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Abstract 

Building energy flexibility is an important resource for a sustainable and resilient power grid, and 

an important measure to reduce utility costs for building owners. Quantifying energy flexibility for 

existing buildings can provide critical insights in optimizing their operation. Data-driven methods 

for building energy modeling and analytics are gaining popularity due to the increasingly available 

sensor and meter infrastructure, affordable computational resources, and advanced modeling 

algorithms. However, their application in quantifying the energy flexibility of real buildings is still 

limited due to the heterogeneous data types and limited data availability. This study proposes a 

framework for building-level data-driven energy flexibility quantification that considers different 

levels of data availability and use cases. Two case studies with real building data collected at 

different scales were conducted to demonstrate the proposed framework for different purposes.  

Keywords: Grid-interactive Efficient Buildings, Data-Driven Methods, Energy Flexibility, Demand 

Flexibility, Building Dataset 

1. Introduction 

As more countries and jurisdictions commit to aggressive decarbonization goals, grid power 

systems worldwide are undergoing a rapid transition to renewable sources. According to the 

International Renewable Energy Agency, more than 80% of newly added electricity generation 

capacity in 2020 was renewable, and solar and wind accounted for 91% of that capacity [1]. The 

growing portion of renewable energy generation also means the room for decarbonizing the 

supply side is reducing. Moreover, it is becoming increasingly challenging to incorporate those 

highly variable renewable resources into the grid. Because renewable energy generation is not 

always available at the location and time it is needed, behind-the-meter interventions have 

become very important for balancing supply and demand. As buildings account for nearly 40% of 

global energy consumption, and over 80% of peak power demand [2], they are becoming 

important assets for a sustainable and resilient power grid. 

In recent years, many initiatives, including grid-interactive efficient buildings (GEBs), have aimed 

to remake buildings into clean and flexible energy resources by combining energy efficiency and 

demand flexibility technologies to enable time- and location-sensitive load shaping [3]. Among the 

initiatives, building energy flexibility is a trending research topic, and it has attracted research 

interest worldwide. According to Annex 67 under International Energy Agency’s Energy in 

Buildings and Communities Programme, energy flexibility (interchangeably referred as demand 

flexibility) refers to the “ability of an energy system or a group of interconnected energy systems 

to adjust and adapt to changes in energy supply and demand, in response to different operational, 

mailto:thong@lbl.gov


economic, and environmental conditions.” Research groups have formed to address the topics; 

these include the International Energy Agency’s Energy in Buildings and Communities 

Programme Annex 67, Annex 81 and Annex 82, and the IEEE’s FlexGEB. Researchers have 

collectively looked into different aspects of building energy flexibility, such as definitions and 

terminologies [4], technology evaluations [5–7], policy evaluations [8], and field demonstrations 

[9]. Despite the diverse aspects, they are all inextricably linked with one topic, which is the 

quantification of energy flexibility in buildings.  

Hundreds of studies have looked into quantifying building energy flexibility according to recent 

literature reviews [10–12]. A large portion of those studies applied to hypothetical buildings to 

evaluate the effectiveness of different building designs, system types, and control strategies, with 

various key performance indicators (KPIs). In those studies, simulations were often used to obtain 

load profiles under reference and flexible operation scenarios. For example, Stinner et al. [13] 

analyzed the influence of heat generator and thermal energy storage size on building energy 

flexibility in terms of time, power, and energy using a simulation environment. Arteconi et al. [14] 

proposed a method to label building energy flexibility at the design phase and demonstrated the 

method. Tang et al. [15] proposed a suite of energy flexibility indices and conducted a simulation 

study to quantify the impacts of different energy system designs and control parameters on those 

indices. Ruusu et al. [16] introduced a model predictive control (MPC) method to improve energy 

flexibility for a residential building with multiple energy systems and compared its performance 

with a baseline rule-based control method. 

Although those studies shed light on how energy flexibility can be quantified using various KPIs, 

their methodologies can hardly be applied to real operational buildings. The main reasons are 

twofold. First, it is impossible to get both baseline and flexible load profiles simultaneously without 

a controlled experiment, which is unrealistic for existing buildings. Second, physics-based 

modeling of existing buildings requires detailed building characteristics and calibration if 

simulations are to be used to generate baseline load profiles. Given the aforementioned 

challenges, data-driven quantification methods are gaining popularity. As sensor and meter data 

became more available, more studies have started to investigate novel KPIs and modeling 

methods that can be applied to real measurements from existing buildings.  

Depending on whether a reference scenario is needed, energy flexibility KPIs can be classified in 

one of two ways: as baseline-required or baseline-free [17]. Therefore, the main challenges for 

data-driven energy flexibility quantification include (1) selecting or developing baseline-free KPIs 

that can be directly used with the actual operation scenario, and (2) developing data-driven 

models that can generate baseline data. Research concerning those two aspects are found in 

recent publications. Wang et al. [18] developed a data-driven approach to explore the energy 

flexibility potential of building clusters, where reduced order models were developed to simulate 

different operation scenarios. Qi et al. [19] developed an unsupervised load decomposition 

method to quantify baseline energy consumption from smart meter data, which is used to quantify 

the demand response potential of residential buildings. Pinto et al. [20] proposed a district scale 

energy management using deep reinforcement learning and quantified the energy flexibility with 

both baseline-needed and baseline-free KPIs. Kathirgamanathan et al. [21] reviewed 115 data-

driven predictive control studies for unlocking building energy flexibility. The review systematically 



summarized applications, building types, data-driven models, control algorithms, optimization 

objectives, and other factors. A key finding of that review is there is a lack of a clear pipeline for 

a data-driven model and control development. While much of the literature addresses data-driven 

energy flexibility quantification, most are case-specific, and there is still a lack of generic 

guidelines for data-driven energy flexibility quantifications. This motivated us to develop a generic 

framework for building-level energy flexibility quantification that can adapt to different use cases 

and data availability scenarios. 

This paper is organized as follows: Section 2 introduces the four-step data-driven building energy 

flexibility quantification framework. Section 3 presents two case studies with real measurements 

from different buildings with different data availability and quality. Section 4 discusses the main 

technical contributions of the proposed framework and future opportunities. Section 5 presents 

conclusions. 

2. A Framework for Data-Driven Energy Flexibility Quantification 

The proposed framework consists of seven steps, which are shown in Figure 1. Each step has 

different scenarios that are associated with different levels of difficulty (i.e., requirements for 

expertise, efforts and resources), and these are color-coded by green (easy), yellow (moderate), 

and red (difficult). This section will introduce the considerations and provide guidance for each 

step. 

