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ABSTRACT
Slotted ALOHA is known to have poor channel utilization (a max-
imum of 37% when average offered load is one packet per time
slot). Reinforcement learning has recently been proposed as a tech-
nique that allows nodes to learn to coordinate their transmissions in
order to attain much higher network utilization. All reinforcement-
learning schemes proposed to date assume immediate feedback on
the outcome of a packet transmission. We introduce ALOHA-dQT,
a reinforcement-learning protocol that achieves high utilization by
having nodes broadcast short summaries of the channel history as
known to them along with their packets. Our simulation results
show that ALOHA-dQT leads to network utilization above 75%,
with fair bandwidth allocation among nodes. ALOHA-dQT is the
first reinforcement-learning approach applied to slotted ALOHA
suitable for ad-hoc networks without centralized repeaters.

CCS CONCEPTS
• Networks → Network protocols; Network performance model-
ing; • Theory of computation→ Reinforcement learning.
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1 INTRODUCTION
The appeal of the ALOHA protocol is its simplicity, as nodes can
transmit their packets when needed without coordination. How-
ever, in networks with many active nodes, the channel maximum
utilization is limited to about 18%, and to about 37% if transmissions
are organized in fixed-length time-slots, which reduces the time
periods during which transmitted packets can overlap and collide.

To improve the channel utilization, coordination among the
nodes is essential, and a plethora of medium-access control (MAC)
protocols have evolved over the years to provide such coordination.
Recently, reinforcement learning has been proposed as a way to
achieve internodal coordination without the need for a central
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authority or complex signaling. The application of reinforcement
learning (RL) to channel access has followed two main directions:
using deep neural networks to learn general strategies [19],and
using “expert-based” systems that learn which strategies to use
among a fixed number of them [4, 5, 7, 20]. The latter approaches
are lighter-weight, and have been successful in achieving high
channel utilization in networks with many active nodes.

The limitation of all reinforcement-learning based approaches
proposed to date is that they are based on immediate acknowledge-
ments, which in practice requires a central node using a secondary
channel to either retransmit what it receives from other nodes or
transmit explicit acknowledgments to transmissions received with-
out interference. The implicit acknowledgements are used to drive
the “reinforcement” in RL are an impediment for ad-hoc networks,
where such functionality cannot be provided.

In this paper we present an RL-based protocol, ALOHA-dQT,
which is suitable for ad-hoc networks.The only requirement for the
proposed scheme is a time-slotted channel. ALOHA-dQT is based
upon ALOHA-QTF [7], and adds to it an explicit acknowledgement
scheme based on nodes transmitting, along with their packets,
their knowledge about channel history. Section 3 summarizes the
common elements of ALOHA-QTF and ALOHA-dQT, and Section 4
presents the acknowledgement scheme of ALOHA-dQT, and how
it is used to drive reinforcement learning.

When nodes receive histories from other nodes, they merge
them into their own knowledge of history, and the history updates
drive the reinforcement learning. The acknowledgement process
is modeled on knowledge-monotonic, distributed computation in
distributed systems [1, 6]. The driving of the reinforcement is mod-
ified, compared to previous protocols, to account for the delay with
which outcome information becomes known. The delay has an
implication on which “experts” (strategies) are affected, but more
deeply, the reinforcement needs to be modified. For instance, strate-
gies that trigger transmissions need to be temporarily demoted until
their transmissions are acknowledged, or else they might trigger
“collision storms” under which no packet is received in periods of
high contention.

ALOHA-dQT is suited both to network nodes that can detect
the presence of radio energy during transmission slots, and thus
can distinguish empty slots from slots where collisions occurred,
as well as to nodes without such energy-detection capabilities.

Section 5 presents a performance comparison of ALOHA-dQT
with previous protocols, including ALOHA-Q, ALOHA-QTF, and
ALOHAwith exponential backoff. Our simulation results show that
ALOHA-dQT offers channel utilization that is generally above 75%
if energy detection is available, and above 65% if it is not available,
under a wide range of network dynamics. Secton 6 presents our
conclusions.



2 RELATEDWORK
In the original ALOHA protocol, the maximum utilization that can
be achieved is about 18%. Slotted-ALOHA improves this to about
37% by confining transmissions to time slots with a length equal to
a packet length [17]. To go beyond this limited channel utilization,
some kind of coordination among nodes is needed. A popular ap-
proach used in the past to achieve internodal coordination is via
reservations, in which nodes declare their transmission needs, and
a central authority assigns slots to individual nodes (e.g., [12]) or
nodes engage in peer-to-peer signaling to establish reservations.
Other schemes adopt repetition strategies with which each node
transmits the same packet multiple times, and relying on physical-
layer techniques (e.g., code division multiple access and successive
interference cancellation) to improve throughput [13, 15, 16, 18].

Reinforcement learning has been proposed as a technique to
achieve coordination without requiring a central authority assign-
ing slots, or mechanisms related to the physical channel. The idea
is that nodes can observe the channel and learn how to coordinate
their transmissions to reduce collisions and achieve high network
utilization. The most powerful type of reinforcement learning is
deep reinforcement learning (DRL), in which a neural net learns the
success of actions (transmit, or wait) as a function of channel his-
tory [19]. Unfortunately, the very generality of the approach slows
down the learning: adaptation has been demonstrated in [19] only
for channels with two DRL nodes, and it takes tens of thousands of
time slots even in such simple scenarios.

