
UCLA
UCLA Electronic Theses and Dissertations

Title

Comparison of Kernel Functions and Parameter Selection of SVM Classification Algorithms

Permalink

https://escholarship.org/uc/item/19b820zp

Author

Pan, Linying

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/19b820zp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Comparison of Kernel Functions and

Parameter Selection of SVM

Classification Algorithms

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Applied Statistics and Data Science

by

Linying Pan

2023

© Copyright by

Linying Pan

2023

ABSTRACT OF THE THESIS

Comparison of Kernel Functions and

Parameter Selection of SVM

Classification Algorithms

by

Linying Pan

Master of Applied Statistics and Data Science

University of California, Los Angeles, 2023

Professor Yingnian Wu, Chair

Support Vector Machine (SVM) is a reliable supervised learning model extensively utilized

for classification and regression tasks, owing to its remarkable ability to achieve strong gen-

eralization performance. This study focuses on two key factors in the SVM model: the

error penalty parameter C and the kernel function. The C parameter is used to balance the

model’s complexity and empirical risk, and its selection is crucial for SVM performance. A

smaller C value may lead to underfitting, while a larger C can result in overfitting. Addition-

ally, the choice of the kernel function also significantly impacts SVM performance. We will

investigate the effects of different kernel functions and parameter settings in the classification

task of the Iris dataset and visualize their impacts through a visual approach. The study’s

results indicate that, in most cases, the Gaussian kernel outperforms other kernel functions,

exhibiting superior classification performance and generalization capability. Therefore, we

opt for the Gaussian Radial Basis Function (RBF) kernel and conduct experiments to eval-

uate the influence of different parameter configurations on classification performance.

ii

The thesis of Linying Pan is approved.

Michael Tsiang

Qing Zhou

Yingnian Wu, Committee Chair

University of California, Los Angeles

2023

iii

TABLE OF CONTENTS

1 Introduction . 1

2 Methodology . 3

2.1 The Basic Principles of SVM . 3

2.2 Hyperplane and Margin . 4

2.3 Linearly Separable SVM . 6

2.4 Approximate linear separability problem . 6

2.5 Non-linearly Separable Problem . 8

2.6 Kernel Functions in SVM . 10

2.6.1 Basic Theory of Kernel Functions . 11

2.6.2 Polynomial Kernel Function . 13

2.6.3 Linear Kernel Function . 13

2.6.4 Gaussian Kernel Function . 14

2.6.5 Sigmoid Kernel Function . 14

2.7 The Choice of Kernel Function . 15

2.7.1 Global Kernel Functions . 15

2.7.2 Local Kernel Functions . 16

2.7.3 A Comparison of The Two Types of Kernel Functions. 17

2.8 SVM Parameter Selection . 19

2.9 SVM Parameter Optimization Methods . 21

3 Experiment . 25

iv

3.1 Classification of Iris features with different kernel functions 25

3.2 Comparison of Different Kernel Function Models 28

3.3 Test Set Accuracy with Different Parameters 29

3.4 Using the TPE Method to Optimize Parameters 30

3.5 Impact of Different Parameter Values on Feature Classification 33

3.6 Cross-validation . 36

4 Conclusion . 39

4.1 Conclusion . 39

4.2 Future Enhancement . 40

References . 42

v

LIST OF FIGURES

2.1 SVM Principle Illustration . 3

2.2 Linear Separability and Hard Margin Plot . 4

2.3 Linearly Separable and Soft Margin Plane Diagram 5

2.4 kernel function mapping visualization . 11

2.5 Example of Mapping Two-Dimensional Space to Three-Dimensional Space . . . 12

2.6 The response image of a quadratic polynomial kernel function 16

2.7 The response image of the Gaussian kernel function 17

2.8 The Gaussian kernel function curve . 18

2.9 The polynomial kernel function curve . 18

3.1 Linear kernel function feature classification . 26

3.2 Gaussian kernel function feature classification 26

3.3 Polynomial kernel function feature classification 27

3.4 Sigmoid kernel function feature classification . 27

3.5 Model Prediction Accuracy . 28

3.6 Model Training Time . 29

3.7 Print the best hyperparameters . 30

3.8 Optimization history plot . 31

3.9 Train the model using the best hyperparameters 31

3.10 Print the classification accuracy on the training and test sets 32

3.11 Training set fitting curve . 32

3.12 Testing set fitting curve . 33

vi

3.13 C=0.1 . 34

3.14 C=1 . 34

3.15 C=10 . 35

3.16 C=100 . 35

3.17 C=0.1, gamma=(0.1,1,100) . 37

3.18 C=1, gamma=(0.1,1,100) . 37

3.19 C=100, gamma=(0.1,1,100) . 37

3.20 Cross-validation results . 38

vii

LIST OF TABLES

3.1 Test Set Accuracy for Different Kernel Functions with Different Parameters . . . 29

viii

CHAPTER 1

Introduction

The Support Vector Machine (SVM) is both a supervised learning model and a related

learning algorithm. It is built on the foundation of statistical learning theory, including Vap-

nik Chervonenk (VC) dimension theory and Structural Risk Minimization (SRM) principles.

Namely, SVM constructs decision rules from a finite set of training samples, aiming to achieve

low errors when applied to independent test sets [1]. In addition, It finds extensive applica-

tions in tasks related to classification and regression analysis. As a novel machine learning

algorithm, SVM is renowned for its remarkable generalization performance, thus making it

an essential tool in machine learning. Nevertheless, SVM’s classification performance is also

influenced by various factors, primarily the choice of the error penalty parameter C and the

form and parameters of the kernel function.

The error penalty parameter C in the SVM balances the misclassification rate and

algorithm complexity. It fine-tunes the machine’s confidence level and empirical risk ratio

within a defined feature subspace, aiming for optimal generalization capability [2]. When

selecting the error penalty parameter C, one must consider the fundamental nature of the

problem and the presence of noise points in the data. When C takes on a large value,

even approaching infinity, SVM becomes very strict in classifying the training data. In

other words, it is required that all training samples must be classified entirely without error.

However, this results in higher model complexity, thus potentially overfitting the training

data, and consequently, decreasing generalization performance. Conversely, as C reduces,

a wide margin decision boundary is chosen, effectively disregarding whether the training

1

samples are correctly classified, which can lead to underfitting issues.

