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ABSTRACT 

Dietary Fiber Monosaccharide Content Alters Gut 
Microbiome Composition and Fermentation In Vitro 

 
Members of the mammalian gut microbiota metabolize dietary carbohydrates that are not 

digested by the host. While the enzymes and transporters that each strain uses to establish a 

nutrient niche in the gut are often exquisitely specific, the relationship between carbohydrate 

structure and microbial ecology is imperfectly understood. The present study takes advantage of 

recent advances in complex carbohydrate structure determination to test the effects of fiber 

monosaccharide composition on microbial fermentation. Catabolism of human milk 

oligosaccharides (HMOs) by the genus Bifidobacterium is reviewed to illustrate gut microbial 

metabolism of specific dietary fiber structures and the resulting production of acidic microbial 

metabolites (AMMs), such as acetic acid. In the present study, 55 fibers with varied 

monosaccharide composition are fermented by a pooled feline fecal inoculum in a modified 

MiniBioReactor array (MBRA) system over a period of 72 hours. The content of the 

monosaccharides glucose and xylose and the concentration of the AMMs acetic acid, propionic 

acid, glyceric acid, and indole-3-acetic acid are significantly associated with the reduction of pH 

during fermentation. Microbiome diversity and composition are also significantly associated with 

monosaccharide content and AMM concentration, suggesting that monosaccharide composition 

offers a generalizable method to compare any dietary fiber of interest and uncover unexplored 

links between diet, the gut microbiota, and metabolite production. 

 

 

 

 



iii 

ACKNOWLEDGEMENTS 

I would like to thank everyone who worked in the Mills laboratory during my time there and to 

especially recognize the invaluable support and encouragement I received from Dr. David Mills, 

Dr. Diana Taft, and Dr. Karen Kalanetra. I appreciate our collaborators in the Lebrilla laboratory, 

whose expertise was vital to the success of this project. Thank you to all my professors for 

teaching me about the complex biology of bacteria and to my classmates in the Microbiology 

Graduate Group for their camaraderie (at least in the first two years before we retreated into our 

labs forever). Thank you to my mother for inspiring my sense of wonder about the natural world, 

my father for instilling my love of reading and disorganized curiosity, and my sister for judging 

me when I’m tempted to become a lotus-eater. Thank you to Carl Basbas and his family for 

making me feel welcome during my time in California and tolerating my cow jokes. Thank you to 

my own gut bacteria for helping metabolize my favorite vegetables. Finally, thank you to Per 

Petterson and various Instagram influencers for teaching me that “we do decide for ourselves 

when it will hurt.” 

 

 

 

 

 

 

 



1 

Chapter 1 

How nursing mothers protect their babies 

with bifidobacteria 

 

Nick Jensen1,2, Britta E. Heiss1,2 and David A. Mills1,2 

 

1Department of Food Science and Technology, 2Foods for Health Institute, University of 

California Davis, One Shields Avenue, Davis, CA 95616, USA. 

 

Published in Jensen NM, Heiss BE, Mills DA. 2022. How nursing mothers protect their babies 
with bifidobacteria, p. 13–21. In de Bruijn, FJ, Smidt, H, Cocolin, L, Sauer, M, Dowling, DN, 
Thomashow, L (eds.), The Good Microbes in Medicine, Food Production, Biotechnology, 
Bioremediation, and Agriculture. John Wiley & Sons Ltd. 
 
 

 

 

 

 

 

 



2 

Abstract 

Bifidobacterium species are common residents of the human gastrointestinal tract. While they 

colonize people of all ages, they are most strikingly found in the infant gut, where they degrade 

human milk oligosaccharides (HMOs) found in breast milk. Individual Bifidobacterium strains 

encode unique sets of transport proteins and enzymes called glycoside hydrolases (GHs) to 

metabolize these diverse carbohydrates in milk. By fermenting HMOs, bifidobacteria produce 

bioactive end products such as lactate and acetate. These molecules reduce the pH of the gut 

and protect against invasion by harmful pathogens and likely support healthy childhood growth 

and immune development. Although Bifidobacterium colonization promotes infant health, levels 

of these bacteria vary based on geography, breastfeeding rates and other factors.  However, 

recent trials suggest that providing infants with probiotic Bifidobacterium, in combination with 

HMOs that sustain their nutrient niche, can support the persistent growth of these beneficial 

bacteria. 
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1.1. Bifidobacterium Species and Diversity 

Just as humans require air, water, food and a place to live, microbes require a stable, moist 

habitat with an abundant store of energy. But for some bacteria, air can be deadly. Unlike most 

multicellular organisms, many microbes will die in the presence of oxygen, leading them to seek 

out environments that are reliably anaerobic. For many of these bacteria, animal guts offer not 

only a respite from dangerous oxygen, but also a reliable source of food in the form of 

undigested carbohydrates like dietary fiber that pass through the digestive tract [12]. 

Bifidobacterium is one such genus of carbohydrate-degrading, oxygen-sensitive 

microbes. In the human gut, the majority of bacteria belong to the two large phyla Bacteroidetes 

and Firmicutes, with a few exceptions like the mucus-consuming Akkermansia [22]. 

Bifidobacterium is the main representative from an entirely different phylum called 

Actinobacteria, which also includes the soil-dwelling Streptomyces that produces many 

medically-important antibiotics [4]. Like their environmental relatives, bifidobacteria excel at 

metabolizing carbohydrates, but they are too sensitive to oxygen to make a living on the forest 

floor. Despite this handicap, bifidobacteria can live inside a remarkable range of hosts. While 

many bacteria exhibit restricted associations, bifidobacteria have been isolated from animals as 

diverse as bees, chickens, cattle, lemurs and humans [36]. From humans alone, at least nine 

species have been discovered [8]. 

 However, these species are not evenly distributed among all humans. Indeed, their 

ability to colonize humans appears strikingly age dependent. The genus Bifidobacterium was 

originally discovered because of its specific association with babies. In 1899, Henri Tissier 

identified the first known Bifidobacterium when he discovered that the feces of a breastfed infant 

was dominated by distinctive Y-shaped bacteria [51]. We now know that some Bifidobacterium 

species are found almost exclusively in babies and toddlers, such as B. breve. Other species, 

like B. catenulatum and B. adolescentis, generally do not appear until after weaning. Some 
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species are more cosmopolitan. B. bifidum and B. longum, for example, inhabit people of all 

ages [28]. However, when considering all Bifidobacterium strains, their relative abundance 

appears to decline with the age of the human host [28]. 

 

1.2 Human Milk Oligosaccharides 

While multiple factors may underlie age-dependent changes in Bifidobacterium levels, diet is 

likely the primary reason that bifidobacteria tend to be more common in infants. Bifidobacteria 

lack the enzymes needed to attack the large, intact fiber molecules that many other gut 

microbes can process. After these other bacteria, such as Bacteroides, break up complex fiber 

molecules into simpler carbohydrates called oligosaccharides, bifidobacteria latch onto these 

substrates as a more accessible energy source [11]. Since most of undigested carbohydrates in 

our diet are bulky fibers, bifidobacteria generally rely on pre-degraded byproducts of other 

microbes to obtain their nutrition. 

But there is one food in the human diet whose carbohydrates are already the perfect 

size for bifidobacteria: breast milk. After lactose and lipids, the third-largest component of breast 

milk is a wide array of human milk oligosaccharides (HMOs) [33]. Although other mammals also 

produce milk oligosaccharides, human milk contains the most diverse, complex and abundant 

oligosaccharides of any species [53]. Their structures are elaborately decorated with rare 

monomeric sugars like sialic acid and fucose that are found in few plant foods [6]. Yet the 

enzymes required to digest them are not expressed in humans—adults or infants. On their own, 

HMOs may provide babies with some benefits, such as strengthening the integrity of the 

intestinal barrier [10]. But most of them pass untouched through the gut, where infant-

specialized bifidobacteria like Bifidobacterium longum subsp. infantis and B. breve readily 

metabolize them. When HMOs are provided, infant-associated Bifidobacterium gain a metabolic 

advantage, and few other gut bacteria can outcompete them for the nutrient resource [15]. 
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While they primarily consume free HMOs, infant-associated bifidobacteria may also metabolize 

other components of milk, such as milk glycans (the carbohydrate components of glycoproteins) 

[23, 29]. 

 

1.3. Bifidobacterial Metabolism 

In order to metabolize HMOs, bifidobacteria rely on specialized classes of genes. 

Bifidobacterium species possess numerous genes encoding enzymes called glycoside 

hydrolases (GHs), which are necessary for metabolizing complex carbohydrates, as well as 

transport systems that import GH breakdown products [15]. Most bifidobacteria import 

oligosaccharides directly into the cell and metabolize the entire molecule, although some may 

only break off pieces and leave leftover HMO portions for other microbes to consume (Fig. 1.1) 

[43]. Either way, all Bifidobacterium species encode a wide repertoire of GHs and transporters 

that allow them to target specific oligosaccharides. Bifidobacterium strains exhibit significant 

heterogeneity in their GH content, with closely related strains often metabolizing distinct 

substrates. Most B. longum subsp. longum strains express a range of GHs that degrade plant-

derived oligosaccharides; however, some strains encode a gene cluster that allows them to 

consume fucosylated HMOs [20]. 