A less powerful type of reinforcement learning that ismuch faster
is expert-based learning, in which nodes learn which of different
“experts”, or transmission strategies, to follow [2, 8, 9]. In ALOHA-Q,
nodes consider a transmission frame of fixed length 𝐿, and learns
the quality 𝑞𝑖 , 1 ≤ 𝑖 ≤ 𝐿, of each frame slot [4, 5]. At each frame,
ALOHA-Q transmits in the time-slot with highest 𝑞-value; if the
transmission is successful, the 𝑞-value of the slot used is increased,
and if the transmission is unsuccessful, the 𝑞-value is decreased.
ALOHA-Q can reach high utilization when the frame length is well
matched to the number of active nodes, even though adaptation is
not always fast, a function of the particular kind of updates used.

The expert approach has also been used coupled with the sched-
ule trees of [3]. In a schedule tree, each child schedule has twice
the period of the parent, and sibling schedules transmit in different
slots of the period. The variable period leads to frameless protocols
that can adapt to different numbers of active nodes. In [3] the tree
structure is used to resolve each collision as it arises. In ALOHA-
QTF [7] and AT-ALOHA [20], each tree schedule is an “expert”,
and the nodes learn which experts to follow. In AT-ALOHA, each
node tracks a subset of experts, and use a set of rules to update
the set according to channel outcomes. In ALOHA-QTF, weights
are associated with each expert, and nodes select schedules with
high weights. ALOHA-QTF AND AT-ALOHA attain high network
utilization under a wide range of network dynamics.

All of the reinforcement-learning based approaches mentioned
above rely on implicit, immediate acknowledgements of transmis-
sions. This type of feedback can be emulated with a centralized
repeater that rebroadcasts all received packets on a separate orthog-
onal channel. The immediate feedback is used to update weights

(ALOHA-Q and ALOHA-QTF) or update the experts in use (AT-
ALOHA). We adopt the schedule-tree and schedule weights of
ALOHA-QTF, and add to it an explicit acknowledgement scheme
based on nodes broadcasting, along with each packet, their knowl-
edge of past channel history. Updates to the knowledge about chan-
nel history trigger weight updates. The history broadcasting and
update is modeled after distributed monotonic computation in dis-
tributed systems [1, 6].

3 LEARNING THE SCHEDULES
ALOHA-dQT, like its predecessor ALOHA-QTF [7], is a protocol
for fully-connected networks in which the channel is time-slotted.
At each time slot a node can either transmit (T) or wait (W), and the
channel outcome can be either empty (E), if no node transmitted;
success (S), if exactly one node transmitted, or collision (C), if
two or more nodes transmit. Both ALOHA-QTF and ALOHA-dQT
use reinforcement learning to allow the nodes to coordinate, and
schedule their transmissions in a way that reduces collisions while
allocating bandwidth fairly.

The reinforcement learning and node adaptation in ALOHA-QTF
are driven by immediate feedback regarding each slot outcome in
{𝐸, 𝑆,𝐶}, as soon as the transmission slot ends. This is not practical
in single-channel ad-hoc networks in which nodes must use their
radios in either transmit or receive mode in each time-slot, and a
sender can learn the outcome of its transmission only by receiving
an acknowledgement from other nodes. ALOHA-dQT differs from
ALOHA-QTF by the use of an acknowledgement mechanism and
in how the reinforcement learning is driven. ALOHA-dQT drives
the reinforcement learning with a mix of information gleaned from
observing the network and information received via acknowledge-
ments. However, the two protocols share the same policy structure
and the same operations on such structure, which are covered in
this section. The acknowledgement structure and how the informa-
tion drives reinforcement learning. are presented in the following
section.

3.1 The Schedule Tree
In ALOHA-dQT, nodes transmit according to the union of peri-
odic schedules. Each node keeps a local time-slot counter 𝑡 ; these
counters need not be synchronized across the network. A (periodic)
schedule 𝜎 = (𝑖,𝑚) prescribes transmitting at all times 𝑡 such that 𝑡
mod 2𝑚 = 𝑖; the schedule has period 2𝑚 and offset 𝑖 . For 𝜎 = (𝑖,𝑚),
we let 𝛿 (𝜎, 𝑡) be 1 if 𝑡 mod 2𝑚 = 𝑖 and 0 otherwise, so that 𝛿 (𝜎, 𝑡)
is the indicator function of the transmit times of 𝜎 .

A node uses the set of schedules P = {(𝑖, 2𝑚) | 0 ≤ 𝑖 < 2𝑚, 0 ≤
𝑚 ≤ 𝑛}, up to some periodicity 2𝑛 . For each schedule 𝜎 in P, the
node stores a weight 𝑤𝜎 ∈ [0, 1] representing the quality of the
policy, that is, its ability to prescribe transmitting without causing
collisions.

