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Abstract

Multiple system atrophy (MSA) is a rapidly-progressing fatal synucleinopathy of the aging 

population characterized by parkinsonism, dysautonomia, and in some cases ataxia. Unlike other 

synucleinopathies, in this disorder the synaptic protein, α-synuclein, (α-syn) predominantly 

accumulates in oligodendroglial cells (and to some extent in neurons), leading to maturation 

defects of oligodendrocytes, demyelination, and neurodegeneration. The mechanisms through 

which α-syn deposits occur in oligodendrocytes and neurons in MSA is not completely clear. 

While some studies suggest that α-syn might transfer from neurons to glial cells, others propose 

that α-syn might be aberrantly over-expressed by oligodendroglial cells. A number of in vivo 
models have been developed, including transgenic mice over-expressing α-syn under 

oligodendroglial promoters (eg: MBP, PLP, and CNP). Other models have been recently developed 

either by injecting synthetic α-syn fibrils or brain homogenates from patients with MSA into wild-

type mice or by using viral vectors expressing α-syn under the MBP promoter in rats and non-

human primates. Each of these models reproduces some of the neuropathological and functional 

aspects of MSA, however, none of them fully replicate the spectrum of MSA. Understanding 

better the mechanisms of how α-syn accumulates in oligodendrocytes and neurons will help in 

developing better models that recapitulate various pathogenic aspects of MSA in combination with 

translatable biomarkers of early stages of the disease that are necessary to devise disease 

modifying therapeutics for MSA.

1. What is MSA

Synucleinopathies [40] of the aging population are a group of neurodegenerative disorders 

that affect over 1.5 million people in the US alone [110] and include Parkinson’s disease 

(PD), PD dementia, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). 

While considerable effort has been devoted to understanding PD and DLB, less is known 

about MSA, which is a fatal, rapidly-progressing neurodegenerative disorder characterized 

by motor, autonomic, and non-motor deficits associated with oligodendroglial accumulation 

of α-synuclein (α-syn) [68, 151, 163] (Figure 1a). MSA is differentiated from other 

synucleinopathies both clinically, by the rapid progression of the disease and the lack of 
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response to L-DOPA [156], and pathologically, by the extensive accumulation of α-syn 

within oligodendrocytes differentiates MSA from other synucleinopathies [22].

The term MSA was first utilized in the late 1960’s to include three previously described 

neurodegenerative disorders that included, striatonigral degeneration, olivopontocerebellar 

ataxia, and “Shy-Drager syndrome” [45]. MSA is estimated to affect 3 out of every 100,000 

in the 50 years and older population [42, 44, 121]. The mean age of disease onset is around 

60 years and the mean survival ranges from 7–9 years following the appearance of clinical 

symptoms [115].

Disorders under the MSA spectrum can be divided into parkinsonian and cerebellar 

categories. Extra-pyramidal motor abnormalities such as bradykinesia, rigidity and postural 

instability are included in the Parkinsonian-type (MSA-P), while the cerebellar (MSA-C) 

form also manifests with ataxia [14, 43, 44, 62-64]. In addition, patients with MSA also 

develop behavioral alterations such as depression and executive dysfunction that suggest 

frontal lobe impairment [7, 26, 34, 113, 114]. Autonomic dysfunction, most commonly 

urogenital, gastrointestinal and cardiovascular dysfunction in the form of orthostatic 

hypotension, eventually develops in both MSA-P and MSA-C patients [98]. Population 

studies in the US, Europe [44], and Japan [160] indicate an ethnic variation with one study 

reporting that 60% of European patients had MSA-P and 13% exhibited MSA-C [44]. In 

contrast, the Japanese study reported a much higher percentage of patients (83.8%) 

exhibiting MSA-C features with only 16.2% of patients being categorized as MSA-P [160]. 

The basis for this variability remains unclear but might involve genetic and/or environmental 

factors.

α-Synuclein is a 140 amino acid long synaptic protein [53, 143] that has a role in vesicular 

neurotransmitter release [89, 116]. The native structure of α-syn continues to be an area of 

scientific research. Under physiological conditions, α-syn is primarily produced by neuronal 

cells as a natively unfolded protein [28, 69, 155], which occasionally might arrange into a 

stable tetramer [5]. Recent studies continue to explore the membrane-bound structure of α-

syn [37, 38, 149]; however, consensus on the native structure has yet to be achieved. Under 

pathological conditions such as those typical of PD, DLB, and MSA, α-syn accumulates in 

neuronal and non-neuronal cells forming low and high molecular weight oligomers, 

protofibrils and fibrils [17]. While in PD and DLB α-syn aggregates are more frequently 

observed in neuronal cell bodies, synapses, axons and astroglial [11, 120, 137] (and to a 

lesser extent in oligodendrocytes), in MSA α-syn aggregates primarily accumulate in 

oligodendroglial cells (Figure 1) and to a lesser extent in neurons [19, 47, 57]. In PD and 

DLB the intraneuronal α-syn inclusions are known as Lewy bodies (LBs) and Lewy neurites 