These metabolic differences afford each species and strain a degree of specialization 

that allows it to establish its own ecological niche in the intestine. Since HMOs are so diverse, 

many bifidobacteria preferentially consume certain subtypes, like fucosylated HMOs. Only one 

subspecies, B. longum subsp. infantis, has enough GHs and transporters to metabolize all 

known HMOs [42]. Some of these transporters may import multiple HMOs, while others 

assimilate a restricted set, though many remain uncharacterized [41]. Transporters are often 

encoded in clusters with substrate-binding proteins (SBPs) that allow individual strains to 

sequester particular HMOs [19]. Operating in concert, these proteins equip each 
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Bifidobacterium strain with unique metabolic capabilities that explain the wide range of growth 

phenotypes observed among related strains [7, 37]. 

These diverse growth phenotypes, whereby some strains preferentially consume a 

selective portion of the HMO pool while others degrade portions of that pool externally, leaving 

simple sugars behind, may foster resource sharing communities of Bifidobacterium strains. In 

fact, multiple Bifidobacterium species routinely co-occur in the microbiome of a single infant 

[56]. The specific composition of Bifidobacterium strains may vary widely between individuals in 

both infants and adults, suggesting that there is no single phenotype that consistently 

outperforms competitors over the entire human lifespan and range of diets [52, 55]. Instead, 

local conditions, such as HMO composition [45], host genetics [31] and background microbiota 

[54], may lead to a unique partitioning of resources between colonizing strains. 

 

1.4. Benefits of Bifidobacterium 

As bifidobacteria thrive on the HMOs in breast milk, their growth also offers several benefits for 

their infant hosts. Bifidobacteria convert HMOs into metabolites that help babies grow and avoid 

illness. When bifidobacteria metabolize HMOs, they ferment them into bioactive end products. 

Using the enzyme fructose-6-phosphate phosphoketolase in a specialized pathway called the 

“bifid shunt,” Bifidobacterium strains produce a characteristic 3:2 molar ratio of acetate to lactate 

[42]. Both of these molecules are acidic, so they lower the pH of the gut. In a cohort of 

Bangladeshi children, an elevated fecal pH was linked to increased levels of childhood stunting, 

suggesting that the lactate and acetate may be protective [26]. Another study of Bangladeshi 

children recovering from malnutrition suggested that certain gut microbes, including 

Bifidobacterium, were associated with proteins that regulate childhood growth [21]. Acetate is a 

short-chain fatty acid, a major class of microbial metabolites that has been intensely studied for 

its benefits to humans [5, 38]. In mice, acetate produced by the microbiota can protect against 
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infection by respiratory syncytial virus, a major cause of infant mortality, by signaling through the 

host receptor Gpr43 [2]. A similar mechanism may operate in human infants.  

Bifidobacterium that ferment HMOs may also offer indirect benefits by preventing 

infection by pathogenic bacteria. Protection from harmful invaders, a phenomenon termed 

colonization resistance to pathogens, is another important service provided by gut microbes like 

Bifidobacterium [39]. Low pH provides an obstacle to infection by dangerous bacteria like the 

foodborne pathogen E. coli O157:H7. In mice, acetate produced by Bifidobacterium limits the 

dissemination of Shiga toxin by strengthening the intestinal barrier [18]. During the first month of 

life, fecal samples from cohort of Japanese infants colonized by Bifidobacterium had lower pH 

and higher acetate concentrations [35]. In addition, Bifidobacterium levels were negatively 

correlated with the relative abundance of Enterobacteriaceae, a family of bacteria that includes 

most common human pathogens. In breastfed infants supplemented with B. longum subsp. 

infantis, fecal levels of proinflammatory cytokines were associated with Enterobacteriaceae and 

negatively correlated with Bifidobacterium relative abundance [24]. Recently, Casaburi et al. 

reported that a single strain of Bifidobacterium longum subsp. infantis provided to breastfed 

infants could reduce levels of fecal inflammatory markers and virulent endotoxin-producing 

bacteria and possibly protect intestinal barrier integrity by limiting mucus breakdown [9]. 

Blocking Enterobacteriaceae may also reduce the level of antibiotic resistance genes in 

the gut. When the gut microbiome of Bangladeshi infants was dominated by Bifidobacterium, it 

was found to contain fewer total antibiotic resistance genes and fewer classes of antibiotic 

resistance gene. This protective effect appeared to last until age 2, possibly because the infants 

were colonized by a more diverse microbiota during weaning [50]. Bifidobacterium may also 

assist in immune system development by boosting vaccine responses. At age 2, mean 

Bifidobacterium abundance was associated with improved CD4+ T cell responses to essential 

vaccines against tetanus and hepatitis B [27]. 
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1.5. Global Distribution of Bifidobacterium 

Given the many positive health outcomes associated with early, and predominant, colonization 

of infants by Bifidobacterium, supporting these microbes could benefit public health. However, 

fecal metagenome samples from around the world suggest that, during the first 6 months of life, 

even exclusively breastfed infants vary in Bifidobacterium species composition and prevalence, 

with some regions exhibiting high levels of Bifidobacterium colonization (often with >50% 

relative abundance) [3, 27, 30, 50, 59]; and others exhibiting a lower abundance (0-30%) [16, 

31, 60]. For example, Bifidobacterium relative abundance appears higher in Russia than Finland 

and Estonia [60], and higher in Indonesia than New Zealand [30]. 

Many variables may drive this variation in Bifidobacterium levels, including population-

level breastfeeding rates, sanitation and hygiene practices, antibiotic usage, and birth delivery 

mode. Such factors may diminish Bifidobacterium levels or deplete specific HMO-catabolizing 

strains in the environment of the mother-infant dyad, thereby altering the level and time course 

of Bifidobacterium colonization in early life. Vatanen et al. found that infants were dominated by 

either B. longum, B. bifidum or B. breve, with B. longum containing HMO-utilization genes being 

more common in breastfed infants [59]. In a cohort of Swedish infants, Bifidobacterium was 

common in infants at 4 months of age, but only in breastfed infants was it still dominant at 12 

months [3]. Metagenomic samples from an Italian cohort suggested that individual 

Bifidobacterium strains may be transferred from mother to infant, so factors that affect a 

mother’s gut, skin and vaginal microbiota may indirectly impact the colonization of her baby [16]. 

These studies reveal that the contemporary picture of the Bifidobacterium-infant association is 

far more complex than initial reports suggested. While it is not completely certain that 

Bifidobacterium levels have changed over time since their discovery in 1899, the average pH of 

infant feces has increased from 5.0 to 6.5 between 1926 and 2017 [25]. Such a dramatic 
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increase in pH suggests that the composition of the infant microbiome has shifted over a 

relatively short time, possibly because of inconsistent breastfeeding rates. 

 

1.6. Supporting Persistent Bifidobacterium 

Populations 

Since Bifidobacterium do not predominate in the microbiota of all infant cohorts, researchers 

hope to determine how to successfully seed and support the growth of these beneficial bacteria. 

Strains within the genus Bifidobacterium are often administered as probiotics for newborns and 

infants. Probiotics containing Bifidobacterium may help prevent or treat necrotizing enterocolitis, 

infantile colitis, acute diarrhea, obesity, allergies, and celiac disease [13]. Despite strong health 

associations, the mechanism of action for such probiotics is poorly understood, although it may 

involve known pathways such as acetate production. Regardless, these benefits depend on 

establishing persistent populations of Bifidobacterium within the host gut. 

Breast milk may provide a nutrient niche that allows Bifidobacterium strains to persist if 

they have the appropriate metabolic genes. In a trial comparing two Bifidobacterium strains as 

probiotics for preterm infants, only Bifidobacterium longum subsp. infantis persisted in infants 

fed human milk. Bifidobacterium animalis subsp. lactis, which lacks the genes to metabolize 

HMOs, was unable to compete even when it was given as a supplement [57]. Recently, Frese et 

al. showed dramatic and persistent colonization of an HMO-catabolizing strain of 

Bifidobacterium longum subsp. infantis that was given as a supplement to breastfed infants [17]. 