So far, the kernel functions involved in research primarily encompassed linear kernel,

Gaussian kernel, polynomial kernel, and sigmoid kernel. SVM kernel functions are introduced

to overcome the problem of data linear inseparability. This is achieved by mapping the data

to a high-dimensional space, thus addressing the issue of linear inseparability in the original

area. It is expected that samples in the feature space exhibit linear separability, so the

quality of the feature space is crucial for the performance of SVM. This can also be seen

when constructing a well-performing support vector machine, the key lies in choosing the

kernel function.

This article aims to investigate the influence of kernel functions and their associated

parameters on the classification performance of SVM. Many scholars have conducted exten-

sive experimental studies, and these experiments indicate that, in many cases, the Gaussian

Radial Basis Function (RBF) kernel outperforms other kernel functions regarding classifica-

tion effectiveness and generalization. Therefore, the parameter settings for the RBF kernel

have always been one of the focal points of research. However, how to choose appropriate

parameters is still a question worth exploring. In my experiments, I focused on two features

within the Iris dataset and conducted extensive comparative analyses. The results verify

the superiority of the Gaussian kernel function, which exhibited the shortest training time

and the highest testing accuracy. Furthermore, my research delved into the impact of SVM

parameters on performance. It was evident from the result that parameters C and gamma

directly influenced feature classification. So, configuring the appropriate penalty factor and

kernel parameters is equally crucial for optimizing the classification model. Then, to optimize

these parameters, I also introduced the Tree-structured Parzen Estimator (TPE) method,

leveraging Bayesian optimization tools. The application of TPE allowed us to identify and

cross-validate the optimal hyperparameter combination, leading to a further enhancement

in model performance.

2

CHAPTER 2

Methodology

2.1 The Basic Principles of SVM

SVM is a specialized classifier based on the principle of maximizing margins [3]. Si-

multaneously, it functions as a supervised learning algorithm primarily designed for tackling

binary classification problems. As we all know, the fundamental principle of this model is

to identify the optimal separation hyperplane within the feature space, aiming to maximize

the margin between positive and negative samples in the training dataset. The overall data

classification effect will improve as the distance between the two classification hyperplanes

increases. With the introduction of kernel methods, SVM can also deal with non-linear

problems. Therefore, the leading modeling forms of the SVM algorithm are divided into two

types, namely linearly separable and linearly inseparable [4].

If the sample data can be linearly separated, the principle of SVM is shown in the

following figure.

Figure 2.1: SVM Principle Illustration

3

2.2 Hyperplane and Margin

Given a set of data points that are divided into two different categories. In order to

effectively separate these data points into these two categories, it is necessary to find a

linear classifier. As shown in Figure 2.2, if we want to separate the two types of data points

completely, there are many straight lines we can choose. Therefore, the focus of the study

is how to find an optimal straight line. Let x represent the data points, and y represent

their categories. For a linear classifier, the learning objective is to find a hyperplane in an

n-dimensional data space. A hyperplane is a subspace or a particular plane in a higher-

dimensional area that has one dimension less than the space it resides in. In this binary

classification problem, the equation of the hyperplane can be represented as follows:

wTx+ b = 0

Here, ”w” denotes the normal vector of the hyperplane, ”x” represents the data points, and

”b” corresponds the bias term.

Figure 2.2: Linear Separability and Hard Margin Plot

Additionally, for the selection of the optimal hyperplane, the following criteria must be

4

met:

(1) Able to effectively separate two different categories.

(2) Have the largest margin, that is, have as much space as possible between the two cate-

gories.

(3) In the middle position of the margin, the distance from all support vectors is equal.

The SVM algorithm uses the size of the class interval to determine the optimal classifier,

where the optimal classifier is the classifier with the largest classification interval. As shown

in Figure 2.3, the figure shows the classification margin, which is the distance between the two

extreme positions where the two solid lines are parallel to the decision surface. Once beyond

these two positions, the sample points will face being misclassified. The optimal classifier

can maximize the classification margin. Generally speaking, different decision hyperplanes

will have different classification margins. To find the optimal decision surface in the SVM

algorithm, you must first find the decision surface with the largest classification margin.

It can be seen from Figure 2.3 that the size of the classification margin depends on the

position of two straight lines parallel to the classification line. When a decision boundary is

chosen, the support vectors can determine the positions of two straight lines parallel to the

classification boundary.

Figure 2.3: Linearly Separable and Soft Margin Plane Diagram

5

2.3 Linearly Separable SVM

Given a set of data, T = {(x1, y1), . . . , (xn, yn)} ∈ (Rn × Y)L, where xi ∈ Rn represents

the input vectors, yi ∈ Y = {1,−1} represents the two categories of output samples, L

represents the total number of samples.

step 1: Select a penalty coefficient C > 0 and construct a convex quadratic programming

problem.

min
a

1

2

l∑
i=1

l∑
j=1

yiyj(xi · xj)ai · aj −
l∑

j=1

aj

s.t.
l∑

i=1

yiai = 0

0 ≤ ai ≤ ζ for i = 1, . . . , l

The optimal solution obtained after solving is

a∗ = (a∗1, a
∗
2, ..., a

∗
l)

T

step 2: In the interval (0, C), select the component a∗j of a∗ , and calculate to obtain b∗ as:

b∗ = yj −
l∑

i=1

a∗i yi(xi · xj)

step 3: Construct the differentiating hyperplane (w∗ · x) + b∗ = 0, calculate the decision

function as:

f(x) = sgn(g(x))

Where, g(x) =
∑l

i=1 yia
∗
i (xi · x) + b∗

2.4 Approximate linear separability problem

In fact, in many practical problems, linear separability cannot be fully satisfied. Al-

though some issues are separable due to various reasons, there may still be some inconspic-

uous fuzziness, overlaps, or even the presence of outliers [5]. This situation may produce a

significant impact on generating an optimal classification hyperplane.

6

We can balance the relationship between generalization performance and empirical risk

by introducing a slack variable ξi. However, it’s worth noting that this must be based on

the premise that slack variables allow for some sample points to be misclassified.