(LNs). In MSA, oligodendroglial inclusions containing α-syn are known as glial 

cytoplasmic inclusions, (GCIs) (Figure 1) and in neuronal cells as neuronal cytoplasmic 

inclusions (NCIs) [55, 68]. Most studies have focused on α-syn accumulation in glial cells 

and GCIs because of their abundance in MSA. However, a recent study centered on 

characterizing the neuronal accumulation of α-syn in MSA patients found a greater presence 

of NCIs than had been previously reported, most likely due to the sensitivity of the LB509 

antibody [19], which detects pathological α-syn. α-synuclein was found in neurons not only 

in brain regions associated with MSA (striatum and substantia nigra) but also within the 
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anterior cingulate cortex, amygdala, entorhinal cortex, basal forebrain and hypothalamus 

[19]. However, α-syn accumulated to a greater extent in oligodendrocytes than in neurons in 

those MSA cases. This accumulation was accompanied by neuroinflammation [127, 147], 

demyelination [80, 157] and neurodegeneration [54, 140] (Figure 2a) that in turn might lead 

to the classical clinical features and deficits of MSA-P and MSA-C.

Taken together, these studies suggests that modeling of MSA might require a number of 

initial “hits” within neurons and oligodendroglial cells that trigger α-syn accumulation [19] 

followed by the typical neuropathological features of MSA such as neuroinflammation [127, 

147], demyelination [80, 157] and neurodegeneration [54, 140] (Figure 2a) that results in the 

characteristic clinical manifestations of these disorders. Currently, available models mimic 

some of these aspects, but none fully reproduce the disease (Figure 2) (Table 1). The next 

sections will describe these models, as well as their advantages and pitfalls.

2. What aspects of MSA do we want to model in vivo

Most patients with MSA do not respond to conventional PD treatments and no disease-

modifying therapy is available [152]. Therefore, there is an urgent need to develop novel 

therapeutics for this devastating disorder. Modeling the disease in vitro and in animal models 

would help advance this goal by helping to better understand the pathogenesis and 

mechanisms of neurodegeneration in MSA and by allowing the testing of new treatment 

approaches [130]. The main problem is that although there are a few reports of familial 

MSA [31, 48, 119, 159] there are no unique gene mutations linked to familial forms of the 

disease that will help guide the development of animal models. MSA is a heterogeneous 

disorder with MSA-P being more predominant in the US and Europe while MSA-C is more 

common in Asia. Moreover, it is unclear if the process begins in neuronal cells and then 

spreads to non-neuronal cells (such as oligodendrocytes) and what is the relative 

contribution of genetic versus environmental factors in the disease [8] (Figure 2a). 

Furthermore, patients with MSA manifest a variety of extra-pyramidal, autonomic, and 

cerebellar features that are difficult to model in rodents [8]. Therefore, at best the current 

models might be able to reproduce some of the neuropathological and functional aspects of 

the disease that might translate into some predictive value toward therapeutic development. 

For example, studies in one of the α-syn transgenic overexpressing models [78, 118] (Figure 

2 and Table 1), have led to a clinical trial to test the value of α-syn vaccination in MSA [77]. 

However, since the mechanisms through which α-syn accumulates within oligodendroglial 

cells in MSA are not completely understood [12] (Figure 3), as yet it is unclear what is the 

full translational value of the currently available models. Better paradigms will need to be 

developed in the near future [8].

The key neuropathological feature of MSA is the presence of abundant α-synpositive GCIs 

in the white matter tracts, cortex, striatum, brainstem and cerebellum [56] and NCI’s in the 

cortex (Figure 1). For this reason, most efforts at modeling MSA have been focused at 

reproducing the accumulation of α-syn in oligodendroglial cells [8]. This fundamental 

finding presupposes that accumulation of α-syn in oligodendroglial cells triggers the 

demyelinating, neurodegenerative and neuroinflammatory cascades in MSA (Figure 2) that 

results in the characteristic clinical features of parkinsonism, dysautonomia, and ataxia [8].
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The GCIs are found in proximity to or surrounding the nucleus of oligodendrocytes (Figure 

1c). Ultrastructurally, the GCIs are composed of loosely packed filaments of α-syn [16, 94, 

117]. However, GCIs also contain p25α, αβ-crystallin, MAP2, ubiquitin and tubulin among 

other proteins [39]. In MSA the α-syn in GCIs is phosphorylated at residue Ser-129 (Figure 

1c) and ubiquitinated, as is the case in Lewy bodies of PD and DLB [36], however other 

post-transcriptional modifications such as oxidation, nitrosylation, and acetylation are 

possible. As mentioned before, in MSA α-syn also accumulates in neurons as so-called 

NCIs [19, 22, 68, 151]. Alterations in the solubility of α-syn are detected in extracts of MSA 

affected brains, with insoluble α-syn accumulation in SDS fractions specific to disease 

affected [15, 22, 25, 59, 138]. These observations suggest a shift in the solubility of α-syn 

out of the cytosolic compartment may be a key step in MSA pathogenesis.

