
about 220 times per month at our small installation. 

It was originally written to clean up a large 
quantum chemical two-electron integral subroutine which has 
type declarations and COMMON and EQUIVALENCE statements 
stretching over five pages of listing. A switch can be set 
to permit variables in COMMON to be ordered alphabetically 
as well as being tabulated; this of course can only be done 
when COMMON blocks of the same name are identical 
everywhere, and when storage alignment requirements do not 
dictate otherwise. FMTFOR is written in PASCAL, but as time 
permits, a FORTRAN version will be made and included as a 
new feature of EDIT. 
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FMTFOR is available from the author on the Utah 
Software Tools tape. 

The Pascal User's Group 

All of the software tools in the preceding sections 
are oriented towards FORTRAN software, and most are written 
in Portable FORTRAN. PASCAL is a language which is rapidly 
galnlng in popularity, and for which an ANSI committee is 
rleveloping a Standard. It has strongly influenced 
subsequent languages, particularly the U.S. Department of 
Defense language, ADA, which was developed to replace 
FORTRAN, COBOL, PL/l, JOVIAL, assorted assembly languages, 
and a few other high-level languages for defense 
applications. 

For several reasons which I will not go into here, 
PASCAL is not well-suited to the development of large-scale 
scientific programs. That situation may change in the 
future if the standardization efforts succeed in removing 
the detriments which currently exist, but ADA is already in 
a position for consideration, although it has yet to be 
widely implemented. However, PASCAL is becoming more and 
more widely available. There are at least two FORTRAN 
compilers which have been written in PASCAL, and there is 
also a computer chip designed to execute P-Code, which is a 
pseudo-machine code produced by several PASCAL compilers. 
One of the PASCAL-coded FORTRAN compilers was developed as a 
joint project of the Los Alamos and Lawrence Livermore 
National Laboratories. It is exciting to note that the same 
compiler is used to produce highly-optimized pseudo-code 
which is translated to run on the Cray computer at Los 
Alamos and the S-l at Lawrence Livermore, machines which 
have rather different architectures. 

A 
exists, and 
(often 100 
Membership 
application 

large and active PASCAL User's Group (PUG) 
publishes the PASCAL News, a lengthy newsletter 
pages or more) approximately four times a year. 
in PUG costs $6 per year, and membership 
forms can be obtained from 

PASCAL User's Group 
c/o Andy Mickel 
University Computer Center, 227 EX 
208 SE Union Street 
University of Minnesota 
Minneapolis, MN 55455 

The reason for mentioning PUG in this report is 
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that the PASCAL News is generally filled with listings of 
lots of useful software tools. Many of these are oriented 
towards PASCAL applications, but some could also be useful 
for FORTRAN programmers. Transcription of a language like 
PASCAL into FORTRAN can be very tedious, but provided that 
PASCAL's powerful data structures and recursive procedure 
invocation are not too heavily used, it will often be 
straightforward to recode PASCAL algorithms into SFTRAN/3, 
FLECS, or RATMAC, all of which have PASCAL-like control 
structures, and most importantly, procedures. 

Symbolic and Algebraic Manipulation Languages 

This section deviates from most of the previous 
ones in that one particular software tool will not be 
discussed. Many readers in the chemistry community may be 
unfamiliar with languages for symbolic and algebraic 
manipulation (SAM), and in some cases might benefit from the 
availability of such a language. 

Briefly, SAM languages permit one to write programs 
in procedural languages resembling Algol, PL/l, or PASCAL, 
in which statements like A:= B*C result not in replacement 
of A with the value obtained by multiplying the numeric 
values of Band C, but rather in assigning to A an 
expression obtained from the product of the expressions 
represented by Band C. Thus, if B contained the expression 
II(X+Y)!l and C the expression if(X**2 + 3)", A would become 
"(X**3 + Y*X**2 + 3*X + 3*Y)". SAM languages permit rather 
general expression substitutions and evaluations, and some, 
such as REDUCE, even allow the user to output expressions as 
FORTRAN code. Most contain faciliti~s for symbolic 
differentiation, and some now have rather powerful symbolic 
int ration facilities. 

More information about the subject can be obtained 
by examlDlng the proceedings of the Association for 
Computing Machinery Conferences on Symbolic and Algebraic 
Manipulation and from the SIGSAM Bulletin published 
quarterly by the ACM, and now in its fourteenth year. A 
survey article by J.H. Griesmer published in the SIGSAM 
Bulletin (Vol. 10, No.2, pp. 30-32, May 1976) may be 
us There are unfortunately no textbooks devoted to the 
subject of symbolic and algebraic manipulation languages, 
altho at least one is in preparation. 

No one has any difficulty in understanding that 
computers are useful for numeric computations, but many 
people seem to find it hard to imagine using a computer for 
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symbolic operations like integration and differentiation. An 
example from quantum chemistry may help to illustrate the 
useful of SAM languages. In ab initio computations, one of 
the main organizational problems involves the efficient use 
of the vast numbers of two~electron integrals which are 
stored, often in random order, on external media. The trick 
is to pick up each two-electron integral in turn, and then 
to add its contribution everywhere it belongs. In some 
theories, the two~electron integrals enter in rather 
involved formulas, and the programming is complicated by the 
fact that storage economization usually dictates that only 
one of a group of equivalent integrals is ever stored, so 
that each integral generally must be reused under the guise 
of several different names. A SAM language can be quite 
useful for automatically making index permutations and other 
substitutions to allow expressions to be produced in a form 
suitable for programming, and even for producing the FORTRAN 
code itself. Although this requires little of the power of 
some SAM languages, it is nevertheless a very useful 
application. Another potentially valuable application of 
SAM languages would be the production of FORTRAN code for 
special cases derived from general case formulas, as is 
often desirable in Gaussian molecular integral programs. 

The names of several SAM languages will now be 
mentioned to at least make them known to readers, who may 
find that they already have one or more of them available 
locally, but have never actually used them. The languages 
are given in alphabetical order. I have had personal contact 
only with FORMAC and REDUCE, and am therefore not in a 
position to make recommendations of one SAM language over 
another. However, few of these systems are portable, so in 
many cases, the field of choice will be drastically narrowed 
once the make of the local computer has been specified. The 
assistance of Martin A. Griss of the Utah Symbolic and 
Algebraic Computation Group in preparing this section is 
gratefully acknowledged. 

ALTRAN was developed at Bell Laboratories and is 
among the most portable of the SAM languages, since it is 
based on FORTRAN and a portable macro processor, M6. Its 
development has been frozen, but the processor is still 
available from Bell Laboratories. 

CAMAL was 
Fitch and others, 
field of symbolic 
which is available 

developed at Cambridge University by J. 
and has contributed significantly to the 
integration. Its base language is BCPL 

on several different computers. 

FORMAC is one of the earliest SAM languages and was 
originally FORTRAN based; a FORTRAN version is available 
from the U.S. Naval Postgraduate School in Monterey, 
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California. The current principle version of FORMAC is PL/1 
based, and is available through the IBM SHARE organization. 
A new release of FORMAC 73 was announced by K.A. Bahr in the 
SIGSAM Bulletin (Vol. 12, No.1, p. 6, February 1978); Bahr 
has been one of the most active supporters of FORMAC in 
recent years. 

MACSYMA and MATHLAB, its precursor, have been 
developed at MIT's Project MAC. MACSYMA is claimed to be 
the most powerful SAM language available, but is 
unfortunately also one of the least portable. It is based 
on a variant of LISP known as MACLISP, and is available on 
DEC~10 and ~20 computers, and also on the Honeywell MULTICS 
system. 

Most SAM languages require a large amount of 
resources to maintain symbolic expressions in memory and 
manipulate them. A recent interesting development is 
muMATH-79, which is intended to run on a microprocessor and 
therefore be widely available at a very low cost, so that it 
can even be used at the elementary school level. Its 
developer, David Stoutemeyer of the University of Hawaii, is 
a 1979-80 ACM National Lecturer, and has described muMATH-79 
in two recent articles (BYTE Magazine, Vol. 4, No.8, pp. 
176-192, and SIGSAM Bulletin, Vol. 13, No.3, pp. 8-24, 
August 1979). The first article also contains a discussion 
of several other SAM languages. 

REDUCE is a LISP based language developed by a 
physicist turned computer SCientist, Anthony C. Hearn of 
the University of Utah. In order to make REDUCE more 
portable, Hearn and colleagues have defined a Standard LISP, 
and developed compilers for this for a variety of machines. 
A compiler is even available which translates Standard LISP 
into FORTRAN, making it relatively easy to bootstrap onto a 
new machine. REDUCE is operational at more than 175 
computing installations around the world, and runs on 
Burroughs, CDC, CEMA, DEC, Fujitsu, Hitachi, IBM, Honeywell, 
ITEL, Siemens, Telefunken, and UNIVAC computers. It is 
available from the Computer Science Department of the 
University of Utah for $100. 

SAC-1 is a SAM system developed by G.E. Collins and 
colleagues at the University of Wisconsin. Unlike most 
other SAM systems, SAC-1 is not an independent language, but 
is instead used via FORTRAN subroutine calls. This means 
that it is not interactive, which is often an important 
requirement of SAM computations. However, its FORTRAN base 
makes it quite portable. 

SCHOONSHIP is a SAM language developed in Holland. 
It has been widely used in Europe, and is available for IBM 
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computers only. 

It has 
of IBM 
lot of 

SCRATCHPAD is a large SAM system developed by IBM. 
not yet been released as a program product to users 
equipment, but is very powerful and has received a 

discussion in the SAM literature. 

SYMBAL was developed by Max Engeli at the Technical 
University of Zurich in Switzerland. It remains one of the 
few SAM languages available on CDC computers. 

TEX and METAFONT 

TEX, for Tau Epsilon Chi, and rhyming with 
"blecchhh", according to its author, Donald E. Knuth of 
Stanford University, is a typesetting system for technical 
text. In the past, authors of scientific articles and books 
usually prepared their manuscripts in typewritten form and 
sent them to a journal or publisher where they were refereed 
or reviewed. Resulting modifications of the manuscript 
often required its retyping, before it was sent back for 
typesetting. This meant that it had to be typed again, this 
time into a typesetting system by personnel unfamiliar with 
the contents of the material, and particularly if it 
contained mathematical text, usually resulted in many errors 
being introduced. Consequently, galley proofs of the typeset 
material were returned to the authors for correction before 
final publication. With complicated or lengthy manuscripts, 
more than one round of this could be required. 

This situation is about to change, thanks to the 
exciting development of Knuth's TEX. TEX differs from most 
current typesetting systems is that it is written in a 
high-level language (SAIL, and presently being recoded into 
PASCAL) and produces an output device-independent file 
containing the formatted text. A device-dependent driver 
program then converts the file into a form in which it can 
be presented to a particular typesetting system. Device 
drivers for Varian 9511, Versatec 3200, A1phatype CRS, Xerox 
XGP, and Xerox Dover raster scan printers already exist, and 
many more are expected to be developed. 

Knuth is currently working on METAFONT, a system 
for font design to be used with TEX. A TEX Users Group, to 
be called TUG, is being formed to coordinate the use and 
dissemination of TEX. 

The American Mathematical Society has already made 
a firm commitment to move its entire journal and monograph 
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typesetting operation to the TEX system, and expects to 
complete this by mid-1981. They expect this to 
significantly reduce production costs, which in turn may 
allow a reduction in journal subscription prices. Great 
efforts are being made to encapsulate journal style 
differences in macros, so that manuscripts need not be 
hand-modified if the target journal changes. 

TEX is going to be widely distributed essentially 
at cost, so that it should not be long before authors will 
be in a position to produce their own galley proofs, right 
from the start, and then to provide their manuscripts in 
machine-readable form to their publishers. For information 
on TUG, write to 

TUG 
,American Mathematical Society 
P.O. Box 6248 
Providence, RI 02940 

The TEX manual can be ordered with a prepayment of $4.40 per 
copy for individuals, or $8.80 per copy for organizations, 
from 

American Mathematical Society 
P.O. Box 1571, Annex Station 
Providence, RI 02940 

A book containing both the TEX and METAFONT User Manuals is 
being published jointly by the AMS and Digital Press. 
Information on the availability of TEX and METAFONT may be 
obtained by writing to 

Dr. Luis Trabb Pardo 
Computer Science Department 
Stanford University 
Stanford, CA 94305 

Finally, a detailed discussion of the motivation 
and background for TEX and METAFONT may be found in Knuth's 
article "Mathematical Typography", published in the March 
1979 Bulletin of the American Mathematical Society. 

YACC 

The peculiar name YACC stands for "Yet Another 
Compiler Compiler". It is a program developed by Steve 
Johnson at Bell Laboratories which, given a language 
grammar, automatically constructs another program to parse 
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that language. Probably only those readers who have studied 
compiler writing, or have written command parsers 
themselves, will appreciate the utility of this. It is a 
very difficult job to construct by hand a CORRECT parser for 
an even moderately-complicated grammar. Once lexical 
analysis and parsing are complete, it is a much easier job 
to write a code generator for a specific machine, although 
if one is going to do a good job, or worry about 
optimization, that too can become complicated. 

Many readers might inquire just why a tool such as 
YACC is included in a roster of software tools which are 
intended to make scientific software development easier. The 
response I would give is that a tool such as this might 
profitably be used to construct a generalized quantum 
chemistry or crystallographic input routine which could be 
powerful, correct, and of wide utility. It could also help 
standardize the multitude of input formats required by such 
programs. 

With a tool such as YACC, one could permit 
arithmetic expressions as input values, simply by augmenting 
the input language grammar. In fact, the input language 
could be made to look like a compiler language with 
procedure and function calls, conditional statements, and 
looping constructs, if this proved to be useful. 

YACC is distributed as part of the Bell 
Laboratories UNIX system, with availability as noted in the 
discussion of STRUCT. 
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PROPOSAL FOR A STANDARD SET OF PRIMITIVES 
FOR MACHINE-INDEPENDENT 

BIT MANIPULATION IN FORTRAN 

by 

Nelson H.F. Beebe 
Departments of Physics and Chemistry 

University of Utah 
Salt Lake City, UT 84112 

Tel: (801) 581-5254 

INTRODUCTION 
============ 

The 1979 NRCC Conference on Software Standards in 
Chemistry held at the University of Utah resulted in 
considerable discussion about standard ways of implementing 
bit manipulation in FORTRAN programs. A previous proposal 
by the author described in the "Programmer's Guide to 
Portable SoftwareY! [BEEB79a] met with the criticism that the 
routine names began with the letters BIT, even though some 
were INTEGER functions. Many programmers apparently prefer 
to use FORTRAN's default typing conventions based on the 
initial letter of variable names, even if this reduces 
mnemonic significance and does not provide for other than 
REAL and INTEGER data types, unless an IMPLICIT statement is 
supported by the host compiler. General agreement could 
apparently be reached if the routine name prefix was changed 
to IBT, but it should be noted that this still requires 
variable name typing for those routines which are LOGICAL 
functions. 

Several participants recalled that the Instrument 
SOCiety of America (ISA), which establishes industrial 
standards of various sorts, and acts as an advisory body to 
the American National Standards Institute (ANSI), perhaps 
had established standard bit primitives for FORTRAN 
programming. This is indeed the case, and has been 
published as ISA Standard S61.1 "Industrial Computer System 
FORTRAN Procedures for Executive Functions, Process 
Input/Output, and Bit Manipulation". 