 

 

Figure 1. Data-Driven Energy Flexibility Quantification Framework 



2.1. Determine the application type 

As introduced in Section 1, many existing studies used detailed energy models to evaluate 

building energy flexibility with different design options and operation strategies. Those studies are 

cross-sectional because researchers can assess how different variable combinations affect a 

building’s energy flexibility at the same time before the building even exists. On the other hand, 

data-driven energy flexibility quantification with existing buildings in their lifespan requires a 

longitudinal study. Depending on the purpose of energy flexibility quantification, there are two 

types of applications—retrospective and prospective. Their definitions, examples, and 

stakeholders are summarized in Table 1. 

Table 1. Definitions and examples of retrospective and prospective applications 

Application 
Type 

Definition Examples Typical 
Stakeholders 

Retrospective 
(past) 

Historical data collected 
from existing buildings is 
used to evaluate energy 
flexibility in the past. 

 Tracking a building’s energy 
flexibility performance using 
historical data. 

 Benchmarking a building’s energy 
flexibility against others. 

 Building owner 

 Building operator 

 Building auditor 

Prospective 
(future) 

Historical data collected 
from existing buildings 
and future covariates are 
used to predict energy 
flexibility in the future. 

 Predict a building’s energy flexibility 
given certain interventions under 
future conditions (e.g., weather, 
grid signal). 

 Guide building control strategies to 
maximize energy flexibility. 

 Building operator 

 Control engineer 

 Grid operator 

 Load aggregator 

When dealing with an energy flexibility quantification problem, the first step is to determine 

whether it is retrospective (evaluating the past), or prospective (predicting the future). 

Retrospective studies are usually easier to do as they aim to evaluate the energy flexibility as-is 

and therefore do not rely on forecasting and optimization for future energy flexibility potential 

estimation. 

2.2. Select Energy Flexibility KPIs 

Once the application type is determined, different stakeholders should select KPIs that best suit 

their purposes. Recent literature has summarized building energy flexibility KPIs and 

demonstrated their usage [12,15,22]. Note that there are different energy flexibility modes, such 

as load shedding, load shifting, modulation, and onsite generation. Because they provide different 

grid services to different stakeholders, the corresponding KPIs have different temporal resolutions 

and evaluation durations. For example, the peak power reduction KPI is usually used by building 

operators to assess load shedding flexibility, which requires a 15-minute to hourly resolution and 

concerns only the peak hours within a day. Conversely, the fast regulation KPI [15] is usually used 

by grid operators to evaluate the load modulation performance, which requires a second-level 

data resolution and needs to be calculated over 24-hour cycles. In addition, the quantity of interest 

of the flexibility KPIs can vary, depending on the performance goal. While most KPIs focus on 

flexibility of electric power demand and energy consumption, other KPIs can also evaluate energy 



flexibility with respect to carbon emissions [23,24], cost [25,26], and occupant comfort [27,28]. 

With the above-mentioned diversity, one should carefully consider flexibility modes and 

performance goals when choosing KPIs. In practice, KPI selection is also usually an iterative 

process that needs to consider data availability. Common data-driven KPIs along with KPI 

selection method can be found in [17]. 

2.3. Understand KPI Calculation Inputs 

Depending on the selected KPIs, different input variables are needed for the calculation. The input 

variables can be grouped into five categories: 

 Energy/power profile: Data related to historical and real-time energy consumption or 

power demand, energy or demand forecasts, and renewable energy generation. 

 Runtime profile: Information about building energy system operating hours, equipment 

schedules, and on/off patterns of appliances. 

 Cost profile: Data on electricity tariff rates, time-of-use pricing, peak demand charges, 

penalty rates, and the cost of energy storage or backup systems. 

 Carbon profile: Information on emission factors, carbon intensity of the electricity grid, 

renewable energy certificates, carbon pricing, and carbon reduction targets or regulations. 

In practice, the above input variables may be derived in different ways, where some variables are 

available from measurement, while others are only predicted using simulations. Actual projects 

are constrained by the time and budget. Understanding the data requirement to derive the input 

variables can help reduce the amount of data curation and modeling effort in the next steps. 

2.4. Determine Data-driven Modeling Methods 

A wide variety of data-driven building energy modeling methods can be found in the existing 

literature, including regression models [29,30], thermal resistance-capacitance models [31], and 

machine learning models [32]. There is usually a trade-off between model fidelity and data 

requirements. For instance, detailed building and system characteristics are difficult to obtain, but 

can inform parameter identification for reduced-order models [33] and physics-informed neural 

networks [34]. A few review articles [35,36] have systematically summarized different types of 

data-driven models with different data requirements and their strengths and weaknesses. 

However, one should also consider the application type and KPIs when choosing a data-driven 

algorithm for energy flexibility quantification. For example, a retrospective study with baseline-

free KPIs only require historical data, which needs no data-driven modeling at all; whereas, a 

prospective study with baseline-required KPIs needs both the baseline and flexible load profiles, 

which mandates baseline and flexible modeling. Table 2 shows the requirements of data-driven 

models for different application types and KPIs. 

Table 2. Data-driven modeling requirements for energy flexibility quantification 

 Retrospective Prospective 



Baseline- 
free KPI 

 
No modeling is needed 

 
Future flexible modeling 

Baseline-
required 
KPI 

 
Past baseline modeling 

 
Future baseline and flexible modeling 

2.5. Curate Data 

Once the application type and data-driven modeling method are determined, corresponding data 

need to be curated for subsequent modeling and simulation. Typical data types for building energy 

flexibility quantification with their definitions and accessibility are listed in Table 2. However, not 

all data types are necessary in each application. Theoretically, more KPIs can be calculated if 

more data is available and more advanced modeling techniques are applied. However, real 

studies are constrained by the budget and the investigator’s expertise in data curation and 

modeling development. Therefore, the data curation process can also inform KPI selection in an 

iterative manner until an appropriate KPI, data, and model set is identified within a given project 

scope. 

Table 2. Data type and availability for energy flexibility quantification 

Data Type Definition Accessibility 

Simple building 
characteristics 

Building type, location, age, size, etc. easy 

Detailed building 
characteristics 

Building geometry, envelope thermal properties, HVAC 
system types, etc. 

difficult 

Weather data Historical and/or future outdoor weather conditions, 
including temperature, humidity, solar irradiance, 
precipitation, etc. 

easy 

Grid signal Historical and/or future electricity pricing and/or CO2 
emission signals from the grid operator 

easy 

Indoor environmental data Historical sensor readings of indoor environmental 
conditions, such as temperature, humidity, CO2 

moderate 



concentration, etc. 