In infants with persistent B. longum subsp. infantis, fecal acetate and lactate were elevated, 

while pH was reduced. These infant cohorts demonstrate that the provision of an HMO-

catabolizing Bifidobacterium can support stable engraftment across an infant population. 
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Bifidobacterium may be more likely to persist than other beneficial bacteria when HMOs 

are provided. Like Bifidobacterium, Lactobacillus species are often administered, both alone and 

in consortia, in infant probiotics designed to reduce necrotizing enterocolitis and infantile colic 

[32, 49]. In preterm infants supplemented with Lactobacillus as well as Bifidobacterium, only 

Bifidobacterium robustly persisted. Furthermore, Bifidobacterium levels correlated with the 

metabolism of HMOs, as measured by the production of fecal acetate. While Lactobacillus 

persistence was merely transient, the supplemented Bifidobacterium either persisted itself or 

improved the persistence of other Bifidobacterium species [1]. Clearly, the two microbes were 

not equivalent for this probiotic application. 

Research on other microbes may explain the discrepancy by demonstrating the 

fundamental importance of a “metabolic niche.” In both mice and humans recovering from 

antibiotics, a mixed-species probiotic failed to persist and also delayed the reconstitution of the 

microbiota compared to a fecal microbial transplant derived from a pre-antibiotic sample [48]. 

Press coverage of this study prompted a wave of articles questioning the overall efficacy of 

probiotics. However, the Lactobacillus and Bifidobacterium species in this study’s probiotic were 

not administered along with an appropriate carbohydrate source. “Microbiota-accessible 

carbohydrates” are critical for supporting populations of gut bacteria, and declining rates of 

dietary fiber consumption may cause the extinction of microbes bereft of a carbon source [46–

47]. Conversely, providing a unique metabolic niche can permit a single strain of a gut 

bacterium like Bacteroides to outcompete related microbes that lack the enzymatic machinery 

needed to degrade a target carbohydrate [44]. Bifidobacterium species, not Lactobacillus, 

generally encode the enzymes and transporters needed to degrade the HMOs in the infant diet, 

explaining why they were able to persist. Probiotics may prove more effective if they are 

supported by an appropriate dietary modification. 

 The metabolic niche established by HMO-consuming Bifidobacterium species may also 

depend on transport proteins. Just as a unique enzyme can allow a microbe to access a new 
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carbohydrate, strains possessing specific transporters may enjoy a competitive advantage and 

more effectively colonize the human gut [34]. Similarly, an analysis of infant metagenomes 

revealed that HMO-specific transporters influence Bifidobacterium ability to colonize the infant 

gut. Sakanaka et al. found that the abundance of an HMO-specific transporter was correlated 

with Bifidobacterium relative abundance [41]. However, such an association may be 

geographically-dependent. When examining infant cohorts by country, a strong correlation 

between transporters and Bifidobacterium levels was detected for Malawian and Venezuelan 

infants, but not infants in the United States. 

Fitness differences in the infant gut may also be explained by distinct mechanisms of 

HMO catabolism among Bifidobacterium species. Species such as B. bifidum often employ 

extracellular glycoside hydrolases instead of importing HMOs via transporters [40]. While these 

bifidobacteria are generally present in surveys of infant microbial communities, species that 

more commonly take in HMOs via transporters (such as B. pseudocatenulatum and B. longum 

subsp. infantis) are often detected at a higher relative abundance [31, 35].  

Such mechanistic differences underscore the importance of studying individual 

Bifidobacterium strains. While Bifidobacterium species and subspecies are traditionally 

characterized based on generalized estimates of metabolic capabilities, recognizing strain-

specific differences in HMO catabolism is critical for selecting appropriate species to promote 

beneficial outcomes in the infant gut. A comparison of Bifidobacterium HMO utilization genes 

suggested that 14 B. longum subsp. infantis isolates could be classified into three distinct 

genomic variants. B. longum subsp. infantis genetically lacking an ABC-type transporter 

displayed a growth disadvantage in competitive assays against a strain possessing the 

transporter when grown on an isolated HMO. While these data were obtained in vitro, they 

indicate that genotypic variation can underlie differences HMO growth ability [14]. 

These genotypic differences can result in fitness differences in the infant gut 

environment. In a retrospective cohort study of preterm, breastfed infants provided a probiotic 
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containing B. infantis and L. acidophilus, 75% of the infants still maintained a population of B. 

longum subsp. infantis four weeks after probiotic cessation. However, after a second round of 

probiotic administration, Bifidobacterium longum subsp. longum failed to persist, likely due to its 

competitive disadvantage in metabolizing HMOs [58]. While we cannot be certain that the 

probiotic B. longum subsp. infantis was identical to the detected strain, as transient populations 

of Bifidobacterium circulate in NICUs (neonatal intensive care units), these data suggest that 

Bifidobacterium differ at the strain level in their ability to persist in the infant gut. Underwood et 

al. obtained similar results by administering HMO-catabolizing B. longum subsp. infantis non-

HMO-catabolizing B. animalis subsp. lactis in a crossover trial of breastfed infants [57]. 

Regardless of the probiotic administered, HMO-catabolizing Bifidobacterium were the most 

highly represented within the infant microbiome, demonstrating that they enjoy an advantage in 

infant colonization due to HMO catabolism. 

1.7. Summary  

Many health benefits are clearly linked to the common colonization of the breastfed infant gut by 

Bifidobacterium species. Bifidobacterium species produce lactate and acetate that may exclude 

pathogenic bacteria and support growth and immune development. These protective molecules 

are produced by fermenting complex human milk oligosaccharides, which support a specialized 

ecology of Bifidobacterium species.  This natural enrichment demonstrates that appropriate 

dietary carbohydrates can nourish specific, and beneficial, gut microbial niches.  Further 

research on the mechanisms underlying this enrichment will drive novel dietary and probiotic 

interventions that enable persistence of beneficial Bifidobacterium strains in vulnerable 

populations of any stage of life. 
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Figure 1.1: Modes of Bifidobacterium HMO consumption. Left: Many 
Bifidobacterium species, including B. longum subsp. infantis, use transporters (such as 
ABC transporters) to import intact human milk oligosaccharide (HMO) molecules. These 
bifidobacteria primarily encode internal glycoside hydrolases (GHs) to degrade the 
HMOs, allowing the bacteria to ferment these carbohydrates into the bioactive end 
products lactate and acetate. In this mode of consumption, entire HMO molecules are 
sequestered and metabolized. Right: Other Bifidobacterium species, such as B. bifidum, 
encode extracellular GHs that break up HMOs into smaller components which are then 
imported by transporters. These bifidobacteria also partially ferment HMOs into lactate 
and acetate. However, this mode of consumption releases small sugars into the gut 
environment, where they are metabolized by other microbes in a process termed “cross-
feeding.” These other microbes may include both bifidobacteria and potential pathogens 
such as Enterobacteriaceae. HMOs = human milk oligosaccharides. GH = glycoside 
hydrolase. AT = ABC transporter. 
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Chapter 2 

Dietary Fiber Monosaccharide Content 

Alters Gut Microbiome Composition and 

Fermentation In Vitro 

 

2.1 Introduction 

The human diet primarily comprises fats, proteins, and carbohydrates, with the latter 

macronutrient contributing the majority of calories in most societies [1]. Besides starches and 

sugars that are readily digested by mammals, dietary carbohydrate sources include various 

types of indigestible fiber [2]. Though molecules such as cellulose are relatively inert, many 

other types of dietary fiber act as “microbiota-accessible carbohydrates” (MACs), which serve as 

substrates for metabolism by the gut microbiota [3]. These carbohydrates are fermented into 

bioactive end products such as short-chain fatty acids (SCFAs) that may influence host 

physiology by altering the pH of the intestinal lumen, contributing to energy balance, and 

regulating transcription in a variety of metabolic and immune cells by signaling via the receptors 

Ffar2 and Ffar3 [4]. While many dietary plants, including beets, alfalfa, oats, corn, and soy, are 

recognized as potential sources of MACs [5], the specific chemical structures within these 

carbohydrates that facilitate microbial metabolism are often unknown. 

Knowledge of diet-derived MAC structure is important because distinct carbohydrates 

are known to influence the composition and function of the mammalian gut microbiota. Many 
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strains of gut bacteria are predicted to encode specific carbohydrate-binding molecules 

alongside hundreds of carbohydrate-active enzymes that may recognize specific linkages [6] 

and whose mechanisms of action may depend on glycan complexity [7] and entail many 

coordinated steps [8, 9], sometimes performed by multiple species [10, 11]. Gut bacterial 

genera such as Bacteroides and Prevotella express diverse glycoside hydrolases (GHs), 

polysaccharide lyases (PLs), and carbohydrate esterases (CEs), enzymes that are known or 

predicted to break down distinct polysaccharides, such as xylans, pectin, and arabinogalactans 

[12, 13]. The expression of carbohydrate-active enzymes varies extensively within genera and 

species [14]; for example, the species Bifidobacterium longum includes the infant-associated B. 

longum subsp. infantis, which encodes a gene cluster for metabolizing human milk 

oligosaccharides (HMOs) [15], as well as adult-associated strains of B. longum subsp. longum 

that specialize in plant oligosaccharide metabolism [16]. Certain microbes can be enriched by 

targeted provision of specific carbohydrate structures, such as acetylated galactoglucomannans 

[17, 18] and arabino-oligosaccharides [19]. Species of the genus Bacteroides are known to 

compete for multiple glycans, such as arabinan [20], but may coexist due to differences in 

physicochemical complexity [21] or substrate prioritization [22], illustrating the intimate 

relationship between carbohydrate structure and microbial ecology. 

