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Asymptotic F test in Regressions with Observations Collected at

High Frequency over Long Span

Daniel Pellatt and Yixiao Sun*

Department of Economics
UC San Diego

May 2020

Abstract

This paper proposes tests of linear hypotheses when the variables may be continuous-time
processes with observations collected at a high sampling frequency over a long span. Utilizing
series long run variance (LRV) estimation in place of the traditional kernel LRV estimation,
we develop easy-to-implement and more accurate F tests in both stationary and nonstationary
environments. The nonstationary environment accommodates endogenous regressors that are
general semimartinglales. The F tests can be implemented in exactly the same way as in
the usual discrete-time setting. The F tests are, therefore, robust to the continuous-time
or discrete-time nature of the data. Simulations demonstrate the improved size accuracy
and competitive power of the F tests relative to existing continuous-time testing procedures
and their improved versions. The F tests are of practical interest as recent work by Chang
et al. (2018) demonstrates that traditional inference methods can become invalid and produce
spurious results when continuous-time processes are observed on finer grids over a long span.

JEL Classification: C12, C13, C22
Keywords: continuous time model, F distribution, high frequency regression, long run

variance estimation

1 Introduction

The advent of high-frequency data poses challenges for classical inference and modeling proce-
dures. For linear regression analysis with observations collected over time, as the grid of observed
times becomes finer, continuous-time properties of the underlying processes may conflict with
traditional assumptions framed in a discrete-time setting. An immediate concern is the validity
of inference procedures when the data generating processes may be continuous-time in nature.
Another concern is automating procedures so that inference depends on fewer technical and the-
oretical modeling decisions. At what sampling frequency should a researcher consider moving to
an explicitly continuous-time framework? If continuous-time modeling requires accounting for
the sampling frequency, what measurement constitutes a single unit of time? A month or a year?
Designing trustworthy inference procedures in realistic sample sizes is also a concern.

*Email: dpellatt@ucsd.edu; yisun@ucsd.edu. Address correspondence to Department of Economics, UCSD,
9500 Gilman Drive, La Jolla, CA 92093-0508, USA
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In this paper we propose tests of linear hypotheses that aim to address the above concerns.
Recently Chang et al. (2018) considers statistical inference in this setting, highlighting how tra-
ditional hypothesis tests can become spurious when observations are collected at high frequency
over a long time span. They show that it is essential to use an autocorrelation-robust variance
or long run variance to construct test statistics and make valid inferences. They utilize the
continuous-time kernel LRV estimator developed in Lu and Park (2019). Adopting the tradi-
tional asymptotic specification that ensures the consistency of the kernel LRV estimator, they
show that the test statistics are asymptotically chi-squared. One takeaway from Chang et al.
(2018) is that not all kernel-based LRV estimation procedures can be applied without explicitly
accounting for the continuous-time environment. A “high-frequency-compatible” bandwidth is
desired. It is interesting that the parametric plug-in bandwidth choice of Andrews (1991) is
high-frequency-compatible while the nonparametric analogue of Newey and West (1994) is not.

In this paper we build on Chang et al. (2018) and propose convenient and trustworthy tests
in regressions with high-frequency data collected over a long span. We consider both common
regressions with stationary regressors and cointegrating regressions with nonstationary regressors.
Due to self-normalization, our tests yield valid inference in the continuous-time setting and would
also be valid if the observations were generated from a discrete-time process satisfying standard
linear regression assumptions. A practitioner does not have to make any difficult decisions —
they can simply use all the observed data, and they can compute the test statistic and perform
hypothesis testing in exactly the same way in both the discrete-time and continuous-time settings.

We make several contributions along different dimensions. First, we adopt the more recent
fixed-smoothing asymptotic framework. In the discrete-time setting, it is well known that ran-
domness in LRV estimators can lead to significant size distortion of the associated chi-squared
tests in finite samples. The same problem is present in the continuous-time setting. By employ-
ing the fixed-smoothing asymptotic framework as in Sun (2011, 2013), we show that our test
statistics are asymptotically F distributed in both stationary and nonstationary settings. The F
approximations capture the randomness of the LRV estimators and are more accurate than the
chi-squared approximations.

Second, the asymptotic F theory is based on the series LRV estimator, and we characterize
its asymptotic bias and variance in the high-frequency setting. The series LRV estimator involves
projecting the discretized data onto a sequence of orthonormal basis functions and then taking
an average of the outer-products of the projection coefficients. The number of orthonormal basis
functions, denoted by K, is the smoothing parameter in this type of nonparametric variance
estimator. Based on the asymptotic bias and variance, we develop a data-driven and automated
choice of K in the high-frequency setting. Our rule of selecting of K extends that of Phillips
(2005), which considers the series LRV estimator in the low-frequency discrete-time setting1.
Furthermore, we allow for a general class of orthonormal basis functions while Phillips (2005)
focuses on sine and cosine functions. See Lazarus et al. (2018) for some practical guidance on
using the series LRV estimator with low-frequency discrete-time data.

Third, in a discrete-time cointegrating model, it is common to accommodate endogenous re-
gressors. Following this practice, we allow the regressors to be endogenous in the continuous-time
nonstationary setting. This constitutes another departure from Chang et al. (2018) which con-
siders only the case with exogenous regressors. To deal with the endogeneity, we follow Hwang

1Typical examples of low-frequency discrete-time data inlcude daily, weekly, monthly, and yearly data. The
frequency here refers to the sampling frequency, namely the number of times we can draw observations per unit of
time. It does not refer to the speed that a process completes a cycle.
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and Sun (2018), but we have to introduce some modifications to facilitate the asymptotic analy-
sis. However, the continuous-time test statistic is computationally identical to the discrete-time
statistic in Hwang and Sun (2018), and they are shown to have the same limiting F distribution.

Fourth, in the nonstationary setting, we establish the asymptotic F distribution for a wider
class of regressor processes. The scaled regressor process may converge to a general stochastic
process that includes the Brownian motion as a special case. To a great extent, our asymptotic F
theory goes beyond its counterpart in the low-frequency discrete-time setting where the nonsta-
tionary process is a unit root process and thus converges to a Brownian motion after appropriate
normalization.

Finally, we show that in both stationary and nonstationary settings, our F test remains asymp-
totically valid when the regression error contains additional low-frequency discrete-time measure-
ment noise. In both settings, the discrete measurement noise is dominated by the continuous-time
error component and hence does not affect our asymptotic theory.

The class of series LRV estimators is closely related to the class of kernel LRV estimators; see,
for example, the discussion in Sun (2011). In essence, a series LRV estimator can be regarded
as a kernel LRV estimator with a generalized kernel function. The fixed-K approach adopted
here is analogous to the “fixed-b” approach employed in Kiefer and Vogelsang (2005). Fixed-b
asymptotics can be developed for the kernel-based test statistics in Chang et al. (2018). However,
the limiting distributions are nonstandard and hard to use. They can also be nonpivotal in the
nonstationary setting (see Vogelsang and Wagner (2014) for the possible nonpivotality). This
provides a further justification on the use of series LRV estimation in designing convenient and
accurate inference procedures in finite samples.

The outline of the paper is as follows. In Section 2 we introduce the basic setup of the
regression problem at hand. In Section 3 we consider the case where the regressors are stationary
and consider a data-driven approach to selecting K. In Section 4 we consider the nonstationary
case with cointegration. Section 5 evaluates the finite sample performances of the proposed F
tests, Section 6 considers the impact of an additive error component of discrete nature, and
Section 7 concludes. Proofs are given in the appendix.

2 Basic setting and Assumptions

Consider a continuous-time regression of the form

Yt = X ′tβ0 + Ut,

where each of Yt ∈ R, Xt ∈ Rd×1 and Ut ∈ R is a continuous-time process for t ∈ [0, T ] with
sample paths that are right continuous with left limits (cadlag). We will assume that Ut is
stationary and E(Ut|Xs, s ∈ [0, T ]) = 0.