I feel strongly that ISA S6l.1 is not an acceptable 
standard for the needs of chemistry-related programming. 
There are several objections which may be noted. 

First, names chosen for the bit primitives (lOR, 
lAND, NOT, IEOR, ISHFT, BTEST, IBSET, and IBCLR) and for 
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obtaining the date and time of day (DATE and TIME) are very 
likely to conflict with names already implemented by various 
manufacturers in their extensions to the FORTRAN language. 
This is not a trivial problem, because some compilers expand 
intrinsic functions in-line, and overriding them by 
user-provided routines may not be possible, or may require 
the use of a special compiler option, or additional 
declaration statements in the routine which refers to them. 
The order and interpretation of arguments may differ from 
machine to machine, and could cause unexpected results which 
might be difficult to trace. 

Second, there is no consistent naming convention 
for the routines. The use of a mnemonic prefix such as BIT 
or IBT has proved invaluable in large program systems in 
that it allows groups of related routines to be readily 
identified, and also distinguishes the names from local 
names. 

Third, the bits are numbered from right to left 
starting with zero. There is no agreement among computer 
manufacturers about whether numbering should be 0123 ••• , 
123 ••• , ••• 321, or ••• 3210, and the precedence of FORTRAN 
array subscripts following the order 123 ••• strongly 
suggests that a left-to-right 123 ••• numbering convention 
should be adhered to. This is particularly important for 
the routines which test and set bits, for which an extension 
to bit arrays contained in more than one word of storage is 
rather useful. 

Fourth, ISA S61.1 does not prescribe a complete 
interpretation of the arguments. Nothing is said about what 
the primitive will do when presented with an out-of-range 
bit number. This is an unsatisfactory situation in a 
standard, and is bound to cause portability problems. 

An alternative set of standard bit 
routines is presented in this proposal, and, 
remedies all of the above criticisms. 

manipulation 
I believe, 

Because the internal format of FORTRAN data types, 
and also of characters, differs from machine to machine, and 
indeed, even from compiler to compiler at a single 
installation, it should be clear that the use of bit 
primitives to access data immediately involves assumptions 
which will defeat the goal of portability of chemical 
software. 

It is nevertheless possible to implement certain 
types of bit manipulation in a machine-independent way, as 
is illustrated, for example, in the report flIntegral File 
Data Compression" [BEEB79b]. In particular, those 
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applications which require only bit strings can be 
implemented completely portably, once the number of bits in 
an integer storage unit is available. I propose for this 
purpose that the PORT Library Framework [FOX78a, FOX78b] be 
adopted as a standard facility for accessing machine- and 
operating~system parameters. This software is in the public 
domain, and at present, supports various operating systems 
for computers manufactured by: 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Burroughs (1700/5700/6700/7700 series) 
CDC(6000/7000/Cyber series) 
Cray 1 
Data General (Eclipse S/200) 
DEC (10/20/PDP-11/VAX) 
Harris (Slash 6 and Slash 7) 
Honeywell (600/6000 series) 
IBM, (360/370 series) 
Interdata (8/32) 
SEL (System 85/86) 
UNIVAC (1100 series) 
Xerox (Sigma 5/7/9 series) 

Parameters for others are very straightforward to add. 

The PORT functions I1MACH(5) and IIMACH(9), 
returning respectively the number of bits in an integer 
storage unit, and the largest positive integer, are 
sufficient to allow the data compression routines in 
[BEEB79b] to convert quantum chemistry integral and matrix 
element files containing REAL, DOUBLE PRECISION, and INTEGER 
data into compressed bit strings in which insignificant 
leading and trailing bits have been removed, offering a data 
reduction by up to a factor of five or six. Other 
applications which can be supported by these two PORT 
functions together with the bit primitives include: 

* 

* 

* 

* 

Manipulation of bit representations of Slater 
determinants and excitation operators in 
configuration interaction, perturbation theory, 
coupled cluster, and propagator calculations, 
including conversion to and from human-readable 
integer representations. 

Bit mapping used to represent patterns of non-zero 
elements in sparse matrices. 

Patterns of dots in a plot to be output on a 
dot-matrix plotter. 

Compressed LOGICAL arrays using only one bit per 
element, instead of an entire word. 
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In those higher-level primitives which deal with 
variable-length bit strings, rather than single-word bit 
patterns, the strings are defined in terms of three 
variables. These are the name of the INTEGER array 
containing the string, a starting position (numbering 
1,2,3, ••• from the left), and the number of bits to be 
considered. Thus, an argument sequence STRING,LOC,LEN 
represents bits LOC, LOC+l, LOC+2, ••• , LOC+LEN-l stored in 
the array STRING(*). It is an error condition if LOC or LEN 
is less than 1, and the action to be taken in such a case 
will be expressly defined for each primitive. In some 
cases, two strings of the same length are present in the 
argument list, and the length parameter of the first will 
then be omitted. 

BASIC PRIMITIVES 

INTEGER FUNCTION IBTAND (K,L) 

Return the logical AND of K and L. This has I-bits 
where both K and L have I-bits, and O-bits elsewhere. 

INTEGER FUNCTION IBTCOM (K) 

Return the logical complement of 
stored in K. The complement is formed by 
bits. 

LOGICAL FUNCTION IBTEST (STRING,NBIT) 

the bit pattern 
inverting 1 

Test bit number NBIT in STRING(.), and return 
.TRUE. if it is a I-bit, and .FALSE. if it is a O-bit. If 
NBIT is less than 1, return .FALSE •• 

SUBROUTINE IBTOFF (STRING,NBIT) 

Set bit number NBIT in STRINGC.) to O. If NBIT < 1, 
no bit will be set. 
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* Implementation of the standard set of character 
primitives on a given machine. 

* Masking operations. 

* Construction of byte strings for control of devices 
such as plotters. 

Other functions in the PORT Library Framework which 
provide such parameters as the machine precision, the base 
of integer and floating-point numbers, and floating-point 
exponents may largely obviate the need for bit manipulations 
which require knowledge of the internal format of such data. 

THE BIT PRIMITIVES 

A description of the complete set of bit primitives 
which are proposed here follows. An experienced assembly 
language programmer should be able to implement them in an 
afternoon's work on any existing computer presently used for 
chemical computations. An agency such as the Quantum 
Chemistry Program Exchange or the NRCC could act as a source 
of implementations of these routines for a variety of host 
computers and operating systems, thereby increasing their 
availability and hopefully encouraging their widespread 
adoption. It has proven useful at our computing 
installation to install these in the system FORTRAN library, 
so that they are automatically available to all FORTRAN 
programmers. If they are not made convenient to use, many 
less-motivated programmers will not take the trouble to use 
them, and the present undesirable situation of 
machine-dependencies permeating chemical software will only 
continue. 

In all of the bit primitive routines, K, L, and 
NBIT represent INTEGER variables; STRING(*) is an INTEGER 
array. Many compilers will generate correct code if STRING 
is an INTEGER scalar variable, but this use does not conform 
to Portable FORTRAN. Portability dictates that the 
arguments to these functions should be restricted to INTEGER 
data types; use with arguments of REAL, LOGICAL, COMPLEX, 
DOUBLE PRECISION, or Hollerith (character) data types may 
introduce machine-dependence, and should be strongly 
discouraged. 

It is considered good programming practice 
FUNCTION arguments as read-only values, in order 
side effects. This convention is adhered to 
definition of all of the FUNCTION primitives. 

to treat 
to avoid 
in the 
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SUBROUTINE IBTON (STRING,NBIT) 

Set bit number NBIT in STRING(*) to 1. If NBIT < 1, 
no bit will be set. 

INTEGER FUNCTION IBTOR (K,L) 

Return the logical OR of the bit patterns present 
in K and L. I-bits are returned in positions in which 
either K or L, or both, have a I-bit. 

INTEGER FUNCTION IBTROL (K,NBIT) 

Return the bit pattern represented by K after 
rotating it left by ~NBIT~ bits. If NBIT is negative, 
ignore its sign. 

INTEGER FUNCTION IBTROR (K,NBIT) 

Return the bit pattern represented 
rotating it right by ~NBIT~ bits. If NBIT 
ignore its sign. 

INTEGER FUNCTION IBTROT (K,NBIT) 

by K after 
is negative, 

Return the bit pattern represented by K after 
rotating left (NBIT > 0) or right (NBIT < 0) by NBIT bits. 

INTEGER FUNCTION IBTSHF (K,NBIT) 

Return the bit pattern represented by K after 
performing a logical shift left (NBIT > 0) or right (NBIT < 
0) by NBIT bits. Bit positions vacated are filled by 
O-bits. I-bits shifted out of the word are lost. 
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INTEGER FUNCTION IBTSHR (K,NBIT) 

Return the bit pattern represented by K after 
performing a logical shift by ~NBIT~ bits to the right. 

INTEGER FUNCTION IBTSHL (K,NBIT) 

Return the bit pattern represented by K after 
performing a logical shift by ~NBIT~ bits to the left. 

INTEGER FUNCTION IBTSUM (K) 

Return the number of I-bits in the bit pattern 
repres,ented by K. 

INTEGER FUNCTION IBTXOR (K,L) 

Return the exclusive OR of the bit patterns 
represented by K and L. The result has l~bits in positions 
where K and L have different bits, and O-bits where K and L 
have identical bits. 

HIGHER-LEVEL PRIMITIVES 

SUBROUTINE IBTGET (BYTE,STRING,LOC,LENGTH) 

Return in the INTEGER variable BYTE a 
right-adjusted bit string containing LENGTH bits extracted 
starting at position LOC in the STRING(*). Any leading bits 
in BYTE are set to zero. If LENGTH is larger than the word 
size, only the first IIMACH(5) bits of the selected 
substring will be returned in BYTE. If either LENGTH or LOC 
is less than 1, 0 will be returned in BYTE. 

SUBROUTINE IBTPUT (BYTE,STRING,LOC,LENGTH) 

Store the right-most LENGTH bits of BYTE in the 
STRING(*), starting at bit position LOC. If either LENGTH 
or LOC is less than 1, no bits will be stored. If LENGTH is 
larger than the wordsize, only the first IIMACH(5) bits of 
BYTE will be stored at the designated position. 
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INTEGER FUNCTION IBTCMP (STRNGA,LOCA,STRNGB,LOCB,LENGTH) 

Given two bit strings define by STRNGA,LOCA,LENGTH 
and STRNGB,LOCB,LENGTH, compare LENGTH bits of the two 
substrings, treating the substrings as UNSIGNED binary 
integers. Return -1, 0, or +1 for the conditions A < B, A = 
B, or A > B, respectively. If any of LOCA, LOCB, or LENGTH 
is less than 1, return 0. 

SUBROUTINE IBTMOV (TARGET,LOCTAR,SOURCE,LOCSRC,LENGTH) 

Given two bit strings defined by 
TARGET,LOCTAR,LENGTH and SOURCE,LOCSRC,LENGTH, move LENGTH 
bits from SOURCE into TARGET. If any of LOCTAR, LOCSRC, or 
LENGTH is less than 1, no bits are moved. Bits must be moved 
in order from left to right, equivalent to one bit at a 
time, in order to provide consistent behavior in case TARGET 
and SOURCE overlap. 

SUBROUTINE IBTSWP (STRNGA,LOCA,STRNGB,LOCB,LENGTH) 

Given two bit strings defined by STRNGA,LOCA,LENGTH 
and STRNGB,LOCB,LENGTH, swap the bit strings in memory. If 
any of LOCA, LOCB, or LENGTH is less than 1, no swap is 
performed. 

CONCLUDING REMARKS 
================== 

It may be of some cause for concern that the 
routines containing STRING(*) as an argument do not also 
contain its dimension, in order that an out-of-bounds 
storage reference can be avoided in the event of NBIT being 
too large. We have elected NOT to include this extra 
argument, because the same criticism may be raised for any 
FORTRAN array reference for which the compiler does not 
perform subscript range checking. Even when this feature is 
available, it is usually suppressed in production programs 
for reasons of run-time efficiency. 

I believe 
satisfactory set of 

that the above routines provide a 
bit primitives whose performance, apart 
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from word-length variations, is the same on all machines, 
for both valid and invalid arguments. Arithmetic shift 
routines have been intentionally excluded, because their 
behavior is inherently connected with the host number 
representation, and their use would then unnecessarily 
compromise portability. 

Careful programming utilizing IIMACH(5) to provide 
the number of bits in an INTEGER storage unit can eliminate 
all word-length dependencies from the executable code, and 
even from most of the dimensional limitations in the case of 
the array STRING(*) if its storage is suitably allocated at 
the top level of a program system. Just as it is becoming 
more widely understood that fixed dimensions for potential 
variable-sized arrays of standard data types should be 
restricted to the MAIN program, so should the dimension of a 
bit string disguised as an INTEGER array, since the required 
amount of storage is certain to vary from one computer to 
another. 

Applications will no doubt arise in which it will 
be convenient to permit Boolean operations to be extended to 
variable-length bit strings beginning at arbitrary offsets 
ln data words. This presents sufficient extra 
complications, that a set of higher-level bit routines based 
on the basic primitives described above would be desirable. 
Development of such a collection will be left for later 
work. 
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INTRODUCTION 

At the 1979 NRCC Conference on Software Standards 
in Chemistry held at the University of Utah, the author 
proposed that a standard set of primitives for character 
manipulation in chemical software written in the FORTRAN 
language be adopted, and set forth a selection of routines 
which were felt to serve the purpose. The suggested 
routines followed a uniform naming convention of a mnemonic 
prefix CHR, to which some opposition was voiced by several 
participants who felt that since many of the primitives were 
INTEGER functions, their names should conform to the FORTRAN 
default by which variable names beginning with the letters I 
through N are typed as INTEGERs. Although I personally feel 
that good names are more important than the question of 
whether an explicit type statement must be inserted, a 
compromise prefix KAR was suggested and accepted by the 
working group which considered the issue. 

The discussions at the Conference and subsequent 
communications showed the desirability of adding a few 
additional primitives to facilitate programming and increase 
the general utility and efficiency of the character 
primitives. Several participants also suggested that 
standards may already exist in the literature for FORTRAN 
character primitives, and that such standards should be 
seriously considered for adoption, if they existed. Unlike 
the case of bit primitives, no such standard seems to have 
been proposed. 



-117-

BACKGROUND 

Before describing the proposed primitives, some 
background information is useful. FORTRAN has never offered 
satisfactory support of character data. Indeed, some 
compilers extant until the mid-1960's did not even have 
Hollerith data items or A FORMAT descriptors, or LOGICAL 
variables, for that matter. When limited character support 
became widely available in FORTRAN, it was restricted to 
Hollerith string constants of the form 8HCHEMISTRY, together 
with the A FORMAT item. Hollerith constants were permitted 
by the 1966 ANSI FORTRAN Standard to occur only in DATA and 
FORMAT statements, and as subroutine arguments in CALL 
statements (but not in FUNCTION references, although no 
compiler that I am aware of enforces this restriction). No 
CHARACTER data type was introduced, and characters were 
forced to masquerade in the guise of other data types. 