The policies can be organized into a tree, illustrated in Figure 1,
where policy (𝑖,𝑚) has as children (𝑖,𝑚 + 1) and (𝑖 + 2𝑚,𝑚 + 1).
The nodes at the same tree level have the same period but different
offsets, and thus prescribe non-colliding transmissions; every child
node transmits in half of the slots of the parent. The periodic struc-
ture of the schedules, and their hierarchical organization, facilitates
the learning process of the nodes. In fact, a node of depth 𝑛 contains



2𝑛+1 − 1 schedules, yet every schedule conflicts with only 𝑛 others:
thus, if we pick two schedules at random, it is rare that they conflict
(for 𝑛 = 8, the probability is ≈ 0.016). Further, if two schedules
conflict, they are guaranteed to do so every 2𝑛 time slots. These
two properties, that conflicts are rare, and are detected early, are
crucial in driving adaptation.

(0, 1)

(0, 4) (2, 4) (1, 4) (3, 4)

(0, 2) (1, 2)

(2, 8) (6, 8)

Figure 1: Policy tree in ALOHA-QTF

We experimented using the (larger) set of schedules “transmit
when 𝑡 mod 𝑘 = 𝑖” for 0 ≤ 𝑖 < 𝑘 ≤ 2𝑛 . In this set, conflicts are
common, and can be often discovered only with delay, as two sched-
ules with periods 𝑘1, 𝑘2 cause a collision only once every minimum
common multiple of 𝑘1, 𝑘2. Using this larger set of schedules pre-
vented nodes from adapting, and yielded very poor performance:
more freedom of behavior did not translate in better adaptation.

Weight initialization. The weight of policy (𝑖,𝑚) ∈ P is initial-
ized by: 𝑤 (𝑖,𝑚) = 𝛽 (1.2−𝑚) (0.9 + 0.1 · 𝑋 (𝑖,𝑚) ), where {𝑋𝜎 }𝜎 ∈P is
a set of random variables independently sampled from the uni-
form distribution over [0, 1]. In [7] the value 𝛽 = 0.2 was used.
The denominator 1.2𝑚 makes it so that nodes are initially likely to
adopt policies that transmit frequently, falling back on policies that
transmit more rarely only as needed to avoid collisions.

Policy selection and transmission decision. At a time 𝑡 , for a weight
vector𝑤 for the policies, the set of active schedules is

A𝑡 = {arg max
𝜎

𝑤𝜎 } ∪ {𝜎 | 𝑤𝜎 ≥ 𝑤ℎ} ,

where𝑤ℎ is a predefined threshold. In words, the active schedules
include the best-performing schedule, along with all schedules
with weight above a given threshold 𝑤ℎ . Thus, more than one
schedule can be active, enabling nodes to utilize a flexible amount of
bandwidth. A node transmits at time 𝑡 if one of its active schedules
at time 𝑡 prescribes transmission, or

∑
𝜎 ∈A𝑡

𝛿 (𝜎, 𝑡) > 0, and waits
otherwise. The decisions to transmit or wait is indicate with 𝑇 or
𝑊 .

Weight update. Given a time 𝑡 ′ (not necessarily equal to the
current time), an update factor 𝛼 > 0, and an amount of randomness
𝛾 > 0, the multiplicative update of the weights𝑤 is performed by

𝑤 ′
𝜎 = 𝑤𝜎 · exp

(
𝛼 𝑋

𝛾
𝜎 𝛿 (𝜎, 𝑡)

)
. (1)

where {𝑋𝜎 }𝜎 ∈P is a set independent random variables sampled
uniformly at random from the interval [0, 1]. This update is written
simply as𝑤 ′ = 𝑈 (𝑤, 𝛼, 𝑡 ′, 𝛾). Thus, only the weights of the sched-
ules active at 𝑡 ′ are updated, and the update is randomized, to help
breaking ties between nodes that lay claim to the same transmission
slot.

Weight normalization. After the multiplicative updates are per-
formed, the weights are normalized in a two-step process.

First, some of the weights lost by schedules that are downgraded
is redistributed across all schedules. This is a classical technique in
expert-based reinforcement learning, which facilitates transition-
ing to new experts when previous experts (in this paper, sched-
ules) become less effective [8, 9]. Let 𝑤𝜎 ,𝑤

′
𝜎 be the weights of

schedule 𝜎 before and after the multiplicative update step, and let
𝑆 =

∑
𝜎 ∈P 𝑤𝜎 and 𝑆 ′ =

∑
𝜎 ∈P 𝑤 ′

𝜎 . Let Δ = 𝑆 −𝑆 ′ be the decrease in
total weight. If Δ > 0 and𝑊 ′ < 𝑤init · |P |, where𝑤init is the initial
reputation given to each policy, we redistribute the lost weight via:

𝑤 ′
𝜎 := 𝑤 ′

𝜎 + Δ
𝑋𝜎∑
𝜎 𝑋𝜎

,

where {𝑋𝜎 }𝜎 ∈P is a set of random variables independently sampled
from the uniform distribution over [0, 1]. Thus, the redistribution
of the lost weight is randomized, again to break the symmetry
between the updates at different nodes.

Second, the weights of all policies is bound to the [0, 1] interval,
setting𝑤𝜎 = min(1,𝑤𝜎 ). The normalization operation is summa-
rized by𝑤 ′ := normalize(𝑤, 𝑡).