Despite increasing recognition of carbohydrate structure as a determinant of gut 

microbial dynamics, the carbohydrate content of many foods remains poorly characterized and 

the mechanisms of gut microbiome metabolism are only partially elucidated. Starchy plants are 

staple foods in many human diets, but dietary starch encompasses both soluble amylopectin 

that is readily digested and five types of resistant starch, which may be microbiota-accessible 

[23]. MACs from different food sources may differ in their discrete structure in terms of 

monosaccharide content, chemical linkages, isomerism, chain length, and modifications such as 

methylation and sulfation, all of which may differentially affect their degradation by specific gut 

microbial enzymes [24, 25]. Fermentation by the gut microbiota can be impacted by relatively 
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fine differences in MAC structure, such as arabinoxylans from different kinds of wheat bran [26, 

27], the degree of polymerization of oligosaccharides derived from sugar beet pectin [28], and 

the linkages found in glucans [29]. However, due to the complex physicochemical properties of 

food carbohydrates [30] and the analytical difficulties of isolating and analyzing glycans [31], the 

exact composition of most diet-derived MACs is unknown. 

In order to address the challenges of studying the fine structure of complex 

carbohydrates, Carlito Lebrilla’s group has recently developed novel approaches based on ultra-

performance liquid chromatography and triple-quadrupole mass spectrometry (UPLC-QqQ-MS). 

These techniques can reveal, in high throughput, the monosaccharide composition of any 

carbohydrate of interest [32], data that have been collected for more than 800 foods in the 

“Davis Food Glycopedia” [33]. Precise monosaccharide composition offers a simple, 

generalizable means of comparison between numerous dietary fibers, permitting the analysis of 

how dietary carbohydrate structure affects gut microbiome function at an unprecedented scale. 

The present study aimed to determine if differences in fiber monosaccharide content 

influenced the composition and metabolic function of a model gut microbiota. Data from the 

Lebrilla group, portions of which have been published in the Davis Food Glycopedia, guided the 

selection of 55 qualitatively diverse fibers with varied monosaccharide content. In order to model 

mammalian microbiome function in vitro, each fiber was fermented over 72 hours in a 

bioreactor. 16S rRNA gene sequencing was performed in order to identify changes in the 

microbiome in tandem with measurements of pH and the levels of acidic microbial metabolites 

such as short-chain fatty acids. 
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2.2 Materials and Methods 

Monosaccharide composition 

 Fiber monosaccharide composition data were obtained with ultra-high performance liquid 

chromatography triple quadrupole mass spectrometry, as previously described [32]. 

Food processing 

Foods (Table S2.1) were processed to model mastication prior to digestion.  All foods were 

purchased from local grocers and stored at 4°C prior to processing in the Food Instruction Lab 

at the Robert Mondavi Institute for Wine and Food Science. Foods with low water content, such 

as fried seaweed, were ground into a powder using a Vitamix. Foods with high water content, 

such as fresh apples, were diced and ground into a slurry using a Vitamix. In some cases, water 

was added to achieve a homogeneous slurry. Addition of water was recorded and accounted for 

in the in vitro digestion calculations. After processing, foods were stored in Quart Ziplock Bags 

at -20°C until digestion. 

In vitro digestion of foods 

The in vitro protocol to mimic cat digestion was modeled on the INFOGEST protocol, a 

previously validated human in vitro digestion system[34]. The following changes were made to 

adapt the protocol to the cat digestive system: Simulated salivary fluids (SSF), simulated gastric 

fluids (SGF), and simulated intestinal fluids (SIF) were adapted from the INFOGEST protocol to 

match the minerals found in the cat saliva, gastric fluid, and intestinal fluid respectively. In cases 

where a range of mineral concentrations are common, the average between the minimum and 

maximum reported values was used. Table S2.1 details the range of mineral concentrations 

reported as well as the reference materia. Table S2.2 details the final composition of 1.25X 

SSF, SGF, and SIF used. 



24 

In the oral phase, salivary alpha-amylase was removed, given that cats do not secrete 

the enzyme, and pH was adjusted to 7.5 based on the average pH of cat saliva[35]. The food 

slurry was mixed with 1.25X SSF, pH of the mixture was adjusted to 7.5, and the final volume 

was adjusted using DI water for a final ratio of 1:1 food slurry and SSF. The oral bolus was 

incubated at 37°C with agitation for 2 minutes. To simulate gastric digestion, the oral bolus was 

mixed with 1.25X SGF, 2,000 U/mL pepsin (Sigma P6887), and adjusted to pH 2.5 using 6M 

HCl[36]. DI water was added for a final ratio of 1:1 oral bolus and SGF. The gastric fluid was 

incubated at 37°C with agitation for 3 hours. While gastric emptying time varies by the individual 

cat and by the type of food eaten, 3 hours was chosen as a standard based on the average 

gastric emptying time for dry cat food[37]. To simulate intestinal digestion, the gastric chyme 

was mixed with 1.25X SIF, pancreatin based on trypsin activity at 100 TAME Units/mL (Sigma 

P7545)[38], 11.5 U/mL amylase (Sigma A6814), and 5 mg/mL bovine bile (Sigma B3883)[35]. 

The contribution of amylase in cats is very low, given that their diets are rich in protein. 

However, there is some evidence that amylase secretion in the pancreas increases after 

prolonged feeding of a high-carbohydrate diet. The amylase concentration was chosen based 

on the average amylase secretion from 4 healthy adult cats fed a diet containing potato starch 

for 3 weeks[39]. The pH of the mixture was adjusted to 6.0 using 1M NaOH[36]. The intestinal 

slurry was incubated at 37°C with agitation for 2.5 hours, a time chosen based on the average 

intestinal emptying time of the cat[35]. After incubation, the intestinal slurry was immediately 

frozen at -20°C to halt enzymatic activity and stored until further use. 

Dialysis and anthrone assays 

Intestinal slurries were dialyzed to remove monosaccharides and excess salts using Biotech 

Cellulose Ester Dialysis Membranes (31mm flat width, 100–500 D molecular weight cut-off, 

Catalog No. 888-10723 , Repligen, Waltham, MA) Dialysis membranes were cut to a length of 

400 - 550 mm and stored in 1% (v/v) formaldehyde (refreshed every 2-3 rounds of dialysis). 
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Prior to each use, dialysis membranes were hydrated and rinsed with distilled water. 

Approximately 110–220 mL of thawed intestinal slurries were pipetted into each dialysis 

membrane. The filled dialysis membranes were submerged in a 30 L tub containing 22.5 L of 

distilled water. No more than 14 dialysis tubes (representing ~350 mL of intestinal slurry) were 

placed into the same dialysis container. Foods were often dialyzed together and groupings were 

chosen to avoid intestinal slurries with either a high volume, high monosaccharide content, or 

high salt content being dialyzed together. The dialysis container was stored at 2°C for the 

duration of dialysis. Twice per day, the water was exchanged with fresh distilled water. After 96 

h, the dialyzed intestinal slurries were harvested from the dialysis membranes, placed into 

Gallon Ziploc Freezer Bags, and stored at -20°C until freeze drying. 

Dialyzed intestinal slurries were lyophilized to remove water content using The Scientific 

Freeze Dryer (4-tray dryer, Medium, Harvest Right, North Salt Lake, UT).  The slurries were 

thawed in a room temperature water bath, then poured into even layers onto freeze dryer trays.  

Large volumes (>1.5 L) of dialyzed intestinal slurry were freeze dried in multiple batches and 

homogenized.  Freeze drying conditions were: -30°F (-34°C) for 4 h, vacuum off; 35°F (1.7°C) 

for 3 h, vacuum on; 80°F (26.7°C) for 12 h, vacuum on; 120°F (48.9°C) for 5 h, vacuum on.  The 

material was then held at 120°F (48.9°C) with the vacuum on until it was retrieved from the 

machine.  The lyophilized powder was then homogenized in a coffee grinder and stored in 50 

mL conical tubes kept at -20°C. All lyophilized powders were stored in sealed secondary 

containers with desiccant prior to anthrone assays. 

Anthrone assays were performed to determine the total fiber content of the lyophilized 

powders.  A serial dilution of fibers and amylopectin standards were prepared at 0.75mg/mL, 

0.6mg/mL, 0.5mg/mL, 0.4mg/mL, 0.25mg/mL, and 0.1mg/mL. 70µL of serially diluted fibers or 

amylopectin were combined with 140µL of 2mg/mL anthrone in 6M sulfuric acid in 0.5mL strip-

tubes. Reactions were run in duplicate. The strip tubes were centrifuged and run in a 
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Thermocycler at 90°C for 11 min followed by 20°C for 8 min. Samples were transferred to 96-

well plates and fluorescence data were obtained with a plate reader  The total fiber content of 

the lyophilized powder was then calculated. 