Coding Hollerith strings is somewhat tedious and 
error-prone, because of the necessity of counting 
characters. Consequently, many manufacturers permitted 
character constants to be surrounded by delimiter 
characters, for example, "CHEMISTRY", but again, no general 
agreement was reached about what the delimiter characters 
ought to be. Single and double quotes are most common, but 
asterisks and not-equal signs have also been used. When 
string delimiters are used, the question arises as to how 
the delimiter character itself is to be represented in a 
string constant. Usually, the doubled-delimiter approach, 
"O""MALLEY" for the string O"MALLEY, has been adhered to, 
although CDC's use of the asterisk as a string delimiter 
simply prohibited its appearance as a string character. As 
a result of these variations, only the Hollerith string can 
be relied upon for portability, and automated means of 
converting between the different string conventions in 
FORTRAN source programs are available at some installations. 

The 1966 implementation of support for character 
data is just about the worst possible. The Hollerith form 
is certainly undesirable. Even worse is the convention for 
internal storage of character strings. These must always be 
stored left-justified in a computer word, and right-padded 
with blanks if the number of characters specified does not 
fill an integral number of machine words. The number of 
characters which fit in a word ranges from 1 to 10 on 
existing computers [BEEB79J, and the left-justification 
means that even if one arranges to store only one character 
per word for word-length independence, the character will be 
occupying the most-significant bit positions and probably 
the sign bit as well. This means that even comparison of 
characters for equality can result in an arithmetic overflow 
condition on those machines where comparisons are 
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implemented by subtraction. It also means that accessing 
the numerical value of a character cannot be done portably, 
for division by a power of two to effect a right shift of 
the bit pattern will fail if the sign position is occupied 
by a l~bit. 

Another problem is that depending upon the FORTRAN 
type of the variable in which characters are stored, 
different results may be obtained on different machines. For 
example, character storage in LOGICAL variables is 
impossible on those machines which implement LOGICAL scalars 
and arrays as bit strings, and on most others, the 1966 
Standard's prohibition of the use of the relational 
operators .EQ., .NE., .L~., etc. between LOGICAL variables 
would prevent character comparisons. Floating~point types 
are also unsuitable, because mantissa normalization which 
may oocur in assignments or in expression evaluation usually 
will scramble the bits, destroying the characters stored in 
the word. This leaves INTEGER variables and arrays as the 
only possible repository of character data, and even this 
may fail. On the IBM 7030 Stretch computer, for example, 
integers are represented internally as floating~point 

numbers, and unless assembly-language coding is resorted to, 
it is very inconvenient just to get character data correctly 
in and out of variables on that machine. 

The 1977 FORTRAN Standard has made an attempt to 
remedy these difficulties by the introduction of a CHARACTER 
data type, but is still not going to offer a complete 
solution. 

First of all, the Hollerith data type is dropped 
from the 1977 Standard. This means that a very large body of 
existing FORTRAN software which uses character data, even in 
an at-present widely portable fashion, may require extensive 
changes to run with a FORTRAN 77 compiler, unless 
manufacturers can be pressed to continue support of 
character data stored in Hollerith constants and variables. 
The 1977 standard prohibits all storage equivalencing, 
either via COMMON and EQUIVALENCE statements, or by FUNCTION 
or SUBROUTINE argument associations, between CHARACTER data 

all other FORTRAN data types. This was necessary to 
enable FORTRAN 77 to support variable~length character 
str s, so that declarations of the form 

SUBROUTINE A (B,C) 
CHARACTER B*C*),C(*)*C*) 

could be permitted, allowing CHARACTER variables to inherit 
both a size and an array length from a calling program. This 
forces a compiler to generate code to pass to a called 
routine the address of a string descriptor containing size 
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and dimension information, as well the actual address of the 
character data. 

Second, standardized library support of character 
data in the form of useful utility routines is non-existent 
in the 1977 Standard, apart from the ICHAR and CHAR 
functions for converting between INTEGER and CHARACTER form. 

Third, null character strings, that is, strings of 
zero length, are not permitted. Null strings are in fact 
quite useful, and indeed, even necessary in some 
applications. In particular, a null string cannot be 
simulated by any string of non-zero length. 

Fourth, the 1977 Standard does not specify the 
character set to be used. The fact that many manufacturers 
employ their private versions of character sets, each with 
its own special character repertoire and collating sequence, 
only continues to perpetrate additional machine dependence 
upon FORTRAN users. 

CRITERIA FOR SATISFACTORY SUPPORT OF CHARACTER DATA 
=================================================== 

The reaction of some people on reading the above 
criticisms, or having experienced them personally, will no 
doubt be to reject FORTRAN completely as a language in which 
any kind of character manipulations are to be done. There 
is certainly some validity to this view. However, as one 
Conference participant remarked, there is really no choice 
in the matter, for FORTRAN 66 is the only "(almost) 
machine-independent high-level 'assembly' language!! that we 
have for scientific computation. 

FORTRAN is available on essentially all medium- and 
large-scale computers in the world today, and also on many 
microcomputers as well. It has been in existence for nearly 
twenty-five years, and is one of the two or three 
still-existing original high-level programming languages. It 
is widely understood by scientists and engineers the world 
over. 

A widely-implemented ANSI and ISO Standard has been 
in existence for fourteen years, and in fact, FORTRAN was 
probably the first language to be so standardized. 

An enormous amount of FORTRAN 
representing a huge investment of money and 
years, already exists, and sophisticated and 
scientific subroutine libraries such as IMSL, 

software, 
programmer 
extensive 
Harwell, 
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Boeing, NAG, EISPACK, FUNPACK, and LINPACK are widely 
available. 

FORTRAN's lack of structured control statements, 
but unfortunately not its limited variety of data types, can 
be largely avoided by programming in a preprocessor 
language, such as RATFOR or SFTRAN3, which can then be 
translated into Portable FORTRAN. 

Finally, and importantly, there exist automated 
tools such as the PFORT Verifier, which can be used to test 
FORTRAN software for adherence to Portable FORTRAN syntax, 
grammar, and usage. 

In constructing a set of character primitives for 
widespread implementation on a variety of host machines, two 
goals, must be kept in mind. First of all, the primitives 
should provide frequently-needed functions. Examples of 
these include packing and unpacking of characters, obtaining 
integer equivalents, comparing and moving strings, and 
letter case and character set conversions. Second, they 
should permit machine-independent implementation of programs 
which manipulate character data. 

The second goal carries with it an important 
decision. This is that a standard character set must be 
adopted, or at least be available via function calls, in 
order that such operations as sorting by collating sequence, 
or the use of integer equivalents of characters for 
governing the flow of control in programs such as parsers 
and lexical analyzers, can be implemented in a fashion which 
will guarantee that the same results will be obtained, 
independent of the host computer. 

There is fortunately at present an 
internationally-agreed~upon character set, known as ASCII 
(American National Code for Information Interchange), 
defined in ANSI Standard X3.4-l968 and revised in X3.4-1977. 
It has been adopted in Japan as the Japanese Industrial 
Standard Code for Information Interchange (JISCII) (1969), 
and by the International Standards Organization as ISO DR 
1052 (1967). Unfortunately, at present the American IIBig 3 11 

computer manufacturers IBM, CDC, and UNIVAC do not provide 
e support for ASCII, although both UNIVAC and CDC are 

evidently moving in that direction. 

ASCII is a 7-bit code offering 2**7 or 128 
different characters, made up of 32 standard control 
characters, followed by a space, then the special characters 
!II#$%&'()*+,-./, the digits 0-9, the special characters 
:;<=>?@, upper-case letters A-Z, special characters [®J© 0, 

lower~case letters a-z, special characters §~t'", and 
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finally, a DELete control character. With the exception of 
the DELete control character, the special characters 
following the letters may be replaced with national 
characters for those alphabets having more than 26 letters. 
Standardization work is going on at present to expand the 
code to 8 bits, and Cyrillic and Japanese Katakana 
characters have already been assigned to characters in the 
range 128-255 for use in the Soviet Union and Japan. 

This proposal recommends the adoption of the ASCII 
character set as a standard one, and functions are defined 
allowing access to it even on those computers which do not 
yet use it. It is worth noting in passing that the new U.S. 
Department of Defense programming language, ADA [SIGP79], 
has specified that all character data shall be in the ASCII 
character set, independent of the host computer. 

THE CHARACTER PRIMITIVES 
======================== 

The character primitives defined in the remainder 
of this proposal can all be implemented entirely in FORTRAN 
if a standard set of bit primitives is available. However, 
because of the differing storage order on some machines such 
as the PDP~ll and the DEC VAX 11/780, where characters are 
stored in reverse order, a FORTRAN implementation will in 
general not be portable, even if such parameters as the 
number of bits in a character, and the number of characters 
in an INTEGER storage unit, are available 
machine-independently through the PORT Library Framework 
[FOX78a, FOX78b]. However, an initial FORTRAN 
implementation in terms of bit primitives may nevertheless 
be useful as a bootstrapping process when software is to be 
installed on a new machine. All of the routines will be 
straightforward to implement in assembly language, and 
particularly for those machines which support character 
addressing in hardware, it may be an order of magnitude more 
efficient to do so. 

Just as in the case of the proposed bit primitives, 
it is anticipated that bodies such as the Quantum Chemistry 
Program Exchange or the NRCC could act as a source of 
implementations of these primitives for a wide variety of 
host computers. Installations will also find that 
programmer's are more easily encouraged to use the standard 
character primitives if they are conveniently available, 
preferably as part of the local system FORTRAN library. 

In the following descriptions, all arguments are 
scalar INTEGER variables, except TEXT(*), which represents 
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either a Hollerith constant, or character data packed with 
the maximum number of characters per word. Exceptions to 
this will be noted when necessary. Readers familiar with 
the programming languages PASCAL and PL/l will note their 
influences on the design of these routines. 

The character primitives will be divided into two 
classes -- basic routines, and higher-level routines. The 
latter can be implemented in FORTRAN in terms of the former, 
although on some systems with advanced hardware facilities, 
it may be desirable to define them directly in assembly 
language. 

In developing any software system, a decision must 
always be made about how error conditions are to be handled. 
In a set of routines which are proposed for adoption as a 
Standard, it is clearly unacceptable to ignore errors, and 
it is equally unsatisfactory to define behavior under error 
conditions to be "undefined", for this simply means that the 
action to be taken is decided by the implementor. 

Only two acceptable alternatives exist. Either an 
error flag can be returned, or predefined reasonable action 
can be taken when errors arise. The first of these places 
the burden of error handling on the user of the software, 
and frequently results in error conditions simply being 
ignored, or perhaps handled incorrectly. The second 
alternative simplifies programming on the part of the user 
by moving the error processing to a lower level, and also 
guarantees consistent error handling in all implementations. 
For this reason, the second of these has been adopted for 
the character primitives. 

An axiom of good programming is that functions 
should not have side effects. In practical terms, this 
usually means that they should not modify their arguments, 
or variables globally accessible through COMMON storage or 
its equivalent. This convention has been adhered to in the 
definition of the FUNCTION character primitives. 

In those primitives which deal with character 
strings, rather than single characters, the strings are 
defined in terms of three variables. These are the name of 
the INTEGER array containing the string, a starting position 
(numbering 1,2,3, ••• from the left), and the number of 
characters to be considered, counting from the starting 
position. Thus, an argument sequence TEXT,LOC,LEN 

resents characters LOC, LOC+1, LOC+2, ••• , LOC+LEN-1 
s ored in the array TEXT(*). It is an error condition if 
either LOC or LEN is less than 1, and the action to be taken 
will be expressly defined for each primitive. In some cases, 

two strings of the same length are present in the argument 
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list, and the length parameter for the first will then be 
omitted. In most applications, the LOC parameter will point 
to the first character in the array; its presence is, 
however, necessary to allow access to strings which do not 
begin at a word boundary. 

BASIC PRIMITIVES 

SUBROUTINE KARGET (CHAR, TEXT, LOC) 

Extract a single Hollerith character from the 
packed Hollerith string stored in the INTEGER array TEXT(*), 
taking it from position LOC (numbered 1,2,3, ••• from the 
left), and return it in the INTEGER variable CHAR in Al 
format. If LOC < 1, return the value +0 in CHAR. This 
value is not equal to any Al format character on any 
existing computer. 

SUBROUTINE KARPUT (CHAR, TEXT, LOC) 

Store a single 
packed Hollerith string 
placing it in position 
stored. 

Hollerith character, CHAR, into the 
stored in the INTEGER array TEXT(*), 

LOC. If LOC < 1, no character is 

INTEGER FUNCTION KARORD (CHAR) 

Return the ordinal position of the single Hollerith 
character CHAR in the installation~dependent character set. 
The bit pattern corresponding to the left-most character in 
CHAR is used to determine the ordinal value, and all 
trailing bits are ignored. No error condition is therefore 
possible. 

INTEGER FUNCTION KARCHR (ORD) 

Return the single Hollerith character corresponding 
to the INTEGER ordinal position ORD in the 
installation-dependent character set. The right~most bits 
in ORD are used to construct the Hollerith character, and 
all remaining bits of ORD are ignored, so that no error 
condition exists if ORD is out of the valid range. 
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INTEGER FUNCTION KARLC (CHAR) 

Return the 
Hollerith character 
be affected by this 
support lower-case 
its value. 

lower-case equivalent of the single 
CHAR. Only the letters "A" - HZ" will 

function. If the host computer does not 
letters, then KARLC must return CHAR as 

INTEGER FUNCTION KARUC (CHAR) 

Return the upper-case equivalent of the single 
Hollerith character CHAR. Only the letters "a" ~ HZ" will 
be affected by this function. If CHAR is not a lower-case 
letter, then the function value returned must be CHAR. 

INTEGER FUNCTION KARASC (CHAR) 

Return the ordinal position of the single Hollerith 
character CHAR in the ASCII character set. For ASCII 
machines, this function is identical to KARORD, but for 
non-ASCII machines will be different. If CHAR has no ASCII 
graphic equivalent, then the value -1 must be returned. 

INTEGER FUNCTION KARLCL CORD) 

Return the local Hollerith character corresponding 
to the ASCII character having ordinal value ORD. If ORD 
corresponds to a lower-case letter, and the local character 
set supports only upper-case letters, then KARLCL must 
return the upper-case equivalent of ORD. KARLCL is the 
inverse of KARASC, since KARLCL(KARASC(CHAR)) = CHAR for 
characters for which equivalences can be defined. The 
right-most bits in ORD are used to construct the Hollerith 
character, and all remaining bits of ORD are ignored, so 
that no error condition exists if ORD is out of the valid 
range. If the ASCII character corresponding to ORD has no 
equivalent in the local character set, then KARLCL must 
return a value +0; this cannot represent an Al format 
character on any existing computer. 
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HIGHER-LEVEL PRIMITIVES 

SUBROUTINE KARMOV (TARGET,LOCTAR,SOURCE,LOCSRC,LENGTH) 

Given two character strings defined by 
TARGET,LOCTAR,LENGTH and SOURCE,LOCSRC,LENGTH, move LENGTH 
characters from SOURCE(*) into TARGET(*). If any of LOCSRC, 
LOCTAR, or LENGTH is less than 1, then no characters are 
moved. The move must be performed in order from left to 
right in order to provide uniform behavior in the event of 
overlapping character strings. 