We do not observe the processes continuously. Instead, for some small sampling interval δ,
we observe {xi, yi}ni=1 where2

xi = Xiδ; yi = Yiδ

for i = 1, ..., n and n = T/δ. {(xi, yi)} satisfies

yi = x′iβ0 + ui,

2For notational simplicity, we assume that T/δ is an integer.

3



where ui = Uiδ is unobserved. We are interested in testing H0 : Rβ0 = r versus H1 : Rβ0 6= r for
some p× d matrix R with a full row rank.

Given the discrete data {xi, yi}ni=1 , we estimate β0 by

β̂D =

(
n∑
i=1

xix
′
i

)−1 n∑
i=1

xiyi.

Define

β̂C =

[∫ T

0
XtX

′
tdt

]−1 [∫ T

0
XtYtdt

]
,

which is the least-square analogue of β̂D in the space L2 [0, T ] using the continuous data {(Xt, Yt) , t ∈ [0, T ]}.
β̂C is not feasible, and we use it only as a benchmark for comparison.

3 The Stationary Case

In this section, we consider the case that Xt is a stationary process and defer the case with a
nonstationary Xt to Section 4. An intercept can be included in Xt.

3.1 The test statistic

To make inferences on Rβ0, we often first find the rate of convergence of β̂D − β0, establish the
asymptotic distribution of a rescaled version of β̂D − β0 and then construct the test statistic
based on an estimated asymptotic variance. Instead of following these conventional steps, we
use heuristic arguments and construct the test statistic directly. The approximate variance of
β̂D − β0 is (

n∑
i=1

xix
′
i

)−1

var

(
n∑
i=1

xiui

)(
n∑
i=1

xix
′
i

)−1

.

To test the null of Rβ0 = r, we construct the test statistic

FT =
(
Rβ̂D − r

)′ R( n∑
i=1

xix
′
i

)−1

v̂ar

(
n∑
i=1

xiûi

)(
n∑
i=1

xix
′
i

)−1

R′

−1 (
Rβ̂D − r

)
/p,

where ûi = yi−x′iβ̂D and v̂ar (
∑n

i=1 xiûi) is an estimator of the approximate variance of
∑n

i=1 xiui.
We use the series estimator for the approximate variance. Let {φj (·)} be some basis functions

on L2[0, 1]. The series variance estimator is given by

v̂ar

(
n∑
i=1

xiûi

)
=

1

K

K∑
j=1

[
n∑
i=1

φj

(
i

n

)
(xiûi)

]⊗2

,

where a⊗2 = aa′ for any vector a and K is a tuning parameter. Note that the basis functions are
evaluated at i/n instead of i/T. We have, therefore, effectively ignored the high-frequency nature
of the time series observations. The test statistic is then

FT =
(
Rβ̂D − r

)′ R( n∑
i=1

xix
′
i

)−1
1

K

K∑
j=1

[
n∑
i=1

φj

(
i

n

)
(xiûi)

]⊗2( n∑
i=1

xix
′
i

)−1

R′

−1 (
Rβ̂D − r

)
/p.
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The form of the test statistic is exactly the same as what we would use for a standard time series
regression. To construct the test statistic, we can ignore the fact that our observations come from
sampling continuous-time processes.

The test statistic FT takes a self-normalized form. This will become more transparent if we
consider the special case that d = p = 1 and K = 1. In this case, we take R = 1 without loss of
generality, and the test statistic becomes

FT =

( ∑n
i=1 (xiui)∑n

i=1 φ
(
i
n

)
(xiûi)

)2

:= (tT )2 .

The numerator in the t statistic tT is a simple sum of xiui while the denominator is a weighted sum
of xiûi with non-diminishing and bounded weights. We expect the numerator and denominator
to be of the same order of magnitude no matter what δ is. As a result, tT and FT will be
stochastically bounded for any sampling interval δ. In this sense, the denominator normalizes
the numerator, and thus no additional normalization is needed. This form of self-normalization
leads to the invariance of our testing procedure to the sampling interval, which we will develop
in greater detail.

We consider the asymptotics along the limiting sequence δ → 0 and T → ∞. The asymp-
totics would best reflect the finite sample situation where the observations are collected at high
frequency (δ → 0) over a long span (T → ∞). To develop the more accurate fixed-smoothing
asymptotic approximations, we hold K fixed as δ → 0 and T → ∞. For the stationary case in
this section, we maintain the assumptions below.

Assumption 3.1 As δ → 0 and T →∞,

1

n

[nr]∑
i=1

xix
′
i =

1

T

∫ Tr

0
XtX

′
tdt+ op (1)

and
1

T

∫ Tr

0
XtX

′
tdt

p→ rQ

uniformly over r ∈ [0, 1] for some positive definite matrix Q.

Assumption 3.2 As δ → 0 and T →∞,

δ√
T

[nr]∑
i=1

xiui =
1√
T

∫ Tr

0
XtUtdt+ op (1)

uniformly over r ∈ [0, 1], and

1√
T

∫ Tr

0
XtUtdt

d→ Ω1/2Wd (r) ,

where Wd (r) is the d× 1 standard Brownian motion process,

Ω = lim
T→∞

var

(
1√
T

∫ T

0
XtUtdt

)
=

∫ ∞
−∞

ΓXU (τ) dτ,

ΓXU (τ) = E
[
XtUtUt−τX

′
t−τ
]
, and Ω1/2 is the matrix square root of Ω so that Ω1/2

(
Ω1/2

)′
= Ω.
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Assumption 3.3 For j = 1, . . . ,K, each function φj(·) is piecewise monotonic, twice continu-

ously differentiable, and
∫ 1

0 φj(t)dt = 0. Also, {φj (·)}Kj=1 form an orthonormal set in L2[0, 1].

In Assumption 3.2, we view T−1/2
∫ Tr

0 XtUtdt for r ∈ [0, 1] as a random element of Dd[0, 1],
the space of cadlag functions from [0, 1] to Rd×1 endowed with the Skorokhod topology. The
weak convergence in Assumption 3.2 is defined on this space. The assumption constrains the
magnitude of cumulative growth in the jump components of the process XtUt and stipulates that
the continuous-time integral can be recovered from discrete observations as δ → 0 and T →∞.

Sufficient conditions for Assumptions 3.1 and 3.2 can be found in Chang et al. (2018) (As-
sumptions A and C1). Note that

δ√
T

[nr]∑
i=1

xiui =
δ√
nδ

[nr]∑
i=1

xiui =
1√
n/δ

[nr]∑
i=1

xiui.

Because {xiui} are highly correlated for a small δ, in order to obtain a well-defined weak limit, we
need to normalize the partial sum by

√
n/δ, which is larger than the usual normalization factor√

n by an order of magnitude. Assumption 3.3 is standard in the literature on orthonormal series
variance estimation. See, for example, Assumption 1(b) in Sun (2014a).

Let Λ (n, δ) =
√
n/δ, which is the effective scale of

∑n
i=1 xiui. Then

√
T
[
β̂D − β0

]
= δΛ (n, δ)

[
β̂D − β0

]
=

(
1

δΛ (n, δ)2

n∑
i=1

xix
′
i

)−1
1

Λ (n, δ)

n∑
i=1

xiui.

Using Assumption 3.1, we have

1

δΛ (n, δ)2

n∑
i=1

xix
′
i =

1

n

n∑
i=1

XiδX
′
iδ =

1

T

∫ T

0
XtX

′
tdt+ op(1).

Using Assumption 3.2, we have

1

Λ (n, δ)

[nr]∑
i=1

xiui =
1

Λ (n, δ)

[nr]∑
i=1

(XiδUiδ) =
1√
T

∫ Tr

0
XtUtdt+ op(1).

Therefore,

√
T (β̂D − β0) =

[
1

T

∫ T

0
XtX

′
tdt+ op(1)

]−1 [
1√
T

∫ T

0
XtUtdt+ op(1)

]
=

[
1

T

∫ T

0
XtX

′
tdt

]−1 [
1√
T

∫ T

0
XtUtdt

]
+ op (1)

=
√
T (β̂C − β0) + op (1) .