Batch fermentations of fibers 

Batch fecal fermentations were conducted in triplicate with 55 unique fibers of subjects and 9 

controls for a total of 64 individual fermentations, divided into 9 experiments with 1 control 

fermentation per experiment. Fermentations were conducted in an anaerobic chamber using a 

MiniBioReactor Array (MBRA) system [40, 41] in continuous mode. The MBRA system was 

modified to permit the fermentation of insoluble fibers without clogging the system’s tubing. 

Soluble fibers were dissolved in solution. Insoluble fibers were placed in the main compartment 

of the fermenter, rather than the source bottles, and wire mesh of a length equal to the width of 

the waste line was placed around the waste line. Feline fecal samples (provided by Mars, Inc., 

McLean, VA) were used to inoculate fermentations. Because the fecal microbiome of cats has 

been found to cluster by both subject and the date of sampling within subjects [42], a single 

inoculum for all fermentations was created by pooling 10 fecal samples with distinct microbial 

communities. The fecal inoculum for each fermentation was placed in the anaerobic chamber 

and 25% m/v fecal slurry were made using previously reduced 1X PBS. Slurries homogenized 

by vortexing for 5 min and centrifuged at 200 g for 5 minutes to separate large particles. 

Supernatant was mixed with fermentation media in a 20:80 ratio and incubated for 72 hours with 

constant stirring, under anaerobic conditions. Experimental fermentation media contained 1% 

m/v of the fiber of interest. No carbohydrate was added to control fermentations. 1 mL samples 

were collected after 0, 24, 48, and 72 hours of batch fermentation. pH was immediately 

measured as samples were retrieved and samples were then preserved at -80°C prior to 

subsequent analyses (quantification of acidic microbial metabolites and 16S rRNA gene 

sequencing). 
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Quantification of acidic microbial metabolites (AMMs) 

Derivatization of SCFAs in 96-well plates. A pooled standard solution consisting of 18 

carboxylic acid metabolites was prepared in MeOH and serially diluted to concentrations of 

0.001 µg/mL to 500 µg/mL. The batch fermentation supernatants were thawed and centrifuged 

at 13,500 rpm for 5 minutes. The supernatant was then collected and diluted 25-fold in MeOH. 

An internal standard mixture containing 100 µg/mL of d4-acetic acid, 50 µg/mL of d2-

indolepropionic acid and 10 µg/mL of 2-ethylbutyric acid was spiked into all standards and 

samples at the ratio of 1:10 (v/v). 200 µL of ACN and 100 µL of derivatization reagent containing 

20 mM TPP, 20 mM DPDS and 20 mM 2-PA was plated in a 1 mL 96-well plate beforehand. A 

10 µL aliquot of standard/sample was added, the plate sealed, and incubated at 60 °C for 10 

minutes. The entire procedure was completed in a 4°C cold room to reduce volatile analyte 

evaporation. After the reaction was complete, the derivatized samples were dried in a miVac 

concentrator. The dried samples were reconstituted with 50 % MeOH before instrumental 

analysis. 

LC-MS/MS Analysis. Derivatized analytes were analyzed on an Agilent 6495B QqQ MS 

coupled to an Agilent 1290 Infinity II UHPLC. Separation was performed on an Agilent Poroshell 

120 EC-C18 column (2.1 mm x 100 mm, 1.9 µm particle size).  Aqueous mobile phase A 

consisted of 100% nano-pure water. Organic mobile phase B consisted of 1:1 (v/v) ACN/IPA 

mixture. The following binary gradient was used: 0.00-1.00 min, 5.00% B; 1.00-10.00 min, 5.00-

20.00% B; 10.00-11.00 min, 20.00% B; 11.00-15.00 min, 20.00-60.00% B; 15.00-16.00 min, 

60.00-5.00% B. 1 µL of sample was injected in each run. The mobile phase flow rate was 0.45 

ml / min and the column temperature was set to 45 °C. The Jet Stream Technology (AJS) ESI 

ion source was operated in positive ion mode with the following parameters: capillary voltage = 

1800 V, nozzle voltage = 1500V, gas temperature = 240 °C, gas flow = 20 L / min, nebulizer = 
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25 psi, sheath gas temperature = 300 °C, sheath gas flow = 9 L / min. Mass spectrometry data 

was collected under dynamic multiple reaction monitoring (dMRM) mode.  

DNA extraction, library prep, and 16S rRNA gene sequencing 

Genomic DNA was extracted using Zymobiomics 96 MagBead DNA Kit (Zymo Research, Irvine, 

CA) with a Kingfisher Flex automated extraction instrument (Thermo Fisher Scientific, Waltham, 

MA). As previously described [43], the V4 region of the 16S RNA gene was amplified in triplicate 

with barcoded PCR primers F515 and R806. Amplicons were verified by gel electrophoresis, 

combined and purified, and sent to the UC Davis Genome Center for library preparation and 

high throughput 250 paired end sequencing using an Illumina MiSeq. Sequencing run was 

performed in two batches. A ZymoBIOMICS mock community was used as a positive control. 

Bioinformatics 

Raw sequencing data were demultiplexed with Sabre [44]. Demultiplexed data were imported 

into QIIME2-2021.2 [45], where data were quality filtered and reads were processed with 

DADA2 [46]. After filtering, taxonomy was assigned to reads using a pre-generated naïve Bayes 

classifier trained on Silva 138 99% OTUs from the 515F/806R region of sequences [47–49], 

accessed via QIIME2-2021.2 [45]. Reads mapped to the microbial orders Caldalkalibacillales, 

Rhizobiales, Sphingomonadales, Micrococcales, and Bacilliales were present in three negative 

controls on one batch 2DNA extraction plate; therefore, contamination was suspected. 

Contaminant sequences were statistically identified using Decontam (v. 1.1.1) [50] with default 

settings and pruned from the dataset using phyloseq (v. 1.34.0) [51], resulting in the removal of 

1/1854 taxa from batch 1 samples and 21/1854 taxa from batch 2 samples. 
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Statistical methods 

All statistical analyses were completed in R 4.2.0 statistical software [52] and QIIME2-2021.2 

[45]. 

DBSCAN. Fibers were clustered based on unadjusted monosaccharide composition using the 

clustering algorithm DBSCAN (density-based spatial clustering of applications with noise), as 

implemented in R with the package dbscan (v. 1.1-10) [53]. Because the data was high-

dimensional and little domain knowledge exists for choosing an appropriate value of the ε 

parameter [54], hierarchical DBSCAN with simplified hierarchy extraction was performed with a 

value of minPts = 3. 

Data filtering and standardization. Multicollinearity among monosaccharides was identified 

with caret (v. 6.0-92) with a cutoff of absolute correlation > 0.70, which resulted in the 

monosaccharides fucose, GlcNac, GalNac, and arabinose being filtered from the dataset and 

excluded from subsequent analyses. Linear dependencies and near-zero variance variables 

were not detected in monosaccharide data. Values of the retained monosaccharides were 

multiplied by the mass of fiber (mg) used in fermentations in order to accurately reflect the 

amount of carbohydrate present in each fermentation. In order to standardize monosaccharide 

data across fibers, filtered and corrected monosaccharide values were scaled from 0-1 by 

subtracting the minimum value of each monosaccharide and dividing the result by the difference 

between the minimum and maximum values for that monosaccharide. The same parameters 

were used to identify multicollinearity among acidic microbial metabolites (AMMs) with caret, 

with the exception that a cutoff of an absolute correlation of > 0.50 absolute correlation was 

applied, resulting in the exclusion of butyric acid, lactic acid, isobutyric acid, valeric acid, 

isovaleric acid, 2-methyl butyric acid, hexanoic acid, 2-methyl valeric acid, 3-methyl valeric acid, 

4-methyl valeric acid, succinic acid, and indole-3-butyric acid from subsequent analyses. AMMs 

were also scaled from 0-1 using the same scaling function as for monosaccharides. 
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Hierarchical clustering. Fibers were grouped by hierarchical clustering based on filtered, 

corrected, and scaled monosaccharide composition data. A distance matrix based on Euclidean 

distance between monosaccharide values was calculated. Hierarchical clustering was 

performed with the hclust function in the base R package using both complete and average 

linkage and Dunn’s index was calculated for different values of k to find its maximum value. The 

heatmap function was used to plot a heatmap of monosaccharide hierarchical clustering results 

based on complete linkage. Similarly, filtered and scaled AMM data were grouped with 

hierarchical clustering and visualized with a heatmap using the same parameters as for 

monosaccharides; however, average values of AMM concentrations were used due to the 

variation between samples. 