SUBROUTINE KARSWP (TEXTA,LOCA,TEXTB,LOCB,LENGTH) 

Given two 
TEXTA,LOCA,LENGTH and 
memory. If any of LOCA, 
action is taken. 

character strings defined by 
TEXTB,LOCB,LENGTH, swap them in 

LOCB, or LENGTH is less than 1, no 

INTEGER FUNCTION KARCMP (TEXTA,LOCA,TEXTB,LOCB,LENGTH) 

Given two packed character strings, TEXTA(*) and 
TEXTB(*), beginning at character positions LOCA in TEXTA(*) 
and LOCB in TEXTB(*), compare the next LENGTH characters of 
the two strings, and return -1, 0, or +1 according to A < B, 
A = B, or A > B, respectively. The collating sequence that 
MUST be used is that defined by the ASCII character set. The 
overhead for this is minimal, and often will require no more 
than an indexed register load, rather than a direct load, in 
an assembly language implementation. Thus 

I = KARCMP(lH ,1,lHA,1,1) 

will ALWAYS give I = -1, even on a machine such as a CDC 
computer which uses an internal representation in which a 
space is greater than the letter A. Note that upper- and 
lower-case letters are NOT equivalent with this function. If 
any of LOCTAR, LOCSRC, or LENGTH is less than 1, then KARCMP 
= ° on return. This result is chosen to comply with the 
interpretation that invalid strings are null strings, and 
all null strings are equivalent. 
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INTEGER FUNCTION KARCM2 (TEXTA,LOCA,TEXTB,LOCB,LENGTH) 

This function is similar to KARCMP, except that the 
character comparison is done without regard to letter case 
for the letters A-Z and a-z. It is provided because of its 
wide utility in, for example, testing responses entered from 
interactive terminals which support lower-case letters. 

INTEGER FUNCTION KARIDX (TEXTA,LOCA,LENA, 
# TEXTB,LOCB,LENB) 

Given two packed character strings defined by the 
arguments TEXTA,LOCA,LENA and TEXTB,LOCB,LENB, search the 
first string for the first occurrence of the second string. 
If any of the arguments LOCA, LENA, LOCB, or LENB are 
invalid, or if the second string is not found in the first, 
return 0. Otherwise, return its index, or position, in 
TEXTA(*), counting from the first character stored in 
TEXTA(*). The result returned is thus always 0, or not less 
than LOCA. For example, KARIDX(5HHELLO,LOC,5,2HLO,1,2) 
returns the value 4 if LOC = 1,2,3, or 4, since the second 
string begins at the fourth position in the first string. If 
LOC is outside the range 1 .. 4, then ° is returned. 

KARIDX is essentially equivalent to the PL/1 INDEX 
function. It is worth noting that at least two computers, 
the DEC VAX-II/780 and the UNIVAC 1160, have a single 
hardware instruction for performing the function of this 
routine. 

SUBROUTINE KARXLT (TEXT,LOCTXT,LENTXT, 
# OLD,LOCOLD, NEW,LOCNEW, LEN) 

Given a string defined by TEXT,LOCTXT,LENTXT, 
translate characters according to the characters stored in 
each of the packed strings defined by OLD,LOCOLD,LEN and 
NEW,LOCNEW,LEN. Each character occurring in OLD(*) has a 
corresponding character in NEW(*). For example, the 
statement 

CALL KARXLT (TEXT,l,LENTXT, 2H<>,1, 2H(),1, 2) 

will result in each occurrence of < in TEXT(*) being 
translated to (, and each> to ). 

The characters in OLD(*) should be unique. In case 
they are not, the translation MUST be according to the last 
occurrence of a duplicated character. That is, if OLD(*) 
contains 3HBAB and NEW(*) contains 3HXYZ, then A's in the 
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substring will be translated to Y's, and Bls to Z's. This 
restriction facilitates implementation of the translation 
with an internal lookup table constructed from the standard 
character set with changes according to substitutions of OLD 
characters with NEW characters performed in order from left 
to right. 

If any of LOCTXT, LENTXT, LOCOLD, LOCNEW, or LEN is 
less than 1, return occurs immediately with no modification 
of TEXT(*). 

INTEGER FUNCTION KARVFY (TEXT,LOCTXT,LENTXT, 
# PATERN,LOCPAT,LENPAT) 

Search the string defined by TEXT,LOCTXT,LENTXT for 
the first character which is NOT contained in the pattern 
string defined by PATERN,LOCPAT,LENPAT. If any of LOCTXT, 
LENTXT, LOCPAT, or LENPAT is less than 1, return O. If all 
characters in the first string are found in PATERN(*), 
return O. Otherwise return the index of the first 
mismatching character in TEXT(*), counting from the first 
character stored in TEXT(*). Thus KARVFY always returns a 
value 0, or one which is not less than LOCTXT. It is 
important to note that the index returned points to the 
first string, not to the pattern string. 

KARVFY is based upon the PL/l VERIFY function. In 
PASCAL, its would be implemented by testing a character to 
see if it belongs to the set of characters forming the 
pattern. For example, if the pattern contained letters, 
digits, and a space, then KARVFY would return the index of 
the first character in TEXT(*) which was not a letter, 
digit, or space. This is a rather convenient function to 
have for implementing command parsers. 

SUBROUTINE KARUPK (TARGET, SOURCE ,LOCSRC,LENGTH) 

Unpack LENGTH characters from SOURCE(*) into Al 
FORMAT in TARGET(*), beginning at character position LOCSRC 
in SOURCE(*). If either LOCSRC or LENGTH is less than one, 
then no characters are unpacked. 
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SUBROUTINE KARPAK (TARGET,LOCTAR,SOURCE,LENGTH) 

Pack LENGTH characters stored in A1 FORMAT in 
SOURCE(*) into TARGET(*); beginning at character position 
LOCTAR in TARGET(*). If either LOCTAR or LENGTH is less 
than one, no characters are packed. 

BEEB79 

FOX78a 

FOX78b 

SIGP79 
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************ 
* Abstract * 
************ 

A proposed set of FORTRAN-callable routines which 
implement a standard machine-independent interface for 
random-access I/O is presented. Although the internal 
structure of the interface routines will vary from machine 
to machine, the calling sequences will be constant, and 
devoid of machine-specific parameters. Actual 
implementations of the interface routines will be provided 
to the NRCC and the Quantum Chemistry Program Exchange by 
members of the Working Group Subcommittee for those host 
operating systems to which they have access. It is hoped 
that other members of the computational community will be 
similarly willing to provide implementations developed for 
different computer systems. 

************** 
* Background * 
************** 

The 1966 FORTRAN Standard did not include 
facilities for. random-access input/output in the language. 
In retrospect, this has been one of the most serious 
shortcomings of the Standard, and also one in which 
manufacturers have offered the greatest diversity of 
implementations. There do not appear to be even two 
independent computer manufacturers who support an identical 
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implementation of random-access I/O. A recurring barrier to 
quantum chemical program portability has been random~access 
I/O, and it is the consensus of the Subcommittee that a 
Standard Random-Access I/O Interface can indeed be defined 
and implemented without regard on the part of the user to 
the vagaries of the host operating systems. 

A random-access storage device may be any physical 
device permitting direct retrieval of individual data 
records without an overhead which depends on the number of 
preceding records in the file. Examples of such devices are 
magnetic disks and drums, bubble memory, slow core, and film 
store. Inherently sequential devices such as reels of 
magnetic tape are not considered random-access devices, even 
though some manufacturers have provided facilities which 
simulate this (e.g. DECTAPE). 

The authors of this report are primarily concerned 
with the specification of a random-access I/O interface 
which is suitable for quantum chemical applications. 
However, it should be evident that the design is general 
enough that the interface could certainly receive wide use 
in other areas of computational endeavor as well. 
Random-access I/O is essential in certain computations, and 
an example may help illustrate why this is so. 

The primary application in quantum chemistry is the 
out-of-core sorting of a very large randomly-sparse matrix 
into row or column order. This matrix is most frequently a 
"two-electron integral" matrix, and is indexed by four 
integers (PJq~r,s), (p,q~ forming a row index and 'r,s) a 
column index. Each index lies in the range 1 •• N, where N is 
the number of basis functions included in the calculation. 
This is typically of the order of 50, although problems with 
N ~ 100 to 150 may be tackled if resources permit. There 
are thus about N**4 numbers to sort, and few computers 
currently available permit an address space sufficiently 
large to allow direct memory access to individual elements 
of such an array. Even if such central memory sizes were 
widely available, storage economization possible due to the 
sparseness would usually discourage keeping the full matrix 
in memory. 

At certain s s of a computation, it may be 
necessary to produce a new matrix with elements (a,b~c,d)J 
where a, b, c J and d represent linear combinations of the 
original basis functions. The individual elements (PJq~rJs) 
are themselves suffiCiently difficult to compute, so that it 
is not practical to generate the (a,b'c,d) integrals 
directly in most cases. Instead, a four~index transformation 
from (p,q'r,s) to (a,b'c,d) is carried out. If only 
sequential I/O facili es are available, this very large 
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matrix multiplication requires the I/O transfer of the order 
of N**5 elements, whereas with random-access I/O, only of 
the order of N**4 need be transferred between central memory 
and external storage. 

If a sufficient number of I/O units are available, 
it is possible to use sequential sorting algorithms such as 
the polyphase sort to reduce the I/O transfer to the order 
of N**4, but this has not usually been exploited. Which 
sorting algorithm proves the fastest depends to a great 
extent on the randomness of the data to be sorted, and also 
on characteristics of file organization and device access 
times. However, there are cases in which the sorted data 
must be retrieved in a particular order which is not known 
until execution time, and in such cases, a random-access 
sort is essential in order to allow later selective 
retrieval of the data. 

***************** 
* Design Issues * 
***************** 

Two overriding factors have influenced the 
Subcommittee's design of the interface. The first of these 
is that it must be implementable on ALL systems which are 
currently in wide use for quantum chemistry computations, 
and that cognizance must therefore be taken of the diversity 
in machine architecture and file system design. The second 
of these is that support for two primary data types must be 
provided. The first is the usual FORTRAN (fullword) INTEGER 
type, and the second is what will be termed WORKING 
PRECISION. On those computers offering a large 
single-precision mantissa (perhaps 40 or more bits, or about 
12 decimal figures), this may be implemented as FORTRAN REAL 
type. On those with a smaller single-precision mantissa, it 
will normally be DOUBLE PRECISION type. The use of both 
single and double preCision in the same calculation is rare, 
and consequently WORKING PRECISION will in fact be a fixed 
type on a particular host computer. Quantum chemistry 
software is often widely shared, and any given program may 
be expected to run on perhaps dozens of host machines, 
sometimes in single precision, and sometimes in double 
preciSion. In order to reduce the modifications necessary 
when programs are moved from one machine to another, the 
interface routines distinguish only between INTEGER and 
WORKING PRECISION. We wish to avoid the SQRT/DSQRT/QSQRT 
problems that normally plague FORTRAN software due to 
FORTRAN's lack of generic function names. 

A consideration which is related to the first of 
the above is the choice of names for the interface routines. 
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It is very important to avoid collisions with names already 
preempted by the host operating system, or the user, for 
that matter. Experience with large program libraries, such 
as the Harwell Subroutine Library, the NAG library, the IMSL 
library, PLOT76, LINPACK, and others, has amply demonstrated 
the desirability of systematic names, chosen usually from a 
leading two~ or three~letter prefix denoting a general 
routine class, followed by letters indicating specific 
functions or perhaps representing some mnemonic phrase 
describing the routine. For example, in the IMSL library, 
ZRPOLY is a routine for finding zeroes of real polynomials, 
and library includes about a dozen other routines with 
the prefix ZRP which are used internally. In PLOT76, VISNH 
is a routine in the VISibility class which establishes a New 
Ho zone 

Prefixes such as RA (for Random Access) or DA (for 
Direct Access) immediately suggest themselves for our 
interface design. These have been rejected in favor of the 
prefix IR, in order that certain of the routines can be 
implemented as FORTRAN INTEGER FUNCTIONs without requiring 
the programmer to explicitly declare their types. This 
deviates from our policy of generic naming, but it was felt 
that the use of default variable typing by FORTRAN 
programmers was too well~established to go against at this 
late stage. A characteristic prefix is preferable to a 
suffix (as in CDC's OPENMS, WRITMS, READMS, and CLOSMS) in 
that file directory listings, loader map listings, and 
routine cross~reference maps will tend to keep the names of 
the interface routines close together, reinforcing their 
I ically-close relationship. 

In order to conceal unnecessary detail from the 
user, the interfaces will generally require common blocks in 

ch to share information. For this reason, names of the 
form IRCBnn, where nn represents a two-digit string, will be 
rese for common block names. Documentation for a 

icular implementation will make available to the user 
1 of any such common blocks, in order that dummy 

cks of the same name may be declared in the MAIN 
this is required by the host operating system. 

ac contents of the common blocks are not relevant to 
the user, and for this reason, user documentation will not 

ly define them. A system installation document 
ing the details of a particular implementation 

, however, be provided, even though its availability 
to users involved in the system installation may be 
limited. In particular, a system implementor has the right 
to the contents of any such internal common areas or 
interface routine program logic at any time, provided that 
the external appearance and operation of the interface is 
not d. 



-133-

The design of I/O systems in 
programming languages and operating systems 
introduces four distinct tasks: OPEN, READ, 
CLOSE. 

most modern 
customarily 
WRITE, and 

The first of these provides for any initialization 
required, as well as establishing the logical connection 
between a file on a storage device and the file designator 
used within the program to refer to the file. This 
designator normally takes the form of a short string of 
characters, or a small integer. In the FORTRAN tradition, 
an integer in the range 1 •• 99 will be assumed by the 
interface. For portability, programmers should normally use 
a restricted range of 1 •• 20, and should ALWAYS represent the 
integer by a symbolic name, since some operating systems 
permanently associate specific device types with certain 
FORTRAN unit numbers. A FORTRAN unit number may be 
associated with one and only one file during the course of a 
job. This restriction is already enforced by many operating 
systems, and the Standard Interface will not depart from it. 
However, no checking will be done by the interface to ensure 
adherence to this requirement. 

The OPEN function must be able to obtain the actual 
name of the file on the storage device from the operating 
system, if this name is required. The file name will not be 
required by the user's program) nor will it be made 
available to the user via the interface, because the 
representation of file names varies so drastically between 
host operating systems. This implies that some means of 
establishing a connection between a particular file and its 
unit number must be available outside the FORTRAN 
environment. In most operating systems, this facility is 
provided in the job control language. In at least one, the 
DEC TOPS~20 operating system, this is not possible if other 
than predefined file names are to be used. Such an 
implementation may then have to provide a means for the user 
to define the unit number <--> file name connection, but 
this will not be part of the Standard Interface. Because 
many operating systems require that the OPEN function 
provide information such as file size and record size, use 
of an explicit OPEN call shall be MANDATORY. The READ/WRITE 
routines will return an error indicator if the file is not 
open, and will not attempt an open internally, as FORTRAN 
normally does for sequential I/O. A file disposition of KEEP 
or DELETE must be provided in the OPEN call, by analogy with 
the 1977 FORTRAN Standard. Its primary purpose is to 
provide information to the operating system of what to do 
with the file if the job aborts before a CLOSE call (see 
below) can be issued. 
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The READ and WRITE routines pose a few problems. 
First is the question of how the records are to be 
identified. This will be discussed at some length in the 
next section. The second is what type of data may be 
transmitted. Since the interface operates via subroutine 
call, the generality of an I/O list on a sequential READ or 
WRITE statement is not available. After lengthy discussion, 
it was decided that each READ and WRITE routine shall 
receive ONE data array and a corresponding length indicator. 
Separate routines will be provided for INTEGER and WORKING 
PRECISION arrays, and the lengths will be measured in 
INTEGER and WORKING PRECISION storage units respectively. 
The length parameter will be recorded in the record 
identifier and a function, IRRECL, will be provided to 
extract it. On a READ operation, the array length will be 
returned. It need not be known when the READ is initiated, 
but it is the user's responsibility to ensure that the 
argument array has sufficient space to contain the returned 
data. 