Building automation 
system (BAS) data 

Monitored data from building automation systems, 
including HVAC system supply temperature and flow 
rate, fan and compressor runtime, hot water status, 
photovoltaic (PV) generation, electric vehicle (EV) 
charging, etc. 

moderate 

Actual power / energy 
meter data 

Readings of whole-building or system-level energy 
meters 

easy 

Baseline power / energy 
meter data 

Readings of whole-building or system energy meters in 
the baseline scenario (applicable to controlled 
experiments only) 

difficult 

Occupancy, lighting, 
miscellaneous electrical 
loads (MELs) sensor data 

Information about occupancy, lighting, and MELs 
operation schedules 

difficult 

2.6. Develop Model and Simulation 

With the selected data-driven modeling method and curated data, models can now be developed 

to predict the counterfactual load profiles, which serve as the input variables for KPI calculations. 

It should be noted that modeling is not necessarily required for all cases. For example, baseline-

free retrospective studies (top-left cell in Error! Reference source not found.) only require actual 

historical measurements for KPI calculations. Depending on the specific data-driven method 

determined in Step 4, data engineering and feature selection [39] might be required for the model 

development. The developed models should also be properly verified to ensure their prediction 

accuracy in the simulations [36]. 

2.7. Calculate KPIs 

With the input variables ready, the final step is to calculate the KPIs. In most existing studies, the 

KPI calculation is carried out manually in a case-by-case manner. Recently, researchers have 

investigated methods to facilitate the energy flexibility KPI selection and calculation with semantic 

ontologies [37] and open-source software [38]. Those efforts aim to standardize and streamline 

the quantification process in the near future. 

In reality, energy flexibility quantification is constrained by many factors throughout the project, 

such as the application purpose, data availability, domain expertise required for modeling and 

analytics, time and budget. The seven-step framework introduced above aims to provide a generic 

framework that can guide stakeholders when they are facing with different purposes, data 

availability, budget, expertise, etc. Recognizing the interplay between these factors enables 

stakeholders to prioritize resources, make informed choices of the modeling and analytical 

methods, and achieve accurate results. 



3. Case Studies 

In this section, we demonstrate the proposed framework with two case studies using real building 

operational datasets. The main goal is to show how the proposed framework could be used for 

different applications with different levels of data availability and quality. 

3.1. Retrospective study with EcoBee DYD data 

The first case study uses a large-scale smart thermostat dataset to quantify the energy flexibility 

of residential buildings during past demand response (DR) events, following the workflow shown 

in Figure 2.  

 

 

Figure 2. Data-driven energy flexibility (EF) quantification workflow for case study 1 

3.1.1. Determine Application type 

Quantifying and benchmarking existing buildings’ historical energy flexibility can help building 

owners and operators understand and improve the energy flexibility in the future. The goal of this 

case study was to calculate and benchmark the historical energy flexibility of residential HVAC 

systems during DR events. Therefore, it was a retrospective study. 

3.1.2. Select KPIs 

The dataset was collected by EcoBee’s Donate Your Data (DYD) program [40], where more than 

190,000 households in the U.S. and Canada voluntarily shared data anonymously for research 

purposes. In this case study, we used a subset that includes a total of 3,556 households in three 

U.S. states (i.e., Texas: 1,469, California: 1,530, and New York: 557), which cover various 



different climate zones. Given the large sample size, it is challenging to develop a data-driven 

model for counterfactual baseline predictions for each building. Therefore, we chose to use a 

baseline-free KPI named flexibility factor (FF) to assess to what extent the HVAC system can shift 

its operation from DR periods to non-DR periods. The FF is a KPI first introduced by Le Dréau et 

al. in 2016 [42] to quantify heating system energy flexibility. But its concept can be extended to 

other quantities of interest, including HVAC system runtime, as shown in Equation 1. 

𝐹𝐹 =
𝑈𝑠𝑎𝑔𝑒𝑛𝑜𝑛 𝐷𝑅−𝑈𝑠𝑎𝑔𝑒𝐷𝑅

𝑈𝑆𝑎𝑔𝑒𝐷𝑅+𝑈𝑠𝑎𝑔𝑒𝑛𝑜𝑛 𝐷𝑅
                                             Equation 1 

3.1.3. Understand KPI Inputs 

As implied by Equation 1, the FF KPI takes a generic usage profile and the DR window as the 

input variables. When applied to the HVAC system, its value ranges from negative one, where 

the system only runs during DR windows, to positive one, where the system runs entirely outside 

of DR periods. The usage profile variable is usually energy consumption or thermal load of the 

HVAC system. However, since the DYD dataset does not include energy meter data, we used 

system runtime as a proxy, which is a common practice recommended by the U.S. Environmental 

Protection Agency [41]. 

The flexibility factor value is influenced by multiple factors such as duration of DR events, building 

thermal mass, air tightness, HVAC system capacity, and operation schedules. For example, a 

building with good thermal mass and air tightness can better shift its HVAC system runtime 

outside of summer peak hours by pre-cooling. With the large-scale thermostat data, we can 

evaluate the distributions of flexibility factors of buildings with different types and locations. 

3.1.4. Determine Data-driven Modeling Methods 

As stated in Step 2, the FF does not require data-driven modeling. 

3.1.5. Curate Data 

The DYD dataset contains user-reported metadata about building location, space type, gross floor 

area, number of floors, thermostat model, and time when the thermostat was first connected. In 

addition to the metadata, the timeseries data include user-defined climate modes (e.g., sleep, 

home, away), calendar events (e.g., demand response start and end timestamps), indoor air 

temperature and humidity, and HVAC system (i.e., fan, compressor, heater) runtime. This case 

study concerns with the residential buildings’ energy flexibility during past DR events. The most 

common strategy for smart thermostat DR participants is the so-called direct load control (DLC), 

where users voluntarily give control of their thermostats to utilities or other third parties. During 

peak hours, grid operators can override the thermostats by raising the temperature setpoint in the 

cooling season or lowering the temperature setpoint in the heating seasons. To evaluate the 

energy flexibility of residential HVAC systems during DR events, we first extracted a subset of the 

entire DYD dataset where the calendar events contain “DR” related keywords. 

To provide some general understanding about the curated data, we first looked into the 

temperature and DR characteristics. Figure 3 shows the temperature distribution comparison 



between DR and non-DR periods by state. On average, homes in the heating season lowered 

their temperature setpoint for 1°C, 1.8°C, and 1.6°C in Texas, California, and New York, 

respectively. In the cooling season, the cooling setpoint temperatures were raised by 1.3°C, 

1.4°C, and 1.7°C in Texas, California, and New York, respectively.  