Modeling to predict final pH. To assess the effect of monosaccharide composition on final pH, 

we used a generalized linear model as implemented in the base package of R. Only 

monosaccharides found to have an absolute correlation below 0.70 with caret were eligible for 

inclusion. Purposeful selection was used to select the variables to include in the final model. Log 

or Box–Cox transformations were applied to monosaccharide data that deviated from normality, 

as assessed with the Shapiro–Wilk test. Pseudocounts were added to variables with values of 

zero present if a transformation was applied. The final model was compared to one based on 

total monosaccharide content by the Akaike information criterion (AIC). Using the same 

approach as described above for monosaccharide composition, a generalized linear model was 

implemented to assess the effect of final AMM concentrations on final pH. Only AMMs found to 

have an absolute correlation below 0.50 with caret were eligible for inclusion. 

Alpha diversity. After excluding statistically identified contaminants, samples were rarefied 

without replacement to a depth of 2509 reads using the vegan package (v. 2.5.7) [55], which 

retained 1,881,750 features (15.56% of features) in 750 samples (92.59% of samples).Rarefied 

data were used to calculate alpha diversity with the Shannon index using the vegan package 
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(vegan package (v. 2.6-2) [55]) with default settings. To assess the effect of monosaccharide 

composition on longitudinal alpha diversity, we used a linear mixed effects (LME) model, as 

implemented with the lmer function in the package lmerTest (v. 3.1.3) [56]. Bioreactor ID was 

used as the grouping variable. Alpha diversity was observed to vary at baseline, so baseline 

alpha diversity was considered as a variable in the model. Day, baseline alpha diversity, and 

each monosaccharide were considered as fixed effects. Bioreactor ID was considered as a 

random effect since it was expected that the baseline values and rate of change would differ 

between fermentations. Log or Box–Cox transformations were considered for variables that 

deviated from normality, as assessed with the Shapiro–Wilk test. However, these 

transformations did not improve the normality of monosaccharide data across the entire time 

course of fermentation, so they were ultimately not applied. A modified form of purposeful 

selection was used to select the variables to include in the final model. Separate models were 

evaluated for each monosaccharide and baseline alpha diversity; each of these models included 

day as a fixed effect and fermenter as a grouping variable. Restricted maximum likelihood was 

set to FALSE since the models compared different fixed effects. Variables that were significantly 

associated with alpha diversity were then assessed in a combined model and the assumptions 

of linearity, homogeneity of variance, and normal residuals were tested. Although a significant 

result was obtained in the analysis of variance of the squared residuals for bioreactor ID (p-

value = 5.374e-12 by Levene’s test), the histogram of the residuals did not appear bimodal. 

Therefore, since a q-q plot showed relatively linear residuals apart from extrema, the results of 

Levene’s test were disregarded, and other variables were added back into the model by 

purposeful selection. A confidence interval was calculated using the confint function in the base 

R package. 

Beta diversity. Rarefied data were used to analyze beta diversity (between-sample diversity) 

because read depth varied more than tenfold between samples. A distance matrix based on 
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Bray–Curtis distance between samples was calculated based on decontaminated 16S rRNA 

gene sequencing data with the function vegdist in the vegan package (v. 2.5.7) [55]. Bray–Curtis 

distance was selected as a distance metric instead of weighted or unweighted Unifrac [57] due 

to the presence of unassigned reads that became outliers if phylogeny was taken into account. 

Sequencing data were subsetted by day with phyloseq (v. 1.34.0) [51]. Differences in beta 

diversity by monosaccharide composition were tested with permutational analysis of variance 

(PERMANOVA), as implemented by the adonis2 command in vegan, which can accommodate 

continuous variables. A backwards elimination approach was used to select the final variables 

for each day’s model. Ordination with nonmetric multidimensional scaling (NMDS) was 

performed with the metaMDS command in vegan to visualize day 3 beta diversity data.  

Ordinations with points colored using a gradient based on fiber monosaccharide content and pH 

were created with the plotfunctions package (v. 1.4) [58]. 

Differential abundance. Differential abundance based on monosaccharide composition and 

AMM concentration was tested with Analysis of Composition of Microbiomes (ANCOM) [59] in 

QIIME2-2021.2. Because ANCOM requires discrete variables, monosaccharide composition 

and AMM concentration values were classified into tertiles with the functions quantile and cut in 

the base R package. Tertiles were chosen over quartiles or quintiles due to the relatively large 

number of very small values in many variables. 16S rRNA sequencing data were filtered to 

exclude samples prior to day 3. Taxonomy was collapsed to the genus level. Pseudocounts 

were due to the presence of zeros in microbiome data. ANCOM was run separately for each 

monosaccharide and AMM tertiles. 
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2.3 Results 

In order to test the effects of fiber monosaccharide composition on the outcome of gut microbial 

fermentation, dietary fibers from 55 unique foods previously analyzed by the Lebrilla group were 

chosen. An inoculum containing a pooled feline fecal sample (see Materials and Methods) was 

allowed to ferment each fiber in a bioreactor over a period of 72 hours. Modeling revealed 

significant associations between fiber monosaccharide composition, pH change and microbial 

diversity, as well as the contribution of individual microbial metabolites to the final pH. The 

results suggest that specific monosaccharides, such as rhamnose and xylose, significantly 

influence the diversity of the gut microbiome and the fermentation of dietary carbohydrates. 

55 food fibers with known monosaccharide composition (Table S2.3) were selected to 

represent a diverse range of dietary fruits, vegetables, and starches common in human diets. 

The relatively large number of fibers analyzed provided a challenge for robust cross-fiber 

comparisons. We therefore sought to reduce the number of dimensions with clustering analysis. 

Monosaccharide data provided by the Lebrilla group were multiplied by the mass of fiber used in 

each experiment and scaled based on their minimum and maximum values. Results of 

clustering with hierarchical DBSCAN (Fig. S2.1) identified few clusters based on 

monosaccharide composition, with unbalanced membership and a high degree of noise. 

Hierarchical clustering (Fig. 2.1) identified a large number of clusters, with Dunn’s Index 

maximized at k=43. Therefore, instead of grouping fibers into clusters, monosaccharide 

composition was compared directly across fibers. 

 The monosaccharide composition of each fiber was documented in terms of glucose, 

galactose, fructose, xylose, arabinose, fucose, rhamnose, glucuronic acid (GlcA), galacturonic 

acid (GalA), N-Acetylglucosamine (GlcNac), N-Acetylgalactosamine (GalNac), mannose, allose, 

and ribose. Some sugars, such as ribose and fucose, were relatively scarce in most food fibers 

in this dataset, while others, such as glucose, were present in many fibers. Some 
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monosaccharides were found to exhibit multicollinearity, and the sugars fucose, GlcNac, 

GalNac and arabinose (absolute correlation > 0.50) were filtered from the dataset. While the 

data for some monosaccharides was zero-inflated, no monosaccharides were found to have 

near-zero variance (data not shown). 

In order to determine how fiber monosaccharide composition affected fermentation, each 

fiber was batch fermented in triplicate for a time course of 72 hours in the presence of a pooled 

feline fecal inoculum. Prior to fermentation, foods were processed to model mastication and 

exposed to simulated digestive fluids in vitro to mimic feline digestion, after which free 

monosaccharides were removed with dialysis and the total fiber content was measured with 

anthrone assays (see Materials and Methods) to create a standard concentration of 1% m/v of 

the fiber of interest in each fermentation. For most fibers, pH decreased over the course of the 

experiment (Fig. 2.2), indicating that fermentation generally occurred regardless of fiber. 

However, the mean final pH ranged from 5.14 for kabocha squash flesh to 6.75 for radish bulb, 

suggesting that this pooled microbial community could not fully ferment all fibers. In order to 

determine if fiber monosaccharide composition contributed to the observed variance in the 

extent of fermentation, we modeled the effect of monosaccharide content on the final pH with 

generalized linear regression (Table 2.1). The resulting model found that glucose content was 

significantly associated with a lower final pH, while xylose content was significantly associated 

with a higher final pH. Initial pH was not predictive of final pH, indicating that monosaccharide 

composition was an important determinant of fermentation. Since glucose was the predominant 

sugar in most fibers, we assessed if total monosaccharide content was equally predictive of final 

pH, and found that the more nuanced model was slightly superior (AIC = 53.821 for the model 

summarized in Table 2.1, AIC = 54.969 for the model based on total monosaccharide content). 