On some machines, I/O can proceed asynchronously as 
well as synchronously. With asynchronous I/O, the operating 
system returns control to the initiator of an I/O request 
before completion of the operation. The initiator may then 
carryon with other processing, but the user must ensure 
that the contents of the storage locations involved in the 
I/O transfer are not altered until the completion of the I/O 
operation. A WAIT function is provided which can be invoked 
when processing has reached a point where the data areas are 
required again. It will suspend the initiating process 
until the completion of the I/O transfer. A CHECK function 
is provided to test for completion without causing a wait. 
This is useful if multiple buffers are used, because one can 
arrange to loop, testing the status of each of the buffers 
in turn until one is finally found for which no I/O 
operation is in progress; this becomes the next buffer to 
use. 

When the asynchronous I/O facility is available, 
clever programming can sometimes be used to efficiently 
overlap processing with I/O and reduce the overall residence 
time of the job. This is probably less important on 
multi-user machines, since waits on I/O usually do not waste 
CPU time, but simply make it available to other users. 
However, on single-user machines~ which are becoming more 
and more common with the falling costs of computing systems, 
it is an important enough consideration to warrant inclusion 
in the Standard Interface. In fact, since synchronous I/O, 
which never returns control until completion, is a special 
case of asynchronous I/O, it has been decided to implement 
it in terms of the asynchronous READ, WRITE, and WAIT 
primitives. Thus, programmers who do not wish to take the 



~135~ 

trouble to implement asynchronous processing need not do so, 
but can nevertheless utilize Standard Interface routines 
without the burden of issuing calls to the WAIT routine 
themselves. 

The last of the four basic I/O tasks is the CLOSE 
operation which has the responsibility of ensuring that any 
outstanding I/O operations are completed, including proper 
emptying of any buffers. In keeping with the 1977 FORTRAN 
Standard, the user may provide a disposition parameter to 
the CLOSE function, which indicates whether the file is to 
be kept or deleted. If the file is to be kept, it may be 
accessed again in the same job, after a new OPEN call is 
issued. If it is deleted, it will no longer be available to 
the job, and the host operating system may in fact release 
the file storage space for use by other jobs. This release 
of space may occur dynamically, which is desirable, or it 
may be delayed until the termination of the job. The latter 
will usually be the case in IBM implementations, for 
example. In either case, once a CLOSE with the delete 
option has been issued, the file contents are forever 
inaccessible to the program. A disposition parameter 
specified for the CLOSE operation OVERRIDES any disposition 
parameter provided in the OPEN operation referring to the 
same file. Like the OPEN operation, a CLOSE operation is 
mandatory, and an attempt to issue an OPEN for a file which 
is already open will return an error indicator. Since it is 
unlikely that the interface routines will have access to the 
operating system interrupt handler, it will normally not be 
possible for an interface routine to gain control after an 
interrupt to ensure that any open random I/O files are 
properly tidied up. This is one area where use of the local 
random~access I/O facilities might provide a greater degree 
of security, since many FORTRAN systems do provide 
post-interrupt cleanup operations. However, since any 
interrupt which occurs while a file is open and I/O is in 
progress potentially can compromise the integrity of the 
file, we do not regard this deficiency as a serious one. 

An additional primitive which may be useful for 
both synchronous and asynchronous I/O is a FIND operation 
which initiates positioning of the storage device to the 
record which is intended to be retrieved next. The FIND 
operation usually will not transfer any data into an 
internal buffer, although some implementations may choose to 
do so. For other implementations, it may in fact be a null 
operation. It will generally be useful only when the 
issuing job is the principal user of the storage device. If 
this is not the case, the chances are that another user will 
cause repositioning for another I/O request, and the FIND 
operation may then even cause wasted repositionings. A 
primitive implementing the FIND operation is provided as 
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part of the Standard Interface. 

************************* 
* Record Identification * 
************************* 

Records in a random-access file must be identified 
in some manner which will permit retrieval of a selected 
record without having to read through other records to find 
it. For example, in a personnel file, records might be 
uniquely identified by a character string, or key, 
consisting of an employee's social security number. Since 
the number of such keys is very large, it is usually 
necessary to either maintain a mUlti-level index, such as a 
B-tree, or else to use a hashing algorithm to reduce a large 
key t~ a small integer which is used as an index into a hash 
table which eventually locates the record address in a 
chained list. Either of these techniques is satisfactory 
and apply quite generally to a file with alphanumeric keys 
and variable-length records. 

If records are of fixed length, and if the file 
space is allocated in a contiguous block on the storage 
device, then it is possible by a simple calculation to 
determine the device address of, say, the k-th record, and 
thereby retrieve it directly without any index search. This 
simple scheme is all that many manufacturers have provided 
in their FORTRAN implementations, and is the only method 
provided for in the 1977 Standard. It is unfortunately 
rather restrictive, both from the point of view of 
fixed-length records, and from the limitation to sequential 
integer keys. 

Variable-length records are highly desirable for 
two reasons. First, in the quantum chemical application of 
random-access I/O to ordering of sparse matrices, it is 
highly undesirable to fill in the zeroes just to get rows of 
equal length. Second, even if the matrix is dense, data 
compression which eliminates non-significant bits from 
individual items will always produce variable-length data 
arrays. The use of data compression is of great practical 
importance, since experience has shown that reductions by 
factors of 4 to 6 are possible in the total data file 
1 tho In these large computations, total execution time 
may be proportional to the size of the data file, so costs 
can be reduced substantially. The designers of FORTRAN 

rstood even in the middle 1950's the importance of 
lett the programmer work in terms of arbitrary-length 
I cal records defined by the I/O list on the READ and 
WRITE statements. Any blocking of records to fixed length 
should occur inside the I/O system, completely transparently 
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to the programmer. 

Choice of a suitable record key which allows a high 
degree of machine independence is a matter which received 
intense debate in the Subcommittee. It was finally decided 
that the record key should be a quantity which is provided 
by the interface, rather than by the user. When a record is 
written to the file, a record identifier will be returned to 
the user in a two-element INTEGER array. It will contain 
information defining the record key, as well as the record 
length and data type. The format of this data stored in the 
record identifier is implementation-dependent, and functions 
are therefore provided to allow the programmer to obtain the 
length and type fields. The actual record key is not 
interpretable by the user, since it is embedded in the 
record identifier. A function is provided to allow testing 
two identifiers for equality. The key may be a simple 
integer, but it can also be a track and record address (e.g. 
IBM's TTR) , a word address, or a byte address. The record 
length itself will in most implementations not be placed on 
the file by the interface, so it is the user's 
responsibility to save the record identifiers. It may often 
be convenient to reserve one or more records of the file for 
this purpose. 

Although the internal format of a record identifier 
is implementation-dependent, an identifier consisting of two 
positive INTEGER zeroes shall be regarded as an invalid one, 
and may therefore be used, for example, as a null pointer in 
a linked list of record identifiers. An implementation will 
ensure that such a null record identifier is never returned 
to the user. 

This method at times will be inconvenient, but it 
was felt that a more sophisticated indexing algorithm could 
always be constructed using the primitives that we have 
defined. It is our intention that these higher-level 
routines will be developed later, and could then be included 
in the Standard Interface. As a start in this direction, a 
set of higher-level routines has been defined. These are 
assigned the prefix KR and use record sequence numbers in 
place of record identifiers. These will be implemented in 
terms of the lower-level primitives, and are described in 
detail later. 
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******************************** 
* Random~Access I/O Primitives * 
******************************** 

In this section, the primitives which implement the 
Standard Interface will be defined. All arguments and 
function values are of type INTEGER, with the exception of 
WPVEC(*), which is a vector of type WORKING PRECISION and 
length LENWP measured in WORKING PRECISION storage units. 
INTVEC(*) is a vector of type INTEGER and length LENINT 
measured in INTEGER storage units. It is permissible for 
LENINT and LENWP to take on zero or negative values; this 
will simply cause a NULL record to be read or written. A 
null record mayor may not be recorded on the file, but it 
shall have a record identifier which does not correspond to 
any non~null record on the file. A negative length will be 
recorded as a zero length. A two~element INTEGER array will 
contain the record identifier. It will be called IDIN(*) and 
IDOUT(*) in the argument lists to emphasize whether it is an 
input parameter or an output parameter. 

Error codes are uniform for all routines and all 
implementations, and consequently, no routine will be able 
to set every possible error code. Some implementations may 
not find it necessary to be able to issue each error code. A 
zero value for an error code indicates that no error 
condition exists. Negative error codes are not permitted. 
To assist in analysis of error codes, a primitive is 
provided which can write an informative message on a 
user-specified file. 

Some implementations of the interface may require 
that certain flags be set prior to beginning execution. 
This can be done in a portable fashion in only two ways. 
Either a BLOCK DATA routine can be defined to initialize 
variables in common, or an explicit initialization routine 
can set common variables by direct assignment. The BLOCK 
DATA route is rejected because of the difficulties of 
getting the common blocks to be automatically loaded by the 
system loader or linker at run time, and because the 
limitation to one BLOCK DATA routine would require the user 
to know the contents of the interface common blocks. For 
this reason, a standard initialization routine, IRINIT, is 
provided which should be called only once, usually at the 
start of the user's MAIN program. Results are undefined if 
IRINIT is called more than once. 
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Initialization 
============== 

Initialize the Standard 
Interface. This call should be made 
given job execution. 

CALL IRINIT 

Open a Random~Access File 

Random~Access I/O 
only once during a 

Open a file for random~access processing. This 
must be done before any operations are performed on the 
file. It is an error if the file is already open. However, 
since no error code causes the job to be aborted, the user 
has complete control over any fixup action to be taken. The 
record size and record type parameters are included because 
some implementations may be able to provide 
substantially~improved performance if this information is 
available to them. However, the values of recsize and 
rectype are only guidelines to the interface, and the 
interface may choose different values if this is 
appropriate. The recsize and rectype arguments are not 
modified, however. It is NOT an error to specify records of 
one type or size at OPEN, and then to actually read or write 
records of a different type or size. 

CALL IROPEN (fileid,filesize,extendsize,disposition, 
# recsize,rectype,errorcode) 

fileid ..•.••...• FORTRAN unit number in range 1 .• 99. 
filesize ..•.•••. Estimated file size in WORKING 

PRECISION storage units. 
extendsize ..•... Number of WORKING PRECISION storage 

units to extend the size of the file 
by if filesize is reached. The effect 
of this parameter may not be 
attainable in all implementations. 

disposition ..... File disposition in case of 
termination before a CLOSE call can be 
issued. Specify 0 for KEEP, I for 
DELETE, or 2 for SCRATCH. 

recsize ........• Estimated average record size in 
storage units of type determined by 
rectype. A value which is not in an 
acceptable range will cause this 
option to be ignored. 
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rectype ••••••••• INTEGER flag defining type of storage 
units and record. 1 ==) 

WORKING-PRECISION variable-length 
records. 2 ==) WORKING-PRECISION 
fixed-length records. 3 ==) INTEGER 
variable-length records. 4 ==) 
INTEGER fixed-length records. Any 
value outside the range 1 •• 4 will 
cause this option and the recsize 
option to be ignored. 

errorcode ..•..•. Output return code (see table below). 

The disposition code deserves some elaboration. A 
file opened with KEEP specified must be on a device which 
permits the file to be retained after the job terminates. 
DELETE might often be specified in the OPEN with KEEP 
requested when a CLOSE is issued, so that an unsuccessful 
job would simply cause the file to be discarded. SCRATCH 
implies DELETE, and CANNOT be overridden by a disposition of 
KEEP on the CLOSE call. This restriction is enforced 
because many installations have certain storage devices 
reserved exclusively for use during job execution. At some 
installations, it may frequently be the case that 
significantly more file space is available on SCRATCH 
devices than on those permitting files to be retained after 
job termination. 

Close a Random-Access File 

Close a file after random-access processing. This 
call must be issued before job termination if the file is to 
be usable in a subsequent job. It should generally be 
issued as soon as random-access processing of the file is 
complete to ensure integrity of the file in the event that 
the job later terminates unexpectedly. 

CALL IRCLOS (fileid,disposition,errorcode) 

Asynchronous Write of a Record 

Write a record asynchronously. The data areas 
involved in the transfer must not be modified until a WAIT 
has been issued to ensure completion of the operation. Note 
that letters 3 and 4 (WR) indicate the operation (WRite), 
letter 5 indicates the data type (W - WORKING PRECISION, I -
INTEGER), and letter 6 (A) indicates that the operation is 
Asynchronous. The record will be written at the 
end~of-information on the file, and the record identifier 
returned to the caller. 
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CALL IRWRWA (fileid,IDOUT,WPVEC,LENWP,errorcode) 

CALL IRWRIA (fileid,IDOUT,INTVEC,LENINT,errorcode) 

fileid .......... FORTRAN unit number in range 1 •• 99. 
IDOUT(*) ..•..... 2-word INTEGER record identif r 

returned to the caller. 
WPVEC(*) ••...•.. WORKING-PRECISION array to be written. 
LENWP .•.•.•.•••. Number of elements in WPVEC(*). 
INTVEC(*) •.•.... INTEGER array to be written. 
LENINT .•••.....• Number of elements in INTVEC(*). 
errorcode ••..•.. INTEGER error code returned to caller 

(see below). 

Asynchronous Update of a Record 
=============================== 

Rewrite an existing record asynchronously. The new 
record will be written in place of the record identified by 
IDIN(*) if space permits, or will be added at 
end~of-information. IDOUT(*) will be set to the address of 
the replacement record. The interface need not provide for 
garbage collection of vacant records, although it may do so. 
Vacant records can arise only when an update replaces a 
record by a larger one. If this is done frequently, large 
holes of unused space may arise in the file. Programmers 
who contemplate maintaining random-access files over an 
extended time period with frequent updating should consider 
developing a utility which can be used to copy the file to a 
new file with consequent deletion of vacant records. 

CALL IRUPWA (fileid,IDIN,IDOUT,WPVEC,LENWP,errorcode) 

CALL IRUPIA (fileid,IDIN,IDOUT,INTVEC,LENINT,errorcode) 

Asynchronous Read of a Record 
============================= 

Read a record asynchronously. It is the caller's 
responsibility to ensure that the data array has sufficient 
space to contain the record. The length and type of the 
array may be determined from the functions IRRECL and IRTYPE 
described below. 

CALL IRRDWA (fileid,IDIN,WPVEC,LENWP,errorcode) 

CALL IRRDIA (fileid,IDIN,INTVEC,LENINT,errorcode) 
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Asynchronous Pre-positioning to a Record 

Initiate positioning of the storage device to read 
the next desired record. A WAIT need not be issued for this 
operation to complete before starting a READ. 

CALL IRFIND (fileid,IDIN,errorcode) 

Wait for Completion of Asynchronous Operation 

When it becomes necessary to reuse a data area 
involved in an outstanding READ or WRITE operation, program 
execution must be suspended until the operation is complete. 
The WAIT function provides for this. 