First, we relax the constraints on the classification hyperplane w · x + b = 0, resulting

in new constraint conditions as follows:

s.t. yi(< w · xi > +b) ≥ 1− ξi for i = 1, 2, ..., n

This is when we can continue to utilize linear classification to address the problem. If ξi ≥ 1,

they are classified incorrectly; On the contrary, if 0 < ξi < 1, the sample points can be

correctly classified. Next, we can introduce a new objective function by adding C
∑n

i=1 ξi to

the original objective function 1
2
∥w∥2. Therefore, the new objective function is:

min
w,b

1

2
∥w∥2 + C

n∑
i=1

ξi

Here, C
∑n

i=1 ξi can also be referred to as the penalty term.

C is the penalty factor mainly studied in this article, and its value plays a vital role

in generalization ability. Therefore, we can change the C value to balance the accuracy

and generalization ability of the model. If we aim to find the optimal solution to this

quadratic programming problem, we can address the problem by finding the saddle point of

the Lagrangian function. In this case, the Lagrangian function is given by:

L(w, b, a) =
1

2
< w,w > +C

n∑
i=1

ξi −
n∑

i=1

ai[yi(< w · x1 > +b) + ξi − 1]−
n∑

i=1

βiξi

Next, through the Karush-Kuhn-Tucker (KKT) theorem, we can obtain that the optimal

solution satisfies the following four conditions:

∂L

∂ξi
= C − ai − βi = 0

ai[yi(w · xi) + b− 1 + ξi] = 0

ai, βi, ξi ≥ 0

7

β1 · ξi = 0

Substituting these four conditions into the new objective function, we can obtain:

max L(a) =
n∑

i=1

ai −
1

2

n∑
i,j=1

aiajyiyj < xi, xj >

s.t. 0 ≤ ai ≤ C,

n∑
i=1

yiai = 0 for i = 1, 2, ..., n

Then, we can proceed with the same process as linear classification.

2.5 Non-linearly Separable Problem

In our daily lives, most of the problems we encounter are linearly inseparable. In such

cases, linear mapping functions cannot be used. Currently, non-linearly separable problems

in a low-dimensional space into linearly separable problems in a high-dimensional space poses

a challenging task. Here, we introduce a new objective function as well:

min
w,b,ξ

1

2
∥w∥2 + C

n∑
i=1

ξi

s.t. yi(wxi + b)− 1 + ξi ≥ 0 for i = 1, 2, ..., n

ξi ≥ 0 for i = 1, 2, ..., n

The next step is to transform it into an unconstrained problem using the Lagrange multiplier

method:

L(w, b, ξ, a, µ) =
1

2
∥w∥2 + C

n∑
i=1

−
n∑

i=1

µiξi −
n∑

i=1

ai[yi(wxi + b)− 1 + ξi]

s.t. C − µi − ai = 0 for i = 1, 2, ..., n

ai ≥ 0, µi ≥ 0 for i = 1, 2, ..., n

Then, by applying the KKT condition ∂L(w,b,a,ξ,µ)
∂w

= 0 once again, we can obtain:

w =
n∑

i=1

aiyixi

8

Therefore, the Lagrangian function has the following formula:

ai(yi(wxi + b)− 1 + ξi) = 0

µiξi = (c− a)ξi = 0

Similar to the linearly separable SVM, it is not valid for any ai = 0. Hence, we can determine

b using the support vectors corresponding to ai > 0.

When dealing with non-linear classification problems in the input space, we can intro-

duce non-linear transformations and convert the problem into a linearly separable problem

in high-dimensional features to solve. Then, Within the feature space with a high dimen-

sionality, we can use linear SVM to analyze and solve the problem. A notable benefit of

utilizing a linear SVM is that, in its dual problem, the classification decision function and

the objective function solely depend on the inner product of instances; no necessitating the

explicit definition of non-linear transformations is required. Instead, one alternative to the

inner product is to employ a kernel function. Kernel functions enable us to compute the

inner product between two instances after they have undergone non-linear transformations.

In particular, K(xi, xj) represents a function, or more precisely, a positive definite kernel.

This suggests the existence of a mapping Φ(x) from the input space to the feature space,

which is valid for any two instances in the input space, x and z, it satisfies the formula:

K(xi, xj) =< Φ(xi) · Φ(xj) >

When solving the dual problem using a linear SVM, we can replace the inner product with

the kernel function K(xi, xj) to address the issue of a non-linear SVM. It’s worth noting

that K(xi, xj) must satisfy Mercer’s theorem. Here, the objective function for the non-linear

SVM with the maximum margin is:

max
a

W (a) =
n∑

i=1

ai −
1

2

n∑
i,j=1

aiajyiyjK(xi, xj)

At this point, the classification function is:

f(x) = sgn(< w · Φ(x) > ·x+ b) = sgn

(
n∑

i=1

âiyiK(xi, x) + b̂

)

9

The subsequent optimization problem is transformed into:

min
w,b

1

2
∥w∥2 + C

n∑
i=1

ξi

s.t. yi(< w · Φ(xi) > +b) ≥ 1− ξi for i = 1, 2, ..., n

Its dual problem is:

max L(a) =
n∑

i=1

ai −
1

2

n∑
i,j=1

aiajyiyjK(xi, xj)

s.t. 0 ≤ ai ≤ C,

n∑
i=1

yiai = 0 for i = 1, 2, ..., n

In this way, it reverts to the essence of a quadratic programming problem, and as a result,

the optimal classification function changes to:

f(x) = sgn

(
n∑

i=1

âiyiK(xi, xj) + b̂

)

2.6 Kernel Functions in SVM

Kernel methods, as an algorithm, must also satisfy Mercer’s theorem, that is, if there

is g(x) ∈ L2(Rn), K(x, y) ∈ L2(Rn × Rn), then for any g(x) ̸= 0 and
∫
g(x)2dx < ∞, the

existence of
∫∫

K(x, y)g(x)g(y) dx dy ≥ 0 is true. Its computation relies entirely on the dot

product between data points. At this point, the dot product can be replaced with a kernel

function, which is used to calculate the dot product in a higher-dimensional feature space

[6]. In recent years, due to the increasing popularity of SVM, kernel methods also have

garnered more attention. Kernel functions are a class of essential mathematical tools that

can quickly transform traditional dot product-based algorithms into non-linear methods [7].