Since monosaccharide content was found to influence the final pH of fiber fermentations, 

we hypothesized that pH differences resulted from variation in the acidic microbial metabolites 

(AMMs) produced by the gut microbiota during the metabolism of distinct carbohydrate 
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structures. AMMs include short-chain fatty acids (SCFAs) as well as other fermentation end 

products such as hexanoic acid, lactic acid and valeric acid. After each 72-hour fermentation, 

the final levels of 19 AMMs were measured by LC-MS/MS after derivatization (see Materials 

and Methods). A heatmap based on hierarchical clustering (Fig. 2.3) suggested that AMM levels 

varied considerably across input fibers, but failed to reveal any meaningful clusters of similar 

AMM production. 12 AMMs (butyric acid, lactic acid, isobutyric acid, valeric acid, isovaleric acid, 

2-methyl butyric acid, hexanoic acid, 2-methyl valeric acid, 3-methyl valeric acid, 4-methyl 

valeric acid, succinic acid, and indole-3-propionic acid) were found to exhibit multicollinearity 

and were filtered from the dataset. The remaining AMMs (acetic acid, 2,2-dimethylbutyric acid, 

glyceric acid, glycolic acid, indole-3-acetic acid (I3A), indole-3-propionic acid (I3P), and 

propionic acid) were analyzed to determine their contributions to final pH by generalized linear 

regression (Table 2.2). Acetic acid, propionic acid, and I3A were significantly associated with a 

lower final pH, while glyceric acid was significantly associated with a higher final pH, supporting 

our hypothesis that variation in AMM production contributed to differences in post-fermentation 

pH. 

Given that specific members of the pooled gut microbiota differ in their ability to produce 

AMMs, we next sought to identify how the composition of the initial microbial community 

changed over the course of fermentation in response to variation in monosaccharide 

composition. Four samples (0, 24, 48 and 72 hours) were taken from each fermentation for 16S 

rRNA sequencing. The relative abundance of microbial orders (Fig. 2.4) was generally similar 

for 0-hour samples, suggesting that the initial conditions of each fermentation did not vary 

considerably. Differences in relative abundance were apparent between fiber types in 24-72 

hour samples, while samples from fermentation of the same fiber appeared relatively similar 

across both replicates and time points. The alpha diversity (richness and evenness) of 

microbiome samples was quantified with the Shannon index after rarefaction to a depth of 2509 

reads, which retained 1,881,750 features (15.56% of features) in 750 samples (92.59% of 



36 

samples). A linear mixed effects model (Table 2.3) found that baseline alpha diversity was not 

predictive of longitudinal alpha diversity at 24-72 hours. However, xylose was significantly 

associated with lower alpha diversity while rhamnose, GalA and GlcA were significantly 

associated with higher alpha diversity, suggesting that the composition of the microbial 

community changed due to differences in monosaccharide content. 

Since differences in alpha diversity may be accompanied by alterations in the structure 

of the microbiome, we tested for dissimilarity between microbiome samples from different 

fermentations (beta-diversity). A distance matrix of Bray–Curtis distances between microbiome 

samples was calculated. Permutational analysis of variance (PERMANOVA) of the Bray–Curtis 

distance matrix indicated that sequencing run and the content of the monosaccharides glucose, 

galactose, fructose, rhamnose, GalA, GalNac, mannose and allose were all significantly 

associated with the dissimilarity of microbiome samples after 72 hours of fermentation (Table 

2.4). Results from 24 and 48 hours were similar to those at 72 hours, with GlcA also a 

significant variable at 24 hours, while sequencing run was the only significant variable at 0 hours 

(Table S2.4). These results suggest that many monosaccharides independently influenced 

microbial community structure over the course of fermentation. Ordination with non-metric 

multidimensional scaling (NMDS) was performed to visualize 72-hour samples according to their 

Bray–Curtis distances. Ordinations with points colored using a gradient based on fiber 

monosaccharide content (Fig. 2.5A) generally agreed with PERMANOVA results, suggesting 

that samples from the fermentation of fibers with high levels of each monosaccharide were often 

similar, as measured by Bray-Curtis distance. A gradient plot of final pH (Fig. 2.5B) suggested 

that samples with similar final pH levels also tended to be similar as measured by Bray-Curtis 

distance. 

Since differences in microbiome composition and structure were evident between 

fermentations, we next sought to identify which specific microbial genera responded to 

differences in fiber monosaccharide content and contributed to the observed final pH 
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differences. Quantitative fiber monosaccharide data were classified into tertiles in order to test 

for differentially abundant taxa with Analysis of Compositions of Microbiomes (ANCOM) 

ANCOM results at the genus level (Table 2.5) suggest that differences in the content of 11 

monosaccharides were associated with significant differences in the relative abundance of 11 

microbial genera, including Lactobacillus, Flavonifractor, and Lachnospira. Notably, the genus 

Dubosiella was enriched in fermentations of fibers with higher levels of three monosaccharides: 

allose, GalNac, and GlcA. Higher GalA content was significantly associated with the relative 

abundance of three genera: Libanicoccus, Alistipes, and Phocea. In order to determine if any of 

these genera contributed to observed differences in microbiome function, 72-hour fermentations 

containing different tertiles of AMMs were also tested for the differential abundance of microbial 

genera with ANCOM (Table 2.6). Many of the genera found to be significantly associated with 

fiber monosaccharide content were also significantly associated with the levels of certain AMMs. 

The genus Dubosiella was significantly associated with 2,2-dimethylbutyric acid and glycolic 

acid. Interestingly, 28 genera were significantly associated with levels of indole-3-propionic acid 

and 35 genera were significantly associated with levels of propionic acid. 

Briefly, we found significant differences in alpha diversity, beta diversity, and microbial 

community composition after 72 hours of fermentation based on fiber monosaccharide 

composition. Final pH was significantly associated with both fiber monosaccharide composition 

and the levels of acidic microbial metabolites. 
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2.4 Discussion 

The composition of the colonic microbiota of mammals is shaped in large part by the ingestion 

of dietary fibers [60], with glycan complexity determining the extent to which individual microbes 

can process these polysaccharides or their oligosaccharide components [61]. Complex dietary 

glycans are known to nourish extended “food chains” in the mammalian gut, with primary 

degraders such as Bacteroides spp. encoding polysaccharide utilization loci (PULs) to 

recognize and break down specific structures, releasing byproducts that support downstream 

niches such as secondary degraders and acetogens [62]. Dietary fibers were recently shown to 

vary in the specificity of the changes they induce in microbial community structure, with simple, 

common fibers like fructooligosaccharides inducing less dramatic and less selective changes 

than insoluble, rarer fibers like β-glucan [63]. However, though carbohydrates may be studied 

with a variety of analytical methods, such as ion mobility spectrometry and gas-phase 

spectroscopy [64], the complexity of food glycans has precluded detailed understanding of their 

structure. An ultra-high performance liquid chromatography triple quadrupole mass 

spectrometry approach developed by the Lebrilla group [32] expands on existing methods in 

both breadth and depth. Examples of the detailed monosaccharide composition data obtained 

with this method have been published in the Davis Food Glycopedia [33] for hundreds of 

common dietary carbohydrate sources, offering relevant structural information for numerous 

studies that examine the impact of diet on the human gut microbiota. Similarities or differences 

in chemical structure may not be intuitively obvious; for example, hierarchical clustering 

suggested that the monosaccharide composition of red sweet potato and Japanese sweet 

potato was relatively distinct, whereas seemingly unrelated food fibers such as buckwheat and 

radish bulb were clustered together. These examples suggest that qualitative dietary diversity 

many not reflect underlying structural diversity, with possible ramifications for studies that seek 
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that unravel the mechanisms by which the gut microbiome responds to broad dietary patterns, 

such as the Mediterranean diet [65] or whole grain consumption [66]. 

The present study takes advantage of the data offered by the Lebrilla group’s methods 

and directly links variation in monosaccharide composition to the outcome of fermentation by 

the gut microbiome. Modeling revealed that glucose content was the most predictable variable 

of the final pH of fermentation, a result that likely reflects the wide distribution of glucosidases in 

the mammalian gut microbiome [67, 68]. While a model based on total monosaccharide content 

performed almost as well as one based on glucose and xylose content, several individual 

monosaccharides were significantly associated with microbial alpha and beta diversity and 

community composition, suggesting that total monosaccharide content is inadequate for 

understanding the nuances of gut microbial fermentation. Metabolism of less abundant 

monosaccharides may be common but variable; for example, only certain Bifidobacterium and 

Bacteroides strains encode sialidases [69], but sialidases and their associated catabolic 

pathways were found in 80/397 genomes analyzed from the Human Microbiome Project [70]. 

