
UC Irvine
UC Irvine Previously Published Works

Title
The role of fire in global forest loss dynamics

Permalink
https://escholarship.org/uc/item/19c1640t

Journal
Global Change Biology, 27(11)

ISSN
1354-1013

Authors
Wees, Dave
Werf, Guido R
Randerson, James T
et al.

Publication Date
2021-06-01

DOI
10.1111/gcb.15591

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/19c1640t
https://escholarship.org/uc/item/19c1640t#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Glob Change Biol. 2021;27:2377–2391.    | 2377wileyonlinelibrary.com/journal/gcb

1  |  INTRODUC TION

Forests play a crucial role in the climate system and are integrally 
linked to biodiversity, biogeochemical and hydrological cycling, and 
the Earth's radiation budget (Foley et al., 2005). Global estimates 
of gross forest loss during 2001 to 2018 totalled 4.2 million km2 
(Hansen et al., 2013). Large- scale forest loss can significantly reduce 

the land carbon sink, modify the surface energy budget and affect 
cloud formation, with impacts on regional weather and global climate 
(Bonan, 2008; Pongratz et al., 2011; Swann et al., 2018). When for-
est loss is followed by recovery and regrowth, these biogeochemical 
and biogeophysical impacts can be partly or fully offset over time. 
This is not the case if the forest loss is permanent as a consequence 
of land use change, climate or other global change drivers.
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Abstract
Fires, among other forms of natural and anthropogenic disturbance, play a central 
role in regulating the location, composition and biomass of forests. Understanding 
the role of fire in global forest loss is crucial in constraining land- use change emissions 
and the global carbon cycle. We analysed the relationship between forest loss and 
fire at 500 m resolution based on satellite- derived data for the 2003– 2018 period. 
Satellite fire data included burned area and active fire detections, to best account 
for large and small fires, respectively. We found that, on average, 38 ± 9% (± range) 
of global forest loss was associated with fire, and this fraction remained relatively 
stable throughout the study period. However, the fraction of fire- related forest loss 
varied substantially on a regional basis, and showed statistically significant trends in 
key tropical forest areas. Decreases in the fraction of fire- related forest loss were 
found where deforestation peaked early in our study period, including the Amazon 
and Indonesia while increases were found for tropical forests in Africa. The inclu-
sion of active fire detections accounted for 41%, on average, of the total fire- related 
forest loss, with larger contributions in small clearings in interior tropical forests and 
human- dominated landscapes. Comparison to higher- resolution fire data with reso-
lutions of 375 and 20 m indicated that commission errors due to coarse resolution 
fire data largely balanced out omission errors due to missed small fire detections for 
regional to continental- scale estimates of fire- related forest loss. Besides an improved 
understanding of forest dynamics, these findings may help to refine and separate fire- 
related and non- fire- related land- use change emissions in forested ecosystems.
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Fire is often a key process when considering the drivers of forest 
loss. At least half of the global forest loss may be caused by a combi-
nation of natural and anthropogenic drivers that are in principle as-
sociated with fire, such as wildfire, or that involve the use of fire for 
clearing or slash burning, such as with commodity- driven deforesta-
tion or shifting agriculture (Curtis et al., 2018). In regions where wild-
fires are dominant, including the boreal forests of North America 
and Eurasia, forest dynamics and fire are closely linked (Kasischke 
et al., 2002; Krylov et al., 2014; Wang et al., 2021). Compared to 
the boreal region, where ignition by lightning plays a crucial role 
(Veraverbeke et al., 2017), wildfires in temperate regions are often 
closer to human settlements and more likely to be ignited, but also 
suppressed, by humans (Balch et al., 2017).

Besides forest loss from wildfire, fire is widely used by humans 
as an inexpensive and effective tool for managing and transforming 
land for agriculture. Commodity- driven deforestation for the devel-
opment of pasture or cropland is the main driver of permanent forest 
loss in the humid tropics (Kim et al., 2015; Morton et al., 2008). This 
process typically involves mechanical felling of all standing vegeta-
tion, followed by repeated burning of the resulting slash (Carvalho 
et al., 1995; Kauffman et al., 1995). These activities may lead to 
substantial greenhouse gas emissions, potentially with considerable 
additional emissions due to fires escaping into neighbouring forests 
(Aragão et al., 2018; Siegert et al., 2001; Tyukavina et al., 2018) or 
into peat soils (Page & Hooijer, 2016; Turetsky et al., 2015), espe-
cially during drought periods.

Shifting agriculture, commonly practised in sub- Saharan Africa, 
and parts of Middle and South America and Equatorial Asia (Curtis 
et al., 2018), typically involves much smaller clearings and short 
cycles of forest loss, land use and regrowth (Molinario et al., 2017; 
Potapov et al., 2012). The land conversion generally involves the use 
of fire for land clearing and soil regeneration, that is, ‘slash- and- burn’. 
In parts of Sub- Saharan Africa, this type of forest loss is becoming 
increasingly permanent as a consequence of agricultural expansion, 
shorter fallow times and demand for charcoal, often linked to in-
creasing population pressure (Ickowitz et al., 2015; Sedano et al., 
2020; Tyukavina et al., 2018).

Disturbance agents other than fire that can lead to forest loss in-
clude drought, wind storms, insect and disease outbreaks (Goulden 
& Bales, 2019; Kurz et al., 2008), and human activities such as log-
ging, forest clearing for mining activities or urban expansion (Asner 
et al., 2013). Forests degraded by these disturbance agents may 
become more vulnerable to subsequent drought and fire (Cochrane 
et al., 1999; Kurz et al., 2008; Siegert et al., 2001). Climate change 
is likely to alter forests worldwide (Bonan, 2008), influencing many 
aspects of forestry (Kirilenko & Sedjo, 2007), and increasing the fre-
quency and intensity of some or all of the natural drivers of forest 
loss (Pugh et al., 2019).

Satellite data records show that forest loss rates have varied 
substantially over the past several decades, with pronounced shifts 
in tropical deforestation dominating the global trend. Tropical for-
est loss increased since about 1990 (Kim et al., 2015) and reached 
a maximum around 2004 due to peak levels of deforestation in the 

Brazilian Amazon (Turubanova et al., 2018). The subsequent decrease 
in tropical forest loss in the Brazilian Amazon until 2010 as a result 
of, for example, efforts to expand protected areas and prevent illegal 
deforestation (Gibbs et al., 2015; Koren et al., 2007; Nepstad et al., 
2009), was offset by an increase in other parts of South America and 
ongoing increases in Indonesia and Africa (Hansen et al., 2013; Kim 
et al., 2015; Margono et al., 2014; Turubanova et al., 2018; van Marle 
et al., 2017). In recent years, tropical forest loss rates in Indonesia 
have declined substantially (Carlson et al., 2018; Gaveau et al., 2019). 
A recent study by Song et al. (2018) showed that global forest loss 
from 1982 to 2016 has not resulted in a net decline in global forest 
cover, as the decline in tropical forest cover has been offset by forest 
gains in the extratropics.