 

 
Figure 3. Temperature distribution comparisons between DR and non-DR periods 

Figure 4 shows the distribution of DR events’ durations. In all three states, most DR events ranged 

from 10 minutes to about 400 minutes. The average durations for Texas, California, and New 

York homes were 152 minutes, 182 minutes, and 230 minutes, respectively. 

 

 
Figure 4. DR events duration comparison by state: the bars show binned durations, the curves 

indicate the data density, and the dash lines indicate the sample mean. 

3.1.6. Develop Model and Simulation 

This step is skipped because the case study does not require data-driven model and simulation 

to get historical baseline runtime profiles. 



3.1.7. Calculate KPIs 

The curated data was used to calculate the FF KPI for all homes in the sample. Specifically, an 

FF is calculated for each home at a daily basis. Figure 5 shows the histograms of the daily 

flexibility factor of fans and compressors during the summer of 2019 and 2020, where the 

horizontal axis ranges between -1 to 1 and the vertical axis shows the count of each interval. Each 

row is a U.S. state, each column is a building type, and the color distinguishes fan and 

compressor. All histograms have long left tails, meaning most buildings on most days have a 

flexibility factor towards the positive side. Also, the rightmost bins (where the KPI equals 1) have 

the highest count in all the histograms, which means on those days the buildings successfully 

shifted HVAC system operation outside of DR periods. There is no significant difference between 

fans and compressors because their operations are highly overlapped.  

In terms of building types, apartments and townhouses tend to have higher average flexibility 

factors (shorter tails) than those of detached single-family buildings. The possible reason is 

multiplex buildings tend to have fewer exterior walls (less infiltration and heat loss) than detached 

buildings. As for location, houses in Texas showed higher average flexibility factors than those in 

California and New York. A possible explanation is that grid operators in California and New York 

issued longer DR events than those in Texas in summer 2019 and 2020 (shown in Figure 3), 

which made it more difficult to shift the HVAC system operation in the buildings. 

 
Figure 5. Distributions of flexibility factors by state and building type (x-axis: FF, y-axis, number 

of buildings) 

In addition to the high-level comparisons, we benchmarked individual homes’ flexibility factors. 

Figure 6 shows the flexibility factor benchmarking of two randomly selected houses against the 

whole sample, where each home has at least 15 DR days. The dashed lines represent the 

average daily flexibility factor, while the shaded areas show their ranges. It can be seen that 



although home A has a higher maximum flexibility factor, it has a wider range and lower average, 

whereas home B has a consistently high flexibility factor. The benchmarking results could help 

aggregators and grid operators to better target customers and plan for future DR programs. 

 
Figure 6. Building-level flexibility factor benchmarking: the blue bars shows the FF for all homes, 

the red and green bands and dash lines represent the ranges and averages of the FF in two 

example homes 

3.2. Prospective study with PNNL Lab Home data 

The second case study demonstrates a prospective study where a data-driven model and a virtual 

model-predictive controller were developed to improve the energy flexibility of a residential 

building. Figure 7 shows the implementation of the proposed workflow in the case study.  

 

 

Figure 7. Data-driven EF quantification workflow for case study 2 



3.2.1. Determine Application Type 

Building control is essential to achieve good energy performance for existing buildings. 

Understanding how different control strategies would behave under certain future circumstances 

(e.g., weather conditions, pricing signals, temperature setpoints) is important for building 

operators. This case study aims to predict an experimental building’s energy flexibility under an 

MPC strategy, comparing with two baseline scenarios. Therefore, it can be considered as a 

prospective study. 

3.2.2. Select KPIs 

To demonstrate the quantification of load shedding, three baseline-required KPIs are selected; 

their formula and terms are listed in Table 3 below. The peak power shedding (PPS) and peak 

energy shedding (PES) KPIs are both used to quantify how well a building is able to manage the 

energy consumption during peak periods. However, the PPS only concerns the timestamp when 

maximum demand occurs, while the PES covers the whole peak period. The former KPI is often 

used to inform power generation and supply sizing and rotating power outage planning, while the 

latter can help quantify how much energy and associated emissions are curtailed during peak 

hours. The building energy flexibility index (BEFI) is essentially the peak energy shedding 

normalized by the peak period duration, which indicates the average power demand shedding 

during the peak period. 

Table 3. Three energy flexibility KPIs used in case study 2 

KPI Formula Terms 

Peak Power 
Shedding 
(PPS) 

𝛥𝑃 = 𝑃𝑟𝑒𝑓, 𝑝𝑒𝑎𝑘 − 𝑃𝑓𝑙𝑒𝑥, 𝑝𝑒𝑎𝑘  

 

𝑃𝑟𝑒𝑓, 𝑝𝑒𝑎𝑘 is the peak power 

demand of the baseline 
scenario; 
𝑃𝑓𝑙𝑒𝑥, 𝑝𝑒𝑎𝑘 is the peak power 

demand of the flexible 
scenario 

Peak Energy 
Shedding 
(PES) 

𝛥𝐸 = ∫ 𝑃𝑟𝑒𝑓(𝑡)𝑑𝑡
𝑡𝑠𝑡𝑎𝑟𝑡+𝛥𝑡

𝑡𝑠𝑡𝑎𝑟𝑡

− ∫ 𝑃𝑓𝑙𝑒𝑥

𝑡𝑠𝑡𝑎𝑟𝑡+𝛥𝑡

𝑡𝑠𝑡𝑎𝑟𝑡

(𝑡)𝑑𝑡 

 

𝑃𝑟𝑒𝑓(𝑡) is the power demand at 

time 𝑡 of the baseline scenario; 

𝑃𝑟𝑒𝑓(𝑡) is the power demand at 

time 𝑡 of the baseline scenario; 

𝑡𝑠𝑡𝑎𝑟𝑡 is the start timestamp of 
the peak period; 
𝛥𝑡 is the peak period duration 

Building 
Energy 
Flexibility 
Index (BEFI) 

𝐵𝐸𝐹𝐼(𝑡, 𝛥𝑡) =
∫ 𝑃𝑟𝑒𝑓(𝑡)𝑑𝑡

𝑡𝑠𝑡𝑎𝑟𝑡+𝛥𝑡

𝑡𝑠𝑡𝑎𝑟𝑡
− ∫ 𝑃𝑓𝑙𝑒𝑥

𝑡𝑠𝑡𝑎𝑟𝑡+𝛥𝑡

𝑡𝑠𝑡𝑎𝑟𝑡
(𝑡)𝑑𝑡

𝛥𝑡
 

 

3.2.3. Understand KPI Inputs 

From Table 3, it can be seen that the three selected KPIs all require a baseline and a flexible 

electric load profile as the inputs. In addition, they need the start time and the duration of the high 

load periods. 