A major unanswered question in the field that is critical toward developing valid models is 

why and how α-syn tends to accumulate to a greater extent in oligodendrocytes compared to 

neurons (Figure 3). One possibility is that since α-syn is typically expressed by neurons, 

levels of expression, clearance or release of α-syn in neuronal cells is altered resulting in a 

secondary accumulation in non-neuronal cells such as oligodendrocytes. Another option is 

that α-syn is produced by oligodendroglial cells which in turn over-express or fail to 

intrinsically clear out α-syn, or that α-syn that propagates from neurons cannot be cleared 

out by oligodendrocytes due to defective vesicle trafficking and/or clearance mechanisms 

(Figure 3). The source of α-syn in oligodendroglial cells in MSA is unclear. While previous 

studies initially reported an absence of α-syn mRNA in oligodendroglial cells [58, 82, 92] 

(Figure 3), more recent studies suggest that α-syn mRNA might be detected in 

oligodendroglial cells [4, 18, 67, 87, 103]. Given the expression levels [13, 83, 84] and 

widespread distribution of α-syn aggregates in MSA, it is possible that propagation from 

both neurons and oligodendroglial α-syn expression might be occurring simultaneously. 

Supporting the possibility of neuronal propagation, several studies have shown that α-syn 

aggregates can transmit from neuron to neuron [21], neuron to astroglial [72] and 

oligodendroglial cells [102], and oligodendroglial to astroglial cells [147], leading to 

neuronal dysfunction [60, 150], apoptosis [21] and neuroinflammation [72, 147] (Figure 2). 

Moreover, recent studies have shown that injection of homogenates from MSA brains 

propagate α-syn pathology in a prion-like fashion in the murine brain [153]. Neuronal cells 

(donors) release α-syn aggregates into the extracellular environment by exocytosis and in 

clear vesicles [70] and exosomes [20], and α-syn is taken up by other neurons, 

oligodendrocytes, and astrocytes (acceptors) via endocytosis [71] (Figure 3).

While neuronal loss is a well-known hallmark of PD, investigating to what extent large 

numbers of oligodendroglia are lost in MSA is ongoing. Using stereology, Nykjaer et al. did 

not observe any significant oligodendrocyte degeneration in MSA patients compared to 

controls [91], while another study reported a loss in the putamen and globus pallidus [108]. 

Other studies correlating immunohistochemical markers suggested evidence of 

oligodendrocyte degeneration in MSA patients [1, 106]. In light of these data indicating a 

limited loss of oligodendroglial cells despite myelin loss, an investigation into the status of 

oligodendrocyte precursor cells (OPCs) in MSA cases is of great interest since these cells 

are responsible for remyelination of the axons. Until recently, immunohistochemical 
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visualization of OPCs was challenging due to the lability of OPC-specific antigens; however, 

a recent study showed that OPCs are increased in the cerebellar white matter with increasing 

severity of GCIs in MSA cases [1]. Moreover, other studies have shown that intracellular 

accumulation of α-syn in oligodendroglial cells retards the maturation of OPC’s and 

myelination in the striatum white matter tracts and corpus callosum in MSA patients and 

transgenic mice [29, 30, 81].

Therefore, the key problem is that it is difficult to determine how to model MSA in vivo 
when we do not know how or where the process starts. The next section describes models of 

MSA-like pathology that were developed assuming that key pathological events might occur 

in oligodendrocytes [8] (Table 1).

3. Transgenic models over-expressing α-syn in oligodendroglial cells

To date, the most widely used models of MSA-like pathology involve the over-expression of 

wild-type human α-syn from oligodendroglial promoters namely, the proteolipid protein 

promoter (PLP) [59]; the 2’,3’-cyclic nucleotide 3’- phosphodiesterase promoter (CNP) 

[162] and the myelin basic protein (MBP) promoter reported by Shults and colleagues [118] 

(Table 1). Each of these models displays extensive accumulation of α-syn in 

oligodendroglial cells (Figure 2) (Table 1) in the cortex, striatum, corpus callosum and 

brainstem with a distribution similar to MSA [8]. The accumulation of α-syn is 

accompanied by neuroinflammatory and neurodegenerative pathology (Figure 2b) and some 

functional deficits. However the behavioral alterations are mild to moderate and require high 

levels of expression of α-syn in oligodendroglial cells (Table 1) that might not be 

physiological or comparable to what it is observed in patients with MSA (Figure 2b), where 

there is controversial data from the increased expression of α-syn in oligodendrocytes [8]. 

Below we describe each of these models with their corresponding neuropathological and 

behavioral deficits. The last section of this review discusses the pros and cons of these 

animal models and what might be needed to develop better models of MSA. It is important 

to take into account that these models (PCP, CNP, and MBP) mostly reproduce the 

oligodendroglial component of MSA; however, they lack the neuronal pathology that recent 

studies have shown to be important [19]. In this context, in the following section, we 

describe a cross between the PDGFβ and MBP mice which displays both neuronal and 

oligodendroglial components.