Although the role of fire in forest loss has been evaluated on 
regional and global scales using a variety of different satellite sen-
sors, estimates remain uncertain. In particular, global studies typi-
cally rely on moderate resolution burned area data that omit smaller 
fires that are more likely to be captured by active fire detections 
(Achard et al., 2014; Baccini et al., 2017; Liu et al., 2019; Pearson 
et al., 2017; van der Werf et al., 2017). For example, Liu et al. (2019) 
found that only 15% of global forest loss was fire- related. Their ap-
proach relied on Landsat- based forest loss data in combination with 
MODIS- based burned area for regions with at least 20% tree cover, 
excluding the role of small fires. An improved understanding of the 
role of fire in global forest loss is a critical step towards estimating 
land- use change emissions and predicting the future role of forests 
in the global carbon cycle.

Here we aim to improve this understanding using a novel ap-
proach for estimating the fraction of gross (permanent and non- 
permanent) forest loss that involves fire on a global scale, which 
we refer to as fire- related forest loss. In this estimate, we include 
forest loss that is the direct result of fire, such as in wildfires, but 
also indirect fire- use during land conversion practices such as slash 
burning as part of commodity- driven deforestation and shifting ag-
riculture. In contrast to previous studies by Curtis et al. (2018) and 
Tyukavina et al. (2018), we focus on quantifying the fraction of for-
est loss that is related to fire, regardless of what driving mechanism 
is at play. Besides accounting for small fires by incorporating active 
fire detections based on a statistical method, our approach also al-
lows for a more detailed analysis of the spatial and temporal dynam-
ics in both forest loss and fire. We combine Landsat- derived forest 
loss data (Hansen et al., 2013) with Moderate resolution Imaging 
Spectroradiometer (MODIS) burned area (Giglio et al., 2018) and ac-
tive fire detections (Giglio et al., 2016) on a 500 m resolution global 
grid. We examine overlap between forest loss and fire detections 
both spatially and temporally to better understand the data con-
straints that limit the accuracy of fire- related forest loss estimates. 
Our analysis also considers differences in the timing and uncertainty 
of change detection among the fire and forest loss products, span-
ning daily (active fire detections) to annual (forest loss) time- scales. 
We compare our approach based on MODIS active fires to higher- 
resolution estimates based on active fire detections from the Visible 
Infrared Imaging Radiometer Suite (VIIRS; Schroeder et al., 2014) 
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and 20 m resolution burned area from the Sentinel- 2 Multispectral 
Instrument (MSI; Roteta et al., 2019), to test the validity of the 
coarser- resolution approach.

2  |  METHODS

2.1  |  Datasets

Global fire- related forest loss was estimated for each year dur-
ing the 2003– 2018 period by overlaying 500 m gridded fractional 
forest loss with burned area, supplemented by active fires out-
side the perimeter of burned area pixels. Annual forest loss for the 
period 2001– 2018 was based on the Global Forest Change (GFC) 
version 1.6 dataset (Hansen et al., 2013), which was derived from 
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 
8 Operational Land Imager (OLI) satellite data at 30 m resolution. 
Data inconsistencies in the forest loss dataset, including the tran-
sition from Landsat 7 to 8, are discussed in Data S1. We aggre-
gated the annual forest loss data to the MODIS 500 m sinusoidal 
grid with units of fractional forest loss area per 500 m pixel. We 
used the 2000– 2012 single time step ‘forest gain’ layer from the 
GFC dataset as a reference for the location of regions with for-
estry activity or tree plantations (Hansen et al., 2013). In this data 
layer, forest gain is defined as the inverse of forest loss. The dis-
tribution of fire- related forest loss over tree cover intervals was 
analysed using the Landsat- derived 30 m fraction tree cover layer 
for the year 2000 from the GFC dataset (as in e.g. Baccini et al., 
2017; Carlson et al., 2018; Gaveau et al., 2019; Hansen et al., 2013; 
Zarin et al., 2016). Besides tree cover intervals, we also analysed 
fire- related loss of primary humid tropical forests using the 30 m 
resolution primary humid tropical forest mask for the year 2001 
produced by Turubanova et al. (2018).

Fires were identified using both burned area and active fire de-
tections. Our main estimate was based on 500 m resolution Aqua 
and Terra MODIS MCD64A1 Collection 6 burned area (Giglio et al., 
2018) in combination with MODIS MCD14ML Collection 6 active 
fire locations (1 km at nadir; Giglio et al., 2016). For comparison, 
we also combined the MODIS burned area with higher- resolution 
Suomi National Polar- orbiting Partnership (NPP) VIIRS I- band 
VNP14IMGML active fires (375 m at nadir; Schroeder et al., 2014). 
MODIS data were available for the whole study period, whereas 
VIIRS data were only available from 2012 onwards. Besides VIIRS, 
we made a second assessment using 20 m resolution FireCCISFD11 
burned area for sub- Saharan Africa for the year 2016 based on 
Sentinel- 2 MSI (Roteta et al., 2019).

2.2  |  Gridding of fire location products

Fire locations from the MODIS and VIIRS active fire products were 
first converted to active fire pixels (i.e. orbital swath pixels; Giglio 
et al., 2016), by projection onto the Earth's surface based on the 

satellite scan geometry, and then in a second step reprojected onto 
the 500 m MODIS sinusoidal grid. Once projected, one MODIS ac-
tive fire pixel can span at least four 500 m pixels at nadir and up to 
40 at the scan edge, depending on the scan angle and the associated 
along- scan and along- track pixel dimensions. The same approach 
was used for gridding of the VIIRS active fire locations to the 500 m 
grid, but using the VIIRS- specific scan geometry.

Besides the higher nadir resolution of the VIIRS sensor compared 
to MODIS, off- nadir pixel growth is strongly reduced for VIIRS due 
to a pixel aggregation method. This results in a pixel area of 0.14 km2 
at nadir and up to 0.62 km2 at the scan edge for VIIRS (up to two 
500 m pixels), compared to about 1 km2 at nadir and up to 10 km2 at 
the scan edge for MODIS (up to 40 500 m pixels), which is a factor 
7 to 16 larger in area (Schroeder et al., 2014). The smaller active fire 
pixel size for VIIRS leads to a higher detection probability because of 
larger contrast of the thermal anomaly compared to the radiometric 
background (Csiszar et al., 2014). Furthermore, a larger swath width 
(3060 km) ensures the overlap of consecutive swaths and full global 
coverage every 12 h. In comparison, the two MODIS sensors com-
bined have an overpass frequency of four times every 24 h, but the 
narrower swath (2330 km) leaves part of the tropics undetected for 
each specific day.