Assumptions 3.1 and 3.2 ensure that
√
T (β̂D − β0) and

√
T (β̂C − β0) are asymptotically

equivalent. Invoking these two assumptions again, we obtain the asymptotic distribution of√
T (β̂D − β) and another key result in the lemma below.
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Lemma 3.1 Let Assumptions 3.1 and 3.2 hold. Then

√
T (β̂D − β0)

d→ Q−1Ω1/2Wd (1) .

In addition, let Assumption 3.3 hold. Then

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiûi

d→ Ω1/2

∫ 1

0
φj (r) dWd(r)

jointly for j = 1, 2, ...,K.

Lemma 3.1 shows that β̂D converges to β0 at the rate of
√
T . We do not obtain the rate of√

n, which is the rate for the discrete-time data with n observations. For high-frequency data
sampled from a continuous-time process, the effective sample size is the time span T rather than
the number of observations n.

Using Lemma 3.1, we have, under the null hypothesis:

FT = δΛ (n, δ)
(
Rβ̂D − r

)′
×

R( 1

δΛ (n, δ)2

n∑
i=1

xix
′
i

)−1
1

K

K∑
j=1

[
1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
(xiûi)

]⊗2(
1

δΛ (n, δ)2

n∑
i=1

xix
′
i

)−1

R′

−1

× δΛ (n, δ)
(
Rβ̂D − r

)
/p

d→
[
RQ−1Ω1/2Wd (1)

]′RQ−1Ω1/2 1

K

K∑
j=1

[∫ 1

0
φj (r) dWd(r)

]⊗2

Ω1/2Q−1R′


−1 [

RQ−1Ω1/2Wd (1)
]
/p.

Note that RQ−1Ω1/2Wd (r)
d
=
[
RQ−1ΩQ−1R′

]1/2
Wp (r) for a p × 1 standard Brownian motion

process Wp (·) and that RQ−1ΩQ−1R′ is of a full rank. We have

FT
d→ [Wp (1)]′

 1

K

K∑
j=1

[∫ 1

0
φj (r) dWp(r)

]⊗2

−1

Wp (1) /p.

Under Assumption 3.3,
[∫ 1

0 φj (r) dWp(r)
]⊗2

is iid Wishart distributed. The above limiting

distribution is equal to Hotelling’s T 2 distribution. In view of the relationship between the T 2

and F distributions (e.g., Bilodeau and Brenner (2010)), we have the following theorem.

Theorem 3.1 Let Assumptions 3.1 – 3.3 hold. Then, for a fixed K ≥ p,

FT
d→ K

K − p+ 1
Fp,K−p+1,

where Fp,K−p+1 is the F distribution with degrees of freedom p and K − p+ 1.

If we use the OLS variance estimator that ignores the autocorrelation, we would construct
the test statistic as follows

FT,OLS =
(
Rβ̂D − r

)′
×

Rσ̂2
u

(
n∑
i=1

xix
′
i

)−1

R′

−1 (
Rβ̂D − r

)
/p
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where σ̂2
u = n−1

∑n
i=1 û

2
i is an estimator of the variance σ2

u of Ut. Then

δFT,OLS =
√
T
(
Rβ̂D − r

)′
×

Rσ̂2
u

(
1

n

n∑
i=1

xix
′
i

)−1

R′

−1
√
T
(
Rβ̂D − r

)
/p

→d
[
RQ−1Ω1/2Wd (1)

]′
×
[
σ2
uRQ

−1R′
]−1

[
RQ−1Ω1/2Wd (1)

]
/p.

So, as δ → 0, FT,OLS → ∞ with probability approaching one. Consequently, using FT,OLS for
inference can lead to the spurious finding of a significant relationship that does not actually exist.
See Chang et al. (2018) for more details.

To illustrate the key difference between the variance estimators underlying FT and FT,OLS ,
consider the special case with K = d = p = 1. Then the ratio of the autocorrelation robust
variance estimator to the OLS variance estimator is[∑n

i=1 φj
(
i
n

)
(xiûi)

]2
σ̂2
u

∑n
i=1 x

2
i

=
Λ (n, δ)2

n

[
1

Λ(n,δ)

∑n
i=1 φj

(
i
n

)
xiûi

]2

σ̂2
u

1
n

∑n
i=1 x

2
i

=
1

δ
·

[
1

Λ(n,δ)

∑n
i=1 φj

(
i
n

)
xiûi

]2

σ̂2
u

1
n

∑n
i=1 x

2
i

.

Note that the second factor converges to a nondegenerate distribution. So the ratio will diverge
at the rate of 1/δ. That is, by ignoring the high-autocorrelation of xiui, especially when δ is
small, the OLS variance estimator under-estimates the true variation of the OLS estimator by a
factor of 1/δ. This explains why FT is stochastically bounded while FT,OLS explodes as δ → 0
and T →∞.

3.2 Optimal choice of K

In this subsection, we establish the MSE-optimal choice of K. Our theoretical results are the
high-frequency continuous-time counterparts of Phillips (2005), which develops the MSE-optimal
choice of K in LRV estimation for a fully observed discrete-time process. We allow for more
general basis functions while Phillips (2005) considers only sine and cosine basis functions. Thus,
even for usual discrete-time processes, our theoretical development goes beyond Phillips (2005).

As it is well known in the fixed-smoothing literature, the fixed-K framework does not allow
us to develop an optimal choice of K, as the (squared) asymptotic bias and variance are not of
the same order of magnitude. Here we follow the large HAR literature and resort to the more
traditional increasing K asymptotics under which K → ∞ in order to find an optimal K to
balance the (squared) asymptotic bias and variance.

To abstract away the technical issues that will not affect the practical implementation, we
define the infeasible variance estimator:

Ω̂∗ =
1

K

K∑
j=1

[
1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
(xiui)

]⊗2

.

Ω̂∗ is infeasible because ui is not observed. We choose K to minimize the asymptotic MSE of
Ω̂∗. We could alternatively follow Andrews (1991) to find the approximate and truncated MSE
of the feasible estimator Ω̂ and use it to guide the choice of K. These two approaches will lead
to the same formula for the MSE-optimal K. Here we opt for the simpler approach.
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Assumption 3.4 The following holds as K →∞, δ → 0 and T →∞ :

(i) var
[
vec(Ω̂∗)

]
=var

[
vec

(
Ω1/2 1

K

∑K
j=1

[∫ 1
0 φj (r) dWd (r)

]⊗2
Ω1/2

)]
(1 + o(1)) ;

(ii) For ΓXU (τ) = E
(
XtUtUt−τX

′
t−τ
)
,

δ
∞∑

k=−∞
(kδ)2 ‖ΓXU (kδ)‖ ≤ ∞ and

∫ ∞
−∞

τ2 ‖ΓXU (τ)‖ dτ <∞;

(iii) δ
∑n−1

k=−n+1 ΓXU (kδ)−
∫ T
−T ΓXU (τ) dτ = O(δ);

(iv) For some constant C, supr∈[0,1] |φj (r)| ≤ C, supr∈[0,1]

∣∣∣φ̇j (r)
∣∣∣ ≤ jC, φ2

j (1) + φ2
j (0) ≤ C,

and for some constant cφ 6= 0,

lim
K→∞

− 1

K3

K∑
j=1

1

2

∫ 1

0
φj (r) φ̈j (r) dr

 = cφ

where φ̇j and φ̈j are the first and second order derivatives of φj .

Assumption 3.4(i) is a high-level assumption. We assume that the limit of the exact fi-
nite sample variance of vec(Ω̂∗) is equal to the variance of its limiting distribution, namely the
asymptotic variance. From a theoretical point of view, this is plausible if we have enough mo-
ment conditions. Alternatively, we simply use the asymptotic variance in place of the exact finite
sample variance to obtain an approximate MSE. This is, in fact, a typical approach for smoothing
parameter choice in a nonparametric setting when the exact finite sample variance is difficult, if
not impossible, to obtain.