The PLP- α-synuclein transgenic model

One of the most widely used models developed by Khale and colleagues involves expressing 

human α-syn under an oligodendrocyte-specific promoter, proteolipid protein promoter 

(PLP) [8, 59, 129] (Table 1). The resulting transgenic mice (PLP-α-syn) display α-syn-

positive inclusions in oligodendrocytes similar to GCIs. These aggregates mimic some 

biochemical characteristics of GCIs including phosphorylated α-syn and SDS detergent-

insolubility. The model is characterized by significant early microglial activation which may 

account for the progression of the MSA-like neurodegeneration [127]. However, no clear 

myelin or oligodendrocyte loss was detected, even in old tg mice. Only mild motor changes 

in mice after 12 months of age [33, 126] was found. These alterations correlated with mild 
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neuronal loss in the substantia nigra and locus coeruleus in PLP-α-syn mice [126], age-

related striatal dysfunction and cortical atrophy [33]. There was also a reduction in 

dopaminergic neurons in the SNc compared to non-transgenic mice. The PLP-α-syn mouse 

line also displays autonomic alterations [131] and neurodegeneration in the nucleus 

ambiguus [66]. Finally, a recent study reported urinary dysfunction in this line, 

corresponding to damage in micturition centers in the spinal cord and brainstem [10]. The 

PLP-α-syn model presents with REM sleep behavior disorder that typically occurs in MSA 

and other α-synucleinopathies [49] and is linked to degeneration of sleep centers in the 

brainstem including the pedunculopontine and the laterodorsal tegmental nucleus [131]. The 

PLP-α-syn mouse shows preserved olfaction despite the presence of human α-syn in the 

oligodendrocytes of the olfactory bulbs similar to the human disease [65]. In addition, this 

mouse model has been extensively utilized to test new therapies for MSA [130]. In 

summary, this model recapitulates several neuropathological and behavioral alterations of 

MSA including nigral degeneration, dysautonomia and other non-motor features (Table 1); 

however, the motor deficits are mild and demyelination is less prominent.

The CNP- α-synuclein transgenic model

The second MSA mouse model features expression of human α-syn under the 2’,3’-cyclic 

nucleotide 3’- phosphodiesterase promoter (CNP-α-syn) [8] (Table 1). These mice show 

age-related progressive motor deficits with the formation of GCI-like α-syn inclusions and 

neurodegeneration, most prominently in the cerebral cortex and spinal cord [162]. There was 

no neuronal loss in the cerebellum and pontine nuclei. The pattern of high molecular weight 

insoluble α-syn in CNP-α-syn mice was similar to what is observed in MSA tissue. 

Oligodendrocytes in these mice showed myelin damage, lysosomal alterations, and 

cytoplasmic myelin fragments, suggesting autophagocytosis of myelin. α-Syn positive 

filamentous inclusions were found in oligodendrocytes; only minimal α-syn was detected in 

axons. The authors concluded that the oligodendroglia accumulation of human α-syn 

resulted in the accumulation of mouse α-syn in neurons. The presence of NCIs is a 

consistent feature of MSA, though their pathogenic significance is unclear [90]. Moreover, 

recent studies have confirmed neuronal accumulation of α-syn in MSA [19], although the 

distribution and variety of such inclusions were not observed using previous silver stains 

[95]. Together, these studies suggested that the conformation of α-syn in NCI’s and GCIs 

might be different [46]. In summary, this model features several of the landmarks or MSA 

including GCIs, myelin neuropathology, severe motoric deficits and biochemical alterations 

of α-syn (Table 1). However, dysautonomia and other non-motor features are less obvious 

and the severity of the motor deficits is difficult to test. Moreover, some of these changes 

appear to be linked to α-syn accumulation in the spinal cord.

The MBP- α-synuclein transgenic model

Finally, the third MSA model overexpresses human α-syn from the oligodendrocyte myelin 

basic protein promoter [118] (MBP-α-syn mice) (Figure 2) (Table 1). Several lines were 

generated with varying levels from low to high α-syn expression. GCI-like perinuclear α-

syn inclusions with a fibrillar structure under electron microscopy were observed in 

oligodendrocytes. The α-syn inclusions in oligodendrocytes similar to MSA were 

hyperphosphorylated and ubiquitinated (Figure 1b). The most extensive alterations followed 
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regions affected in MSA such as white matter tracts, striatum, brainstem, and cerebellum. In 

addition, depending on the levels of α-syn expression these mice displayed neuro-

inflammatory alterations with astrogliosis and loss of myelin in white matter tracts (Figure 

1c). Ultrastructural examination of affected oligodendrocytes revealed prominent 

mitochondrial abnormalities including enlarged and irregularly shaped organelles. There 

were also extensive axonal alterations including decreased fiber density and irregular 

swelling of axons. Similar to MSA, these mice display defective maturation of 

oligodendroglial cells in connection with the myelin pathology [29, 30, 81]. In addition to 

the myelin alterations, oligodendrocyte alterations lead to a loss in expression of glial cell 

line-derived neurotrophic factor GDNF and other neurotrophic factors that in turn leads to 

neurodegeneration with decrease dopaminergic neurons in the substantia nigra [142] (Figure 

2a). The severity of the GCI-like pathology and neurodegeneration was dependent on the 

levels of α-syn expression. Motor phenotype severity also varied dramatically from severe 

tremor, ataxia, seizures and premature death in the highest expressing line to mild tremor 

and variable motor impairment in intermediate and lower expressing lines. Some of the lines 

demonstrated olfactory deficits however autonomic alterations were mild or not observed. 