2.3  |  Determination of fire- related forest loss

Fire- related forest loss for 2003– 2018 was defined as forest loss 
overlapping with fire detections (burned area or active fires), after 
reprojection of all required data onto the global 500 m MODIS si-
nusoidal grid (Figure S1). Our definition of fire- related forest loss 
included any sequence of causality between fire and forest loss, in-
cluding simultaneous occurrence of fire and forest loss (e.g. wildfire), 
fire followed by forest loss (e.g. tree mortality after fire damage) and 
forest loss followed by fire (e.g. burning of slash after felling, which 
mostly happens in the same year as the felling).

In our fire- related forest loss estimate, we included forest loss 
pixels overlapping with fire detections from the current year (t = 0)   
and the first preceding year (t = −1). This decision was based on 
an exploratory lag analysis in which we looked at the overlap of 
monthly fire detections in a range from 2 years preceding to 2 years 
succeeding the forest loss detection year (t = −2to t = +2; Figure S2). 
The first preceding year accounted for one- third of fire- related for-
est loss globally and up to about half in the boreal region (Figure S2, 
 percentages displayed above lag years), which showed that a sub-
stantial part of the forest loss detections was delayed, likely as a 
consequence of post- fire tree mortality and temporal differences 
among the forest loss and fire data products. This has been ac-
counted for in previous studies by using a multi- year pre- forest loss 
fire buffer (Krylov et al., 2014; Liu et al., 2019). In our study, a 1- year 
buffer based on the first preceding year proved to be sufficient to 
include the majority of overlap between forest loss and fire detec-
tions while minimizing commission errors (i.e. fire unrelated to forest 
loss; Figure S2).
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The 1- year buffer also accounted for fire seasons that occurred 
at the transition of two calendar years, such as the northern 
African fire season lasting from December to February. MODIS 
burned area and active fire detections for 2002– 2018 were used 
to calculate fire- related forest loss for the 2003– 2018 period 
(minus 2002, the first preceding year). Similarly, VIIRS active fire 
detections became available in 2012 and were separately used to 
calculate fire- related forest loss for 2013– 2018. Although the fire- 
related forest loss estimate for 2003 was incomplete because of 
the MODIS Aqua satellite record starting in May 2002, the major-
ity of the global fire year of 2002 was captured and the additional 
fire- related forest loss in the first 4 months was minor (see Figure S2, 
months −12 to −8).

All forest loss overlapping with burned area in the forest loss 
detection year and the preceding year was considered to be directly 
or indirectly related to fire. We used the total forest loss area within 
a burned area pixel, FLtot, as the mean estimate of the fire- related 
forest loss area based on burned area, FLburned area:

The uncertainty range, Rburned area, is defined as the range in 
estimates found as a result of three different adjustments to the 
algorithm based on the approach by Liu et al. (2019), namely, (1) in-
clusion of lag year t = −2, (2) exclusion of 500 m pixels with more 
than one burned area detection in a single year and (3) exclusion 
of forest loss in 30 m pixels with less than 20% fraction tree cover 
(Figure S3).

Three main factors motivated our approach of assigning all for-
est loss overlapping with burned area as being fire- related. First, for 
a confident burned area detection at least half, and often more, of 
a 500 m pixel (i, j) has to be burned with considerable burn intensity 
(Giglio et al., 2009). Second, the annual average fraction of forest 
loss in a 500 m pixel was substantially higher for pixels overlapped 
by burned area, as compared to those without overlap (compare 
Figure S4a,b). This shows that, where burned area and forest loss 
overlapped, forest loss events were relatively large scale, suggesting 
a large likelihood of fire- relatedness. Third, homogeneous regions 
where forest loss overlapped with fire detections were often clearly 
spatially separated from regions without overlap. Furthermore, 
whether forest loss was mostly overlapped by burned area or active 
fire detections was also region- specific, indicating characteristic fire 
regimes and forest loss drivers. For large parts of Africa, for example, 
we found a strong spatial separation between large fires and forest 
loss, discriminating large savanna surface fires that leave trees un-
affected (often detected as burned area) from small- scale shifting 
agriculture fires related to forest loss (predominantly detected as 
active fires; Figure S1a,b).

In 500 m pixels without burned area, we used active fire de-
tections to identify fire- related forest loss. Active fire detection 
methods are better able to capture small fires, but this is limited to 
satellite overpasses without cloud obstruction. Fires detected in the 
1 km MODIS active fire product can be up to a factor of about 1000 

smaller than the minimum detectable size of a burn scar, as long as 
the fire radiative power is sufficient (Giglio et al., 2006). The spatial 
relationship between forest loss and active fire detections is there-
fore less straight- forward than with burned area detections, for two 
reasons. First, an active fire pixel can be substantially larger than 
the forest loss event, especially if the fire detection is off- nadir (due 
to the scan angle effect). Second, the location, size and number of 
individual fires inside an active fire pixel are unknown and the actual 
fire perimeter can be substantially smaller than the active fire pixel 
footprint.

To account for the relatively uncertain relationship between ac-
tive fire detections and forest loss, we calculated lower-  and upper- 
bound probability measures (Pmin and Pmax) based on the spatial 
overlap between forest loss and active fire pixels. A schematic ex-
ample for the calculation of active fire- based fire- related forest loss 
is shown in Figure S5. We estimated the relatedness of all active fire 
detections in the current and preceding year coinciding with forest 
loss for every 500 m pixel with indices (i, j). Forest loss in a 500 m 
pixel was given a probability of being fire- related if the pixel mid-
point was located within the perimeter of the swath- based active 
fire footprint. The probability that a single overlapping active fire 
detection was related to the forest loss was calculated based on the 
ratio between the area of forest loss overlapping the active fire pixel 
and the total area of that active fire pixel, multiplied by the active 
fire detection confidence:

where Af is the fire pixel area (often multiple 500 m pixels) associated 
with a single active fire detection, 

∑

fAforest loss is the total area of for-
est loss overlapping the active fire pixel and Cf is the active fire detec-
tion confidence. For MODIS, the detection confidence, Cf, is given in 
percentage from 0% to 100%, whereas for VIIRS qualitative classes of 
‘low’, ‘nominal’ and ‘high’ are provided, representing 15%, 55% and 90% 
confidence, respectively. In Equation (2), we divide these percentages 
by 100 for Cf to range from 0 to 1. In turn, the probability that from all 
overlapping active fire pixels in the current and preceding year at least 
one (i.e. P ( ≥ 1)) detection was related to forest loss was calculated as:

which we defined as the minimum probability of fire- relatedness, Pmin.
The probability Pmin increases with every additional overlapping 

active fire pixel, representing that the detection of multiple active 
fires increases the likelihood that fire activity was indeed related to 
forest loss. Our method is purely based on an increase in probability 
with repeated fire detections and does not require empirical thresh-
olds for detection confidence, number of detections or scan angle. 
In contrast, previous studies used, for example, a fire persistence 
threshold to distinguish smallholder agricultural burning from large- 
scale deforestation (Morton et al., 2008).