3.2 The ALOHA-QTF Protocol
The ALOHA-QTF protocol [7] can be summarized as follows. The
schedule weights are initialized as described in Section 3.1. At each
time slot 𝑡 , a node makes a decision 𝑑 ∈ {𝑊,𝑇 } to transmit (T) or to
wait (W), the outcome ℎ ∈ {𝐸, 𝑆,𝐶} of the time slot is available as
soon as the time slot is concluded, where 𝐸 indicates an empty slot,
𝑆 indicates a successful transmission by some node, and𝐶 indicates
a collision occurred. Once the outcome is received, the network
performs a multiplicative weight update𝑤 ′ = 𝑈 (𝑤, 𝛼, 𝑡 ′, 1) given
in (1), where:

𝛼 =

{
0.2 if (𝑑,ℎ) ∈ {(𝑊, 𝐸), (𝑇, 𝑆)};
−0.5 if (𝑑,ℎ) ∈ {(𝑊,𝑆), (𝑊,𝐶), (𝑇,𝐶)}.

(2)

Thus, the weight is boosted when a slot is available for the node to
use, and is decreased when other nodes are transmitting into the
slot. The weights are then re-normalized via𝑤 ′ := normalize(𝑤, 𝑡)
as described in Section 3.1.

To this basic scheme are added two enhancements to ensure
fairness (see [7] for the details of the implementation). The node
measures the requested bandwidth 𝑏𝑟 and fair bandwidth 𝑏 𝑓 . The
requested bandwidth 𝑏𝑟 is the fraction of network slots the node
is currently transmitting at. The fair bandwidth 𝑏 𝑓 is obtained as
𝑏 𝑓 = 1/max(1, �̂� ), where �̂� is an estimate of the number of active
nodes obtained by collecting the distinct sender IDs collected in
the last 2𝑛+1 time-slots. Once these bandwidths are available, the
protocol implements two enhancements.

First, if a node is using more than its fair share of the bandwidth,
or 𝑏𝑟 > 𝑏 𝑓 , the node will set to zero the weight of its active sched-
ules with a small probability 𝜖𝑟 > 0 at every step. This ensures
that nodes that use more than their fair share eventually relinquish
transmission slots, which are then captured by other nodes.



Second, the multiplicative update step (2) is performed not ac-
cording to 𝛼 , but according to 𝛼 ′ given by:

𝛼 ′ = 𝛼 ·
{

min(1, (𝑏𝑟 /𝑏 𝑓 )1/2)
)

if 𝛼 < 0;
max(0, 1 − (𝑏𝑟 /𝑏 𝑓 )2)

)
if 𝛼 ≥ 0.

This modified update makes it easier for nodes with less than their
fair share of bandwidth to gain more transmission slots, and for
nodes with more than their fair share of bandwidth to relinquish
their slots. In ALOHA-dQT we adopt these fairness enhancements
as well.

4 ALOHA-DQT
The ALOHA-dQT protocol is designed for networks in which an
immediate-acknowledgement mechanism is not possible and trans-
mitters must be informed of the outcome of their transmissions via
acknowledgements. We distinguish between two kind of receivers.
Energy-detecting receivers can distinguish between empty slots,
and slots in which a collision occurred, by measuring the amount
of energy carried in the channel during a time-slot. When such
receivers detect energy, but cannot decode any packet, a collision is
inferred. Non-energy-detecting receivers are the simplest ones, and
they can only tell whether in a time slot, a packet could or could
not be decoded. We present protocol adaptations for both of these
kinds of receivers.

4.1 Acknowledgements via Channel Histories
In ALOHA-dQT, every node stores a channel history of the last
𝑁 time-slot outcomes (in our experiments, we use 𝑁 = 16). This
history represents the knowledge the node has regarding what
occurred in the last 𝑁 time slots. Whenever a node transmits a
packet, it attaches to it its channel history. When a node receives a
packet, it takes the channel history received with the packet, which
represents the best reconstruction of what occurred as known to
the sender node, and merges it into its own channel history. This
history revision step merges the information in the two histories:
for instance, if the current node stored a𝑇 (Transmit) for a time slot
in the history, and the other node stored an 𝑠 (successful reception),
the current node can update the time-slot information in its history
to 𝑆 (successful transmission). This process of history revision is
what drives the reinforcement learning: an update in a time slot in
the history drives an update for the weights of the schedules that
were active in that time slot.

The process of history transmission and update can be also un-
derstood as a network-wide distributed monotonic reconstruction
of the true history of the channel [1, 6]. Each network node can see
only one portion of the history, as it is deaf when transmitting. By
constantly transmitting the version of the channel history known
to them, and updating their history according to the transmissions
by others, the nodes’ stored histories will tend to converge to the
true history of the network.

Channel histories. A channel historyH consists of a sequence
of 𝑁 symbols H = [ℎ0, . . . , ℎ𝑁−1], where symbol ℎ𝑖 represents the
channel at time 𝑡 − 𝑖 . We denote by H𝑖 the symbol ℎ𝑖 in position 𝑖

of the history. A channel history time-slot can contain one of the
following symbols:

• ⊥ (bottom). There is no information for the slot yet. This will
be changed into 𝑇 or𝑊 once the node decides to transmit
or wait.

• 𝑇 (transmission). The node has transmitted in the time slot,
and the outcome is not known yet.

• 𝑊 (wait). The node has not transmitted, and its radio was in
receive mode. No packet was decoded, and it is not known
yet whether the slot was truly empty or whether a collision
occurred. This state is used in non-energy-detecting nodes
only.