However, in contrast to PD, the significant olfactory disturbance is not a consistent feature of 

MSA [65, 135]. This model has been extensively used for testing on immunotherapy, anti-

inflammatory and other therapies for MSA [144-146]. In summary, this model resembles 

several of the early stage alterations of MSA and display progressive α-syn positive GCI-

like formation (Figure 1), myelin loss, neurodegeneration and neuroinflammation (Figure 2) 

(Table 1). The mice also show motoric deficits and dopaminergic loss. However, autonomic 

features are mild and pathology is dependent on levels of transgene expression.

Combined PDGFβ and MBP double transgenic mouse model

Although the single transgenic models under oligodendroglial promoters display several 

features consistent with MSA, the significance is unclear since the α-syn is overexpressed 

from oligodendrocytes. Moreover, in MSA more recent studies have shown extensive α-syn 

accumulation in neurons in addition to the GCI pathology [4]. The mechanisms underlying 

the oligodendroglial accumulation of α-syn in the brains of patients with MSA and its 

relationship to neurons have attracted a great deal of interest, given the primarily neuronal 

role reported for this protein. To investigate the interactions between neuronal and 

oligodendroglial α-syn, MBP1-α-syn tg mice were crossed with mice expressing α-syn 

under the neuronal platelet-derived growth factor promoter (PDGFβ-α-syn tg) [105]. 

Interestingly, the progeny from the cross displayed a re-localization of α-syn from neurons 

to oligodendroglial cells. The double transgenic mice displayed motor deficits and 

dopaminergic degeneration. These results suggest that the pathological CNS milieu in MSA 

might favor the re-distribution of α-syn to oligodendroglial cells [105]. This model is also of 

interest because it combines neuronal and oligodendroglial pathology that is now recognized 

as an important characteristic of MSA. Moreover, it might represent an example of “cell to 

cell” transmission of α-syn [73] similar to what has been shown utilizing viral vectors 

expressing α-syn in one cell population and transmission to other cells trans-synaptically or 

by other means [27]. Along these lines, in vivo neuron to oligodendrocyte α-syn 

transmission has been reported [3, 102]. In this model, embryonic rat tissue from the ventral 

mesencephalon was transplanted into the region of the transduction. The authors reported 
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that α-syn transmitted both to neurons and oligodendrocytes in the grafted tissue. These 

models of oligodendrocyte α-syn accumulation are more consistent with the current 

evidence from human studies of MSA brain tissue [58, 82, 92]. However, an alternative 

hypothesis has been advanced that focuses on the “protein spreading” prion-like hypothesis 

[154, 158] for these models and is discussed in the next section.

4. α-Synuclein seeding mediated spreading and viral vector models

Recent studies have advanced the alternative hypothesis that in synucleinopathies α-syn 

might spread across the brain utilizing a seeding mediated prion-like mechanism [158]. 

Utilizing this approach, previous studies have shown that injection of selected species of 

(synthetic) α-syn fibrils (seeds) into wild-type mice [75] recapitulates several features of 

PD. In this regard, a recent study in rodents explored the effects of α-syn aggregates with a 

ribbon vs. fibrillar morphology to seed differential pathology mimicking MSA vs. PD in the 

presence and absence of α-syn expressed under viral vector control [97]. These studies led 

to the theory that strains could account for the different clinicopathological traits within 

synucleinopathies. In this study, although injection with ribbon α-syn induced more 

pronounced LB/LN-like inclusions, fibrils imposed the greatest neurotoxic burden on the 

striatonigral pathway in the presence of rAAV α-syn [97]. However, the actual potential of 

the ribbon morphology to seed oligodendroglial pathology needs to be determined. In a 

similar study, homogenates from MSA patients (rather than synthetic fibrils) were injected 

into the brains of wild-type mice or low-level α-syn expressing transgenic mice that did not 

develop neurological disease otherwise [153]. Inoculation with MSA brain homogenates 

(rather than PD brain homogenates) induced a progressive neurological disease 

characterized by neuronal α-synuclein deposition mostly in transgenic mice; however, 

uptake by oligodendrocytes, in particular, was not reported, although it is important to note 

that using transgenic models with increased neuronal α-syn expression are likely to have 

neuronal rather than glial pathology. In a subsequent study, this group confirmed the finding 

that brain extracts from MSA cases all propagate neurodegeneration to mice with the 

development of neuronal α-syn deposition [100]. Homogenates from PD did not promote 

aggregation of α-syn, supporting the notion, as reported by others [97]. that the strain of α-

syn found in MSA might be different to that of PD brain [100], although earlier studies have 

demonstrated that Lewy body extracts from PD cases [101] or brain homogenates from DLB 

cases [79] can trigger robust α-syn pathology in wild-type mice. Recently MSA models in 