(1)FLburned area (i, j) = FLtot (i, j) ± Rburned area (i, j) .

(2)Psingle fire =

∑

fAforest loss (i, j)

Af (i, j)
Cf (i, j) ,

(3)Pmin (fire forest loss) (i, j) = 1 −

# fires in year t=0 and t=−1
�

f=1

�

1 −

∑

fAforest loss (i, j)

Af

Cf

�

,
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For the second probability measure, active fires were treated the 
same as burned area, that is, it was assumed that the gridded active 
fire pixels were completely burned with a detection confidence of a 
100%. In this case, the probability is always 1:

This upper level probability must be regarded as the maximum 
estimate for the available active fire detections and could overes-
timate fire- related forest loss for those detections in cases where 
forest loss occurs in only a small fraction of a 500 m pixel.

Following the comparison of our MODIS- based estimate to the 
higher- resolution VIIRS and Sentinel- 2 - based estimates (see below), 
we concluded that the average of Pmin and Pmax provides the best es-
timate of fire- related forest loss derived from active fires. The range 
between the two probabilities functions as a measure for the uncer-
tainty that arises from the resolution mismatch between the forest 
loss and active fire data. Multiplication of the average probability 
with the forest loss area in the respective 500 m pixel gives the esti-
mated area of forest loss related to active fires:

where FLactive fire is the estimated fire- related forest loss area de-
rived from active fires. Considerations with regard to the sensitivity 
of FLactive fire to the scan geometry are discussed in Data S1 and as-
sociated Figures S6 and S7. The final estimate, FLfire, combines the 
burned area and active fires components. Active fires complement 
the estimate for 500 m pixels where burned area detections are not 
available:

Active fires are considered in any 500 m pixel without burned 
area, also when an active fire orbital swath pixel partially overlaps with 
burned area. The VIIRS- based estimate also used MODIS burned area, 
but in combination with active fires from VIIRS instead of MODIS.

Fire- related forest loss using FireCCISFD11 20 m Sentinel- 2 
burned area was calculated on the 30 m resolution grid native to 
the GFC dataset, to fully exploit the correspondence in spatial 
resolution. A 30 m forest loss pixel was considered fire- related if 
at least 30% of the pixel overlapped with 20 m Sentinel- 2 burned 
area. The sensitivity of the chosen overlap threshold on the result-
ing fire- related forest loss estimate was determined by calculating 
additional minimum and maximum estimates based on pixel overlap 
thresholds of 50% and 10%, respectively. The range between the 
minimum and maximum estimates served as an uncertainty range. 
Fire- related forest loss was calculated for 2016 Sentinel- 2 burned 
area in relation to forest loss for the years 2014– 2018 to analyse the 
causality between products, similar to the lag analysis performed 
for the MODIS and VIIRS fire data described earlier, but by lagging 
forest loss instead of fire detections.

2.4  |  Data comparison and trend calculations

After determination of fire- related forest loss at 500 m resolution, 
and 30 m for the Sentinel- based approach, all results were ag-
gregated to a 0.25° global grid for further analysis. MODIS- based 
fire- related forest loss was compared to the higher- resolution 
VIIRS and Sentinel- 2 estimates by calculation of omission and 
commission errors at 500 m resolution and summation of these 
errors over larger regions (Table S1). Trends in the fraction of fire- 
related forest loss, burned area and active fire detections were 
determined at an annual time step (2003– 2018) using the non- 
parametric Mann– Kendall test and Sen's slope estimator for the 
robustness of trends. We limited our trend analysis to the fraction 
of fire- related forest loss, instead of absolute forest loss areas, 
to reduce the sensitivity of our analysis to inconsistencies in the 
GFC dataset time series (see Data S1). All trend calculations were 
performed using MODIS burned area and active fire detections, 
whereas VIIRS active fires were only used for comparison because 
VIIRS data were only available for 2012– 2018. Trend maps for 
all significance levels are shown because non- significant trends 
were often found to be part of spatially homogeneous patterns 
that conveyed information about larger- scale regional trends. The 
fraction of interannual variability in forest loss explained by fire- 
related forest loss was calculated as the squared Pearson's cor-
relation coefficient.

3  |  RESULTS

3.1  |  Global patterns

During 2003– 2018, the average annual forest loss was 239 
⋅103 km2 year−1 (Hansen et al., 2013), of which 38 ± 9% (91 ± 22 
⋅103 km2 year−1) was fire- related (Figure 1; Table 1). In sparsely 
populated parts of the boreal region, almost all forest loss was 
fire- related, whereas in regions dominated by forestry, such as 
the Southeastern United States, Scandinavia and parts of China, 
the fire- related fraction was typically 10% or less. In the tropics 
and subtropics, this fraction varied more and showed character-
istic patterns consistent with drivers of forest loss (Figure S1). 
Fire- related forest loss contributed to 89 ± 5% of the interannual 
variability in global forest loss rates, highlighting that the annual 
variation in forest loss was predominantly explained by drivers in-
volving fire.

The global average fraction of fire- related forest loss remained 
stable over the study period. However, regional trends were signifi-
cant, with marked declines in regions that were deforestation fron-
tiers early in our study period (e.g. Amazon, Indonesia) and increases 
in the tropical forests of Africa (Figure 2). Local trends in regions 
with large interannual variability and (multi- ) decadal fire- return in-
tervals, such as the boreal region and Western North America, were 
often insignificant based on the Mann– Kendall test, although they 
appeared significant based on simple linear regression. In these 

(4)Pmax (fire forest loss) (i, j) = 1.

(5)

FLactive fire (i, j) =

(

Pmin (i, j) + Pmax (i, j)

2
±

Pmax (i, j) − Pmin (i, j)

2

)

FLtot (i, j) ,

(6)FLfire (i, j) = FLburned area (i, j) + FLactive fire∉burned area (i, j) .
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regions, individual years with severe fire and large forest losses 
heavily influence trends, and therefore a longer time period is re-
quired to find robust trends. Trends in the fraction of fire- related 
forest loss generally coincided well with trends in burned area and 
active fire detections (Figure S8).