CALL IRWAIT (fileid,IDIN,errorcode) 

Check for Completion of Asynchronous Operation 

When multiple transfer operations have been 
initiated, it may be desirable to test individual ones for 
completion without forcing a WAIT operation. The CHECK 
function provides for this. A zero value for the status code 
indicates that the operation has completed successfully. A 
non~zero value indicates that it is still in progress. 

CALL IRCHEK (fileid,IDIN,statuscode) 

Issue Error Message 

In order to provide the user with informative 
messages in the event of an error, the interface contains a 
standard routine which may be called after each I/O 
operation if desired. Its function is simply to use the 
error code recorded internally to print a descriptive 
message on a user-specified print file, denoted by 
printfileid. If the error code is 0, indicating no error 
condition exists, it will simply return immediately. 

CALL IRERMS (fileid,printfileid) 
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Obtaining the Record Length 

The length of a record described by a record 
identifier IDIN(*) may be obtained through the function call 

LENGTH = IRRECL(fileid,IDIN) 

The length is measured in storage units corresponding to the 
type of the data stored on the record. 

Obtaining the Record Data Type 

The type of data stored in a record described by a 
record identifier IDIN(*) may be obtained through the 
function call 

ITYPE = IRTYPE(fileid,IDIN) 

The type code returned is I for INTEGER and 2 for WORKING 
PRECISION. These values were chosen so that they may 
conveniently be used in a CASE statement, or in a computed 
GO TO, if required. Note that the IRRECL and IRTYPE 
functions make it possible to copy the file without 
knowledge of the contents, apart from the maximum record 
lengths, provided that some method for storing the record 
identifiers has been established. 

Obtaining the File Physical Blocksize 
===================================== 

In order to permit user programs to optimize their 
output record sizes, a routine is provided to return the 
actual blocksize, in both working-precision and integer 
storage units, used on the file, if this is appropriate. For 
those devices for which a blocksize has no significance, 
zero values will be returned. The file must be open before 
invoking this function. 

CALL IRBLKL (fileid,LENWP,LENINT,errorcode) 

Comparing Record Identifiers for Equality 
========================================= 

It is sometimes desirable to be able 
record identifiers from the same file 
Unfortunately, on some machines, a comparison 
as an integer subtraction, which can result 
condition if high-order bits are non-zero. 

to compare two 
for equality. 
is implemented 
in an overflow 

To avoid this 



machine dependence, a function is provided to perform the 
test. It returns a .TRUE. or .FALSE. value, and 
consequently, must be explicitly typed by the user as a 
LOGICAL function. 

INTEGER IDl(2),ID2(2) 
LOGICAL EQUAL,IRCOMP 
EQUAL = IRCOMP(IDl,ID2) 

Standard Error Codes 

In order to allow a consistent and straightforward 
way of identifying error conditions, a standard set of error 
codes has been defined. These have been arranged such that 
a code of 0 indicates that no error condition exists, and 
values 1, 2, 3, are assigned to various error 
conditions. Negative error codes will not be used. 
Sequential error numbers make it straightforward to handle 
error processing with a CASE statement, or with a computed 
GO TO. 

O ..•.• No error condition exists. 
1 .••.• OPEN tempted on a file which is already open. 

Processing continues with the redundant open request 
ignored. 

2 •••.. CLOSE attempted on a file which is already closed. 
Processing continues with the redundant close request 
ignored. 

3 ••••• 0PEN attempted on a non-existent file. When possible, 
an implementation will dynamically create a file to 
avoid issuing this message. 

4 ..... Insufficient file space to write next record, or to 
open file with specified filesize parameter. 

5 •••• 1/0 error detected on file. 
6 ..... Invalid file unit number identifier. This must be an 

integer in the range 1 •• 99. 
7 ..... Invalid file record identifier. The identifier does 

not correspond to any existing record in the file. 
8 ••••• Invalid disposition code. The acceptable codes are 0 

for KEEP, and 1 for DELETE, and 2 for SCRATCH. 
9 ..... 1/0 operation attempted on file which is not open. 
10 ••.• 1/0 operation still in progress on file. A WAIT must 

be issued to ensure completion of outstanding 
operations. When pOSSible, an implementation will 
arrange to issue a WAIT internally to correct this 
condition if it occurs. 

11 ...• Insufficient internal table space available in 
interface to open a new file. 

When any random-access I/O routine in the interface 
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is entered, the error flag will be tested before performing 
the requested operation. If a serious error exists which 
p~events further processing in that implementation, return 
will occur immediately with further processing suppressed. 
The interface should try to avoid premature termination of a 
job through a STOP or CALL EXIT statement. In this way. the 
user is given an opportunity to take corrective action which 
might permit the job to be corrected and restarted later 
without a total loss of the processing time invested up to 
the pOint of error. 

****************************************** 
* Synchronous Random-Access I/O Routines * 
****************************************** 

Synchronous I/O READ and WRITE routines are defined 
analogous to the asynchronous versions simply by dropping 
the terminal letter A. It is not then necessary to use the 
WAIT or CHECK primitives, but it is not an error to do so. 
The routines are then as follows: 

Synchronous Write of a Record 

CALL IRWRW (fileid,IDOUT,WPVEC,LENWP,errorcode) 

CALL IRWRI (fileid,IDOUT,INTVEC,LENINT,errorcode) 