As a result, kernel functions play a crucial role in many fields. It is precisely because of the

introduction of the kernel function that SVM has also been made practical, which effectively

avoids the complex operations caused by vector inner products in high-dimensional spaces

[8]. In general, kernel functions map the original data from a low-dimensional space to a

higher-dimensional space [9].

10

Figure 2.4: kernel function mapping visualization

2.6.1 Basic Theory of Kernel Functions

Let X be a subset or discrete set of Euclidean space Rn, also called the input space.

H represents the Hilbert space, serving as the feature space. If there is a mapping from X

to H, denoted as ϕ(x) : X → H, and for any elements u and v within X, we have K(u, v)

satisfies the equation K(u, v) = ⟨ϕ(u), ϕ(v)⟩, then we can define K(u, v) as a kernel function

and ϕ(u) as the mapping function. Here, ⟨ϕ(u), ϕ(v)⟩ signifies the inner product of ϕ(u) and

ϕ(v).

K(u, v) = ϕ(u) · ϕ(v) can be used to solve non-linear SVM classification problems.

First, the inner product ψ(ui) · ψ(vj) is constructed in the original input space, and then a

nonlinear transformation is performed on it. This algorithm no longer requires most of the

computations to be transferred to a high-dimensional feature space, but can directly perform

operations in the original input space, which is its key advantage. As shown in Figure 2.5, this

figure shows the image of two-dimensional space mapped to three-dimensional space, making

it easier to distinguish, which is also why kernel functions are often used for classification

and clustering.

11

Figure 2.5: Example of Mapping Two-Dimensional Space to Three-Dimensional Space

Here, we can illustrate this concept with an example, given that mapping from a two-

dimensional feature space to a three-dimensional space:

Φ : u = (u1, u2) → Φ(u) = (u21, u
2
2,
√
2u1u2) ∈ F = R3

And the inner product in the feature space is:

< Φ(u),Φ(v) >=< (u21, u
2
2,
√
2u1u2), (v

2
1, v

2
2,
√
2v1v2) >=< u, v >2

Then we can obtain the kernel function:

K(u, v) =< u, v >2= Φ(u)TΦ(v)

However, it’s worth noting that the kernel function can only compute the inner product

of the mapping. Therefore, even if we switch to a 4-dimensional feature space: Φ(u) =

(u21, u
2
2, u1u2, u2u1) ∈ F = R4 we can still get the kernel function just calculated. It can be

seen that the choice of kernel function in the feature space mapping of SVM is not unique.

The fundamental role of kernel functions in SVM is to transform training samples from

the original problem space into linearly separable training samples in the feature space [10].

12

Therefore, the key to the SVM algorithm lies in the choice of the kernel function. To date,

four primary forms of kernel inner product functions have been researched: Polynomial kernel

function, Linear kernel function, Gaussian kernel function, and Sigmoid kernel function. By

using different kernel functions for different types of data points, various attribute mappings

from linear to non-linear have been achieved.

2.6.2 Polynomial Kernel Function

The definition of the polynomial kernel function is given by:

K(x, xi) = (1 + x · xTi)d

where d represents the degree.

Polynomial functions exhibit directional characteristics, meaning that the output results

are influenced by the orientation of two vectors in the low-dimensional space due to the dot

product in the kernel. Nonetheless, given the abundance of parameters to consider for the

polynomial kernel function, as the polynomial order becomes high, the elements in the kernel

matrix tend to approach either infinity or infinitesimal values. This behavior can lead to

numerical instability, significantly complicating the computational process.

2.6.3 Linear Kernel Function

Without adding non-linear mapping, the linear kernel function can be employed for the

purpose of mapping data from the original feature space into a feature space with a higher

dimension. Its definition is:

K(x, xi) = x · xT

The dimensions of the feature space and the input space of the linear kernel function are

the same, as are the feature values of every vector. In particular, when the data points in

the feature space are linearly separable, the linear kernel function is frequently appropriate

for processing objects represented by a large number of fixed-length features because it

13

executes an inner product operation in the original feature space. At the same time, the

linear kernel function can guarantee the formal unification of the ”problem before mapping”

and the ”problem after mapping,” allowing common expressions to be used initially and

subsequently swapped into various kernels when defining mathematical formulas or writing

code. This dramatically reduces the complexity of code writing and algorithm development.

2.6.4 Gaussian Kernel Function

The Gaussian kernel function is a highly versatile kernel function that can be applied

to various types of sample distributions by selecting appropriate parameters. Additionally,

it is also frequently utilized in SVM to solve nonlinear mapping issues [11]. Its definition is:

K(xi, xj) = exp(−
xi − x2j
2σ2

)

Where, σ represents the width of the kernel function. This formula can be changed to produce

a different variant of the Gaussian kernel function by replacing the parameter γ = 1
2σ2 :

K(xi, xj) = exp(−γ |xi − xj|2)

In order to optimize the objective function, the relaxation factor ξ(i) is introduced in the

SVM algorithm. Therefore, there is a constraint relationship between the objective function

and the relaxation factor, which can usually be expressed as:

min
1

2
w2 + Cξ(i)

yi[wxi + b] > 1− ξ(i) for i = 1, 2, ..., n

2.6.5 Sigmoid Kernel Function

The sigmoid kernel function is defined as follows:

K(xi, xj) = tanh(v(xi · xj) + c)

14

where v represents a scalar quantity and c represents offset.

In the sigmoid kernel function, v and c are adjustable parameters, and the values of v and

c can be adjusted according to specific problems to obtain the best model. It’s important

to note that the sigmoid kernel function may not be suitable for all non-linear separable

problems. And overly large or small input values have the potential to approach saturation

and result in the non-existent gradient issue.

2.7 The Choice of Kernel Function

Different types of kernel functions have their own advantages and limitations, and these

factors also lead to their non-linear modeling capabilities. There are numerous varieties

of kernel functions, so explaining their respective properties in detail can be complicated.

However, kernel functions generally can be summarized into two main types: global kernel

functions and local kernel functions [12]. Data types will be the main factor in how to

choose them. If the data is evenly distributed in the entire input space, it is more necessary

to use the global kernel function. If the data exhibits clear local structures, then local kernel

functions should be chosen.

2.7.1 Global Kernel Functions

A kernel function that can be represented as a function of K(xi, xj) = f(< xi, xj >) is

called a rotation-invariant kernel, where f : D → R is a unary real-valued function (D ∈ R).