Of the global fire- related forest loss estimate, 23 ± 2% was cap-
tured by burned area and 15 ± 9% was added by active fires (Figures 
S7f and S9). Globally, 6.9% of burned area detections and 15.4% of 
active fire detections overlapped with forest loss (Figure S10a,b), in-
dicating that only a small fraction of total fire detections was related 
to forest loss. The relative contribution of active fire detections to 
the total fire- related forest loss estimate was largest in interior trop-
ical forests and heavily managed temperate forests (Figure S10c). In 
temperate forests however, the amount of fire- related forest loss 
was generally very minor.

3.2  |  Tropics

Of all forest loss in the tropics (48% of global forest loss; 23.5°N– 
23.5°S), 34 ± 14% was fire- related (Table 1; Figures 1 and 3). For 
primary humid tropical forests, the fraction of fire- related forest 
loss was higher (41 ± 14%), of which 69% occurred in the tropical 
Americas, 22% in Southeast Asia, and only 8% in sub- Saharan Africa 
(Figure 4). Compared to the tropical Americas and Asia, the forest 
loss regime in Africa consisted of more small- scale forest loss, with 
more than three- quarters of all forest loss area occurring in events 
<5% the size of a 500 m pixel (Figure S4a). For Africa, the majority 
of fire activity and forest loss occurred in the 25%– 75% fraction 
tree cover range, whereas only 20% of fire- related forest loss area 
occurred in the >75% tree cover range, compared to 68% for South 
America (Figure S11).

F I G U R E  1  Global forest loss and fire- relatedness, (a) percentage of 0.25° grid cell that underwent forest loss during 2003– 2018 and 
(b) best- estimate fraction of fire- related forest loss. In panel (b), 0.25° grid cells that underwent less than 0.1% forest loss are masked out. 
The horizontal dimension of the colour map in panel (b) represents the percentage of forest loss from panel (a), scaled to the power of 0.5 
and clipped at 40% forest loss for improved visualization
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In the Amazon, fire- related forest loss accounted for 44 ± 16% 
of the region's total forest loss and this drove interannual variability. 
Burned area detections accounted for about half of the fire- related 
forest loss estimate in the Arc of Deforestation, an area dominated 
by large- scale commodity- driven deforestation, whereas the rel-
ative importance of active fire detections increased towards the 
rainforest interior (Figure S10c). The Amazon biome experienced the 
strongest decrease in the fraction of fire- related forest loss of any 
region, declining from a mean level of 66 ± 16% in 2003– 2005 to a 
mean level of 43 ± 15% in 2016– 2018 (Figure 2).

In Africa, fire- related forest loss amounted to 38 ± 17% of total for-
est loss, with a major role in large areas of Western and Southeastern 
Africa, and a less significant role in most African humid tropical for-
ests (Figures 1 and 3; Figure S1a,b). The fraction of fire- related forest 
loss remained stable during the study period for the African continent 
as a whole, whereas local trends showed a distinct pattern (Figure 2). 
Negative trends were found for northern and eastern Africa in areas 
where the fire- related forest loss estimate was predominantly based 
on burned area detections, whereas positive trends were found for the 
tropical forest regions of Africa where burning was more frequently 
detected as active fires. While burned area decreased in most regions 
of Africa (−1.3% year−1; Table 1), active fire detections increased across 
much of the continent, particularly where burned area levels were low, 
such as in the tropical forest regions (Figure S8).

In Southeast Asia, fire- related forest loss was 26 ± 11% (Figure S1c).   
The relative contribution of active fire detections compared to 

burned area detections was particularly large for this region 
(72% on average, Figure S10c). A difference in forest loss regimes 
was visible between parts of maritime Southeast Asia compared 
to the mainland (Indo- Burma region). The maritime region, and 
in particular the Indonesian provinces of Riau (Sumatra) and 
Central Kalimantan, has seen extensive historical deforestation 
and conversion to agricultural land, mostly for palm oil (Figure 1; 
Austin et al., 2017; Gaveau et al., 2019). Compared to maritime 
Southeast Asia, forest loss in the mainland occurred in smaller 
patches, suggesting a larger role by smallholders (Figure S4a,b). 
Forest loss in Laos and Cambodia was predominantly related to 
fire, whereas fire played a smaller role in Vietnam, where pol-
icy changes favoured reforestation and logging (Meyfroidt & 
Lambin, 2008).

3.3  |  Boreal and temperate forest regions

In the boreal region, 57 ± 5% of forest loss was fire- related and this 
explained 92 ± 1% of the interannual variability in forest loss (Table 1; 
Figure S1d). In remote northern areas, the share of fire- related for-
est loss was often close to 100% as a consequence of large stand- 
replacing wildfires, whereas in more productive forestlands further 
south, forest loss was a mixture of fire and forestry (Figure 1b). In 
boreal North America, these two forest loss regimes were clearly 
separated, whereas the transition was more gradual in boreal Asia, 

TA B L E  1  Annual 2003– 2018 averages and trends of forest loss, fire- related forest loss, burned area and active fire detections for 
different regions of the world. The column ‘Variability explained’ shows the fraction of interannual variability in forest loss that is explained 
by fire- related forest loss (see Section 2). Annual averages and trends in burned area and number of active fires are shown for all fire 
detections (in-  and outside forests). Continental regions are based on grouped GFED regions (see figure 3 in van der Werf et al., 2017): 
Middle and South America (CEAM, NHSA and SHSA), Africa (NHAF and SHAF), Southeast Asia (SEAS and EQAS), Boreal (BONA and BOAS) 
and Temperate (TENA, EURO, CEAS and AUST). Light grey coloured numbers indicate values that are not significant based on the Mann– 
Kendall test (p > 0.05). Forest loss areas based on Hansen et al. (2013)
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indicating a mixture of wildfires, forestry and agricultural burning 
in closer proximity. Our fire- related forest loss estimate for the bo-
real region was particularly robust because much of the fire activity 

was detected as burned area (Figures S9 and S10) and because there 
was a strong spatial overlap between forest loss and large wildfires 
(Figure S1d).