Modeling found that xylose content was significantly associated with a higher final pH and a 

lower alpha diversity. This result may reflect a relative paucity of enzymes for metabolizing 

xylose-containing carbohydrates in the microbiome inoculum. Alternatively, it is possible that 

xylose metabolism is relatively common, but xylose-rich foods support the growth of a narrower 

range of microbes due to factors like competition, leading to reduced net fermentation and alpha 

diversity. This possibility may be more plausible given that common microbes such as 

Prevotella and Bacteroides are known to metabolize xylans and arabinoxylans [12, 26, 27], but 

the fine structure of xylose-containing oligosaccharides may govern antagonistic regulation of 

bacterial carbohydrate-active enzymes [71] and the ability of secondary degraders to consume 

xylooligosaccharide breakdown products [61]. Further supporting this possibility, a recent study 

showed that related Prevotella spp. competed for arabinoxylan, with P. intestinalis outcompeting 

P. rodentium and P. muris [72]. A randomized controlled trial showed that arabinoxylan reduced 
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LDL and total cholesterol [73], and Bacteroides that metabolize arabinoxylans have been shown 

to release the antioxidant ferulic acid [27, 74], suggesting that gut microbial xylose metabolism 

may have health ramifications. In contrast to xylose, the less abundant sugars rhamnose, GalA, 

and GlcA were significantly associated with a higher alpha diversity. Structures containing these 

rarer monosaccharides may support a higher alpha diversity by providing a higher selectivity 

[21], creating many unfilled ecological niches. Future research should identify carbohydrate-

active enzymes that process structures containing rhamnose, GalA, and GlcA in order to 

determine which microbes are capable of processing them. 

 Fermentation pH and microbial diversity were also found to reflect variation in acidic 

microbial metabolites (AMMs), which are known to affect microbial ecology. While changes in 

dietary fiber consumption are known to rapidly alter AMM production by the mammalian gut 

microbiota, such as that of beagles [75], the metabolic fluxes that convert individual dietary 

monosaccharides into AMMs are poorly understood. A recent study suggested that AMMs such 

as succinic acid, propionic acid, and butyric acid differentially inhibited gut Bacteroidales, but 

that sensitivity to butyric acid depended on the provision of specific carbohydrates [76]. 

Modeling found that final pH was most strongly associated with acetic acid, likely because 

acetic acid is the most widely produced short-chain fatty acid (SCFA) in the gut (the molar ratio 

of acetic acid:propionic acid:butyric acid is 60:20:20) [4]. A reduction in mouse cecal pH 

mediated by the production of acetic acid by Bifidobacterium was shown to protect against 

infection by E. coli O157:H7 [77], suggesting that this metabolite is physiologically important for 

the mammalian host. Modeling also revealed that propionic acid was also significantly 

associated with a lower final pH, as well as the relative abundance of 35 microbial genera. 

While propionic acid is less studied than butyric acid and acetic acid, it was found to increase in 

human subjects fed corn bran arabinoxylan [78] and has been shown to mediate colonization 

resistance to Salmonella infection in a mouse model [79], suggesting that future studies should 

examine its production by genera identified here, such as Lactobacillus and Romboutsia. 
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Propionic acid may be produced by multiple routes, including from succinate and via the 

acrylate pathway [80], possibly explaining why numerous genera were significantly associated 

with propionic acid levels. While many studies have examined production of SCFAs by the gut 

microbiota, the present study highlights the potential importance of a broader range of AMMs. 

Indole-3-acetic acid (I3A) was also found to be significantly associated with a lower final pH, 

while indole-3-propionic acid (I3P) was significantly associated with the relative abundance of 

28 microbial genera, suggesting that it may be produced by a variety of gut bacteria. These 

indole derivatives are known to be bioactive: I3P signals through the pregnane X receptor to 

maintain intestinal barrier integrity [81], while I3A signals via the aryl hydrocarbon receptor 

(AhR) and may reduce liver inflammation [82]. However, the relationship between host diet, 

microbial metabolism, and the production of these metabolites remains unclear. While some gut 

bacteria, such as Bacteroides spp. are primary degraders that directly break down food 

polysaccharides, other bacteria perform “cross-feeding” by taking up the byproducts released by 

primary degraders [83]. Many AMMs are produced via cross-feeding; for example 

Faecalibacterium prausnitzii, a major butyrate producer, was shown to encode two loci for 

catabolizing mannooligosaccharides liberated released by primary degradation of β-mannans 

[84]. While our study identified several genera whose relative abundance was significantly 

associated with monosaccharide content and AMM levels, such associations could be indirect 

due to interspecific ecological interactions, such as cross-feeding and competition. Future 

studies should trace the microbial origins of these metabolites in order to establish the foci at 

which variation in dietary monosaccharide content affects microbial food webs. 

The factors that influence both food carbohydrate structure and the ecology of the gut 

microbiota are multifactorial, so understanding their relationship presents a challenge of 

immense dimensions. However, the present study suggests that monosaccharide composition 

provides a generalizable metric for comparing dietary carbohydrates and identifying the 

functional roles of individual members of the microbiota. The principle of competitive exclusion 
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suggests that each microbe must realize a distinct niche in the gut ecosystem, but this situation 

may be achieved by multiple possible mechanisms, such as alternative gene regulation and 

enzymatic specificity [11]. Microbes may also exhibit metabolic flexibility; in a study manipulating 

Bacteroides cellulolyticus competed with B. vulgatus for arabinan, but was relieved of 

competition for arabinoxylan by B. ovatus prioritizing alternate glycans [20]. Despite the 

complexities of such interactions, monosaccharide composition offers a scalable resource for 

the large-scale analysis of dietary carbohydrate structure in order to help untangle the 

mechanisms by which gut bacteria metabolize microbiota-accessible carbohydrates. Although 

our study used a pooled, feline fecal sample, we demonstrated the reproducibility of a 

bioreactor-based system for analyzing the response of a mammalian microbiota to a large set of 

dietary fibers, allowing the impact of carbohydrate structure to be examined independently of 

host factors. We identified little-studied significant associations between monosaccharide 

content and the relative abundance of specific genera, such as the significant association 

between higher GalA content and the relative abundance of Libanicoccus, Alistipes, and 

Phocea. While Phocea and Libanicoccus have been isolated from human stool [85, 86], they 

are poorly studied and may merit further investigation in relation to diet and metabolism. In 

contrast, the genus Alistipes is well-known within the human gut for its bile tolerance [87] and 

ability to perform protein putrefaction [88], but its response to dietary fibers containing GalA has 

not been studied. Analysis of monosaccharide composition provides a simple way to identify 

many such potential links between dietary carbohydrate structure and specific gut bacteria, 

providing the seed for numerous follow-up studies that test hypotheses and disentangle the 

mechanisms by which bacteria may metabolize food glycans. Examples to guide such research 

include past studies that have demonstrated how individual gut bacteria consume human milk 

oligosaccharides [89], mucins [90, 91],  algal porphyrans [10], red seaweed agarose [92], β-

mannans [84], and acetylated galactoglucomannans and arabinoglucuronoxylans [18, 93]. 
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Our study thus provides an initial framework for analyzing dietary monosaccharide intake 

as one of several factors that contribute to the mechanisms of gut microbial metabolism. Future 

studies may exploit emerging methods, such as chemical and isotopic labeling, in order to trace 

the fate of individual dietary monosaccharides in single microbial cells [94]. While our work 

identified monosaccharide content as a determinant of fermentation, future studies should 

examine other facets of carbohydrate structure that are known to affect microbial metabolism, 

such as linkages [95] and chemical modifications [25, 96]. A recent study compared the human 

gut microbiome’s response to arabinan-rich pea fiber and homogalacturonan-rich orange fiber in 

vivo and found that changes in carbohydrate-active enzyme content were negatively correlated 

with the glycosidic linkages they targeted [97], suggesting that monosaccharides should be 

considered within their broader structural context. More nuanced structural analysis may also 

use liquid chromatography-mass spectrometry to identify oligosaccharides produced by the 

cleavage of polysaccharides [98] in order to predict which secondary degraders may be able to 

exploit the breakdown of a dietary glycans. Fiber monosaccharide data may provide input for 

deep learning algorithms to predict microbial responses to diet [99]. Eventually, knowledge of 

the intimate relationships between carbohydrate structure and the metabolism of individual 

microbes may permit the development of more tailored “microbiota-directed foods” [100] that 

target functional outcomes, such as the production of bioactive microbial metabolites or 

changes in the host’s plasma proteome [101]. A recent human crossover trial found that 

butyrate production by the gut microbiota in response to the simple glycans inulin, 

galactooligosaccharides (GOS), and dextrin was limited by an individual’s habitual fiber intake 

[102], suggesting that future interventions may be more successful if they exploit a deeper 

understanding of dietary fiber structure to identify personal gaps in the structural diversity of 

human diets. 
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2.5 Conclusion 

55 food-derived fibers were batch fermented by a feline fecal inoculum over 72 hours in a 

MiniBioReactor Array (MBRA) system. The extent of pH decrease during each fermentation was 

significantly associated with the monosaccharides glucose and xylose and the acidic microbial 

metabolites (AMMs) acetic acid, propionic acid, glyceric acid, and indole-3-acetic acid (I3A). 

Fecal microbiome diversity and composition were also significantly associated with 

monosaccharide composition and AMM concentrations, with the content of the 

monosaccharides xylose, rhamnose, GlcA, and GalA predicting longitudinal alpha diversity. 
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