This is a type of global kernel function. To be a Mercer kernel function, it must satisfy that

for any ε ≥ 0, the following formula holds:

K(ε) ≥ 0

K ′(ε) ≥ 0

K(ε) + εK ′(ε) ≥ 0

15

Therefore, we can conclude that the polynomial kernel function K(x, xi) = (1 + x · xTi)d is a

representative global kernel function.

No matter where it is in the input space, the polynomial kernel function can have similar

responses, as shown in Figure 2.6, which fully demonstrates the global properties of a simple

polynomial kernel function.

Figure 2.6: The response image of a quadratic polynomial kernel function

However, different polynomial kernel functions may result in various shapes or features

since their shape and properties change as their degrees and coefficients change.

2.7.2 Local Kernel Functions

A translation-invariant kernel is a type of local kernel function, and we refer to a kernel

function that can be represented as a function of K(xi, xj) = f(xi − xj) as a translation-

invariant kernel. Its determination theorem states: Let f : X → R be a continuous func-

tion and bounded integrable. Then the necessary and sufficient conditions for judging that

16

K(xi, xj) = f(xi − xj) is a kernel function is f(0) > 0, which satisfies the Fourier transform

F (w) =

∫ +∞

−∞
f(x)e−i(w·x)dx > 0

Therefore, we can see the Gaussian kernel function, which represented as K(xi, xj) =

exp(−γ |xi − xj|2), is a typical example of a local kernel function.

Figure 2.7: The response image of the Gaussian kernel function

This image showcases the response of the Gaussian kernel function in a two-dimensional

input space and also shows the local properties of the Gaussian kernel function. It takes

the center point as the center, generates a high-response local structure nearby, and then

gradually reduces the response away from the center point. This characteristic allows local

kernel functions to capture the local structure of data effectively.

2.7.3 A Comparison of The Two Types of Kernel Functions.

Here, we also use Gaussian and polynomial kernel functions for graphing as two common

local and global kernel functions.

17

Figure 2.8: The Gaussian kernel function curve

Figure 2.9: The polynomial kernel function curve

18

Figure 8 illustrates the images under different Gaussian kernel function parameters (σ)

values. Each curve represents a specific σ value. The smaller the σ value, the steeper the

curve, and the center point has a more significant impact on the weight of the data points.

The Gaussian kernel function has a peak near the data point and then decreases rapidly, so

it has a greater impact on the data point in a local range. Larger σ values lead to smoother

kernel function curves, while smaller σ values result in steeper curves.

Figure 9 presents the images under different polynomial kernel function parameters

(polynomial degrees). Each curve represents a specific polynomial degree, and different

polynomial degrees result in varying kernel function shapes. Polynomial kernel functions

of higher degrees still have higher values far away from the center point, while polynomial

kernel functions of lower degrees decrease rapidly away from the center point. The high

degree of the polynomial kernel function allows the kernel function to have a greater weight

on the data points farther away from the center point.

These two figures emphasize the impact of different kernel function parameters on the

shape of the kernel function and the distribution of data point weights to help understand

the different properties and applications of the kernel function. In general, choosing the

appropriate kernel function and parameters is very important to solve a specific problem

and model the data.

2.8 SVM Parameter Selection

Essentially, finding the solution (a and b) that maximizes the following equation is the

first step in training an SVM. Moreover, the constants C and kernel function parameters are

chosen to optimize the model’s generalization capability estimates [13].

max
a

l∑
i=1

ai −
1

2

l∑
i,j=1

aiajyiyjK(xi, xj) for 0 ≤ ai ≤ C

19

Therefore, we can view parameter selection as a minimization or maximization problem and

then perform the following steps:

(1) Initial setting of the error penalty parameter C and the kernel function’s intrinsic pa-

rameters.

(2) Maximize this expression to obtain the values of a and b.

(3) Minimize the estimate of generalization ability by updating the C value and kernel func-

tion’s intrinsic parameter values.

(4) If a suitable estimate value is obtained, the computation ends. Otherwise, continue to

repeat step (2).

For an SVM, If the error penalty parameter C is increased indefinitely, it will seem

that the C value change does not affect the classification performance when the SVM has

no boundary support vectors. At this time, the classification performance of SVM may be

affected by other factors, such as the selection of kernel function.

To find a function that satisfies Empirical Risk Minimization (ERM), it must determine

the VC dimension of the function. Put otherwise, once the ERM is determined, the decision

function of SVM can provide the smallest confidence interval. However, because the data

distribution of different subspaces is also different, the optimal SVM classifier that satis-

fies the structural risk minimization (SRM) principle shows different classification effects for

different feature subspaces. In the SVM model, optimizing the penalty error parameter C

and the parameters σ in the kernel function are crucial to the model’s performance. By

optimizing these parameters, we can obtain the global optimal solution, which is of great

significance to the classifier’s learning ability, classification accuracy, and generalization per-

formance. The SRM principle states that various combinations of C and kernel parameters

can yield the SVM model’s risk upper bound, allowing for the creation of the best SVM

classifier, the successful avoidance of over-fitting or under-fitting issues, and an improvement

in generalization capacity.

At the same time, the penalty factor C is used as a trade-off factor between the com-

20

plexity of the balancing algorithm and sample misclassification. When C is massive, the

model does not allow for misclassification; that is, the samples must be linearly separable,

which can lead to a significant increase in model complexity. On the contrary, when C is very

small, the SVM model’s penalty for misclassification is almost negligible. In this case, the

model is only concerned with maximizing the interval without caring about classification cor-

rectness, which can lead to an increase in the empirical value at risk of the model and, thus,

to non-convergence. These two situations can lead to overfitting and underfitting problems,

respectively. In addition, the complexity of the model reaches an upper limit when the value

of C increases to a certain level, at which time the empirical risk and generalization ability

hardly change significantly. Therefore, a reasonable choice of C is crucial for obtaining an

ideal SVM classifier.

Furthermore, the performance of SVM is also affected by the kernel function and kernel

parameters. With no clear theoretical guidance, choosing the kernel function and kernel

parameters for SVM classification algorithms has to be a challenging task. To identify which

kernel function to use, numerous researchers have carried out a vast number of experiments.