rats and non-human primates have been developed using viral vectors [6, 76]. For example, 

delivery of chimeric adeno-associated virus (AAV) vectors expressing human wild-type α-

syn under the control of mouse myelin basic protein in the striatum resulted in abundant 

oligodendroglial expression in rats and non-human primates [6, 76]. Rats developed 

progressive motor alterations that were not affected by L-DOPA; loss of dopaminergic 

neurons was detected at 3 months with phosphorylated and proteinase-K-resistant α-syn 

accumulation in oligodendrocytes in the striatum and substantia nigra. The rat and non-

human primates also showed demyelination in the white matter tracts of the corpus callosum 

and striatum. The advantage of these new in vivo models is that they reproduce several key 

aspects of the pathology including the degeneration of the striatal output neurons and 

clinical aspects of MSA and offers a new paradigm for testing therapeutics for MSA. The 
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disadvantage, as with others, is the over-expression of α-syn in oligodendroglial cells 

without recapitulating how the MSA pathogenesis starts. In regards to the models utilizing 

injection of seeds, it is worth mentioning that it is unclear to what extent α-syn spreads in 

prion-like fashion in patients with MSA. A recent study investigated MSA transmission in 

mice under similar conditions known to result in another prion disease, PRP scrapie and 

found peripheral exposure to MSA resulted in neurological signs along with α-syn prions in 

the brain [158]. However, fibrillar forms of α-syn such as the one shown experimentally to 

spread have not been detected extracellularly in patients. In MSA and other 

synucleinopathies, the extracellular α-syn species appear to be small aggregates and 

oligomers and thus the need for alternative models.

5. In vitro models of MSA

While the in vivo models described above have proved useful in furthering understanding of 

MSA pathology, there are some noted disadvantages, and therefore the need for 

complementary models. In recent years the development of oligodendroglial cells lines and 

primary cultures have aided in this regard. For instance in vitro models of MSA using cell 

cultures using overexpressing of wild-type α-syn or mutant A35T α-syn in oligodendroglial 

cells (OLN-93) [104] suggested proteolytic and oxidative stress increased α-syn aggregation 

and insolubility. Other clonal cell lines include HOG [99] and KG1c [86], although the 

morphology and expression profiles were similar to immature oligodendroglia cells. Other in 

vitro models have employed glioblastoma/astrocytoma (U373) cells [128] or mixed rat glial 

cultures [125] transfected with full-length or C-terminally truncated (1-111) α-syn; however, 

they experience some drawbacks [96]. Primary cultures of oligodendrocytes and neurons 

from the brains of transgenic MSA animal models offer fully differentiated cells as an 

experimental system in which to evaluate α-syn accumulation and cytotoxicity, although 

they do not proliferate.

Primary human oligodendroglial cells could help; however, they are difficult to obtain and 

maintain. In recent years the development of inducible pluripotent stem cells (iPSCs) 

isolated from skin and bone marrow biopsies from patients with synucleinopathy that can be 

reprogrammed into a pluripotent state by overexpressing four transcription factors (Oct4, 

Sox2, Klf4, and c-Myc) have advanced the field considerably [136]. Recently, iPSC clones 

have been obtained from MSA patients [23] and differentiated into oligodendroglial cells 

[50]. A recent review paper provides a detailed list of such iPSC lines of MSA and PD [8, 

9]. In brief, these lines have shown mild accumulation of α-syn and related deficits after 

long periods of incubation (+100 days). Cells display myelination deficits, increased the 

propensity to degenerate if exposed to challenges, and delayed differentiation [30].

Given that MSA is most likely a multifactorial disorder, MSA-derived iPSCs differentiated 

into oligodendrocytes might need additional epigenetic and genetic hits to display a more 

overt phenotype. Nonetheless, these human cell models in combination with the available α-

syn transgenic models might be of great use in studies of pathogenesis and drug 

development.
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6. Discussion- what do we need to do to develop better models

While most transgenic animal models of neurodegenerative disorders do not fully reproduce 

the pathogenesis of the disease, identification of genetic mutations in familial forms of 

Alzheimer’s disease, Parkinson’s disease, trinucleotide repeat disorders and frontotemporal 

dementia has allowed the development of better models. These studies have emphasized the 

need for developing novel models in species other than rodents, identifying translatable 

biomarkers in the models that mimic what is seen in patients, utilizing knock-in and 

CRISPR approaches that utilizes the endogenous promoter and physiological levels of 

expression of the mutant gene and developing models of sporadic disease that combine 

genetic susceptibility genes and environmental triggers.

Despite the currently available transgenic mice, prion-like seeding and iPSC models 

described above, developing valid in vivo paradigms of MSA has been difficult without clear 

genetic and environmental leads to guide the modeling of MSA in animals. As mentioned 

before, our models today depend on replication of the neuropathological hallmarks of the 

disease, namely accumulation of α-syn in oligodendrocytes. However, it is important to 

recognize that these models are useful in understanding how GCIs are formed, how α-syn 

accumulation in oligodendrocytes leads to neuroinflammation, demyelination, and selective 

neuronal degeneration and to develop potential new disease-modifying therapeutics [8].