3.2.4. Determine Data-driven Modeling Methods 

As illustrated in Figure 7, this case study requires prediction of future flexible operation scenario 

under the MPC strategy (i.e., counterfactual load profile if the building adopted the MPC strategy). 

While there are a wide variety of data-driven models for building dynamics, resistance-



capacitance (RC) models are a family of models that use networks analogous to the electric 

resistors and capacitors to simulate the thermal behavior of buildings. An RC model is physics-

informed because its parameters can be identified from real measurements. In the meantime, its 

simple form allows fast simulation, which suits online optimal control such as MPC. In theory, 

higher dimension models with more Rs and Cs can better depict the target building’s thermal 

dynamics, while they may also require more data and computational resources. In this case study, 

we compared a 1R1C model and a 2R2C model and chose the 1R1C structure to model the target 

residential building because it can predict the building’s thermal trend at a high accuracy with fair 

simplicity1. The heat balance of the building and the 1R1C model details can be found in Appendix 

A1. 

3.2.5. Curate Data 

The data used in the study was collected from a test facility named Lab Homes in the Pacific 

Northwest National Laboratory (PNNL) main campus in Richland, Washington [43]. Lab Homes 

consists of two identical residential buildings; one serves as the baseline (Home A) and the other 

serves as the experimental (Home B). The two test homes are both equipped with zone-level 

indoor environmental sensors (e.g., temperature, humidity, occupant) and electric submetering 

(e.g., lighting, plug-loads, appliances, HVAC), and share a weather station that measures outdoor 

environmental conditions (e.g., temperature, humidity, solar irradiance), all measured at one-

minute intervals. The internal heat gains from equipment and occupants are emulated with electric 

thermal resistors. Detailed descriptions about the building and system characteristics and the 

dataset are publicly available via the U.S. Department of Energy funded Benchmark Buildings 

Datasets project [43]. During the 2021 winter, a control experiment was conducted to test the pre-

heating strategy. Its five phases are shown in Table 3. The temperature settings during the 

experiments can be found in Figure 8. 

Table 3. Pre-heating experiment of the PNNL Lab Homes 

Phases Dates Specifications 

Calibration 2021-12-6 to 
2021-12-8 

Home A and Home B had the same operation schedule and 
temperature setpoints. Sensor and meter data from both homes were 
compared to make sure they are about the same. 

Setpoint 
excitation 

2021-12-9 to 
2021-12-13 

Home A kept a constant temperature setpoint while Home B adjusted 
its temperature setpoint frequently. The operation of other systems 
except for HVAC were kept the same. 

Pre-heating 2021-12-14 to 
2021-12-20 

Home A kept a constant temperature setpoint while Home B 
performed a series of pre-heating measures for load shifting. The 
operation of other systems except for HVAC were kept the same. 

Free-floating 2021-12-21 to 
2021-12-24 

Home A kept a constant temperature setpoint, while Home B was in 
free-floating mode. The operation of other systems except for HVAC 
were kept the same. 

Warm-up 2021-12-25 to Home A and Home B had the same operation schedule and 

                                                
1 A comparison between 1R1C and 2R2C models can be found in Appendix A1 



2021-12-27 temperature setpoints to wrap up the experiment. 

 
Figure 8. Operation schedule and temperature setpoint comparison of case study 2 

In addition to the building characteristics and sensor and meter data, the time-of-use rate of the 

electricity consumption can be accessed online [44]. Specifically, the on-peak (6 am to 8 am) 

price is 12 cents/kilowatt-hour (kWh) and off-peak price is 7 cents/kWh during the heating season 

from October to May. 

3.2.6. Develop Model and Simulation 

With the model structure stated in Section 3.2.4 and the data curated in Section 3.2.5, we can 

identify the model parameters and establish the simulation workflow. The details about the 1R1C 

model and its testing accuracy can be found in the Appendix. This sub section focuses on the 

simulation setup where the virtual MPC is configured to simulate the prospective flexible operation 

(i.e., what would happen if the MPC strategy were implemented) and generate input data for KPI 

calculations. 

Previous studies have proven that MPC can notably reduce building energy use and greenhouse 

gas emissions [45]. For HVAC controls, MPC can be applied at both high levels, such as 

thermostat setpoint regulation [46], and lower levels, like air handlers [47] and heat pumps [48]. 

In this case study, the MPC was set up to control the power input of the electric heat pump. Figure 

9 shows the schematic of the MPC setup. Here, 𝑅𝑒𝑓 represents the known variables, 𝑢𝑘are the 

control actions, 𝑦 are the system outputs, and 𝑥 are the internal states. The data-driven model 

identified previously also serves as the virtual system to simulate the building dynamics. The MPC 

simulation was implemented using Python, where the do-mpc [49] and CaSADi [50] libraries were 

used to formulate the MPC and perform algorithmic differentiation, respectively. 

 



Figure 9. Schematics of the MPC configuration 

The objective of the MPC is to reduce power demand during peak price periods while maintaining 

thermal comfort. The optimal heat pump power input sequence starting at timestamp 𝑘 until 𝑘 + 𝑛 

can be obtained by solving Equation 2: 

𝑚𝑖𝑛 (∑ 𝑝𝑟𝑖𝑐𝑒𝑖 × 𝑃ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝
𝑖𝑘+𝑛

𝑘 + {
𝑤𝑐𝑜𝑚𝑓𝑜𝑟𝑡 × ∑ (𝑇𝑙𝑜𝑤𝑒𝑟

𝑖 − 𝑇𝑖𝑛𝑑𝑜𝑜𝑟
𝑖)

2𝑘+𝑛
𝑘 , 𝑇𝑖𝑛𝑑𝑜𝑜𝑟

𝑖 < 𝑇𝑙𝑜𝑤𝑒𝑟
𝑖

𝑤𝑐𝑜𝑚𝑓𝑜𝑟𝑡 × ∑ (𝑇𝑖𝑛𝑑𝑜𝑜𝑟
𝑖 − 𝑇𝑢𝑝𝑝𝑒𝑟

𝑖)
2𝑘+𝑛

𝑘 , 𝑇𝑖𝑛𝑑𝑜𝑜𝑟
𝑖 > 𝑇𝑢𝑝𝑝𝑒𝑟

𝑖
)  Equation 2 

s.t.  15℃ ≤ 𝑇𝑖𝑛𝑑𝑜𝑜𝑟 ≤ 30℃ 

 0𝑊 ≤ 𝑃ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 ≤ 5200𝑊 

where: 𝑝𝑟𝑖𝑐𝑒𝑖 is electricity price at 𝑖-th step. 