• 𝐸 (empty). The node has not transmitted, and the slot is
known to have been empty.

• 𝐶 (own collision). The node transmitted into a slot, and there
was a collision.

• 𝑐 (other collision). The node did not transmit in the slot, but
others did, and a collision ensued.

• 𝑆 (own success). The node has transmitted in the slot, and
the transmission was successful.

• 𝑠 (other success). Another node has transmitted in the slot,
and the transmission was successful.

We denote by 𝐻 the set of all channel symbols. There are eight
symbols, so that symbols can be encoded with three bits; a 16-slot
history thus requires six bytes.

Channel history extension. At the completion of each time slot,
a node first extends its history by adding a ⊥ symbol for its most
recent slot, and by discarding its now 𝑁 + 1-th slot. This ⊥ symbol
is then immediately replaced, as follows. If the node transmitted,
⊥ is replaced by 𝑇 . If the node decided to wait, and was in receive
mode, the behavior differs according to whether the node can detect
channel energy:

• If the node can detect channel energy, ⊥ is replaced by 𝐸 if
there was no energy, by 𝑐 if there was energy but no packet
was received, and by 𝑠 if a packet was received.

• If the node cannot detect channel energy, ⊥ is replaced by
𝑠 if a packet was decoded, and by𝑊 if nothing could be
decoded.

Merging channel histories. Histories are merged using a function
𝑟 : 𝐻 × 𝐻 ↦→ 𝐻 that merges a symbol ℎ ∈ 𝐻 with a received
symbol ℎ′ ∈ 𝐻 into 𝑟 (ℎ ⊳ ℎ′) ∈ 𝐻 . To merge histories, we apply
𝑟 element-wise, letting H ′′

𝑖
= 𝑟 (H𝑖 ,H ′

𝑖
) for all 0 ≤ 𝑖 < 𝑁 . The

merging function is as follows.

• The state ⊥ is the bottom knowledge state, and we have
𝑟 (⊥ ⊳ ℎ) = ℎ for all ℎ.

• The states 𝐸, 𝐶 , 𝑐 , 𝑆 , and 𝑠 are full knowledge states, and are
not updated, so 𝑟 (ℎ ⊳ ℎ′) = ℎ for ℎ ∈ {𝐸,𝐶, 𝑐, 𝑆, 𝑠}.

• The states 𝑇 and𝑊 are partial knowledge states, and they
are updated as in Table 1.

The rules in Table 1 can be understood as follows.
If the node transmitted (ℎ = 𝑇 ), then a received 𝑠 confirms

reception, leading to 𝑆 . All other received states, and in particular
𝑇 ,𝑊 , 𝐶 , 𝑐 , indicate that a collision occurred, either because some
other node transmitted (ℎ′ = 𝑇 ), or because no packet could be
decoded (ℎ′ =𝑊 ), or because a collision was already determined
to have occurred.



If ℎ =𝑊 , no packet could be decoded, and the node, unable to
detect channel energy, is unsure of the slot state. Since nothing
could be decoded, any indication of transmission or collision (ℎ′ =
𝑇,𝐶, 𝑐) indicates that a collision must have occurred. If ℎ′ = 𝐸, it
means that another node was able through energy detection to
determine that the slot was empty, and we accept that information.

Other combinations cannot occur under normal protocol condi-
tions. In particular, a node cannot receive a notification that another
node succeeded (ℎ′ = 𝑆) if the node transmitted (ℎ = 𝑇 ) or did not
receive (ℎ = 𝑊 ), unless capture occurred. Similarly, a node that
transmitted (ℎ = 𝑇 ) cannot receive a report ℎ′ = 𝐸 of no energy in
the time-slot, and a node that did not decode packets (ℎ =𝑊 ) can-
not receive a report that someone else did decode a packet (ℎ = 𝑠),
unless capture occurred. For these combinations, Table 1 reports
the safest conclusion the protocol can draw.

Current ℎ Received ℎ′
𝑇 𝑊 𝑆 𝑠 𝐶 𝑐 𝐸

𝑇 𝐶 𝐶 𝐶∗ 𝑆 𝐶 𝐶 𝐶∗

𝑊 𝑐 𝑊 𝑠∗ 𝑠∗ 𝑐 𝑐 𝐸

Table 1: History merging: the merged value is indicated as
function of the current and received values. Cells indicated
with ∗ should not occur under normal protocol conditions.

H1@𝑛1 H2@𝑛2
𝑡1 H1

3 H1
2 H1

1 H1
0 𝑡2 H2

3 H2
2 H2

1 H2
0

6 𝑊 𝑠 𝑊 T 11 𝑊 𝑠 𝑊 W
7 s 𝑊 C 𝑠 12 𝑠 𝑊 W 𝑇

8 𝑊 C 𝑠 𝑇 13 𝑊 c 𝑆 𝑠

9 C 𝑠 𝑆 𝑊 14 c 𝑆 𝑠 𝑊

Table 2: An example of collision detection and successful
transmission acknowledgement for nodes that do not detect
slot energy. The boldface and over-line symbols track trans-
missions by 𝑛1 and 𝑛2, respectively.