Unlike other neurodegenerative disorders of the aging population such as AD, PD, and FTD, 

no unique gene mutations linked to familial forms of the disease have been identified. Only a 

few reports of familial MSA are available [31, 48, 119, 159]. Some studies have shown that 

genetic polymorphisms in the SNCA locus are associated with a risk of MSA [2, 107, 112]. 

However, this finding has been disputed by other studies [164]. Moreover, genes involved in 

lysosomal degradation activity, mitochondrial function, inflammation as well as ataxia-

related genes have been proposed as susceptibility genes for MSA [132]. For example, 

COQ2 [88] involved in mitochondrial function and glucocerebrosidase (GBA) involved in 

lysosomal function [85], have been described as risk factors for MSA [8]. These studies 

await replication by others and validation in larger cohorts.

Since it is difficult in most of the cases to link specific genetic changes directly to the 

etiology of MSA, epigenetic and environmental factors have been investigated [134]. 

Environmental factors and oxidative stress were associated with the risk of developing MSA 

[93, 148, 165] (Figure 2a). Interestingly, exposure of transgenic mice overexpressing human 

α-syn in oligodendrocytes to oxidative or proteolytic stress was shown to trigger MSA-like 

phenotypes supporting a possible interaction between α-syn pathology and environmental 

toxins [124, 126, 139]. Dysfunctional histone acetylation was associated with 

oligodendroglial α-syn pathology in the PLP-α-syn mouse [133], supporting previous 

reports on the role of α-syn in the nucleus to inhibit histone acetylation [61]. However, 

studies on the histone acetylation profile in human MSA are still lacking. Other lines of 

investigation, such as RNA-Seq in MSA brains, have shown alterations in a number of genes 

including alpha and beta hemoglobin (HBA1, HBA2, and HBB) and transthyretin [83]. 

Interestingly, these findings have been replicated in the RNA-Seq analysis of substantia 

nigra and striatum of PLP-α-syn mice in the early pre-symptomatic stages of the disease, 
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suggesting that the alterations in the alpha and beta hemoglobin genes may be related to the 

α-syn accumulation in oligodendrocytes [111]. Several changes in the miRNA-mRNA 

regulatory network have been linked to region-specific changes that preceded the 

neurodegenerative events in the PLP-α-syn mouse. Moreover, we investigated the profile of 

microRNAs in the brains of patients with MSA and in the MBP mice and found widespread 

dysregulation of microRNAs [141]. Changes to microRNA-96 resulted in downregulation of 

the solute carrier protein family SLC1A1 and SLC6A6 [141].

Demyelination is an important feature of advanced MSA [51] and recent studies have 

focused on the role of oligodendroglial maturation in MSA [1, 81], as well as myelin 

production [30]. Along these lines, a recent study showed that the myelin lipids 

(sphingomyelin, sulfatide, and galactosylceramide) were severely decreased in MSA white 

matter, specifically in disease-affected regions, suggesting that modeling of MSA might 

require targeting oligodendrocyte maturation and lipid synthesis pathways [9, 24].

Microglial activation is consistently found to accompany the neurodegenerative process in 

MSA both in post-mortem and in-vivo PET imaging studies [41, 52]. A large body of 

evidence has been collected over the last few years focusing on the pathogenic role of α-

syn-induced microglial activation in PD, DLB, and MSA [32, 109]. The role of microglial 

activation in the context of GCI-like pathology has been extensively studied in the PLP-α-

syn mouse model. It has been shown that early suppression of microglial activation by 

minocycline may rescue nigral neurons [127], whereas, in the same model, TLR4-linked 

clearance of α-syn by microglia was found to represent an important intrinsic mechanism 

that may modulate the progression of the degenerative process [122]. Therefore, the PLP-α-

syn mouse is a suitable preclinical tool to study neuroinflammation related to microglial 

activation, while the MBP-α-syn mouse model presents with predominant astrogliosis [118] 

which may trigger a different neuroinflammatory profile and result in the phenotypic 

differences seen between the models.

Most of the tg mouse models described in this review (PLP, CNP, and MBP) are based on 

overexpression that does not necessarily occur in sporadic patients unless they harbor a 

polymorphism in the α-syn gene (SNCA) promoter region that increases expression. Given 

that transcripts of the SNCA have been found in white matter oligodendrocytes from MSA 

patients and IPSCs-derived oligodendrocytes, it is possible that at least in part the process of 

α-syn aggregation could start from oligodendroglial production. If knowing “where” the 

process starts is obviously a relevant issue, the key problem is rather “how” it starts. Thus 

the limited knowledge on the early events which trigger the disease is a major difficulty in 

recapitulating MSA in an in vivo model. It is assumed that α-syn dysfunction is the main 

source of the follow-up pathogenic events. The dysfunction has been related to the ectopic 

expression of SNCA mRNA in oligodendrocytes [4] and/or specific conformational changes 

of the α-syn protein which enable the pathogenic cell-to-cell spreading of MSA type [97]. 