F I G U R E  2  (a) Global trends in the fraction of fire- related forest loss (2003– 2018) per 0.25° grid cell based on MODIS burned area and 
active fires. (b) Annual fraction of fire- related forest loss for key regions (see also Table 1), including the estimate based on VIIRS instead of 
MODIS active fires for 2013– 2018. Transparent filled bands display the range between minimum-  and maximum- estimate fire- related forest 
loss. Slope values and their significance, and the fraction of interannual variability in forest loss explained by fire- related forest loss (Var. 
expl. by fire) are given per region. Only significant trend lines are plotted

(a)

(b)

F I G U R E  3  Comparison of 2003– 2018 average (a) best- estimate fire- related forest loss and (b) maximum- estimate fire- related forest loss, 
for the regions Middle and South America, sub- Saharan Africa and Southeast Asia. The difference between best and maximum estimates 
was largest for these three regions, whereas it was negligible for most temperate and boreal regions. The horizontal dimension of the 
colour map represents the percentage of forest loss from Figure 1a, scaled to the power of 0.5 and clipped at 40% forest loss for improved 
visualization, identical to the colour map of Figure 1b
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In temperate regions, forest loss was dominated by forestry 
and fire played a minor role, except for wildfire- prone areas such as 
California, Portugal, Greece, Australia and temperate Russia. Where 
major wildfires occurred, the interannual variability in forest loss 
was largely determined by these events. In areas with managed for-
ests, including many regions in the Southeastern United States and 
China for example, the small amount of fire- related forest loss found 
was almost fully based on active fire detections, indicating small- 
scale human fire- use (Figure S10c).

3.4  |  Estimates from higher- resolution fire data

Fire- related forest loss estimates for 2013– 2018 based on MODIS 
and VIIRS active fires were similar, with 38 ± 9% and 37 ± 8%, re-
spectively (slope = 1.03, R2 = 0.99) and a 17% reduction in uncer-
tainty for VIIRS (Figure 2b; Figure S12). Minimum estimates were 
particularly similar and differed by less than 1% globally, with minor 
opposing omission and commission errors (OE = 9%, CE = 9% at a 
global scale; Table S1). For the maximum estimate, commission 
errors played a larger role (OE = 15%, CE = 22%), leading to a 3% 
higher global estimate for MODIS (47% vs. 44% fire- related). The 
average MODIS active fire pixel size weighted by forest loss area 
was 2.7 ± 1.0 km2 (±standard deviation), versus 0.25 ± 0.05 km2 for 
VIIRS, which translates to an average pixel size ratio for detections 
overlapping forest loss of 11 on average, with a standard deviation 
of 4.5 (Figure S13). Although the nadir resolution differed by a factor 

of 7 (1 km2 for MODIS versus 0.14 km2 for VIIRS), the overall resolu-
tion difference was larger due to the reduced off- nadir pixel growth 
for VIIRS and because of an above- average pixel size ratio in forest 
loss areas.

The fire- related forest loss estimate for 2016 sub- Saharan Africa 
based on the FireCCISFD11 Sentinel- 2 MSI product was 38 ± 3% 
and thus higher than the estimates based on MODIS (29 ± 14%) and 
VIIRS (28 ± 12%), but within their uncertainty range (Figure S14). 
For lagged forest loss years (2014– 2018), the Sentinel- 2 estimate 
was more equal and sometimes slightly lower than the MODIS es-
timate. The MODIS- based maximum estimate agreed well with the 
Sentinel- 2 estimate (slope = 0.89, R2 = 0.77), whereas the MODIS- 
based best estimate tended to underestimate fire- related forest 
loss (slope = 0.64, R2 = 0.74; Figure S15). Lower estimates for both 
MODIS and VIIRS can be attributed to omission errors because of 
missed small fire detections (Table S1). On the other hand, for the 
maximum estimates the coarser sensor resolution caused consider-
able commission errors, which largely balanced out against the omis-
sion errors for regional to continental- scale estimates. In primary 
humid tropical forests, the MODIS- based estimate of fire- related 
forest loss was 22 ± 14% compared to 17 ± 2% for Sentinel- 2. For 
the rest of Africa, including several frequently burning regions, this 
was 30 ± 15% for MODIS compared to 42 ± 3% for Sentinel- 2. The 
MODIS- based maximum estimate (45%) was closest to Sentinel- 2 
outside of primary humid tropical forests, but substantially overes-
timated the fraction of fire- related forest loss (36% for MODIS com-
pared to 17% for Sentinel- 2) inside these forests.

F I G U R E  4  Annual fraction of fire- related forest loss in the tropics (23.5°N– 23.5°S) for (a) primary humid tropical forest and (b) other 
forest loss in the tropics. Region definitions as in Table 1, but limited in latitude to 23.5°N– 23.5°S. Transparent filled bands display the range 
between minimum-  and maximum- estimate fire- related forest loss. Only significant trend lines are plotted

(a) (b)
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4  |  DISCUSSION

4.1  |  Fraction of fire- related forest loss

Of the global forest loss during 2003– 2018, 38 ± 9% was fire- related 
and this fraction explained 89 ± 5% of the interannual variability in 
global forest loss rates. This suggests that drivers involving fire, in-
cluding wildfire and human- induced fires for land- use conversion, 
regulate variability on annual time- scales. Weather conditions, in-
cluding droughts, can synchronize wildfire activity in the boreal for-
est regions (de Groot et al., 2013) but also the timing of agricultural 
burning and forest clearing fires, leading to simultaneous peaks in 
burned area and forest loss (Chen et al., 2017; van der Werf et al., 
2008). In contrast, non- fire drivers tend to respond more slowly, for 
example as a consequence of longer- time- scale socio- economic fac-
tors that impact forestry.

Our estimate of fire- related forest loss is considerably higher 
than previous comparable estimates (Liu et al., 2019; Pugh et al., 
2019), much of which can be attributed to differences in the ap-
proach taken, and particularly the inclusion of active fires in our 
study. Based on the same forest loss and burned area datasets, Liu 
et al. (2019) found that 15% of global forest loss in 2003– 2014 was 
fire- related. In comparison, for the same time period, our estimate 
based on only burned area detections was 22% (compare figure 
1a,b in Liu et al. (2019) to Figures S7f and S9a in our study). The dif-
ferent estimates can be predominantly explained by differences in 
approach: Liu et al. omitted weighting by forest loss area when spa-
tiotemporally averaging fractions of fire- related forest loss (Z. Liu, 
private communication), whereas we included forest loss area as a 
weighting factor in each 500 m pixel. Furthermore, Liu et al. masked 
out pixels with less than 20% fraction tree cover after aggregation of 
their results to a 2° × 2° grid, whereas we applied the masking at the 
native 30 m resolution of the forest loss data. The impact of the re-
maining methodological differences between studies was captured 
by our uncertainty range of ±2% for the part of the fire- related for-
est loss estimate that was based on burned area detections, and had 
a minor effect in comparison (see Section 2 and Figure S3). Besides 
these differences, we show that the inclusion of active fire detec-
tions is essential in most subtropical and tropical regions, and inte-
rior tropical forests in particular (Figures S7f, S9, S10c), raising the 
fire- related fraction of global forest loss by two- thirds (to 38 ± 9%) 
compared to an estimate purely based on burned area.