Synchronous Update of a Record 
~~~--~=~~==~~~===~~==-=~~~~-=~ 

=-~~-~~----=~~==~-~-=~~~~==-=~ 

CALL IRUPW (fileid,IDIN,IDOUT,WPVEC,LENWP,errorcode) 

CALL IRUPI (fileid,IDIN,IDOUT,INTVEC,LENINT,errorcode) 

Synchronous Read of a Record 

CALL IRRDW (fileid,IDIN,WPVEC,LENWP,errorcode) 

CALL IRRDI (fileid,IDIN,INTVEC,LENINT,errorcode) 



-146-

******************************************* 
* Higher~Level Random-Access I/O Routines * 
******************************************* 

Many applications of direct-access I/O are most 
simply implemented if records are identified by record 
sequence numbers lying in some range 1 .• MAXREC, rather than 
by the more primitive record identifier. Sequence numbers 
are assigned beginning with 1 for the first record written, 
and incremented by unity for each record written thereafter. 
In some implementations, it may be possible to determine the 
location of a record directly from the sequence number, 
without having to store the record identifiers for all 
records in the file. The use of a record sequence number is 
already included in some manufacturers' implementations of 
random~access I/O in FORTRAN, and is also part of the 1977 
FORTRAN Standard. For this reason, a set of higher-level 
routines has been defined. These differ from the basic 
primitives by the use of the prefix KR, rather than IR, and 
by the replacement of two-word record identifiers by single 
INTEGER sequence numbers. An implementation must implement 
these in terms of the primitives, and conceal the mapping of 
a record identifier to a record sequence number from the 
user. It is worth noting that this is not a completely 
general implementation, in that records will always be 
written in sequential order on the file, and the sequence 
numbers returned by the WRITE routines will always be an 
ascending sequence 1,2,3, ••• Counterparts of the IR routines 
are provided only for those which access record identifiers. 

Asynchronous Write of a Record 

Write a record asynchronously. The data areas 
involved in the transfer must not be modified until a WAIT 
has been issued to ensure completion of the operation. Note 
that letters 3 and 4 (WR) of the routine names indicate the 
operation (WRite), letter 5 indicates the data type (W -
WORKING PRECISION, I - INTEGER), and letter 6 (A) indicates 
that the operation is Asynchronous. The record will be 
written at the end-of-information on the file, and the 
record sequence number will be returned to the caller. 

CALL KRWRWA (fileid,NUMOUT,WPVEC,LENWP,errorcode) 

CALL KRWRIA (fileid,NUMOUT,INTVEC,LENINT,errorcode) 

leid •••••••••• FORTRAN unit number in range 1 •• 99. 
NUMOUT ••.•.•.••• INTEGER record sequence number 

returned to the caller. 
WPVEC(*) ..•.••• WORKING-PRECISION array to be written. 
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LENWP .•.•••••••• Number of elements in WPVEC(I). 
INTVEC(I) ••••••• INTEGER array to be written. 
LENINT •••••••••• Number of elements in INTVEC(*). 
errorcode ••••••• INTEGER error code returned to caller. 

Asynchronous Update of a Record 

Rewrite an existing record asynchronously. The new 
record will be written in place of the record identified by 
NUMIN if space permits, or will be added at 
end-of-information. NUMOUT will be set to the sequence 
number of the replacement record. The interface need not 
provide for garbage collection of vacant records, although 
it may do so. Vacant records can arise only when an update 
replaces a record by a larger one. If this is done 
frequently, large holes of unused space may arise in the 
file. Programmers who contemplate maintaining random-access 
files over an extended time period with frequent updating 
should consider developing a utility which can be used to 
copy the file to a new file with consequent deletion of 
vacant records. 

CALL KRUPWA (fileid,NUMIN,NUMOUT,WPVEC,LENWP, 
# errorcode) 

I 

CALL KRUPIA (fileid,NUMIN,NUMOUT,INTVEC,LENINT, 
# errorcode) 

Asynchronous Read of a Record 

Read a record asynchronously. It is the caller's 
responsibility to ensure that the data array has sufficient 
space to contain the record. 

CALL KRRDWA (fileid,NUMIN,WPVEC,LENWP,errorcode) 

CALL KRRDIA (fileid,NUMIN,INTVEC,LENINT,errorcode) 

Asynchronous Pre-positioning to a Record 

Initiate positioning of the storage device to read 
the next desired record. A WAIT need not be issued for this 
operation to complete before starting a READ. 

CALL KRFIND (fileid,NUMIN,errorcode) 
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Wait for Completion of Asynchronous Operation 

When it becomes necessary to reuse a data area 
involved in an outstanding READ or WRITE operation, program 
execution must be suspended until the operation is complete. 
The WAIT function provides for this. 

CALL KRWAIT (fileid,NUMIN,errorcode) 

Check for Completion of Asynchronous Operation 

When multiple transfer operations have been 
initiated, it may be desirable to test individual ones for 
completion without forcing a WAIT operation. The CHECK 
function provides for this. A zero value for the status code 
indicates that the operation has completed successfully. A 
non-zero value indicates that it is still in progress. 

CALL KRCHEK (fileid,NUMIN,statuscode) 

Synchronous I/O READ and WRITE routines are defined 
analogous to the asynchronous versions simply by dropping 
the terminal letter A. It is not then necessary to use the 
WAIT or CHECK primitives, but it is not an error to do so. 
The routines are then as follows. 

Synchronous Write of a Record 

CALL KRWRW (fileid,NUMOUT,WPVEC,LENWP,errorcode) 

CALL KRWRI (fileid,NUMOUT,INTVEC,LENINT,errorcode) 

Synchronous Update of a Record 

CALL KRUPW (fileid,NUMIN,NUMOUT,WPVEC,LENWP,errorcode) 

CALL KRUPI (fileid,NUMIN,NUMOUT,INTVEC,LENINT,errorcode) 

Synchronous Read of a Record 

CALL KRRDW (fileid,NUMIN,WPVEC,LENWP,errorcode) 

CALL KRRDI (fileid,NUMIN,INTVEC,LENINT,errorcode) 
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************************ 
* Implementation Notes * 
************************ 

1 •• The error code MUST be initialized to 0 at entry to each 
primitive. 

2 •• 0n those machines with very large address spaces, such as 
the VAX, PRIME, and possibly IBM, a reasonable 
implementation might be to maintain the entire 
random-access file in central memory, so that the paging 
hardware is effectively utilized to swap it in and out as 
required. If a CLOSE with KEEP specified were issued, 
the file could then be copied to an external storage 
device. If an OPEN with KEEP were issued, the interface 
would probably have to maintain the entire file on the 
external storage device in case of a premature 
termination of the job. Both these cases could be 
handled if the interface were arranged quite generally to 
maintain the first part of the file in central memory, 
and any overflow on external storage. Small files would 
then be processed very efficiently. One could also use 
this technique on machines with large secondary memory, 
such as CDC's LCM or ECS. 

3 •• The interface should allow for at least 3 random-access 
files to be attached to the job at one time. This has 
implications for the size of any internal storage areas, 
such as common blocks, which are statically allocated at 
compile time. The interface shall NOT require the user 
to provide any internal workspace whatever, because the 
amount required would immediately introduce an 
implementation dependence into the user program. 

4 •• The interface should strive to avoid pre-formatting, or 
skeletonizing, the file with dummy records. EVen on 
systems such as UNIVAC and IBM which require this, it can 
be avoided if the interface arranges to write records 
sequentially, provided some means of recording the actual 
record location in the file is available. The IBM NOTE 
and POINT macros in BSAM might be suitable candidates for 
this. 

5 •• The limitation of the record identifier to 2 INTEGER 
elements shall be maintained for all implementations. No 
length modifier is permitted on the type declaration 
INTEGER, so that the standard host computer's fullword 
integer type will be used. On machines with 24 or more 
bits per integer, this provides for at least a 16M byte 
range of identifiers, and if this were made a word 
addrerrs, instead of a byte address, 48M bytes could be 
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addressed. By using a few bits from the second integer, 
the range can be increased. Implementations are unlikely 
on 16-bit machines, because of the 65K word address space 
limitation. However, even there, the interface could use 
both words to maintain a 32-bit record address, and the 
length and type could be recorded on the file itself if 
necessary. 

6 •• Error message lines should begin with a blank character 
in Column 1 and be no longer than 80 characters in 
length. Each message should begin with a common prefix 
string, e.g. n*** ERROR ***", allowing easy location of 
error messages with a text editor. It may also be useful 
to issue a subroutine traceback if this is available on 
the host computer, and to arrange for error messages to 
optionally appear in the job log file, if this is 
possible. 

7 •• 0n host computers where double preclslon is normally used 
for quantum chemistry computations and single precision 
for crystallography work, implementors should attempt to 
make available both single and double preciSion versions. 
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Standard Crystallographic File Structure-79 

(Trial Version) 

April 1979 

Interim Report of the Working Party on a Standard 

Crystallographic File Structure appointed by the Computing 

Commission and Data Commission of the International Union 

of Crystallography. 

th The working party was appointed at the XI Congress of the 

International Union of Crystallography held in Warsaw in August 1978. 

We were instructed to propose a Standard Crystallographic File 

Structure that could be used for the transfer of machine~readable files 

of crystallographic data between laboratories. The present document 

contains a preliminary version of this file structure for use on a trial 

basis. It is not intended to be comprehensive but contains the essential 

elements needed for a crystal structure file. We intend in the final 

document to provide additional definitions covering. among others, the 

fields of protein and powder crystallography. 

The final report will be presented to our parent co~nissions at 

the Xllth Congress of the IUCr at Ottowa in 1981 and at that time we 

reserve the right to change or withdraw any of the present definitions. 

We hope. however, that the only changes necessary will be extensions and 

that this definition will be compatible with the final version. 

Any comments on the trial format should be addressed to the 

Chairman or other members of the working party. 
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Standard Crystallographic File Structure -79 

(Trial Version) 

The Purposes of a Standard Crystallographic File 

(in decreasing order of importance) 

1. Exchange of crystallographic data between laboratories. Such data 

may comprise any of lattice parameters, symmetry information, atomic 

coordinates, structure factors, d-spacings~ atomic scattering 

factors or chemical and bibliographic data necessary to characterize 

th.e compound(s). 

2. Exchange of data between different crystallographic programs within 

a laboratory. 

3. Storage of crystallographic data in a local database. 

Possible Uses of a Standard Crystallographic File 

1, Submission of crystallographic data to primary journals and databases. 

(Acta Crystallographica may soon request authors of crystal structure 

determinations to submit machine readable data.) 

2. Exchange of databases of crystal structures between users examining 

crystal-chemical properties. 

3. Exchange of structure factors between users interested in electron 

density studies. 

4. Exchange of data on biopolymers. (Positional coordinates, phased 

structure factors, etc.) 

5. Exchange of powder patterns. 

6. Transferring data from one program to another, e.g.~ switching 

a refinement from X-RAY to SHELX or vice versa. 

7. Exchange of crystallographic programs. It would be an advantage 

for all crystallographic programs to be able to accept (and output) 

data in the standard file structdre in addition to other formats. 
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Criteria to be Met by the File Structure 

(in decreasing order of importance) 

1. Must be extendable to include all types of crystallographic data. 

2. Must be compatible with current and future methods of data 

transmission. Currently cards are favored with magnetic tape 

second, but newer technologies must be considered. 

3. Should be easy to program for both reading and writing. Files 

written in this structure are designed for machine to machine 

communication. Not all users will be experienced programmers or 

have access to large program systems, This implies the use of 

fixed formats. Users may well prefer to enter data in free format 

and use the computer to generate an exchange file in the standard 

format. 

4. The file should not require reread facilities since these are not 

supported by IBM or IeL. (The working party has not reached a 

consensus on the importance of this criterion but it is observed 

in the present definition.) 

5. A listing of a file written in this format should be easy to read 

visually, consistent with #3 above. 

6. The only records that must be included are those required for data 

management (e.g. END), A standard crystallographic file will 

contain information of use to the writer and reader of the file. 

An author sending structural data to a journal will be interested 

in different data from workers exchanging powder patterns for phase 

identification. 

7. Provision should be made for the inclusion of derived data if 

required. Some calc~lations. e.g. of structure factors [see Acta C. 

A34, p.819] may be based on elaborate models using programs not 

available in other laboratories. It should be possible to transmit 

this information in the standard format. 

8. Provision should be made for cormnents remembering that the interpre­

tation of information on a comment card by a computer is difficult 

or impossible. This information is essentially for people only. 
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The Data Structure of a Standard Crystallographic File 

(For simplicity, the file is described in terms of card images but 

without implying that it must physically exist in the form of cards.) 

1. A file consists of entries, each entry being logically independent 

of other entries. An entry normally will consist of data 

referring to one crystalline phase. Each entry begins with a 

TITLE card and ends vlith an END card. 

2. An entry consists of a number of sections each including data of 

a particular type. e.g. atomic coordinates, structure factors. 

Each section begins with a Header card and ends with an End of 

Section card (a card with * in column 1). The End of Section card 

ensures that the program is ready to read the next card as a header. 

3. Each section consists of formatted cards (or lines) containing not 

more than 80 characters. Five characters at the end of each card 

are reserved for sequence numbers (this is necessary as long as 

there is a danger of dropping a deck of cards). 

4. The character set is restricted to the 46 characters 0-9, A-Z, 

, . + - * I ( ) ~ b. These characters are the only standard ones 

available on all machines. 

5. Cards are of two types: 

Header CaPds are used to start a new section. The first 8 characters 

indicate what information is to be found on the following data 

cards and in what format it appears. In addition each header 

card may include alphanumeric column labels (see sample file). 

Data Cards contain the data specified by the most recently read 

header card. Column 1 is blank except on the final card of the 

section. 

6. Header cards that cannot be interpreted are ignored. Some conse­

quences are: 

i) Blank cards may be used to separate sections for visual effect. 

ii) An incorrect header may result in the data in the following 

section being skipped, since the program will ignore all cards 

until it finds a header card it can interpret. 
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iii) Instruction or data cards for a user's program can be added to 

a file provided they do not mimic legal header cards. This can 

be ensured by using a character other than a letter or blank 

in columns 1~8. 

iv) Comments can be inserted between sections, but this procedure 

could lead to problems and the use of a REMARK section is 

recommended. 

7. Data cards that cannot be interpreted should be avoided. Since these 

will be read with a fixed format read statement they could cause a 

fatal read error. 

8. Data of one kind (e.g. atomic coordinates) may be split into several 

sections, but where the file contains duplicate information (e.g. 

two CELL DIMension sections) the values appearing latest in sequence 

are the values that are used. 

Formats for the Standard Crystallographic File Structure~79 

Each section starts with the Header card shown. The first eight 

characters are reserved for an alphabetic section name, Otherwise the 

card may contain any other alphanumeric characters to act as column 

headings for the subsequent data, All the other cards in the section 

are data cards and have the format shown except the last card in the 

section which will have an asterisk in column 1, Columns 76-80 are 

reserved for sequence numbers. The TITLE and END cards must appear in 

all entries. Other sections may be included as required by the user, 

All microscopic dimensions (a,b,c.A) are in Xngstrom units. 

1, TITLE (lX,74Al) 

Name of compound and other identification 

This section must begin the file or follow an END card. 

2. CELL DIMensions (lX.5Al.4Al,6FlO.4) 

Data set key (see CONDITIONS). 

Any non-blank characters written in the 4Al field, e.g, ERRS, 

result in the data being read as standard errors, 
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a, b, c, a, S, y. Distances in X, angles in degrees. All 

values must be given. 

3. SPACE GRoup (IX,2Al,3X,SAI,20AI) 

Lattice type (p, C, etc., H = hexagonal setting of rhombohedral 

cell). Center code (C ~ center of symmetry at origin; .~, A or 

N no center at the origin). 

Data set key. 

Hermann~Mauguin space group symbol. (In the final version the 

space group symbol may be defined in a manner that is machine 

interpretable, obviating the need for including the symmetry 

section. In this version the symmetry section should be 

included whenever appropriate.) 

4. SYMMETRY (IOX,3(3I2,FIO.7,4X» 

Symmetry matrices for equivalent positions as (xx, xy, xz, xT, 

yx, yy, yz, yT, ZX, zy, ZZ, zT) where 

(

;:) "" (;: ;~ ;:) (x,y,z) + (;~ ) 
z' zx zy zz zT 

Give all positions except those related by center of symmetry 

at origin and by lattice translations (centering). 

5. ATOM COOrdinates (IX,2AI,3AI,4AI,3F8.5,2F6.4,3F6.5,2FS.4) 

Atom name (element symbol left justified). 

Atom identifier (any characters). 

Atom type (to identify form factor). 

x, y, z, U(isotropic), occupancy (default I means site 

fully occupied including sites on special positions). 

Standard errors in x, y, z, U and O. Note that these can be 

given as integers and will be interpreted as errors in the 

fifth decimal place (x,y,z) or fourth decimal place (U,O). 

When two or more atoms share a site, each should have a separate 

card. These cards will be identical except for the identifi~ 

cation fields and occupation, The sum of all occupations at 

a site must not exceed LO. 
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6. ATOM UIJ (lX,2Al,3Al,4Al.6F8.5) 

Atom name. 

Atomic identifier. 

Any non-blank characters written in the 4AI field (e,g. ERRS) 

will result in the 6F8.5 fields being interpreted as standard 

errors. Each temperature factor may therefore be followed 

by its standard error. 

Ull, U22 •... U23 or oCUlI), etc. 

7. FORM FACtor (lX.4AI,5Al.3FlO.4) 

Atom type, data set key. sin(8)/A, f, 6f". (f includes 6f') 

8. CONDITIOns (4X,Al,5A1.5F10,5. cols,6l-75 reserved for future 

definition) 

N = Neutron diffraction (X-ray is default) 

Data set key 

Wavelength 

Scale for F (obs) 

Temp (K) 

Linear absorption coefficient 

Observed density 

This section defines the conditions under which various data 

sets have been measured. When only one set of conditions has 

been used the data set key can be blank. When the data set 

key is defaulted in other sections, the relevant data applies 

to all conditions specified here. 

9, HKL (5X,3I5.5Al,2FlO.3. cols.46-75 reserved for future definition) 

h, k. 1, data set key, F(obs). O(F) 

10. REMARK (lX,74A1) 

Messages for the user may be 'lArritten in this section. Since it 