If we consider the information ordering {⊥} < {𝑇,𝑊 } <

{𝑆, 𝑠,𝐶, 𝑐, 𝐸}, where symbols in the same set are at the same level
in the ordering, we see that the merging function 𝑟 is monotonic in
its first argument, so that 𝑟 (𝑥 ⊳ 𝑦) ≥ 𝑥 . Thus, the information each
node has grows as acknowledgements are received, and the greater
information is re-broadcast with the next packet. The nodes in a
network are computing in distributed fashion a global information
fixpoint.

Table 2 illustrates how the acknowledgement mechanism enables
a node to detect that a collision occurred, for nodes that cannot
detect channel energy. We depict only the first 4 steps of history
for two nodes 𝑛1 and 𝑛2; the nodes start at times 𝑡1 = 6 and 𝑡2 = 11
respectively (slot counters need not be the same across nodes); we
depict the history at the end of each time slot.

• At step 𝑡1 = 6, 𝑛1 transmits and marks 𝑇 in its history; node
𝑛2 marks𝑊 , as a collision occurred and the node did not
receive (nor it can detect the lack of energy).

• At 𝑡1 = 7, 𝑛1 receives a packet from 𝑛2, and marks 𝑠 inH1
0 .

It then updates H1
1 := 𝑟 (𝑇 ⊳ H2

1 ) = 𝑟 (𝑇 ⊳𝑊 ) = 𝐶 , so that
the𝑊 received from 𝑛2 leads to update its transmission 𝑇
into a 𝐶 .

• At 𝑡1 = 8, 𝑛1 transmits a packet, which is received from 𝑛2;
𝑛2 marks 𝑠 for the most recent history, and it updates the 𝑇
for its own transmission into a 𝑆 using H2

1 = 𝑟 (𝑇 ⊳H1
1 ) =

𝑟 (𝑇 ⊳ 𝑠) = 𝑆 .
• At 𝑡1 = 9, the information about 𝑛1’s successful transmission
is relied to 𝑛1, so thatH1

1 is set to 𝑆 .

Packet retransmission. Packets are queued for retransmission
when their transmission, initially labeled as 𝑇 in the history, is
updated to 𝐶 , and they are considered as successfully transmitted
when the history is updated to 𝑆 . Furthermore, if a packet trans-
mission labeled as 𝑇 “slides out” of the fixed-length history still
as 𝑇 , the packet lacks acknowledgement, and it is also queued for
retransmission.

4.2 Driving the Learning
The history updates drive the updates to the weights of the sched-
ules. Initially, a position in the history contains the ⊥ symbol; the
position is then updated one or more times as a consequence of the
outcome of the time slot, and of the subsequent history merging.
When a position 0 ≤ 𝑖 < 𝑁 is updated from ℎ𝑖 to ℎ′′𝑖 ≠ ℎ𝑖 at time 𝑡 ,
we perform the multiplicative update

𝑤 ′ = 𝑈 (𝑤, 𝛼𝑖 , 𝑡 − 𝑖, 𝛾𝑖 ) (3)

where the coefficients 𝛼𝑖 , 𝛾𝑖 depend on the new stateℎ′′
𝑖
, as specified

in Table 3. In (3), the time 𝑡 − 𝑖 is the absolute time to which history
position 𝑖 refers. The coefficients in Table 3 can be understood as
follows.

• If the new state is 𝐸, the slot is free, andwe promote schedules
that make use of it using randomization to break ties among
nodes claiming the slot.

• If the new state is 𝑆 , the slot is ours to use, and since the
use has been successful, we deterministically promote the
schedules that caused its use.

• If the new state is𝐶 , 𝑐 , or 𝑠 , it means that there is contention
in the use of the slot, and we demote schedules that use the
slot using randomization to break ties.

• Finally, if the new state is 𝑇 , we transmitted, but we have
not yet received an acknowledgement (which would change
the 𝑇 into 𝑆). We deterministically demote the schedules
responsible for the transmission by a small amount until
an acknowledgement is received. This ensures that during
“collision storms” in which most outcomes are collisions and
few acknowledgements are received, the nodes eventually
back off from the schedules that caused the collision storms.

Updated ℎ′′ 𝛼 𝛾

𝑆 0.2 0
𝐸 0.2 1

𝐶 , 𝑐 , 𝑠 -0.8 1
𝑇 -0.1 0

Table 3: Multiplicative update coefficients as a function of
updated channel outcome

In addition to these updates, a special update is included that
is performed only by nodes that cannot detect energy. In these
nodes, empty slots are never detected (unless another node that can



detect energy informs them that the slot was empty). To promote
schedules that transmit into empty slot, we proceed as follows. If
the current state of a slot is ℎ =𝑊 , and the node receive ℎ′ =𝑊 ,
the outcome of the slot is not modified, as per Table 1. However,
each time the node receives a𝑊 , it increases the likelihood that the
slot was empty, for no other node so far has reported a collision or
a transmission. To reflect this, if both ℎ𝑖 = ℎ′

𝑖
=𝑊 , the following

update is performed to give a small randomized incentive to using
the slot in the future.

𝑤 ′ = 𝑈 (𝑤, 0.01, 𝑡 − 𝑖, 1) (4)

The updates (3) and (4) are performed for all positions 1 ≤ 𝑖 ≤ 𝑁

of the history, after which the policy weights are renormalized via
𝑤 ′ := normalize(𝑤, 𝑡).