The practice has demonstrated that RBF usually has a good classification effect and gener-

alization ability compared to other kernel functions. So, the parameter settings in the RBF

kernel function have been one of the focal points of research. To get the best classification

results, it is typically necessary to test various values of the RBF kernel function parameters

in various trials. As a result, choosing an appropriate kernel function and adjusting the

appropriate penalty factor C as well as the kernel parameters are of great significance for

optimizing the classification model.

2.9 SVM Parameter Optimization Methods

The goal of SVM algorithms is to determine the linear or non-linear decision boundaries

that achieve optimal classification in n-dimensional space. Two of the key parameters are

21

C and Kernel, which usually have default values, but they often lead to low classification

accuracy [14]. To solve the parameter optimization problem, we can rely on ”Tree-Structured

Parzen Estimator Optimization for Support Vector Machines (TPEOSM).”

In extreme value issues, Bayesian Optimization (BO) can be used for functions whose

expressions are uncertain. The two primary parts of this black-box optimization approach

are a collection function and a Gaussian process regression. One benefit of using Bayesian

optimization is that it only requires a limited number of samples to infer the maximum value

of the function, and typically only requires a relatively small number of sampling points.

Gaussian process regression is used to estimate the probability distribution of a function

value at any point based on the function value at a series of sample points. It first selects

sample points evenly within the area and ensures that they satisfy the multidimensional

normal distribution. These points are then initialized and finally used as candidate solutions.

As in the following equation:
y1
...

yn

 ∼ N

0, K


(x1, x1) · · · (x1, xn)

...
...

(xn, x1) · · · (xn, xn)




Here, K represents the covariance matrix. Then according to the posterior formula, we

obtain the updated value y∗:

P (y∗|y ∼ N(K∗K
−1y,K∗∗ −K−1KT

∗))

Here, K∗represents the covariance matrix of the original samples, and K∗∗ is the covariance

matrix of the newly added samples.

Finally, the updated candidate solution is given by: y
y∗

 ∼ N

0,

K KT
∗

K∗ K∗∗


Based on the results of the Gaussian process regression, we can construct the acquisition

function. Subsequently, once the extremes of the acquisition function have been identified,

22

Bayesian optimization will next decide the subsequent sampling points. And then these

sampling points will also eventually be returned as the estimated optimal values of the

function.

xn+1 = argmaxEIn(x)

EIn(x) = En[[f(x)− f ∗
n]

+] = (µ− f ∗
n)

(
1− ϕ

(
f ∗
n − µ

σ

))
+ σψ

(
f ∗
n − µ

σ

)
One could think of the TPE as an enhanced and more effective variant of Bayesian opti-

mization. It improves the original algorithm by introducing a tree structure to construct

the solution space and simultaneously uses the Parzen estimator to calculate the probability

density.

Given that p(x|y) is the conditional probability with hyperparameter x and model loss y,

and y∗ is the threshold. Let l(x) and g(x) represent the probability density functions for

learning above the threshold and below the threshold, respectively [15]. Then we can derive

the formula:

p(x|y) =


l(x) if y < y∗

g(x) if y ≥ y∗

To make the optimization process for ”Expected Improvement” (EI) in the TPE algorithm

simpler, the parameter p(x, y) is chosen as p(y) p(x|y). The Bayesian formula can be used

to translate it since p(y|x) is not available:

EIy∗(x) =

∫ y∗

−∞
(y∗ − y)p(y|x)dy =

∫ y∗

−∞
(y∗ − y)

p(x|y)p(y)
p(x)

dy

Next, let γ = p(y < y∗) to partition l(x) and g(x).

Therefore, EI can be simplified to:

EIy∗(x) =
γy∗ − l(x)

∫ y∗

−∞ p(y)dy

γl(x) + (1− γ)g(x)
∝
(
γ +

g(x)

l(x)
(1− γ)

)−1

It is evident that in order to get the highest possible EI, we must make sure that g(x) \ l(x)

is reduced to finish the necessary amount of iterations. Additionally, we can obtain the

23

candidate x∗ for maximizing EI at each iteration:

x∗ = argmax EIy∗(x)

At this point, we can obtain the optimal value and optimal parameters of the objective

function.

24

CHAPTER 3

Experiment

This research paper uses the Iris dataset from the UC Irvine Machine Learning Repos-

itory [16].

This dataset contains 150 sample points with four eigenvalues each. In this study, only

two features, sepal length and sepal width, are used to represent the feature classification of

the iris under different kernel functions.

First, we classify the complete 4-dimensional feature dataset (the original iris dataset)

to evaluate the accuracy of different kernel functions on the prediction and test sets. Then,

the TPE method is used to optimize the feature values. This process will help us select the

combination of feature parameters applicable to the Iris dataset more efficiently to achieve

better classification accuracy. Finally, feature classification for the iris dataset with different

parameter settings for the same kernel function is performed and cross-validated.

3.1 Classification of Iris features with different kernel functions

Two characteristics, the length and width of the sepal, served as the foundation for our

classification in order to improve the clarity and understandability of the classification results.

This classification is called ”feature classification,” which reduces the feature information of

sample points to the two most critical and representative dimensions. Subsequently, different

kernel functions are selected for classification, and the classification effect is visualized as a

two-dimensional graph. Here, we set the initial value of the error penalty parameter C to 1.

25

Figure 3.1: Linear kernel function feature classification

Figure 3.2: Gaussian kernel function feature classification

26

Figure 3.3: Polynomial kernel function feature classification

Figure 3.4: Sigmoid kernel function feature classification

27

The image demonstrates how efficiently the Gaussian kernel function operates to produce

superior classification results. This further supports the earlier claim that the Gaussian

kernel function is typically sufficient to get superior outcomes in feature classification issues.

This result gives us strong guidance on selecting the right kernel function to enhance the

classification model’s functionality and capacity for generalization.

3.2 Comparison of Different Kernel Function Models

We divide the dataset proportionally into training and test sets and then create SVM

classifiers with four different kernel functions, namely linear, Gaussian, polynomial, and

sigmoid kernels. These models are used in the subsequent part to classify the dataset. To

train the SVM model using each of the four different kernel functions, choose a value for

parameter C, and each model’s training duration is noted so that the models’ performances

may be compared.

Figure 3.5: Model Prediction Accuracy

28

Figure 3.6: Model Training Time

From the images, we can observe that under the same parameters, the Gaussian kernel

function achieves the highest testing accuracy and has an advantage in model training time.