Our fire- related forest loss estimate of 38 ± 9% is in line with the 
results from Curtis et al. (2018), who found that in total 68% of global 
forest loss is caused by drivers that may involve fire (commodity- 
driven deforestation 25%, shifting agriculture 21%, wildfire 22%). 
Depending on the extent to which deforestation and shifting agri-
culture involve fire, their results give a range of fire- related forest 
loss between 22% (only wildfire fire- related) and 68% (assuming also 
all deforestation and shifting agriculture are completely fire- related). 
Further determination of the fraction of fire- use for specific forest 
loss drivers is required to improve this comparison.

Although the fraction of fire- related forest loss in Africa was 
considerable, estimates in our study may be lower than expected 
considering the dominant role of slash- and- burn shifting agriculture 
on the continent. Curtis et al. (2018) estimated that 92% of forest 
loss had shifting agriculture as a driver, and two other studies that 
focussed on the DRC and CAR found that 80%– 90% of forest loss 
was driven by shifting agriculture there (Tyukavina et al., 2018; Zarin 
et al., 2016). In comparison, we estimated a fire- related forest loss 
fraction of 37 ± 22% over 2003– 2018 for the DRC and CAR. The 
higher estimate based on Sentinel- 2 burned area indicates that this 
can partly be attributed to missed fire detections. Fire detections 
can be hindered because of persistent cloud cover, dense canopy 
cover (in the case of understory fires; Morton et al., 2013), small 
fires or short- lived fires (e.g. small- holder agriculture; Giglio et al., 
2006; Randerson et al., 2012; Schroeder et al., 2008). Furthermore, 
the difference could be an indication that shifting agriculture not 
always involves the use of fire, although further research is required 
to clarify this. This highlights that our estimate of fire- related forest 
loss is likely conservative in this region and associated with consider-
able uncertainty, due to difficulties regarding fire detection and the 
spatial and temporal resolution mismatch between fire and forest 
loss data products. The strongly fragmented and small- scale forest 
loss in Africa (Figure S4a) made a related burned area detection un-
likely and the spatial overlap with active fire detections uncertain 
(expressed by low values of Pmin, see Equation 5), resulting in the 
largest relative uncertainty in our fire- related forest loss estimate 
of any continent.

Fire- related forest loss in Southeast Asia, and Indonesia in par-
ticular, is likely to be underestimated for similar reasons as for Africa. 
Besides the common limitations in detecting fires in tropical forest 
regions, thick smoke and haze from peat fires have been shown to 
obstruct active fire detections in this region (Atwood et al., 2016). 
However, when compared to the other main deforestation region, 
that is, the Amazon, non- fire- related forest loss is more prominent 
in Indonesia. This is at least partly due to the large- scale develop-
ment of tree plantations, both for logging and palm oil (Abood et al., 
2015; Noojipady et al., 2017), also indicated by substantial forest 
gain (Figure S4c).

Differences in fire- related forest loss across Siberia highlight a 
boundary between a non- stand- replacing fire regime in Southern 
Siberia, where human influence is significant, and a stand- replacing 
wildfire regime further north (Krylov et al., 2014). Similarly, conti-
nental differences in the role of fire in boreal forest loss (larger role 
in North America, lesser role in Asia) could be explained by differ-
ences in fire type, with more high severity canopy fires in boreal 
North America and more low severity surface fires in boreal Asia 
(Rogers et al., 2015). These continental differences in fire severity 
could also explain why there is more overlap of forest loss detections 
with fires from the preceding year in boreal Asia as compared to bo-
real North America (Figure S2; months −12 to 0). Lower fire severity 
could lead to longer delays in post- fire tree mortality and delayed 
forest loss detection. Understanding these regional and continental 
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differences in fire- related forest loss is critical for interpreting future 
changes in boreal forests.

4.2  |  Trends in the fraction of fire- related 
forest loss

On a global level, the fraction of fire- related forest loss remained 
stable over the study period. Regionally, however, we found 
marked declines in this fraction for older deforestation frontiers 
in South America (primarily Amazon forests) and Southeast Asia 
(primarily Sumatra and Kalimantan). These declining trends were 
particularly strong for primary humid tropical forests (Figure 4). 
In the Amazon, deforestation activity peaked around 2004 and 
declined afterwards (Turubanova et al., 2018). We observed a par-
allel decline in the fraction of fire- related forest loss (Figure 2). 
This could signify a change in the dominant forest loss driver from 
commodity- driven deforestation to drivers that are less related to 
fire (e.g. forestry, mining; Asner et al., 2013), or fires in smaller 
clearings (Rosa et al., 2012) and in the forest understory (Morton 
et al., 2013) that are more difficult to detect. The 2015−2017 
period was marked by a resurgence of the role of fire in forest 
loss that may be partially linked to the exceptionally strong 2015– 
2016 El- Niño event which led to increases in drought- induced 
forest fires (Chen et al., 2017). These fires have been found to 
constitute more than half of the forest loss emissions from the 
Brazilian Amazon in 2015 (Aragão et al., 2018; Silva Junior et al., 
2019). Likewise, the peak in 2010 could be linked to the earlier 
2010 drought event. In addition, a gradual increase in recent de-
forestation might also have contributed to the resurgence from 
2015 onwards (Barlow et al., 2020).

A similar course was found for Indonesia. After a decline from 
historic deforestation rates, a peak in the fraction of fire- related 
forest loss was visible for 2015– 2016 that might be related to peat 
fires during the exceptional 2015– 2016 El Niño (Figure 2b; Atwood 
et al., 2016; Silvius et al., 2018). Additionally, fire- related forest loss 
rapidly declined after 2016 in this region. This could be related to 
legislation changes in Indonesia regarding plantation expansion, with 
the goal to reduce forest loss, suppress fires and restore peatlands, 
accompanied by relatively wet weather conditions associated with 
La Niña (Carlson et al., 2018; Gaveau et al., 2019). A longer time re-
cord is required however, including drought years, to test whether 
this decline is permanent.