is difficult for the computer to interpret these messages, all 

data should be included in other sections if at all possible. 

11. END 

Must be followed by NAME or End of File. 
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TITLE 
L12 84 07, A NEW STRUCTURE DETERMINATION BY 1·0 BROWN AND 
*M.NATARAJAN 

CELL D1rENS1ONS A B C ALPHA BETA 
"pm "'!.477 1ll.2Sb "!O. "!o· 

* ERRS 0.0050 50 bIl 

SPACE: GROUP 
*111. I 41 C D 
SYMMETRY 

100 010 o 0 1 
-100 o 1 0 o 0 1 0.5 
010 -1 0 0 0.5 o 0 1 11.25 
010 1 0 0 0.5 o 0 1 0.75 

-1 0 0 1}-1o [) 0 1 
100 1}-10 o 0 1 0.5 
1}-1 0 1 0 0 0.5 o 0 1 0.25 

* 1}-10 -1 0 0 0.5 o 0 1 0.75 

ATOM COORDINATES X Y Z U 0 :soo S(Y) 
L1 1 0.1496 0.1657 0.852"1 50 50 
8 (1) 2 0·1633 0.0862 0.2IJ10 3D 30 
B (2) 2 0·"1465 0.1126 0.0824 2IJ 20 
o (1) 3 0.2813 0.1382 0.2653 40 10 

*0 (2) 3 0.0671 0.1777 0.151:.5 20 21 
REMARK 
*IIIOT ALL ATOMS HAVE BEEN INCLUDED IN THIS SAMPLE 

ATOM UIJ U11 U22 U33 U12 U13 U23 
L1 0.0258 0.0258 0.0385 0·01"!"1 -0.0088 -0.015,,! 
LI ERRS 22 23 2"1 1"! 2IJ 22 
B (1) 0.0103 0· 00"18 0.0114 0·0013 0.0006 0·0003 
B (l)ERRS 9 10 10 8 8 "! 
B (2) 0·00"10 0.0102 0.0133 0.0008 -O.OOOb 0.0028 
B (2)ERRS III 10 10 8 9 "I 
o (1) 0.0103 0.OOb8 0.0180 0,0000 0.0037 0·0012 
o (l)ERRS 7 7 IS 5 7 6 
o (2) 0·00"19 0.0082 0.0173 0.0016 -0.0034 0.0004 

*0 (2)ERRS 0·0009 9 9 8 8 7 

CONDITIONS LAMBDA SCALE TEMP 
>I< 0·7109 1.0 2"17. 

HKL H K l F (CBS) SIGMA 
1 0 0 103. "I. 
2 0 0 57. 5. 

>I< 3 a a 82. 7. 
REMARK 
*THESE ARE DUMMY STRUCTURE fACTORS 

GAMMA 
"!O. 

sm 
50 
40 
40 
30 
30 

SW) S (IJ) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3D 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
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51 
fORM fACTORS S/l f 'fJf1l 52 

1 IMI 2.000 53 
1 0·05 1.'''64 54 
1 0.10 ],."131. 55 
1 0.15 ]'.&1 56 
1 0.20 ],.752 57 
], 0.30 ],.523 58 
1 1l.1I0 ]'.2I.b 59 
1 O.SO l.il211 60 
2 0.0 S.O 61 
2 0.05 11.1211 62 
2 0.],0 11.060 63 
2 0.15 3.316 64 
2 1].20 2.6"f1 b5 
2 0.30 ]'."f?"I bb 
2 0.40 l.6/U 67 

:$ 2 0.50 ],.526 b8 
69 

END 70 
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APPENDIX 

The BDF for XTAL 

The XTAL binary data file (BDF) is divided into 
separate elements called "logical records". Each logical 
record contains specific crystallographic information that 
may be referred to by the logical record type numbers 1 to 
25. The length of each record (in words) will vary according 
to type of information it contains, the type of structure 
being processed, and the current state of the analysis. 

For convenience of access, each logical record type is 
subdivided into packets of words which form the particular 
logical subset of the data contained therein. 

Packet Types 

The different types of information stored in the binary 
data file necessitate three different logical record 
constructions. Records containing character information are 
distinct from those containing numerical data. The numerical 
records are also of two distinct types. One contains 
information that is of fixed length and is located in 
specific words of the record, while the other numerical 
record contains data which may vary greatly from structure 
to structure. These logical records are now summarized: 

·Character* records contain only packed characters. The 
packet size of character records varies according to 
tne number of characters per packet and the length of 
the floating point register. Logical records 1, 2, 7, 
and 10 are of this type. 

'Specific Information' records contain numerical 
information data which have fixed location in a 
specific packet. Each word of data is accessed' by 
adding the appropriate sequence number to the packet 
pointer provided by the file handling routines AA21 and 
AA22. Logical records 3 and 5 are of this type. 

'Directory' driven records contain numerical data which 
can vary according to the size and nature of the 
structure. The first packet is used as a directory to 
the data contained in all subsequent packets. In this 
way the packets need only be as large as the available 
data or the calculation requires. This is achieved by 
assigning identification numbers to each unique data 
type and inserting these numbers into the first packet 
in the identical order that the actual data appears in 
subsequent packets. A pointer to the word containing 
any given data type is provided by the nucleus file 
handling routine AA23. 
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A-5,1 Structure and Contents of the Lo ical Rec rds 

LR l File History (character) 

Log Packet 
rec size 

1 number of 
words to 
hold 16 
characters 

Sequence 
number 
Packet 
Packet 2 

Contains the compound ID 
This and subsequent packets contain 
program ID's and date as hhddmm at 
the time of updating. After 50 
updates, the list is reset and starts 
over again. 

LR 2 Label Information (character) 

Log Packet 
rec size 

2 number of 
words 
to hold 
80 char­
ac ter s 

LR 1. (spare) 

Sequence 
number 
Packet Contains date and time of creation 

of BDF. 
Packet 2 Contains title in force at time of 

creation. 
Packet 3 This and subsequent packets contain 

images of any label information 
supplied. 

Reserved for possible use as BDF status keys to enable 
lookahead capability in sequential mode. 

LR ~ Cell Constants (specific information) 

Log Packet Sequence 
rec size number 

4 9 
Packet 

IP+1 
IP+2 
IP+3 
IP+4 
IP 
IP+6 
IP+7 
IP+8 
IP+9 

Packet 2 
IP+1 - IP+9 

a cell dimension in Angstroms 
b 
c 
cos(alpha) 
cos(beta) 
cos(gamma) 
alpha in cycles (2pi = 1.0000) 
beta 
gamma 

Estimated standard deviations of the 
quantities of Packet 1. 



Packet 3 
IP+1 - IP+9 

Packet 4 
IP+1 - IP+9 

Packet 5 
IP+1 - IP+9 

Packet 6 
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Reciprocal cell constants in same order 
as Packet 1. 

Transformation matrix from fractional 
coordinates to orthogonal Angstrom 
coordinates. 

Transformation matrix from Miller indices 
to orthogonal pseudo Miller indices. 

Miscellaneous cell information 
IP+1 cell volume 
IP+2 observed crystal density 

LR 2. Symmetry Information (specific information) 

Log Packet Sequence 
rec size number 

5 12 
Packet 

IP+1 

Packet 2 

IP+1 
IP+2 
IP+3 
IP+4 
IP+5 
IP+6 
IP+7 
IP+8 
IP+9 

IP+10 
IP+11 
IP+12 

Contains miscellaneous information 
Code to indicate lattice type as ..... 
lattice type P I R F ABC 
acentric cell 1. 2. 3. 4. 5. 6. 7. 
centric cell 8. 9. 10. 11. 12. 13. 14. 
Centric/acentric indicator 0/1 
Number of symops 
Number of distinct rotation matrices and 
translation vectors exclusive of lattice 
translations and center, if any. 
Number of rotation matrices of identical 
pattern of zeros 
Cell multiplicity factor to place a and b 
parts of the structure factor on the scale 
of int.tab. vol 1. This factor accounts 
for lattice type. 

Contains the rotation matrices and 
translation vectors for first equivalent 
pOSition. 
r(1,1) 
r(2,n 
r(3, 1) 
r(1,2) 
r(2,2) 
r(3,2) 
r( 1,3) 
r(2,3) 
r(3,3) 
t (1) 
t(2) 
t(3) 
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Packet 3 to n+1 for the remaining n equivalent 
positions. The maximum value of n is 24. 
Matrices involving an inversion center or 
non~primitive translations are excluded. 

LR 6 (spare) 

LR 7 Scattering Factor Names (character) 

Log Packet 
rec size 

7 number 
of 
words 
to hold 
six 
charac­
ters 

Names of scattering factors contained in 
LR 8. Each packet contains the characters 
supplied as a scattering factor type. 
One packet for each different scattering 
factor type. 

LR ~ Atom~type Parameter (directory) 

Log Packet Ident. Directory in packet 1 , first atom-type in 
rec size number pacl<et 2 

8 varies 1 number of atoms of this type per unit cell 
2 atomic weight 
3 atomic number 
4 number of electrons in neutral atoms or 

ions 
5 atomic bond radius in Angstroms 
6 atomic contact radius in Angstroms 
7 
8 
9 effective spin quantum number 

10 neutron scattering length in cm*10**-12 

21 real part of dispersion scatt. factor for 
data~set 1 

22 real part of dispersion scatt. factor for 
data-set 2 

61 imag part of dispersion scatt. factor for 
data-set 1 

62 imag part of dispersion scatt. factor for 
data-set 2 

100 atomic scattering ,factor at s ::::: 0.00 
101 atomic scattering factor at s ::: 0.01 
102 atomic scattering factor at s ::: 0.02 

1nm atomic scattering factor at s ::: O.nm 



LR 2. (spare) 
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299 atomic scattering factor at s: 1.99 

Note (1) No scattering factor table is required 
if interpolated values have been stored 
with each hkl in the reflection record 20. 

Note (2) Scattering factors at all s-intervals 
of 0.01 need *not* be present for 
interpolation. 

Note (3) Additional scattering factors for a 
given atom type are stored 300-499, 
500-699,700-899, ... 

LR 10 Data Se Definitions (character) 

Log Packet 
rec size 

10 wordsl 
12 
characters 

Strings of 12 characters used to describe 
data sets. Order of strings corresponds to 
data-set number. Data sets may be defined 
as isomorphs, graphs of partial structures, 
or residues. 

LR 11 ~xperimental Parameters (directory) 

Log Packet Ident. 
rec size number 

11 varies 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 

12 

13 
14 
15 
16 
17 
18 
19 
20 
21 

Directory in packet 1, one parameter set 
per packet 
data-set key (1 designates data-set1, etc.) 
wavelength (weighted mean) in Angstroms 
wavelength line1 in Angstroms 
wavelength line2 in Angstroms 
wavelength line3 in Angstroms 
relative weight wI line1 
relative weight wI line2 
relative weight wI line3 
measured density 
linear absorption coefficient in 1/cm 
temperature of measurement in degrees 
celsius 
sorting order of hkl 

a cell dimension in Angstroms 
b 
c 
cos(alpha) 
cos(beta) 
cos(gamma) 
alpha in cycles (2pi : 1.0000) 
beta 
gamma 
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31~39 diffractometer orientation matrix r11 ,r21, 
, ... ,r33 

100 number of scale groups for this data set 
101 frel scale factor for scale-group 1 
102 frel scale factor for scale-group 2 

100+n frel scale factor for scale-group n 
(maximum allowed 64) 

LR ~ Data Set Informa ion (directory) 

Log Packet Ident. 
rec size number 

12 varies 1 
2 

Directory in packet 1, one parameter set 
per packet 
data-set key (1 designates data-set1, etc.) 
overall temperature factor UOV in Angstroms 
squared 

10 packed word of =eval= agment types 
11 maximum Ihl 
12 maximum Ikl 
13 maximum III 
14 minimum sin thetallambda 
15 maximum sin thetallambda 

all 30 
initialized 31 

to 32 
VOIDFLG: 33 

101 

102 
103 
104 

105 110 
111-116 

LR 11 (spare) 

LR 14 (spare) 

scale, data set to parent 
temp. factor, delta B, relative to parent 
closure error 
closure error, anomalous 

extinction type (O=none, 1=iso 1, 2=iso 2, 
3=gen iso 1,2, and prime, 4=aniso 1, 
5=aniso 2, 6=gen aniso) 
distribution (0 aussian, 1=Lorentzian) 
isotropic type1 parameter 
isotropic type2 parameter 
anisotropic type1 parameters 
anisotropic type2 parameters 

LR 15 Atomic Identification (character) 

Log Packet 
rec size 

15 number 
of words 
to hold 
eight 
charac-

Each packet contains the string of 
characters which constitute an atom 
identification (6 characters) plus a 
2 character dataset pointer (data number 
in ASCII). Their relative position in 



ters 
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the packets is linked to the following 
record 16 which contains the atom 
par am e t e r s . 

LR 1£ Atom Parameters (directory) 

Log Packet Ident. 
rec size number 

16 varies 1 
2 
3 
4 
5 

6 
7 
8 
9 

10 
1 1 
12 
13 

21 

22 

23 

24 
25 

LR 17 Std Dev in 
--~----

Log Packet Ident. 
rec size number 

17 varies 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 
12 
13 

Directory in packet 1, first atom data in 
packet 2 
x parameter in fractions of unit cell 
y parameter in fractions of unit cell 
z parameter in fractions of unit cell 
individual isotropic t.f. as B 
individual anisotropic t.f. stored as betas 
beta11 
beta 22 
beta 33 
beta 12 
beta 13 
beta 23 
population parameter 
anomalous population parameter 
neutron scattering factor 

atom multiplicity for atoms in special 
positions 
xray scattering factor pointer as a packet 
sequence number of LR 8. 
temperature factor type (0=overall;1=iso; 
2=aniso) 
atom-group key for group refinements 
model-refinement key for refining different 
models 

Atom Parameters (directory) 

Directory in packet 1 , first atom s. d . in 
packet 2 
sigma x 
sigma y 
sigma z 
sigma b 
sigma beta 11 
sigma beta 22 
sigma beta 33 
sigma beta 12 
sigma beta 13 
sigma beta 23 
sigma of population parameter 
sigma of anomolous population parameter 
sigma of neutron scattering factor 

LR ~ Refinement Constraints (directory) 
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Log Packet Ident. 
rec size number 

18 varies 

Directory in packet 1, first constraint in 
packet 2 

Note: The general form of the constraint equation is ... 
p(s)*f(s)=q+p(r1)*f(r1)+p(r2)*f(r2)+ ... +p(rn)*f(rn) 

1 packet sequence number of subject atom in 
logical record type 11 

2 parameter identification number of subject 
atom 

3 multiplication factor of subject parameter 
4 constant Q in constraint equation 
5 constraint classification key 
6 site multiplicity of subject atom 

1 1 

12 

1 3 

21 
22 

23 

n1~n3 

packet sequence number of the reference 
atom 1 
parameter identification number of 
reference atom 1 
multiplication factor for parameter of 
atom 1 

packet sequence number of reference atom 2 
parameter identification number of reference 
atom 2 
multiplication factor for parameter of 
atom 2 

packet, parameter, and multo factor for 
atom n 

LR 12 (spare) 

LR 20 Reflecti n Information (directory) 

Log Packet Ident. Directory in packet 1, first reflection 
rec size number in packet 2 

20 varies 

Crystal 
specific 

* 
* 

* 

* 
* 

numbers 

numbers 

numbers 

. 
numbers 

1~ 999 

1000~1999 

2000-2999 

. . . 
nOOO~n999 

1 Miller indices packed 
29-21 20-12 
Ihl Ikl 

identify crystal-
specific data 
identify data-set 
information 
identify data-set 2 
information . . . . 
identify data~set n 
information 

word, with bit pattern 
11-3 2-0 
III sign code 

(see below) 



2 

3 

4-15 

23-21 
phase 
code4 

501 

502 

510 
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sin(theta)/lambda 

reflection multiplicity and reinforcement 
factor 9-5 4-0 

epsilon hkl multo 

equivalent indices packed table (up to 12 
words). The table appears in sets of *two* 
words. 

*** word1 describes index magnitudes 
29-21 20-12 11-3 2-0 
Ihl Ikl III no. of sign/phase 

codes in word2 

*** word2 describes the index signs and 
phase shifts 

20-18 17-15 14-12 11-9 8-6 5-3 2-0 
sign phase sign phase sign phase sign 
code4 code3 code3 code2 code2 code1 code1 

sign phase-shift 
code hkl degrees cycles 

0 +++ 0 0,00000 
1 ++- 60 0,16667 
2 +-+ 90 0.25000 
3 +-- 120 0.33333 
4 -++ 180 0,50000 
5 -+- 240 0 66667 
6 --+ 270 0.75000 
7 300 0.83333 

interpolated scattering factor for atom 
type1 
interpolated scattering fact.or for atom 
type2 

interpolated scattering factor for atom 
type10 

The 700 numbers are used to store estimated 
phase sets for the IInative" structure or 
"par ent" sub st ance 

700 

701 
702 
703 
704 

705-709 

795-799 

Figure of merit; weight of the 
'best' Fourier coefficient 
cos alpha for the 'best' Fourier coef, 
sin alpha for the 'best' Fourier coef. 
cos alpha most probable 
sin alpha most probable 
alternate phase set 2 

alternate phase set 20 
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* nOOO~n199 identify measurement parameters 
* n200~n299 identify reduction parameters 

for all * n300~n499 identify reduced structure 
factor data 

data sets * n500-n599 identify Hendrickson coefficient 
data 

n * n600=n699 identify normalized s.f. data 

data=set 1 
1000 
1001 
1002 
1003 
1004 
1005 
1006 
1007 
1008 
1009 
1010 

1200 
1201 
1202 
1203 

1204 
1205 

1300 
1301 
1302 
1303 
1304 
1305 
1306 
1307 
1308 
1309 

501=1504 

505=1508 

1600 

1601 

* n700=n799 identify structure factor 
phase data 

* n800=n899 identify refined structure 
factor data 

* n900=n999 identify refinement param ers 
* 

total gross counts 
total background counts 
ratio of scan to background time 
net counts 
sigma(net counts) 
phi diffractometer angle in cycles 
chi or kappa 
omg 
2th 
2th scan range 
omg scan range 

absorption weighted mean pathlength tbar 
absorption correction factor to irel 
extinction correction factor to irel 
thermal diffuse scatt. correction factor 
to irel 
1/1p factor 
irel scale factor to scale counts to irel 

relative intensity (irel) 
sigma( irel) 
relative f squared (f2rel) 
sigma(f2rel) 
relative If I (frel) 
sigma( frel) 
relative If I friedel related -h,-k,=l (frel*) 
sigma(frel*) 
rcode reflection status key (user designated) 
scale group number 

A,B,C,D Hendrickson coefficients 
Phase probability distribution (isomorphous) 
A,B,C,D Hendrickson coefficients 
Phase probability distribution (anamolous) 

normalized structure factor 1; assuming 
random atoms 
normalized structure factor 2; with fragment 
information 



LR 21 --

LR 22 

LR 2 

LR 24 

1602 

1603 

1604-1630 

1631 
1632 

1694 

1700 

1701 
1702 

1764 

1800 
1801 
1802 
1803 
1804 
1805 
1806 
1807 

1810-181'7 

1900 
1901 
1902 
1903 

(spare) 

(spare) 

(spare) 

(spare) 
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expectation value for f**2 ; assuming 
random atoms 
expectation value for f**2 ; with fragment 
information 
group s . f . in sequence designated by LR 17 
(ID 10) 
weight of s. f. phase estimate 1 with id 1701 
weight of s . f . phase estimate 2 with id 1702 

weight of s.f. phase estimate 64 with id 1764 

current structure factor phase estimate 
(in cycles) 
structure factor phase estimate 1 (in cycles) 
structure factor phase estimate 2 (in cycles) . . . 
structure factor phase estimate 64 (in cycles) 

calculated If I (fcal) 
A sum normal S,F. only (=/f/cos(phase) ) 
B sum normal S.F. only (=/f/sin(phase) ) 
A dispersion contribution only 
B dispersion contribution only 
A total excluding extinction correction 
B total excluding extinction correction 
translation function coefficient 
partial structure factor values in order 
1800-1807 

least squares weight last used 
least squares weight1 
least squares weight2 
least squares weight3 

LR 25 END-OF-FILE Record (specific) 

Log Packet Sequence 
rec size number 

25 0 
Description of contents 
This record serves as EOF signal to 
nucleus 

A-5.2 Ph sical Str cture of the Binary Data File 
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The physical structure of the BDF on the output or 
input device is not of particular importance to the XTAL 
user or programmer. This is because the XTAL nucleus 
routines handle all the bookkeeping operations and return 
data in terms of logical records and packets, However, for 
those who wish to write their own BDF drivers, a brief 
description of the BDF structure follows. The length of all 
logical records is determined solely by the crystal and 
amount of information it contains, storage requirements in 
direct-access memory force certain physical constraints on 
the maximum number of words that can be output or input to 
or from an 1/0 device at one time. The memory reserved for 
this transfer is referred to as the 1/0 buffer, and in the 
XTAL system these buffers are located in the data array 
QX( ), The length of these buffers is specified by the macro 
(BINSEQBUF:) when XTAL is implemented, This value will 
depend on the core available, and other hardware 
constraints, such as the disc track length, Once the buffer 
length has been set for a given installation, it must not be 
changed. To optimize the transfer of the binary data file to 
and from the fixed length 1/0 buffers, it is necessary to 
both pack and position logical records according to length, 
This operation, in turn, requires that three additonal words 
at the front of each logical record or buffer are used for 
bookkeeping purposes. These three floating point words are 
referred to as lead words and set in the following way: 

*lead word 1* is the length in floating point words, 
including the three lead words, of the part or all of a 
given logical record in this buffer. The end of a 
buffer is signaled when the first word following a 
record has the value of +1. or -1, The +1, signals that 
the preceding logical record does *not* continue into 
the next buffer. The -1. signals that the preceding 
logical record is incomplete and continues into the 
next buffer, 

*lead word 2* is the logical record type number (1 to 
ENDRECORD:), This number is negative when the last part 
of a logical record is in the current buffer. It is 
positive when more of the logical record follows in the 
next buf r, 

*lead word 3* is the packet size in floating point 
words for the given logical record. 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



y 