Assumption 3.4(ii) imposes some conditions on the integrability of the covariance function
ΓXU (τ) . Note that∣∣∣∣∣δ

∞∑
k=−∞

(kδ)2 ‖ΓXU (kδ)‖ −
∫ ∞
−∞

τ2 ‖ΓXU (τ)‖ dτ

∣∣∣∣∣
≤

∞∑
k=−∞

[∫ (k+1)δ

kδ

∣∣∣[(kδ)2 ‖ΓXU (kδ)‖ − τ2 ‖ΓXU (τ)‖
]∣∣∣ dτ]

≤
∞∑

k=−∞

∫ (k+1)δ

kδ
max

t∈[kδ,(k+1)δ]

∂
[
t2 ‖ΓXU (t)‖

]
∂t

δdτ

=
∞∑

k=−∞
max

t∈[kδ,(k+1)δ]

∂
[
t2 ‖ΓXU (t)‖

]
∂t

· δ2.

If the above sum is finite and
∫∞
−∞ τ

2 ‖ΓXU (τ)‖ dτ < ∞, then δ
∑∞

k=−∞ (kδ)2 ‖ΓXU (kδ)‖ < ∞.
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Similarly,

δ
n−1∑

k=−n+1

ΓXU (kδ)−
∫ T

−T
ΓXU (τ) dτ

=

n−1∑
k=−n+1

[∫ (k+1)δ

kδ
[ΓXU (kδ)− ΓXU (τ)] dτ

]
+O (δ)

=

[
n−1∑

k=−n+1

max
t∈[kδ,(k+1)δ]

∂ΓXU (t)

∂t
δ +O (1)

]
δ.

Therefore, Assumption 3.4(iii) holds if
∑n−1

k=−n+1 maxt∈[kδ,(k+1)δ]
∂ΓXU (t)

∂t δ <∞.
Assumption 3.4(iv) contains some additional mild conditions on the basis functions. When

the derivatives do not exist on a set of measure zero, we can let the derivatives take any finite
value on this set. The assumption is satisfied for the sine and cosine basis functions such as

φ2j−1(r) =
√

2 cos (2πjr) and φ2j(r) =
√

2 sin (2πjr) for j = 1, . . . ,K/2. (1)

For the above set of Fourier bases, we have

φ̈2j−1(r) = −
√

2 (2πj)2 cos (2πjr) and φ̈2j(r) = −
√

2 (2πj)2 sin (2πjr) for j = 1, . . . ,K/2,

and hence

cφ = − lim
K→∞

1

K3

K∑
j=1

1

2

∫ 1

0
φj (r) φ̈j (r) dr

= lim
K→∞

1

K3

K/2∑
j=1

4π2j2

2

[∫ 1

0
2 sin (2πjr)2 dr +

∫ 1

0
2 cos (2πjr)2 dr

]

= lim
K→∞

1

K3

K/2∑
j=1

4π2j2 =

∫ 1/2

0
4π2x2dx =

π2

6
.

We will use the Fourier bases in our simulation study.
For a kernel function k (·) with Parzen exponent q, the asymptotic bias of the kernel LRV

estimator depends on the “Parzen parameter” ck defined by

ck = lim
x→0

1− k (x)

xq
.

The parameter cφ in Assumption 3.4(iv) plays the same role in series LRV estimation as ck does
in kernel LRV estimation. Here, the assumptions imposed on the basis functions ensure that the
resulting series LRV estimator is analogous to a kernel LRV estimator with a second-order kernel
(i.e., its Parzen exponent q is equal to 2). There are other sets of basis functions such as Legendre
polynomials that deliver series LRV estimators with asymptotic properties similar to the kernel
LRV estimators based on a first-order kernel (e.g., the Bartlett kernel). See Lazarus et al. (2018)
for more discussion. Hwang and Sun (2018) discuss why the set of Legendre polynomials may
not be a good choice. We focus on second-order series LRV estimators in this paper.
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Theorem 3.2 Let Assumption 3.4 hold.
(i) The variance of Ω̂∗ satisfies

var
[
vec(Ω̂∗)

]
=

1

K
(Ω⊗ Ω) (Id2 + Kdd) (1 + o (1)) ,

where Id2 is the d2 × d2 identity matrix and Kdd is the d2 × d2 commutation matrix.
(ii) The bias of Ω̂∗ satisfies

E
(

Ω̂∗ − Ω
)

= −cφ
K2

T 2
B (1 + o (1)) +O

(
δ +

(log n)2

T 2
+

1

T
+ o

(
K2

T 2

))
,

where

B =

∫ ∞
−∞

τ2ΓXU (τ) dτ.

The variance and bias expressions are similar to those in the case with low-frequency discrete-
time data. Their interpretations are also similar. For example, when XtUt is positively autocor-
related such that ΓXU (τ) > 0 for all τ, then B > 0 and Ω̂∗ is biased downward. This is entirely
analogous to the discrete-time case. Note that the dominating bias is equal to −cφK2T−2B
instead of −cφK2n−2B. The latter can be shown to be the dominating bias in the discrete-time
case with n observations. A takeaway from this comparison is that the effective sample size for
high-frequency data is the time span T instead of the number of observations n over this time
span. When we use the effective sample size T in the bias expression, the asymptotic bias de-
pends only on B, which is an intrinsic feature of the continuous-time process. In particular, the
asymptotic bias does not depend on δ. This may appear counter-intuitive. We may argue that
the process becomes more persistent for a smaller δ, and so we expect a larger absolute bias for
a smaller δ. Such an argument is valid if we represent the asymptotic bias in terms of n, namely
−cφ

(
K2n−2

) (
Bδ−2

)
. Smaller δ indeed leads to a larger bias for a given n, but n becomes larger

for a smaller δ. The net effect is that the asymptotic bias depends on the effective sample size T
but not n or δ separately.

Define3

MSE(Ω̂∗) = Evec
(

Ω̂∗ − Ω
)′

vec
(

Ω̂∗ − Ω
)
,

which is the mean square error of vec(Ω̂∗). It follows from Theorem 3.2 that

MSE(Ω̂∗)

= tr [{Ω⊗ Ω} (Id2 + Kdd)]
1

K
+ c2

φvec (B)′ vec (B)
K4

T 4

+ o

(
1

K
+
K4

T 4

)
+O

(
δ2 +

(log n)4

T 4
+

1

T 2

)
.

3It is possible to weigh different elements of vec
(

Ω̂∗ − Ω
)

differentlly by defining

MSE(Ω̂∗) = Evec
(

Ω̂∗ − Ω
)′
Wvec

(
Ω̂∗ − Ω

)
for some matrix W. Here we have implicitly chosen W to be an identity matrix.

11



Ignoring the terms that will be shown to be of smaller order and optimizing MSE(Ω̂∗) for K, we
obtain the formula4

K = κ (Ω, B)1/5 T 4/5, (2)

where

κ (Ω, B) :=

(
tr [{Ω⊗ Ω} (Id2 + Kdd)]

4c2
φvec [B]′ vec [B]

)
.

When K = κ (Ω, B)1/5 T 4/5, the first two terms in MSE(Ω̂∗) are of order T−4/5. To ensure
the terms that we ignore are indeed of smaller order, we require that

δ2 +
(log n)4

T 4
+

1

T 2
= o

(
T−4/5

)
.

If we set δ = O(T−τ ), then we require τ > 2/5.
In the case of low-frequency discrete-time data with sample size n, the optimal choice of K

is given by
KD = κ (ΩD, BD)1/5 n4/5, (3)

where

κ (ΩD, BD) :=
tr [{ΩD ⊗ ΩD} (Id2 + Kdd)]

4c2
φvec [BD]′ vec [BD]

.