 𝑃ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝
𝑖 is the heat pump power input at 𝑖-th step. 

  𝑤𝑐𝑜𝑚𝑓𝑜𝑟𝑡 is the weighting factor of thermal comfort penalty. 

𝑇𝑙𝑜𝑤𝑒𝑟
𝑖 is the lower comfort temperatures bound at 𝑖-th step. 

𝑇𝑢𝑝𝑝𝑒𝑟
𝑖 is the upper comfort temperatures bound at 𝑖-th step. 

In the above equation, the lower and upper comfort temperature bounds, which serve as soft 

constraints, are set to be 21.2°C and 24.2°C, respectively. However, they can be time-variant in 

situations, depending on the operation schedule. The hard constraints for indoor temperature are 

set to be between 15°C and 30°C to prevent overcooling and overheating. The thermal comfort 

penalty factor 𝑤𝑐𝑜𝑚𝑓𝑜𝑟𝑡 is set to be 20,000 because it provides a good balance between energy 

and comfort. However, note that some studies have more thoroughly investigated thermal comfort 

weights into the cost function [51]. Future MPC experiments for energy flexibility can consider 

those integrated cost functions. The heat pump’s electric power demand is assumed to be 

between 0 and 5,200 watts (W), which is inferred from the measurements. The prediction horizon 

𝑛 is 360 minutes, which is long enough to cover the entire high-price period. 

The 1R1C heat-balance equation can be discretized into the form of Equation 3 to simulate the 

indoor air temperature trend given current inputs. 

𝑇𝑖𝑛𝑑𝑜𝑜𝑟
𝑖+1 = 𝐴𝑇𝑥𝑖 + 𝐵𝑢𝑖      Equation 3 

 Where:  

  𝐴 = [

1 − 𝑑𝑡 (𝑅 ∗ 𝐶)⁄

𝑑𝑡 (𝑅 ∗ 𝐶)⁄
𝐴𝑠𝑜𝑙 ∗ 𝑑𝑡/𝐶

𝑑𝑡/𝐶

] 



  𝑥𝑖 =

[
 
 
 
 𝑇𝑖𝑛𝑑𝑜𝑜𝑟

𝑖

𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟
𝑖

𝐼𝑠𝑜𝑙
𝑖

𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑖
]
 
 
 
 

 

  𝐵 = 𝑑𝑡/𝐶 

  𝑢𝑖 = 𝑃ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝
𝑖 ∗ 𝐶𝑂𝑃ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 

In the system matrix 𝐴, parameters 𝑅, 𝐶, and 𝐴𝑠𝑜𝑙 are identified from the data-driven modeling 

phase, and 𝑑𝑡 is the timestep (i.e., one minute). The state vector 𝑥 consists of indoor and outdoor 

air temperature, horizontal solar irradiance, and internal heat gains at the 𝑖-th step, which are 

known from measurements. The control input is the heat gain from the electric heat pump at the 

𝑖-th step. 

3.2.7. Calculate KPIs 

With the configuration described in Section 3.2.6, a simulation was conducted for the duration 

from 2021-12-17 to 2021-12-20 to generate the counterfactual scenario, where the outputs 

include indoor temperature trends and heat pump energy consumption. Figure 10 shows the 

comparison between the three different operation strategies. The top subplot shows the indoor 

temperature comparison, where the comfort temperature ranges and peak demand periods are 

also identified by the shaded areas. It can be seen that with a constant temperature setpoint, 

Home A’s indoor temperature had only slight fluctuations around 22°C. In comparison, Home B’s 

indoor temperature followed its rule-based setpoint schedule, which was raised before peak 

periods and lowered during peak periods. Similar patterns could be identified from the MPC case, 

where the indoor temperature was raised before the peak periods arrived. In all cases, the indoor 

temperature was kept within the comfort range for most of the time. Distinct patterns could be 

found in the middle subplot, which shows the measured power demand for Home A and Home B, 

and simulated power demand for the MPC. In all cases, there was a dip in the afternoon of 2021-

12-17, which could be explained by the increased solar heat gain indicated by the high solar 

irradiance during that period shown in the bottom subplot. For other times, the heat pump in Home 

A was always running in the 1,900 W to 3,200 W range, which was because of its constant 

temperature setpoint. Both Home B and the MPC exhibited pre-heating behaviors, where the heat 

pump increased power demands before the peak period and reduced demand during the peak 

period. However, the MPC showed better load shifting performance as it reduced heat pump 

operation to almost zero during all peak periods, while Home B still had its heat pump running in 

parts of the peak periods. Another interesting observation can be found in the transition from 

2021-12-20 to 2021-12-21. When Home B and the MPC were both set to free-floating mode, the 

MPC stopped its heat pump operation about one hour before the new schedule kicked in, while 

Home B only reduced its heat pump operation until the new schedule started. The comparison 

shows that the MPC was able to optimize the heat pump operation to consider future schedules. 



 
Figure 10. MPC simulation results and the comparison with real measurements. Top: setpoint and indoor 

temperature in lines, comfort range in green horizontal bands, peak hours in red vertical bands; Middle: 

heat pump power demand in lines, peak periods in red vertical bands; Bottom: solar irradiance 

The daily KPI results of the experiment period are shown in Table 4 below. The KPIs are 

calculated based on the electrical load of the heat pump system. Depending on the selection of 

baseline and flexible scenarios, there are three pairs of comparisons: (1) Home B versus Home 

A, (2) MPC versus Home A, and (3) MPC versus Home B. For PPS and PES, we calculated both 

the absolute and relative shedding. It is interesting to note that if only looking at PPS, Home B 

actually performed worse than Home A, which is because the pre-heating of Home B was not 

strictly limited to non-peak periods (Figure 7). However, both PES and BEFI show that Home B 

performed better than Home A, because Home B’s demand was reduced for most of the peak 

periods. As for the comparison between the MPC and Home A, all three KPIs indicated that the 

MPC performed better than Home A, because the MPC was able to almost completely shift the 

heat pump operation to before and after peak periods. The comparison between the MPC and 

Home B shows that the MPC can further optimize load shedding performance beyond the rule-

based control in Home B, which echoes the visual findings from Figure 7. 

Table 4. Energy flexibility KPI results in case study 2 

KPI Date Home B (Flexible) vs. 

Home A (Baseline) 

MPC (Flexible) vs. 

Home A (Baseline) 

MPC (Flexible) vs. 