4.3 The ALOHA-dQT Protocol
The ALOHA-dQT protocol is schematically presented as Algo-
rithm 1. We note that the algorithm uses the same fairness im-
provements presented in Section 3.2.

5 PERFORMANCE EVALUATION
We compare the performance of ALOHA-dQT, ALOHA-QT [7],
ALOHA-Q [4, 5], and ALOHAwith exponential backoff, or ALOHA-
EB. We note that ALOHA-QT, ALOHA-Q, and ALOHA-EB rely
on implicit, immediate acknowledgements, which gives them an
advantage of ALOHA-dQT, which instead uses the mechanism of
delayed acknowledgement based on transmission history merging
and update.

We consider two types of networks with ALOHA-dQT nodes:
networks in which nodes can detect energy (indicated in our results
simply as ALOHA-dQT), and networks in which nodes cannot
detect energy (indicated in our results as ALOHA-dQT-NE). We
compare these two setups with ALOHA-QTF, described in [7] and
summarized in Section 3, as well as ALOHA-Q and ALOHA with
exponential backoff (ALOHA-EB).

We implemented ALOHA-Q, the Q-learning version of slotted
ALOHA proposed in [4, 5]. Since in our simulations the number of
active nodes is at most about 50, we use a frame length 𝐿 = 50 for
ALOHA-Q. We experimented with other values, and they yielded
similar or worse performance.

In slotted ALOHAwith exponential back-off, which we denote as
ALOHA-EB, every node has an initial transmission probability 𝑝 =

1/2 when it becomes active. The node then updates the probability
𝑝 whenever a collision, or an empty slot, is detected on the network,
setting 𝑝 := 𝑞 ∗ 𝑝 in case of collisions, and 𝑝 := min(1, 𝑝/𝑞) in case
of empty slots, where 𝑞 is a constant that determines adaptation
speed; in our simulations we use 𝑞 = 0.9. For large numbers of
nodes, the bandwidth utilization of ALOHA-EB reaches the optimal
value of 1/𝑒 , or about 37% [14].

5.1 Performance Metrics
We evaluate protocols by measuring their network utilization and
fairness, defined as follows.

Network utilization. A time slot can either be empty, or it can con-
tain a successful transmission or a collision. We define the network

Constants:
𝑛 = 8: depth of policy tree;
𝑁 = 16: history length;
𝜖𝑟 = 0.02: probability of relinquishing a time-slot;
𝛽 = 0.3: initialization value for (??);

State Variables:
P = {(𝑖,𝑚) | 0 ≤ 𝑖 < 2𝑚, 0 ≤ 𝑘 ≤ 𝑛}: schedules;
{𝑤𝜎 }𝜎∈P : schedule weights;
H: history;
active: True if the node is active; false otherwise;
𝑡 ∈ IN: time slot counter;
�̂� : estimated number of active nodes;

Channel Variables:
𝑑 ∈ {𝑇,𝑊 }: decision (𝑇 : transmit;𝑊 : wait);
_ ∈ {𝑇,𝑊 , 𝑠, 𝑐, 𝐸 }: channel outcome;

Initialization:
𝑡 := 0;
Initialize H = [⊥, . . . ,⊥], and initialize the schedule weights
using (??);

At every time slot:
// Decision

if
∑

𝜎∈A𝑡
𝛿 (𝜎, 𝑡 ) > 0 then 𝑑 := 𝑇 else 𝑑 :=𝑊 ;

if 𝑑 = 𝑇 then transmit a packet alongside H;
// Reception

Listen for a packet, and receive channel outcome _;
if _ = 𝑠 then receive the packet and the history H′;
Shift the history: H := [⊥,H1, . . . ,H𝑁−1 ];
Let �̂� be the number of different sender IDs seen in the last

2𝑛+1 time slots;
// History update

H0 := _;
if _ = 𝑠 then H := 𝑟 (H,H′) ;
// Weight update
Perform the weight updates (3) and (4) corresponding to the
history updates;

// Fair slot relinquishment
if 𝑏𝑟 > 𝑏𝑓 then with probability 𝜖𝑟 do
𝑤𝜎 := (1 − 𝛿 (𝜎, 𝑡 ))𝑤𝜎 ;

// Normalization and time increment

𝑤 := normalize(𝑤) ;
𝑡 := 𝑡 + 1;

Algorithm 1: ALOHA-dQT Algorithm.

utilization as the fraction of slots that contain successful transmis-
sions. To compute the network utilization, we aggregate time slots
in blocks of 100, and for each block we can compute the network
utilization as the ratio of individual slots that contains a success-
ful transmission. Using blocks of length 100 offers a compromise
between having a fine time resolution, and computing meaningful
statistics on each block.

Fairness. The fairness of a protocol indicates how equitably the
bandwidth of the protocol is distributed among the nodes, and we
use the Jain’s index [10, 11]. Assume that 𝑛 nodes are active in a
time block and let 𝑏𝑖 be the number of successful transmissions in
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Figure 2: Ramp experiment result. The solid lines are the
average of 20 simulations; the colored bands are plus and
minus one standard deviation.

the slot by node 𝑖 ∈ [1, . . . , 𝑛]. Let 𝐵 =
∑𝑛
𝑖=1 𝑏𝑖 be the bandwidth in

the slot. Jain’s index is computed as 𝐽 = 𝐵2 (
𝑛
∑𝑛
𝑖=1 𝑏

2
𝑖

)−1.
Jain’s index is a quantity between 1/𝑛 and 1; it is 1 for a perfectly

fair distribution of the channel (𝑏𝑖 = 𝐵/𝑛 for all 𝑖), and it is 1/𝑛 if
only one node gets to use the channel.