See Phillips (2005). In the above, ΩD and BD are the discrete analogues of Ω and B. If we use
the low-frequency formula for K and set K = cn4/5 for some constant c > 0, then we obtain
a sub-optimal rate of K for the high-frequency data. The choice of K = cn4/5 is too large for
high-frequency data. For this type of data, the neighboring observations are highly correlated,
and a smaller K is desired.

Now suppose we pretend that {zi = xiui}ni=1 is a low-frequency discrete-time process with
n observations, and we use a parametric AR(1) plug-in approach to implement (3). We fit an
AR(1) model to each component of zi :

zi,j = ρjzi−1,j + ej for j = 1, 2, ..., d

with the AR parameter and error variance estimated by

ρ̂j =

∑n
i=2 zi,jzi−1,j∑n
i=2 z

2
i−1,j

and σ̂2
j =

1

n

n∑
i=2

(zi,j − ρ̂jzi−1,j)
2 .

On the basis of the above plug-in estimates, we compute

κ̂D =
1

8c2
φ

 d∑
j=1

ρ̂2
j σ̂

4
j

(1− ρ̂j)8

−1 d∑
j=1

σ̂4
j

(1− ρ̂j)4


and let

K̂D = κ̂
1/5
D n4/5. (4)

4Given that K is an integer, we should round κ (Ω, B)1/5 T 4/5 up to the next integer and use it as K. We ignore
this for the theoretical analysis but implement it in the simulation study.
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The question is whether the so obtained K̂D is of the optimal order T 4/5 with probability
approaching one. On the surface, the answer is no, as K̂D is apparently of order n4/5. However,
under the AR(1) plug-in implementation, κ̂D is not a fixed constant. In fact, following Chang
et al. (2018) (Lemma 4.2), we can show that as δ → 0 and T →∞,

ρ̂j = 1− c1jδ + op (δ) and σ̂2
j = c2jδ + op (δ)

for some constants c1j > 0 and c2j > 0. Essentially, {zi,j} is a highly persistent process with the
autocorrelation approaching unity at the rate of δ. The smaller δ is, the higher the autocorrelation
is. As δ → 0, {zi,j} is effectively a near unit root process with the innovation variance proportional
to the sampling interval δ. Plugging the above results into κ̂D yields

κ̂D =
1

8c2
φ

 d∑
j=1

(c2j)
2 δ2

(c1jδ)
8

−1 d∑
j=1

(c2j)
2 δ2

(c1jδ)
4

 (1 + op (1))

=
1

8c2
φ

 d∑
j=1

c2
2j

c8
1j

−1 d∑
j=1

c2
2j

c4
1j

 δ4 (1 + op (1)) .

As a result,

K̂D = κ̂
1/5
D n4/5 =

 1

8c2
φ

 d∑
j=1

c2
2j

c8
1j

−1 d∑
j=1

c2
2j

c4
1j

1/5

δ4/5n4/5 (1 + op (1))

=

 1

8c2
φ

 d∑
j=1

c2
2j

c8
1j

−1 d∑
j=1

c2
2j

c4
1j

1/5

T 4/5 (1 + op (1)) .

With probability approaching one, the rate of K̂D is the same as the optimal rate of T 4/5. So the
AR(1) plug-in implementation leads to a rate-optimal choice of K. Chang et al. (2018) call this
feature of the AR(1) plug-in high-frequency compatible.

It should be noted that in the discrete-time setting it is typical to truncate the AR estimator
at 0.97. See footnote 8 of Andrews (1991). Here, we should not follow this practice, as we rely
on the convergence of 1− ρ̂j to zero at the rate of δ to achieve the high-frequency compatibility.
Had we truncated the initial AR estimator at 0.97 or any fixed number less than 1, κ̂D would be
bounded away from zero with probability approaching one. As a result, K̂D would be of order
n4/5 and we would lose the high-frequency compatibility. Computationally, without truncating
the initial AR estimator, we may have 1− ρ̂j = 0 and encounter the “divided by zero” problem.
To avoid this, we can truncate the AR estimator so that 1− ρ̂j is larger than the machine epsilon.

Note that the high-frequency compatible rate of K is O
(
T 4/5

)
, which is smaller than n4/5 by

an order of magnitude. So, when T is small, K may be small too, and the fixed-K asymptotics
may be more accurate.

To conclude this section, we have shown that, in the stationary case, we do not need to change
our estimation and inference methods to account for the high-frequency nature of the data. We
can use exactly the same approach as we would do in the case with low-frequency data: the test
statistic is constructed in the same way, and the smoothing parameter is chosen in the same
way. The only caveat is that we should use a parametric AR(1) plug-in to obtain the data-driven
smoothing parameter. Using the nonparametric approach of Newey and West (1994) will lead to
a sub-optimal rate for the smoothing parameter. See Chang et al. (2018) for the details.
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4 The Nonstationary Case

In this section, we consider linear hypothesis testing for cointegrating regressions in the continuous-
time setting. The model is

Yt = α0 +X ′tβ0 + U0t,

where each of Xt ∈ Rd×1 is a nonstationary process and U0t is a stationary zero-mean process. All
processes are assumed to be right continuous with left limits almost surely. As in the stationary
case, only a discrete set of points {xi, yi}ni=1 are observed,

xi = Xiδ; yi = Yiδ,

for i = 1, ..., n and n = T/δ. The discrete-time model is

yi = α0 + x′iβ0 + u0i.

The object of interest is the slope parameter β0, and we aim at testing H0 : Rβ0 = r against
H0 : Rβ0 6= r where R ∈ Rp×d is of rank p. Note that here we single the intercept out of the
slope parameter, and the hypothesis of interest involves only the slope parameter.

Following the discrete-time framework of Hwang and Sun (2018), we allow dependence be-
tween the regressor processes and the regression error process. We consider the same limiting
experiment where δ → 0 and T →∞ for a fixed K and maintain the following assumptions.

Assumption 4.1 For a sequence of d× d diagonal matrices (ΛT ),(
Λ−1
T XTr

1√
T

∫ Tr
0 U0sds

)
⇒
(
X◦ (r)
B(r)

)
for r ∈ [0, 1]

as T →∞, where X◦(·) is a continuous (a.s.) semimartingale and

B(r) = [X◦ (r)]′ θ0 + σ0W0(r), r ∈ [0, 1], (5)

for σ0 6= 0 and a standard Brownian motion W0(·) that is independent of X◦(·).

Assumption 4.2 (i) Λ−1
T X0 = op(1). (ii) As δ → 0 and T →∞,

δ√
T

[nr]∑
i=1

u0i =
1√
T

∫ Tr

0
U0tdt+ op(1),

uniformly over r ∈ [0, 1].

Assumption 4.3 Let

ξj =

∫ 1

0
φj(r)dX

◦(r), ηj =

∫ 1

0
φj(r)X

◦(r)dr, j = 1, . . . ,K,

and
ξ = (ξ1, . . . , ξK)′ ∈ RK×d, η = (η1, . . . , ηK)′ ∈ RK×d, ζ = (η, ξ) ∈ RK×2d.

With probability one, ζ ′ζ and ξ′ξ are of (full) ranks 2d and d, respectively.

14



Similar to Assumption 3.2, the weak convergence in Assumption 4.1 is defined on Dd+1[0, 1],
the space of cadlag functions from [0, 1] to R(d+1)×1 endowed with the Skorokhod topology.

Assumption 4.1 is the continuous-time analogue of the traditional invariance principles. For
example, in the discrete-time setting, Vogelsang and Wagner (2014) model xi as xi =

∑i
s=1 uxs+

x0 and assume that {uxi} is correlated with {u0i} and that T−1/2
∑[nr]

i=1(u0i, u
′
xi)
′ converges weakly

to a Brownian motion. For intuition, Assumption 4.1 permits the form Xt =
∫ t

0 Uxsds+X0 where
(Uxt) may be correlated with (U0t) and X◦ is Brownian motion. However, Assumption 4.1 also
admits potentially desirable properties of (Xt) such as non-differentiability. Lu and Park (2019)
discusses sufficient conditions under which invariance principles hold in the discrete-time and
continuous-time settings. Additional references can be found in Chang et al. (2018) where it is
noted that wide classes of continuous-time processes, such as general null recurrent diffusions
and jump diffusions, satisfy the requirement that Λ−1

T XT (·) converges weakly in Dd[0, 1] for some
sequence ΛT . Our assumption that X◦ takes continuous sample paths (a.s.) is utilized only to
simplify the exposition. Analogs of Assumptions A and D2 in Chang et al. (2018) could be used
in its place.