Home B (Baseline) 

Peak 

Power 

Shedding 

(PPS) 

12/17/2021 (-0.12 kW, -6.02%) (1.2 kW, 58.56%) (1.32 kW, 60.91%) 

12/18/2021 (-0.1 kW, -4.95%) (0.82 kW, 40.62%) (0.92 kW, 43.43%) 

12/19/2021 (-0.18 kW, -8.46%) (1.67 kW, 80.33%) (1.85 kW, 81.87%) 

12/20/2021 (-0.08 kW, -3.86%) (0.96 kW, 46.96%) (1.04 kW, 48.93%) 

Peak 

Energy 

Shedding 

12/17/2021 (1.41 kWh, 39.27%) (3.39 kWh, 94.42%) (1.98 kWh, 90.81%) 

12/18/2021 (2.01 kWh, 50.6%) (3.46 kWh, 86.9%) (1.44 kWh, 73.48%) 

12/19/2021 (1.49 kWh, 51.23%) (2.85 kWh, 98.21%) (1.36 kWh, 96.33%) 



(PES) 12/20/2021 (1.76 kWh, 47.61%) (3.33 kWh, 90.18%) (1.57 kWh, 81.25%) 

Building 

Energy 

Flexibility 

Index 

(BEFI) 

12/17/2021 1.07 kW 2.56 kW 1.5 kW 

12/18/2021 1.52 kW 2.61 kW 1.09 kW 

12/19/2021 1.12 kW 2.15 kW 1.03 kW 

12/20/2021 1.33 kW 2.52 kW 1.19 kW 

 

4. Discussion 

4.1. Technical contributions 

The technical contributions of this paper are centered on data-driven building energy flexibility 

quantification, which include a framework and two case studies. Overall, the framework is a 

valuable tool that researchers and practitioners in the building energy field can use to quantify 

and evaluate energy flexibility using data-driven methods. It streamlines and standardizes the 

process, which can help to improve the accuracy and reliability of the results and facilitate the 

comparison of different studies. The case studies showcase how the framework can be applied 

to different types of data to support energy flexibility quantification applications. 

● Framework: The framework provides a systematic approach to quantifying building 

energy flexibility using data-driven methods. The framework is designed to be generic for 

different use cases (e.g., benchmarking, performance tracking, and building control) and 

stakeholders (e.g., researchers, building owners, and grid operators) through the process 

of determining the type of application, checking data availability, applying data-driven 

modeling techniques, and selecting and calculating energy flexibility KPIs. The framework 

clearly defines retrospective and prospective studies for building energy flexibility and 

provides guidance on the data types and selection of data-driven modeling techniques 

that are suitable for different types of applications and KPIs. 

● Case studies: The first case study utilized a real, large-scale smart thermostat dataset to 

enable benchmarking and baseline-free energy flexibility quantification. The 

benchmarking methodology could be used to help building owners and operators 

understand how their buildings perform compared to peer groups in terms of energy 

flexibility, and help aggregators and grid operators to better target customers and plan for 

future DR programs. The second case study used detailed submetering data from PNNL’s 

twin test homes to develop a data-driven model and carry out an MPC simulation for 

predicting counterfactual energy consumption, which was then used to calculate EF KPIs. 

It provides a novel demonstration of how energy flexibility quantification can be 

incorporated into data-driven optimal building controls in real buildings. 

4.2. Limitations 

There are several limitations involved with the two case studies presented. In the first case study, 

the HVAC system runtime was used to calculate energy flexibility because there is no available 

measured energy consumption data. Although this approximation is commonly used by smart 

thermostat manufacturers to estimate energy savings [53,54], its accuracy might be influenced 



by the HVAC system and building types. For example, single-stage and dual-stage compressors 

can have different correlations between energy and runtime. Therefore, more dedicated 

experiments are recommended to quantify the correlations for different buildings. In the second 

case study, there are some simplifications of the data-driven model that might not work for other 

times of the year. For example, the entire building’s thermal properties were encoded by the 

thermal resistance and thermal capacitance, the lumped solar heat gain coefficient was assumed 

to cover the effects of window properties and solar incidence angles, and the COP of the heat 

pump was assumed to be constant throughout the period. Although those assumptions worked 

well for this case study, which only spans for a winter week, they might not hold for other periods 

of the year. For real applications, more complex model types (e.g., 2R2C, 3R2C) may be needed, 

and the model parameters can be updated online. Another limitation is that the PNNL Lab Home 

data were collected in experimental settings, where the electric end uses and occupancy were 

emulated with predefined static schedules. However, the end uses and occupancy can be highly 

dynamic in reality, depending upon occupant behavior, which can affect the data-driven model 

prediction and MPC performance. In the future, it is worth investigating how the real-world 

uncertainties influence the MPC performance and building energy flexibility.  

It should also be noted that the framework, as a generic template, does not necessarily satisfy 

the needs from all stakeholders in its current form. For example, the framework might be more 

readily usable for building owners and operators who are mainly concerned with specific buildings 

because the step-by-step guidance on data curation and modeling is more relevant. For utility 

companies, grid operators, and aggregators who are more concerned with how much load can 

be altered at building cluster levels, some data types (e.g., building characteristics and BAS data) 

are no longer relevant. There might be extra needs to collect the data for energy flexibility 

quantification. 

4.3. Future opportunities 

The framework presented in this paper provides a comprehensive and standardized approach to 

quantifying energy flexibility, enabling stakeholders to better understand and optimize building 

energy performance. While the framework has demonstrated its effectiveness through the two 

case studies presented in this paper, there are opportunities for future research and applications 

to improve energy flexibility in real operational buildings. 

● Automated energy flexibility quantification for real buildings: Looking towards the 

future, there are opportunities to leverage semantic ontologies and software tools to 

further automate energy flexibility quantification in real buildings. Semantic ontologies can 

assist mapping sensors and meters to building energy systems and link them to the 

variables required for energy flexibility KPI calculations. This approach can help to 

streamline the process of data collection and preparation, which can be time consuming 

and resource intensive. By automating this process, building energy flexibility could be 

quantified more quickly and at a lower cost. In addition, software packages could be 

developed to standardize and automate the calculation of energy flexibility KPIs. These 

tools also could help with visualization and interpretation of the KPIs, allowing 

stakeholders to better understand the energy flexibility of their buildings and the impact of 



different operational strategies on them. Such software tools can be useful for building 

owners, operators, aggregators, and grid operators, as they seek to identify opportunities 

to optimize energy use and better participate in demand response programs. Overall, the 

development and integration of semantic ontologies and software tools can lead to more 

widespread adoption of data-driven modeling techniques, which could, in turn, help to 

accelerate the transition to more sustainable and resilient building energy systems. 