5.2 Simulation Scenarios
We compare the performance metrics of different protocols in two
simulation scenarios: a ramp scenario and a churn scenario. In both
scenarios, we use a fully-connected single-channel time-slotted
wireless network. We simulate each scenario 20 times, each time
using a different seed for the random number generator; our figures
report the average (as a line) and the standard deviation (as a shaded
area) of the set of 20 runs.
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(b) churn scenario: fairness
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Figure 3: Churn experiment result. The solid lines are the
average of 20 simulations; the colored bands are plus and
minus one standard deviation.

Ramp scenario. In the ramp scenario, there are initially 10 active
nodes. The number of active nodes then increases gradually to 50,
with one node becoming active each time-block. Then, after 100
time-blocks, 30 nodes become inactive, one each time block, starting
from the nodes that have been active the longest. The number of
active nodes at each time block is summarized in Figure 2(c).

Churn scenario. The churn scenario simulates the case of nodes
becoming active or turning inactive at random. More specifically,
we have 100 nodes in a network. Initially, only one of them is active.
At every time block, every node has a probability 1/100 of switching
state, from inactive to active or vice-versa. Thus, an average of one
node per time block switches state. We ran the simulation for 200
time blocks. Figure 3(c) shows the average number of active nodes
throughout the simulation.



5.3 Results
The results for the ramp scenario are reported in Figure 2, and those
for the churn scenario in Figure 3. We see from Figures 2(a) and 3(a)
that ALOHA-dQT and ALOHA-dQT-NE yield high network uti-
lization, generally over 75%. If nodes can detect energy in network
slots, as in the ALOHA-dQT setup, and thus differentiate empty
slots from collisions slots, the performance is generally higher than
in the ALOHA-dQT-NE setup, where energy cannot be detected.
The performance of ALOHA-dQT approaches that of ALOHA-QTF,
indicating that our delayed acknowledgements mechanism yields
an efficiency which is almost as good as the ideal case of immedi-
ate acknowledgements. The performance for ALOHA-dQT-NE is
slightly inferior to that of ALOHA-dQT, indicating that the abil-
ity to differentiate empty slots from collisions confers a clear, if
relatively small, performance advantage.

In detail, for the ramp scenario, we see that after a brief transient,
the network utilization for ALOHA-dQT is above 80% except in a
brief transient when nodes become inactive, after about 200 time
blocks. The utilization of ALOHA-dQT-NE is similar, but 10% to
15% lower. ALOHA-QTF has overall a slightly greater utilization
than ALOHA-dQT. As for the other procols, ALOHA-EB steadily
tracks its optimal performance of 37%. ALOHA-Q does not offer
optimal performance when the number of active nodes is 50, as one
might expect. The reason is that when the number of active nodes
is close to the frame length, even though the potential utilization is
close to 1, the adaptation time is very long, on the order of hundred
of thousands of time slots [5]. Instead, ALOHA-Q is able to reach
better performance when the number of active nodes is 30. All the
protocols exhibit acceptable fairness, except for a temporary dip
when the number of active nodes is increasing. ALOHA-EB, due to
its symmetry, offers superior fairness, if not superior utilization.

The utilization in the churn scenario follows a similar pattern,
with ALOHA-QTF having highest utilization, closely followed by
ALOHA-dQT, which at steady state offers utilization above 75%, and
then by ALOHA-dQT-NE with utilization around 65%. ALOHA-EB
is once again around 37%, and ALOHA-Q just below 50%. While
in the ramp scenario the fairness of ALOHA-dQT-NE was slightly
better than the one of ALOHA-dQT, the opposite is true in churn
scenario.

In general, the fairness of ALOHA-dQT protocol can be improved
at the cost of lower utilization, and vice versa. We can adjust both
by using fairness parameter 𝜖𝑟 described in section 3.2.

6 CONCLUSIONS
We introduce ALOHA-dQT, a novel channel access protocol based
on the use of reinforcement-learning in the context of slotted
ALOHA operating in a single-channel fully-connected wireless
network. All previous variants of slotted ALOHA based on rein-
forcement learning, including ALOHA-Q [4, 5], ALOHA-QTF [7],
and the deep-RL based approach of [19], assume that a transmitter
knows the fate of its transmission at the conclusion of the time slot.
In practice, this requires the presence of a repeater that rebroadcasts
on a separate channel all packets or explicit acknowledgments. In
contrast, ALOHA-dQT is based on an explicit acknowledgement
protocol. The acknowledgement protocol is based on the nodes
broadcasting, and iteratively merging, their information about the

channel history, and updates to the information history drive the
reinforcement learning and node adaptation. ALOHA-dQT offers
high network utilization, generally above 75%, with fair allocation
of bandwidth among active network nodes.

Reinforcement-learning based channel access protocols hold the
potential of offering high channel utilization, as the nodes can
coordinate their behavior, and we view ALOHA-dQT as a first
step in making these protocol suitable for practical use in ad-hoc
networks.
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