As in the stationary case, Assumption 4.2 constrains the jump intensity and magnitude in
the error process (U0t) and assumes that the gap between the (scaled) average of the discrete
observations and the scaled integral of the continuous process is asymptotically negligible. Mild
primitive conditions under which Assumption 4.2 is satisfied are discussed in greater detail in
Chang et al. (2018). Technical assumption 4.3 specifies that if we reduce attention from the
typically infinite dimensional object X◦ to a finite dimensional set of (random) vectors, there are
no inadvertent further reductions in dimension. It essentially requires that, with probability one,
the L2[0, 1] projection coefficients of components of X◦ in the directions φj and φ̇j , j = 1, . . . ,K,
form 2K linearly independent vectors. For a given choice of {φj}Kj=1, such as the first K Fourier
basis functions, this is satisfied by virtually all continuous-time processes used in practice.

Now we detail the testing procedure. Let

∆T,δxi =

√
TΛ−1

T

δ
∆xi and ∆xi = xi − xi−1.

To alleviate the notational burden, we write ∆T,δxi as ∆̃xi.
Augmenting the discrete-time model by ∆̃xi, we obtain

yi = α0 + x′iβ0 + ∆̃x′iθ0 + u0·xi,

where
u0·xi = u0i − ∆̃x′iθ0.

Assume that K ≥ 2d+ 1. The testing steps are as follows:

1. Create the transformed data {Wy
j ,Wx

j ,W∆̃x
j }Kj=1 where the K weighted observations are

described for j ∈ {1, . . . ,K} by

Wy
j =

1√
n

n∑
i=1

φj

(
i

n

)
yi, Wx

j =
1√
n

n∑
i=1

φj

(
i

n

)
xi,

W∆̃x
j =

1√
n

n∑
i=1

φj

(
i

n

)
∆̃xi. (6)
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Denote the matrix forms of transformed data by

Wy = (Wy
1, . . . ,W

y
K)′

K×1

, Wx = (Wx
1 , . . . ,Wx

K)′

K×d
, W∆̃x = (W∆̃x

1 , . . . ,W∆̃x
K )′

K×d
.

2. Regress Wy on Wx and W∆̃x by OLS (the transformed and augmented OLS (TAOLS)
regression). Do not include an intercept. Denote the coefficients associated with Wx by

β̂TAOLS , the coefficients associated with W∆̃x by θ̂TAOLS , and let Ŵ0·x be the residual
vector from this regression. Combining the matrices Wx and W∆̃x into W̃ = (Wx,W∆̃x),
we can write these objects as

γ̂
2d×1

≡
(
β̂TAOLS
θ̂TAOLS

)
=
(
W̃′W̃

)−1
W̃′Wy, Ŵ0·x = Wy − W̃γ̂. (7)

3. To test H0 : Rβ0 = r, we calculate the following test statistic

FTAOLS =
1

σ̂2
0·x

(
Rβ̂TAOLS − r

)′ [
R
(
Wx′M∆̃xW

x
)−1

R′
]−1 (

Rβ̂TAOLS − r
)
/p, (8)

where M∆̃x = IK −W∆̃x(W∆̃x′W∆̃x)−1W∆̃x′ and

σ̂2
0·x =

1

K

K∑
j=1

(
Ŵ0·x
j

)2
=

1

K
Ŵ0·x′Ŵ0·x. (9)

These three steps are identical to the procedure in Hwang and Sun (2018) except that ∆̃xi,
instead of ∆xi, is used in the augmented regression. Such a modification serves to facilitate
theoretical developments only. Since ∆̃xi is proportional to ∆xi, the modification has no effect
on the test statistic FTAOLS . For practical implementation, we can follow exactly the same
procedure as in Hwang and Sun (2018), utilizing ∆xi in place of ∆̃xi in steps 1-3.

Define

W0·x
j =

1√
n

n∑
i=1

φj

(
i

n

)
[u0i − θ′0∆̃xi], W0·x = (W0·x

1 , . . . ,W0·x
K )′

K×1

,

Similarly to the notation in Assumption 4.3, for j = 1, . . . ,K, let

νj = σ0

∫ 1

0
φj(r)dW0(r),

and
ν = (ν1, . . . , νK)′ ∈ RK×1.

The following lemma establishes the weak limits of Wx,W∆̃x, and W0·x.

Lemma 4.1 Let Assumptions 3.3, 4.1, and 4.2 hold. Then, as δ → 0 and T →∞,(
1√
n
WxΛ−1

T ,
√
δW∆̃x,

√
δW0·x

)
d→ (η, ξ, ν).
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Let R`,· be the `-th row of R. Since we do not require that all elements of (XTr) converge at

the same rate, the rate of convergence of R`,·β̂TAOLS depends on the element of β̂TAOLS that has
the slowest rate of convergence. To capture this, we define the p × p diagonal matrix Λ̃T with
the (`, `)-th element given by

Λ̃T (`, `) =

[
max

1≤j≤d

{
a`j : a`j = 1R`,j 6=0/ΛT (j, j)

}]−1

for each ` = 1, ..., p. (10)

Then limT→∞ Λ̃TRΛ−1
T = A for some matrix A ∈ Rp×d. We will require that A is of rank p,

a condition that is clearly satisfied when there is no heterogeneity in rates of convergence, for
example, A = R when ΛT =

√
TId.

The following theorem is analogous to Theorems 1 and 3 of Hwang and Sun (2018).

Theorem 4.1 Let Assumptions 3.3, 4.1–4.3 hold. Denote γ0 = (β′0, θ
′
0)′ and

ΥT =

√TΛT 0
d×d

0
d×d

Id

 .

Then, as δ → 0 and T →∞,

ΥT (γ̂ − γ0)
d→
(
ζ ′ζ
)−1

ζ ′ν
d
= MN

[
0, σ2

0

(
ζ ′ζ
)−1
]
.

In particular, denoting Mξ = IK − ξ(ξ′−1ξ′,

√
TΛT

(
β̂TAOLS − β0

)
d→
(
η′Mξη

)−1
η′Mξν

d
= MN

[
0, σ2

0

(
η′Mξη

)−1
]
.

Additionally, provided that limT→∞ Λ̃TRΛ−1
T is of rank p and K ≥ 2d+ 1,

FTAOLS
d→ K

K − 2d
· Fp,K−2d,

where Fp,K−2d is the F distribution with degrees of freedom p and K − 2d.

The theorem shows that the testing procedure of Hwang and Sun (2018) adapts to the
continuous-time setting without any modification: The asymptotic F test is, therefore, robust to
the sampling frequency of the data. From an applied point of view, we do not have to be con-
cerned about whether we have high-frequency data or low-frequency data. This gives us much
practical convenience.

Note that the asymptotic F theory does not depend on the specific form of the limiting
process X◦(·). In the proof of the theorem, we show that the asymptotic distribution conditional
on X◦(·) is an F distribution, which does not depend on the conditioning process X◦(·). Hence, the
asymptotic distribution is also the F distribution unconditionally. We note that the conditioning
argument works only for the series-based TA regression. Had we used the kernel-based approach
such as that in Vogelsang and Wagner (2014), we may not obtain a pivotal distribution if the
parameters governing X◦(·) can not be scaled out.

To implement the F test, we still need to choose K. Ideally we want to select K to tradeoff the
type I and type II errors of the F test, but this is well beyond the scope of this paper. Note that
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the variance estimator in (9) takes a similar form to that in the stationary case; the infeasible
estimator is now

σ̂2
0·x =

1

K

K∑
j=1

[
1

Λ(n, δ)

n∑
i=1

φj

(
i

n

)
(ui − θ′0∆̃xi)

]2

.