● Develop prototype data-driven pipelines: Developing prototype pipelines for data-

driven building energy flexibility quantification can be another valuable opportunity. These 

pipelines can include prototypical datasets, models, and KPIs associated with various use 

cases. By releasing these prototypes, different stakeholders can easily select suitable 

data-driven modeling techniques and KPIs for their energy flexibility quantification. This 

will reduce the time and resources required to develop customized models for different 

use cases, making the process more efficient and accessible. 

5. Conclusion 

As the society and building industry continues to strive towards achieving electrification and 

decarbonization, the concept of building energy flexibility is becoming increasingly important. In 

this paper, we presented a data-driven framework for quantifying energy flexibility in buildings, 

which can be adopted by stakeholders for applications with different levels of data availability in 

real-world buildings. The proposed framework has been demonstrated through two case studies 

using real measurements. The first case study used a large-scale smart thermostat dataset from 

real residential buildings and conducted a retrospective energy flexibility quantification at the 

building cluster level. The second case study dived deep into data-driven modeling and MPC 

simulation at the single building level. The two case studies have shown promising results in terms 

of the framework’s scalability. The proposed framework and two case studies shed light on 

standardized data-driven building energy flexibility quantification for real world scenarios. 
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Appendix 

A1. RC Model Configuration and Identification Results 

This section shows the RC model configuration, parameter identification results, and performance 

evaluation. The heat balance of the building can be formulated as Equation 4(a) ~ 4(d). 

𝐶
𝑑𝑇

𝑑𝑡
=

𝑇𝑖𝑛𝑑𝑜𝑜𝑟−𝑇𝑎

𝑅
+ 𝑄𝑠𝑜𝑙𝑎𝑟 + 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑄𝐻𝑉𝐴𝐶   Equation 4(a) 

𝑄𝑠𝑜𝑙𝑎𝑟 = 𝐴𝑠𝑜𝑙𝐼𝑠𝑜𝑙      Equation 4(b) 

𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑄𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠 + 𝑄𝑙𝑖𝑔ℎ𝑡𝑠 + 𝑄𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑠   Equation 4(c) 



𝑄𝐻𝑉𝐴𝐶 = 𝑄𝑓𝑢𝑟𝑛𝑎𝑐𝑒 + 𝑃ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 ∗ 𝐶𝑂𝑃ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝  Equation 4(d) 

Where 𝐶 is the thermal capacitance, 𝑅 is the thermal resistance, 𝑇 is the lumped indoor air 

temperature, 𝑇𝑎 is the outdoor air temperature, and 𝑡 is time. Among the right-hand side terms, 

the solar heat gain 𝑄𝑠𝑜𝑙𝑎𝑟 is the product of the lumped solar heat gain coefficient 𝐴𝑠𝑜𝑙 (considering 

window area, solar heat gain coefficient, and incidence angle) and the horizontal solar irradiance 

𝐼𝑠𝑜𝑙. The internal heat gains 𝑄𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 include those from occupants, 𝑄𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑡𝑠; artificial lighting, 

𝑄𝑙𝑖𝑔ℎ𝑡𝑠; and appliances 𝑄𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑠. The supplied energy from the HVAC system 𝑄𝐻𝑉𝐴𝐶 consists 

of the heat gain from the furnace, 𝑄𝑓𝑢𝑟𝑛𝑎𝑐𝑒, or the cooling energy from the heat pump, which can 

be calculated with the power input 𝑃ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 and a known average efficiency of coefficient of 

performance 𝐶𝑂𝑃ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝. It should be noted that real heat pumps usually have on/off or multi-

stage operations. However, to simplify the problem setting, we assumed the power input of the 

heat pump could be continuously adjusted. The unknown parameters are 𝑅, 𝐶, and 𝐴, which can 

be identified with a least-squares estimation. 

Table A1 shows the model parameters identified using the measurements of Home B between 

2021-12-6 to 2021-12-13, where the thermostat is frequently adjusted during the calibration, 

setpoint excitation, and pre-heating phases. 

Table A1. RC model parameters identified from the measurements (2021-12-6 to 2021-12-14) 

Model Parameter Meaning Unit Value 

1R1C 
model 

𝑅 The overall thermal resistance of the building 𝐾 𝑊⁄  7.96e-3 

𝐶 The overall thermal capacitance of the building 𝑊 ∙ 𝑆 𝐾⁄  7.97e6 

𝐴𝑠𝑜𝑙 The overall solar heat gain coefficient of the building 𝑚2 7.12 

2R2C 
model 

𝑅𝑖 The overall thermal resistance between envelop and air 𝐾 𝑊⁄  7.68e-4 

𝑅𝑒 The overall thermal resistance of the envelope 𝐾 𝑊⁄  7.15e-3 

𝐶𝑖 The thermal capacitance of internal objects 𝑊 ∙ 𝑆 𝐾⁄  1.66e6 

𝐶𝑒 The thermal capacitance of the envelope 𝑊 ∙ 𝑆 𝐾⁄  7.5e6 

𝐴𝑠𝑜𝑙_𝑖 The solar heat gain coefficient of the internal objects 𝑚2 8.56 

𝐴𝑠𝑜𝑙_𝑒 The solar heat gain coefficient of the envelope 𝑚2 1.02 

To evaluate the model performance, we ran simulations with both the 1R1C and 2R2C models 

following the actual temperature setpoint schedule in Home B between 2021-12-14 to 2021-12-

20. Figure A1 shows the Home B ground truth temperature and predictions using the RC models.  

 
Figure A1. Evaluation of the RC models 



Table A2 shows the performance metrics comparison between the two RC models during the 

simulation period. It can be seen that both models could predict the temperature trend with good 

accuracy. For this case study, we chose the 1R1C model for its simplicity. 

Table A2. Accuracy metrics comparison of the RC models 

Model Type R2 Mean Absolute Error (°C) Mean Squared Error (°C) 

1R1C 0.93 0.59 0.6 

2R2C 0.94 0.54 0.54 

A2. Impact of Comfort Weighting Factor on MPC 

This section shows the influence of different comfort weighting factors on indoor temperature 

(Figure A2), out-of-range degree hours, and heat pump energy inputs (Table A3). Note that the 

selected 𝑤𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = 20000 is based on heuristics, and the value can be adjusted per user needs in 

practice. 

 
Figure A2. Comparison of different comfort weighting factors’ impacts on indoor temperature 

Table A3. Different comfort weighting factors’ impacts on out-of-range degree-hours and heat energy 

Comfort Weighting Factor Degree-hours Heat Pump Heating Energy (kWh) 

100 106.7 42.3 

1000 46.3 44.9 

2000 36.3 45.3 

5000 26.6 45.8 

10000 21.2 46.0 

20000 15.8 46.1 

50000 14.3 46.8 
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