3.3 Test Set Accuracy with Different Parameters

We chose four different kernel functions and set different values of the parameter C to

compare their accuracy on the test set.

C Linear rbf poly sigmoid

1 75.1% 78.5% 72.8% 33.9%

2 73.8% 79.6% 73.5% 32.1%

3 73.3% 75.3% 71.3% 32.3%

4 73.5% 73.85% 71.1% 31.3%

Table 3.1: Test Set Accuracy for Different Kernel Functions with Different Parameters

From Table 3.1, we can observe that the Gaussian kernel function consistently achieves

29

higher accuracy on the test set across various parameter settings than the other three kernel

functions. Therefore, the Gaussian kernel function outperforms the other kernel functions

in this case.

3.4 Using the TPE Method to Optimize Parameters

We determine the optimal hyperparameter combination for the SVM model based on

the Iris dataset using the TPE approach for hyperparameter search here. And then train

the model and assess its performance.

Step 1: define an objective function for hyperparameter optimization to maximize the

classification accuracy of the model on the training set. Optuna will use the Bayesian

optimization algorithm to continuously improve the performance of the objective function

so that we can create an Optuna study object that searches for the best hyperparameter

combination of the SVM model in a certain number of experiments. Then, output the values

of the optimal hyperparameters. Here, our output value is:

kernel : rbf, C : 1.9863322570254014, γ : 3.7351724209466353

Figure 3.7: Print the best hyperparameters

Step 2: draw the optimization history to show the changes in the objective function

value in each trial.

30

Figure 3.8: Optimization history plot

The blue points in the figure 3.8 represent the objective function value, and the red

line represents the optimal value. The image shows that the curve stabilizes after about ten

trials, indicating that the hyperparameter search may have found a good hyperparameter

combination.

Step 3: train the model using optimal hyperparameters. For the given SVC model, we

get the hyperparameter combination value:

C = 1.9863322570254014, γ = 3.7351724209466353

Figure 3.9: Train the model using the best hyperparameters

31

Step 4: evaluate the model’s performance on the training and test sets, obtaining an

accuracy of 1.0 on the training set and 0.9666666666666667 on the test set.

Figure 3.10: Print the classification accuracy on the training and test sets

It can be seen from this plot that the model performs well in the iris data set and can

effectively classify sepal length and width.

Step 5: draw the training set and test set fitting curves to show the comparison between

the model’s prediction results on the training set and the test set and the true values.

Figure 3.11: Training set fitting curve

32

Figure 3.12: Testing set fitting curve

As you can see from the image, the model performs very well on the training data, and

the training set curve fits perfectly. However, in the test set data, the curve fit is slightly

biased. This indicates that there may be an overfitting problem. If we want to improve

model performance and generalization ability, we can take measures such as simplifying the

model and introducing regularization to reduce overfitting.

3.5 Impact of Different Parameter Values on Feature Classifica-

tion

According to the above experimental comparison, we can observe that the Gaussian

kernel function has a better classification effect. So here, we first select the kernel function

as the Gaussian kernel function, then set different C values, C=(0.1, 1, 10, 100), and finally

compare its impact on feature classification by observing the image.

33

Figure 3.13: C=0.1

Figure 3.14: C=1

34

Figure 3.15: C=10

Figure 3.16: C=100

35

According to the image, we can find that the smaller the C value, the better the gener-

alization ability. However, due to the ample error tolerance space of the model, underfitting

problems are prone to occur. The larger the C value is, the model is too complex and cannot

adapt to unseen data, resulting in poor generalization ability. When C exceeds a certain

value, the generalization ability no longer changes significantly. Since the gamma parameter

value will also affect the model’s performance, we can find a suitable gamma value at this

time and form a hyperparameter combination with the C value. A smaller gamma value

will result in a smoother decision boundary, and a larger one will result in a more complex

decision boundary. Therefore, the selection of C and gamma values must be within a reason-

able range. Whether it is too large or too small, it may lead to a decrease in generalization

performance. To find the best C and gamma values, we can use the cross-validation.

3.6 Cross-validation

By using cross-validation, we can assess how well the model performs under various C

and gamma value combinations to determine which hyperparameter configuration best fits

the data and yields the greatest prediction performance.

Here, we use nested loops to iterate over different combinations of C and gamma. For

each combination, create an SVM classifier, use the RBF kernel function, and set the corre-

sponding C and gamma values. Determine the C value (0.1, 1, 100) and the gamma value

(0.1, 1, 100). Then, train the model on the training set.

36

Figure 3.17: C=0.1, gamma=(0.1,1,100)

Figure 3.18: C=1, gamma=(0.1,1,100)

Figure 3.19: C=100, gamma=(0.1,1,100)

37

By observing the images, we can see the differences in the models under different com-

binations of C and gamma values:

1. When C=0.1, whether the gamma is 0.1, 1, or 100, the model’s performance is not very

good, and the accuracy is relatively low. This indicates that the C value is too small, and

the model has greater fault tolerance, resulting in underfitting of the model.

2. When C=1, the model’s performance significantly improves, and higher accuracy is ob-

tained regardless of whether gamma is 0.1, 1, or 100. This shows that a moderate C value

can balance the model’s fault tolerance and overfitting problems, improving performance.

3. When C=100, the model’s performance sometimes decreases slightly. For example, when

gamma=0.1, the accuracy remains at 0.83, but when gamma=1 and 100, the accuracy drops

to 0.73 and 0.57. This suggests that larger C values may sometimes cause the model to

overfit.

Next, use GridSearchCV for grid search and cross-validation. It tries all possible hy-

perparameter combinations and uses 5-fold cross-validation to evaluate the performance of

each combination.

Figure 3.20: Cross-validation results

The best hyperparameter configuration, as determined by the cross-validation results,

is as follows: C = 1, γ = 1, and kernel function type is RBF. The average cross-validation

score under this optimal configuration is 0.96, which shows that the model functions well

on the training set. The model’s accuracy on the test set is 1.00, indicating that it also

performs well on data that has not been seen before and can generalize to new data without

experiencing issues with over- or under-fitting.