Spatial patterns for trends in the fraction of fire- related for-
est loss across sub- Saharan Africa largely coincided with trends in 
burned area and active fire detections (Figure 2; Figure S8). Global 
burned area in low tree cover systems, that is, low fuel consump-
tion fires, has been shown to be decreasing in the last two decades 
(Andela et al., 2017). We found related decreasing trends in the 
fraction of fire- related forest loss in relatively low tree cover areas. 
However, we also observed increases in forest loss and active fire 
detections in high tree cover areas such as the Congo basin, where 
the efficacy of burned area detection is low. These related patterns 

between forest loss and fires could reflect an increase in human in-
fluence (Andela & van der Werf, 2014), expressed as a reduction of 
large fires in natural lands (often detected as burned area) in com-
bination with an increase in deforestation fires and/or small- scale 
shifting agriculture in the African tropical forests (both commonly 
only detected as active fires; Tyukavina et al., 2018). The increase 
in fires in high tree cover areas, constituting a disproportionally 
large part of fire emissions (van der Werf et al., 2017), could gain 
importance in determining global emissions in the future.

Climate change is expected to especially affect fire activity in 
the temperate and boreal regions, by lengthening the fire season, 
shortening fire return times, creating drier fuel conditions and in-
creasing lightning activity (Jolly et al., 2015; Veraverbeke et al., 
2017; Williams et al., 2019), which could, in turn, drive additional 
forest loss. However, we did not find significant trends in the frac-
tion of fire- related forest loss for the temperate and boreal regions 
over our study period (Table 1). A longer record of forest loss and 
fire detections is required to adequately capture the multi- decadal 
fire return intervals characteristic of these fire regimes. However, 
we did find that 89 ± 5% of the interannual variability in global forest 
loss rates was fire- related, indicating that fire- prone regions might 
experience a further acceleration of forest loss with warming climate 
while other forested regions where fires are less frequent might be 
more resilient. This is also relevant for humid tropical forests, where 
prolonged drought periods under climate change increase the risk of 
managed fires escaping into adjacent forest, driving tropical forest 
degradation, especially during El- Niño events (Brando et al., 2019; 
Cai et al., 2014; Jiménez- Muñoz et al., 2016; Phillips et al., 2009).

4.3  |  Comparison to higher- resolution data

The similarity between fire- related forest loss estimates based on 
MODIS versus VIIRS active fires indicates that the MODIS- based 
approach is capable of extending the analysis to the pre- VIIRS pe-
riod (2003– 2011) with only a minimal reduction in accuracy as com-
pared to the higher- resolution VIIRS- based approach (Figure 2b). In 
regionally averaged estimates, commission errors due to the larger 
fire pixel size for the MODIS sensor largely balanced omission er-
rors due to its lower detection efficiency (Table S1). Commission er-
rors were limited because of a rapid decrease in Pmin in Equation 3 in 
cases of overlap between large, off- nadir fire pixels and small for-
est loss areas (Figure S12a). For the maximum estimate, commission 
errors were generally less than expected, given the 11- fold larger 
fire pixel footprint of MODIS compared to VIIRS. This was the case 
because forest loss areas in 500 m pixels were often sufficiently 
spatially separated or in larger continuous fire- affected regions to 
avoid major commission error for the larger MODIS active fire pixel 
footprint (see also Figure S1).

Differences between the MODIS and VIIRS sensor were also an-
alysed temporally as part of the lag analysis. Within a single year, 
MODIS active fire pixels overlapped with about 25% more for-
est loss than VIIRS on average (Figure S16). However, this did not 
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translate into similarly large commission errors in annual maximum 
fire- related forest loss estimates, because over the span of a year, 
the MODIS active fire pixels had overlapped each other more than 
what would have been the case for the smaller VIIRS pixels. VIIRS- 
based fire- related forest loss in years preceding and succeeding the 
forest loss detection was smaller compared to MODIS- based esti-
mates, due to lower commission error in lag years.

The substantial increase in spatial resolution and amount of 
burned area detected using the Sentinel- 2 MSI sensor (80% more 
burned area than MODIS for 2016 sub- Saharan Africa; Ramo et al., 
2021) led to a higher fire- related forest loss fraction due to improved 
small fire detection, especially in heavily cultivated, frequently burn-
ing regions with relatively low tree cover (i.e. woodlands). However, 
this did not result in a larger attribution in most densely forested 
areas. Compared to the Sentinel- 2 - based estimate, the MODIS- 
based estimate actually tended to be higher in this region due to 
commission errors caused by the coarser resolution fire pixels 
(Figure S15). Besides, it suggests that the 20 m Sentinel- 2 burned 
area product fails to detect part of the fires in the forest interior that 
are detected as active fires. Overestimation by our MODIS- based 
approach can be expected for other regions where shifting agricul-
ture is an important forest loss driver, such as parts of South America 
and Southeast Asia. However, the comparison to Sentinel- 2 burned 
area shows that the overestimation by our MODIS- based approach 
in such regions is largely compensated for by the underestimation 
due to missed fire detections.

Overall, the spatial and temporal resolution differences be-
tween the forest loss and fire datasets were the main source of 
uncertainty in our estimate. Comparison to Sentinel- 2 burned 
area showed that omission errors due to missed fire detections 
can be substantial for the coarser MODIS and VIIRS fire products, 
especially in the tropics. Therefore, the estimated fraction of fire- 
related forest loss in these regions is likely to be conservative. 
At the same time, the use of the coarser resolution MODIS and 
VIIRS active fire pixels can lead to substantial commission errors. 
However, using fire data with very different spatial resolutions, 
we show that omission and commission errors largely balanced out 
and resulted in comparable fire- related forest loss estimates on 
regional to continental scales.

4.4  |  Further application of our methodology

Our study provides a novel approach for the quantitative analysis 
of fire- related forest loss that allows for a consistent simultane-
ous analysis of dynamics in fire and forest loss. Furthermore, this 
approach improves on distinguishing between different fire types 
in forests (low or high severity) that can be applied to fire emis-
sions modelling at 500 m native MODIS resolution (van Wees & 
van der Werf, 2019). By combining datasets of annual forest loss 
and monthly fires, emissions from forest loss can be distributed at 
finer temporal scales, allowing improved seasonality in models that 
simulate the atmospheric dynamics of CO2 and other trace gases. 

These advances could help in clarifying the outcome of the balance 
between forest loss and fire into the future, and in improving esti-
mates of global land- use change emissions. Currently, version 1.6 of 
the GFC dataset does not allow for the analysis of trends in absolute 
forest loss and fire- related forest loss directly, or analysis of for-
est loss drivers in detail, due to data inconsistencies (see Data S1).  
However, recent developments in forest loss detection methodol-
ogy demonstrate the possibility of a consistent forest loss time se-
ries that is suitable for trend analysis, and that could potentially be 
applied to global scale (Potapov et al., 2019; personal communica-
tion). This would further improve the analysis of dynamics in forest 
loss, fire and their interface.
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