As a practical rule of thumb, we can adapt the data-driven procedure in the stationary case,
taking θ0 = 0 as it would be in the exogenous case. Alternatively, we could perform the data
driven approach of the stationary case on the sample version of the series {ui, ∆̃xi}. This is the
approach taken in Hwang and Sun (2018). However, the latter option requires a stance taken on
δ, which may not be desirable and does not yield meaningful differences in our simulations. As
a rule of thumb, one can proceed as follows:

1. Estimate the model yi = α0 + x′iβ0 + u0i by OLS to obtain the residual

û0i = yi − α̂OLS − x′iβ̂OLS .

2. On the basis of {û0i} , use the series method to estimate the long run variance of {ui} ,
computing the AR(1) data-driven K̂D using the formula in (4).

3. Let K̂∗ = max(K̂D, 2d+ 3) and use K̂∗ to construct the TA regression.

4. Compute the F test statistic in the TAOLS regression. Perform the asymptotic F Test

using K̂∗

K̂∗−2d
· Fp,K̂∗−2d as the reference distribution.

If there is a trend in the model so that

Yt = α0 +X ′tβ0 + Γtλ0 + U0t,

where Γt ∈ RdΓ consists of deterministic trend functions, then we can show that the asymp-
totic F test for H0 : Rβ0 = r based on the transformed and augmented OLS regression is still
asymptotically valid. We only need to adjust the degrees of freedom:

FTAOLS →d K

K − 2d− dΓ
· Fp,K−2d−dΓ

.

See Hwang and Sun (2018) for more details.

5 Simulation Evidence

In this section we conduct simulations to evaluate the finite-sample size and power properties of
the proposed F tests. For the stationary setting, we consider the model

Yt = β01 +Xtβ02 + Ut, 0 ≤ t ≤ T,

with β01 = 0 and β02 = 1. We test H0 : (β01, β02)′ = (0, 1)′ versus H1 : (β01, β02)′ 6= (0, 1)′. (Xt)
and (Ut) are chosen as stationary Ornstein-Uhlenbeck (OU) processes described by

dXt = −κxXtdt+ σxdVt and dUt = −κuUtdt+ σudWt,

where (κx, σx) = (0.1020, 1.5514), (κu, σu) = (6.9011, 2.7566), and (Vt) and (Wt) are independent
standard Brownian motions. The parameter values of the OU processes are obtained from Chang
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et al. (2018), who estimate (κx, σx) by fitting an OU process to 3-month T-bill rates from 1971
to 2016 and estimate (κu, σu) by fitting an OU process to the residuals obtained by regressing
3-month eurodollar rates on these T-bill rates.

In the nonstationary setting, we consider the model

Yt = α0 +X1,tβ01 +X2,tβ02 + Ut, 0 ≤ t ≤ T,

with α0 = 0, β01 = 1, β02 = 1. We test H0 : (β01, β02)′ = (1, 1)′ versus H1 : (β01, β02)′ 6= (1, 1)′.
In this setting we model (Xj,t), j ∈ {1, 2}, as Brownian motions and (Ut) as a stationary OU
process. In particular, for j ∈ {1, 2}, we have

dXj,t = σjdZj,t and dUt = −κuUtdt+ σudZ3,t,

where σ1 = σ2 = 0.0998, (κu, σu) = (1.5717, 0.0097), and

Z1,t

Z2,t

Z3,t

 =


1 0 0

ϕ
√

1− ϕ2 0

ϕ ϕ−ϕ2√
1−ϕ2

√
1−

(
ϕ2 + (ϕ−ϕ2)2

1−ϕ2

)

W1,t

W2,t

W3,t

 .

Here W1,t, W2,t, and W3,t are independent standard Brownian motions and ϕ ≥ 0. In this
setup, each (Zj,t), j ∈ {1, 2, 3}, is a standard Brownian motion and Corr(Zk,t, Z`,t) = ϕ when
k 6= `. The parameter values here also originate from Chang et al. (2018); (σ1) comes from
fitting a Brownian motion process to log US/UK exchange rate spot price data over 1979 to
2017. (κu, σu) are estimated by fitting an OU process to the residuals from regressing log US/UK
exchange rate forward prices on the log US/UK exchange rate spot prices. We consider both
ϕ = 0 (the exogeneous case) and ϕ = 0.75 (the endogenous case).

In addition to the baseline values of κx and κu, we also multiply κx and κu by 4, 1/2, and
1/4, allowing some variation in the mean reversion parameters of the stationary elements of the
simulations. As the mean reversion parameter gets closer to zero, the stationary OU process
becomes more persistent and behaves more like a nonstationary Brownian motion.

In both the stationary and nonstationary settings, we consider T = 30 and T = 60. The
stochastic processes are generated using the transition densities of Brownian motion and the OU
process except in the case when ϕ = 0.75. In this case, transition densities are used to generate
all processes except that Ut is constructed via Euler’s method once Z3,t is generated. Discrete
samples are collected at various frequencies between δ = 1/252 and δ = 1/4. In each scenario,
we replicate the simulation 5000 times.

To implement the testing procedures described in the earlier sections, we utilize the sine
and cosine basis functions given in (1) and choose K via the data driven procedures described
in Sections 3 and 4. In our figures described below, results corresponding to these tests are
denoted “Series F”, and there are different figures for the stationary and nonstationary settings.
As K increases, in both the stationary and nonstationary settings, the limiting distributions of
the test statistics approach the scaled chi-squared distribution χ2(p)/p. The scaled chi-squared
approximation can also be obtained by letting K → ∞, δ → 0 and T → ∞ jointly5. Utilizing
the critical values from this distribution with our test statistics, we denote the related results by
“Series Chi2.”

5The scaling factor of of 1/p arises because the test statistics are scaled by p.
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To compare the F tests with some existing tests, we carry out the kernel-based tests of Chang
et al. (2018). For their tests, we employ the quadratic spectral kernel and utilize Andrews (1991)’s
bandwidth selection procedure, which is among the best performers in the simulations in Chang
et al. (2018). In our figures, the results corresponding to the QS kernel are denoted “Kernel
Chi2.” To include the fixed-b version of their tests, we note that the test statistics of Chang et al.
(2018) in the stationary setting and in the nonstationary setting with exogeneous regressors,
without any change in form, have fixed-b counterparts in the discrete-time settings of Kiefer
and Vogelsang (2005) and Jin et al. (2006), respectively. Utilizing arguments similar to what we
present here and in Vogelsang and Wagner (2014), it is not difficult to ascertain that the limiting
distributions identified in these papers are also applicable in our simulation set up with exogenous
regressors. In the cointegrating regression with endogenous regressors, the fixed-b asymptotics
of Jin et al. (2006) is not applicable to the test statistic of Chang et al. (2018), as it does not
account for endogeneity. To use the fixed-b asymptotics of Vogelsang and Wagner (2014), which
accounts for endogeneity, we have to run a different set of regressions and alter the test statistic.
This would require further theoretical development and is not considered in our simulations. The
tests utilizing the fixed-b approximations of Kiefer and Vogelsang (2005) and Jin et al. (2006)
for the test statistics in Chang et al. (2018) are denoted by “Kernel fixed-b” in our figures.