38

CHAPTER 4

Conclusion

4.1 Conclusion

This study first introduces the background and importance of SVM. In the era of big

data, choosing the appropriate kernel function and correctly setting the penalty factor and

kernel parameters are crucial for optimizing classification models. Selecting a proper kernel

function can not only improve the running speed of the model but is also of great significance

for the efficient classification of data. This paper selects two features in the Iris data set for

experiments. It compares the performance of the Gaussian kernel function with other kernel

functions through many experiments. The results show that the Gaussian kernel function

performs well, with the shortest training time and the highest testing accuracy. Therefore,

it is evident that the Gaussian kernel function can effectively approximate the expansion of

infinite dimensions and is suitable for processing complex data.

In addition, this study analyzed the impact of parameters on SVM performance. Experi-

mental results show that the value of parameter C has a direct effect on feature classification.

A more considerable C value will lead to a decrease in generalization ability. It may cause

overfitting problems, while a smaller C value will help improve generalization ability but may

lead to underfitting. Therefore, choosing the appropriate parameter configuration is crucial

to the performance of SVM. At the same time, the TPE method using Bayesian optimiza-

tion tools was introduced for hyperparameter optimization, and the optimal hyperparameter

combination was finally selected and cross-validated, further improving model performance.

39

4.2 Future Enhancement

As the core content of machine learning, SVM has always attracted the attention of re-

searchers. However, there are still a lot of unanswered questions regarding SVM, particularly

concerning parameter selection and kernel function, which require further in-depth investiga-

tion. To enhance model performance, suitable kernel functions and parameter settings must

be chosen. Although this article proposes a kernel function and parameter selection method

for the SVM classification algorithm, this is only a starting point, and there are still many

aspects that can be further optimized and expanded:

1. Function optimization: Numerous other kinds of kernel functions can be researched

and contrasted in addition to the four kernel functions discussed in this article. We can keep

looking at new options regarding kernel function selection because different problems might

call for different kinds of kernel functions.

2. Enhancement of operation efficiency: variations in kernel functions can result in

variations in model training timeframes. Optimizing the model’s operating efficiency is a

crucial objective. Future studies can concentrate on cutting training time, mainly when

working with big amounts of data.

3. Parameter optimization approaches: More advanced parameter optimization tech-

niques, such as genetic algorithms, etc., can be explored in addition to the hyperparameter

search methods covered in this article. More intelligent parameter space exploration is pos-

sible with these techniques.

4. Cross-validation and network search: In practical applications, cross-validation and

network search methods can help determine the optimal parameter configuration. More

detailed studies could include different cross-validation strategies and search algorithms to

obtain more robust results.

5. Simplification of the algorithm: Although SVM is a powerful algorithm, its complex-

ity may limit its use in certain applications. Future research can explore how to simplify

40

SVM while maintaining its performance.

In general, the research on SVM classification algorithms is, for the most part, a contin-

uously developing field with fascinating research opportunities and challenges ahead of us.

I believe that through additional investigation and refinement, SVM will continue to realize

its potential in various areas and provide more powerful tools for solving practical problems.

41

REFERENCES

[1] Xuemei Hou. A multi-class classification method for support vector machine applied to
a noise-robust speech recognition. Journal of Xi’an University of Post and Telecommu-
nications, 14(5):100–102, 2009.

[2] Guohe Feng. Parameter optimizing for support vector machines classification. Jisuanji
Gongcheng yu Yingyong(Computer Engineering and Applications), 47(3), 2011.

[3] Mathias M Adankon and Mohamed Cheriet. Model selection for the ls-svm. application
to handwriting recognition. Pattern Recognition, 42(12):3264–3270, 2009.

[4] Minna Dou and Xiaoxia Wang. Study on optimization of process parameters based on
svm. Automation Instrumentation, (07):67–73, 2022.

[5] Lida Wang. Research and Application of SVM Based on the Mixed-kernel Function.
PhD thesis, Dalian: Dalian Maritime University, 2016.

[6] Sayed Fadel, Said Ghoniemy, Mohamed Abdallah, Hussein Abu Sorra, Amira Ashour,
and Asif Ansary. Investigating the effect of different kernel functions on the performance
of svm for recognizing arabic characters. International Journal of Advanced Computer
Science and Applications, 7(1), 2016.

[7] Parveen Kumar, Nitin Sharma, and Arun Rana. Handwritten character recognition
using different kernel based svm classifier and mlp neural network (a comparison). In-
ternational Journal of Computer Applications, 53(11), 2012.

[8] Zhiliang Mao, Chunbo Liu, and Feng Pan. Parameter selection and application of svm
with mixture kernels based on ipso. Jiangnan University(Natural Science Edition),
8(6):631–634, 2009.

[9] Gend Lal Prajapati and Arti Patle. On performing classification using svm with ra-
dial basis and polynomial kernel functions. In 2010 3rd International Conference on
Emerging Trends in Engineering and Technology, pages 512–515. IEEE, 2010.

[10] Qi Zhou. A comparative study of several common kernel functions and parameter
selection for support vector machines. Fujian Computer, (6):42–43, 2009.

[11] Shunjie Han, Cao Qubo, and Han Meng. Parameter selection in svm with rbf kernel
function. In World Automation Congress 2012, pages 1–4. IEEE, 2012.

[12] Xiao Wu, Yan Wei, and Xia Wu. Support vector machine based on hybrid kernel
function. Chongqing University of Technology(Natural Science, (10):66–70, 2011.

42

[13] Chunxi Dong, Xian Rao, Shaoquan Yang, and Songtao Xu. Method for selecting the pa-
rameters of support vector machines. Systems Engineering and Electronics, 26(8):1117–
1120, 2004.

[14] Guangzhi Rong, Kaiwei Li, Yulin Su, Zhijun Tong, Xingpeng Liu, Jiquan Zhang, Yichen
Zhang, and Tiantao Li. Comparison of tree-structured parzen estimator optimization
in three typical neural network models for landslide susceptibility assessment. Remote
Sensing, 13(22):4694, 2021.

[15] P VASANTHANAGESWARI. Improving svm classifier model using tree structured
parzen estimator optimization for crop prediction. Journal of Theoretical and Applied
Information Technology, 100(22):6808–6818, 2022.

[16] R. A. Fisher. Iris. UCI Machine Learning Repository, 1988. DOI:
https://doi.org/10.24432/C56C76.

43