However, the mechanisms of α-syn accumulation in oligodendrocytes remain unresolved. 

Therefore, the available murine models represent an excellent tool to study GCI-downstream 

mechanisms of MSA-like neurodegeneration as listed above. Their main limitation is linked 

to the fact that they are based on replicating the end pathology of the disease, and probably 

due to this issue, they lack in recapitulating the aggressive and quick progression of human 

Overk et al. Page 11

Acta Neuropathol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MSA. The only mouse model of MSA with severe aggressive phenotype and shortened 

survival (MBP-α-syn line 29) confirmed the toxic role of high α-syn expression similar to 

cases with phenotypic MSA-like clinical presentation and multiplication of the SNCA [4]. 

Unfortunately, follow-up studies failed to confirm the role of SNCA multiplications in 

pathologically confirmed MSA cases [74]. It is generally accepted that rodent models 

replicate human pathology less effectively than non-human primates; however, the limited 

knowledge and understanding of the initial trigger(s) of MSA will currently set the same 

limitation in the development of evolutionary more appropriate models of the disease.

Animal models of α-syn cell-to-cell-spreading have not yet convincingly induced GCI-like 

pathology similar to the human MSA, although uptake of α-syn by oligodendrocytes has 

been shown in some instances [102] but not in others [100]. Furthermore, the understanding 

of the α-syn-species differences in MSA, as well as their generation during the pathogenic 

process is insufficient. Therefore, more extensive studies in this direction are warranted.

In spite of all the limitations listed above, the existing transgenic models of MSA provide a 

valuable tool not only for the study of disease mechanisms downstream of the GCI 

formation but also for targeted screening of candidate therapeutic approaches. Due to the 

differences between the various models, it is important to always select the appropriate one 

that represents the target of interest accordingly. Therefore, all MSA animal models may 

serve as a proof-of-concept test-bed when assessing α-syn lowering strategies, since all of 

them are based on inducing MSA-like pathology through α-syn oligodendrogliopathy or 

propagation. The MBP-α-syn mouse is especially suitable for strategies that target 

demyelination [29], neuroinflammatory responses linked to astrogliosis [147], and 

neurotrophic support [142], whereas the PLP-α-syn mouse is the MSA model of choice 

when testing strategies related to the progression of α-syn induced microglial activation and 

selective neurodegeneration [40, 123, 127]. Finally, MSA-derived iPSC-based in vitro 

models, when established and well-characterized, may provide a personalized therapeutic 

screening system in the future.
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Figure 1. 
Comparison of α-synuclein accumulation in oligodendroglial cells in the MBP-α-syn and in 

MSA. (a) α-synuclein accumulation (left panel) in oligodendroglial cells forming glial 

cytoplasmic inclusions (GCI’s). Luxol fast blue staining of myelin and oligodendrocytes in 

MSA brain (right panel). (b) Comparison of α-synuclein inclusions in the MBP model and 

MSA, images are from the white matter tracts in the striatum immunostained with antibodies 

against h-α-synuclein, misfolded α-synuclein (LB509 clone) and p-Ser129-α-synuclein. 

Bar=25 μm. (c) Schematic representation of the MBP transgenic mouse model of MSA 

driving human α-synuclein.
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Figure 2. 
Pathogenic mechanisms in MSA triggered by α-synuclein leading to neurodegeneration. (a) 

Diagrammatic representation of the hypothetical mechanisms neurodegeneration in MSA. α-

Synuclein transmits from neurons to oligodendroglial cells leading to mitochondrial 

dysfunction, oxidative stress and loss of trophic support of neurons (e.g.: GDNF), this, in 

turn, is associated with neuroinflammation, demyelination, and neuronal degeneration. (b) 

Characterization of neuropathology in the MBP-α-synuclein tg mice includes myelin loss 

(luxol fast blue, bar=100 μm), neuronal loss (NeuN, bar=50 μm), loss of DOPA fibers (tyr 

hydroxylase TH, bar=50 μm), microgliosis (Iba1, bar=25 μm), astrogliosis (GFAP, bar=25 

μm) and IL6 expression (bar=25 μm). Images are from the striatum of the MBP Line1 age 

12 months.
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Figure 3. 
Diagrammatic representation of the potential role of defective clearance in the mechanisms 

of α-syn transmission from neurons to oligodendroglial cells. Inhibition of autophagic 

clearance in neurons overexpressing α-syn may lead to an increase in its cytosolic 

accumulation and to the release of toxic α-syn species to the extracellular space. 

Extracellular α-syn may propagate from neurons to oligodendrocytes either within 

extracellular vesicles (exosomes) or as free-floating protein species. Oligodendrocytes are 

able to uptake extracellular α-syn, and due to the inhibition of oligodendroglial autophagic 

clearance, accumulate in the form of glial cytoplasmic inclusions at an enhanced rate. It is 

also possible that α-syn expression is also concurrently elevated in oligodendroglial cells, 

which also may release α-syn to the extracellular space in a similar fashion to neurons, thus 

potentiating the cell-to-cell spreading of toxic conformations of this protein.
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