5.1 Size study

Figures 1 – 4 display the empirical sizes in the different simulation scenarios.
Figures 1 and 2 show that in the stationary setting, the series-based F test exhibits less size

distortion than all chi-squared tests under consideration. The improvement in the size accuracy
of the F test over the chi-square tests is more visible when the underlying OU processes have
smaller mean reversion parameters κx and κu and thus become more persistent. This is consistent
with the literature on HAR inference in the discrete-time setting. See, for example, Sun (2013),
Sun (2014b), Sun et al. (2008), and Kiefer and Vogelsang (2005) for simulation evidence and the-
oretical developments. The F test performs similarly to the fixed-b version of the test in Chang
et al. (2018) adapted from Kiefer and Vogelsang (2005). This is expected, because both types of
tests utilize nonparametric LRV estimators, and both are based on fixed-smoothing asymptotic
approximations. The advantage of the series-based F test is that it is more convenient to use,
as critical values are readily available from statistical tables and standard programming envi-
ronments. There is no need to simulate a nonstandard fixed-smoothing asymptotic distribution,
an unavoidable and formidable task if we use a kernel-based fixed-smoothing test. We note in
passing that all chi-squared tests have similar performances, regardless of whether series-based or
kernel-based LRV estimators are used. This provides further simulation evidence that the type of
LRV estimators used does not matter much. What matters more are the reference distributions
used in the testing procedures.

In the nonstationary setting with exogenous regressors, the performance of the F test relative
to the fixed-b version of the test in Chang et al. (2018) adapted from Jin et al. (2006) and the
chi-squared tests is qualitatively similar to that in the stationary setting. In particular, the F test
and the fixed-b test achieve more or less the same size control. However, the fixed-b tests in this
setting aren’t developed fully for the continuous-time setting. The validity of the fixed-b test relies
not only on the exogeneity of the regressors but also crucially on the premise that the limiting
process (X◦) is a Brownian motion process. While this does not cause problems in our simulation
setting where the premise holds, the fixed-b asymptotic distribution is, in general, a functional
of (X◦), which may contain additional nuisance-parameters beyond its scale. A benefit of our
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approach here is that the conditioning argument in the proof of Theorem 4.1 bypasses reliance
on the distributional form of (X◦). Such a conditioning argument does not go through if we use
a kernel LRV estimator.

In the nonstationary setting with endogenous regressors, to the best our knowledge, the F test
in Section 4 appears to be the only asymptotically valid test in the literature. Unsurprisingly,
it exhibits better size properties than all other tests, including the fixed-b version of the test in
Chang et al. (2018). We note that the presence of the endogeneity bias can lead to large size
distortion, especially when the chi-square approximation is used. For example, when ϕ = 0.75,
T = 30, and κu is 1/4 of the baseline value, the null rejection probability of the 5% chi-squared
test of Chang et al. (2018) can be as high as 60%.

Figures 1 – 4 further show that the size properties of all tests are not sensitive to the sampling
interval δ, and all tests become more accurate when T increases. This is consistent with our
theoretical results that the effective sample size is T and is unrelated to δ. Intuitively, for a
given time span T, as δ decreases, the number of sampled observations n increases, but at the
same time, the sampled observations become more persistent. These two effects offset each other,
leading to an effective sample size of T.

5.2 Power study

Figures 5 and 6 investigate the empirical power properties of the test procedures in finite samples;
the power is size adjusted. To evaluate the power of the tests, we use the baseline designs. When
generating the data, each of the parameters being tested is multiplied by 1 − ψ for a range of
ψ ∈ [0, 1]. To keep the visualization simple, we focus only on the frequencies δ = 1/252 and
δ = 1/4. As the power is size adjusted and the tests employ two sets of test statistics, ours and
those in Chang et al. (2018), the figures only display the comparison for the series-based approach
in Sections 3 and 4 and the kernel-based approach in Chang et al. (2018). In the figures, the
higher frequency δ = 1/252 is denoted “h”, and the lower frequency δ = 1/4 is denoted “l.”

Figure 5 shows that, in the stationary setting, all tests have almost indistinguishable power
curves. In the nonstationary setting with exogenous regressors, the series-based tests have com-
petitive power relative to the kernel-based tests, although when T = 30 the former are slightly
less powerful. This could be explained by the MSE-optimality of the QS kernel among the
second-order positive-definite kernels. In the nonstationary setting with endogenous regressors,
the comparison is not as meaningful, as the tests of Chang et al. (2018) have significant size dis-
tortion. Nevertheless, the series-based tests still have competitive power, especially when T = 60.
When T = 30, the series-based tests are somewhat less powerful. This is not unexpected, as the
series-based method corrects for the endogenous bias, and as a result introduces additional noise
to the point estimator and renders the associated test less powerful.

Figures 5 and 6 also show that the power properties of all tests are not sensitive to the choice
of δ. In each scenario, the power curves for δ = 1/252 and δ = 1/4 are virtually identical. This
echoes the finding that the size properties are not sensitive to δ. In each scenario, all tests
become more powerful when T is larger, reflecting that it is the time span T, not the number of
observations n, that is the effective sample size.

6 Robustness to Additive Low-frequency Noise

Here we consider the implications of including additional low-frequency noises in the regression
error. We show that, under reasonable assumptions, the additive noises do not affect the testing
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procedures of previous sections. This is done to address two potential concerns. First, there
may be covariates relevant to (Yt) that are not continuous-time in nature and must be absorbed
by the error term in the regression model. Depending on the observation frequency, it may
be reasonable to expect this sort of error in some or all discretized observations. Second, this
noise could alternatively be interpreted as microstructure noise. Particularly when working with
financial data at high frequencies, market frictions and transcription errors may add noise to asset
return data beyond the theoretical objects of interest such as returns satisfying a no-arbitrage
condition. Among several possible references, see Hansen and Lunde (2006) and Barndorff-Nielsen
et al. (2008) for discussions addressing microstructure noise in an alternative setting where the
objective is ex post volatility measurement in asset returns.

One way to model the low-frequency noise is to assume that at the observation times iδ,
i = 1, . . . , n, the true Yiδ is not observed. Instead, we observe Yiδ up to an additive noise term
εi. That is, we now observe yi = Yiδ + εi. For i = 1, . . . , n and n = T/δ, the observed discretized
model in the stationary case is then

yi = x′iβ0 + ui + εi. (11)

In the nonstationary setting, the observed discretized model is

yi = α0 + x′iβ0 + u0i + εi. (12)

We will work with the following assumption.

Assumption 6.1 (i) The process {εi}ni=1 is independent of the continuous-time processes (Xt)
and (Ut). (ii) As a discrete-time process, {εi}ni=1 is stationary and strongly mixing with mixing

coefficients {ϕn}∞n=1 that satisfy
∑∞

n=1 ϕ
1/2
n <∞. (iii) Eε1 = 0 and Eε21 <∞.

Assumption 6.1 allows for a weakly dependent noise process where the dependence is tied to
the distance in terms of sampling frequency units (i.e., i − k) rather than the distance in terms
of the units of T . In the limiting experiment of this setting, as δ becomes small, noises at nearby
sampling points exhibit dependence, but as the number of observations between any fixed time
points t1, t2 ∈ [0, T ] gets large, the dependence between εt1 and εt2 becomes small. This form
of dependence is consistent with microstructure noise assumptions in the literature on ex post
variation measurement with high-frequency data; see, for example, Barndorff-Nielsen et al. (2008)
and Aı̈t-Sahalia et al. (2008).

Lemma 6.1 Let Assumption 6.1 hold. Assume that (Xt) is stationary and ΓX(τ) = E(XtX
′
t−τ ),

τ ≥ 0, is bounded. Then, as δ → 0 with T fixed, or as T → ∞ with δ fixed, or as δ → 0 and
T →∞,

n∑
i=1

xiεi = Op(
√
n).

Whereas high serial correlation in {xiui}ni=1 for small δ leads to
∑n

i=1 xiui = Op

(√
n/δ
)

, the

tie between the noise dependence structure and the sampling frequency yields that
∑n

i=1 xiεi is
an order of magnitude smaller (in probability) than

∑n
i=1 xiui despite the persistence in {xi}ni=1.

Consequently, we will see that the results from Section 3 continue to hold.
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In the stationary setting, when the observed {yi}ni=1 take the form in (11), we have

√
T
(
β̂D − β0

)
=

(
1

δΛ (n, δ)2

n∑
i=1

xix
′
i

)−1
1

Λ (n, δ)

n∑
i=1

xi(ui + εi).

In the series LRV estimator of Section 3, a key object now becomes

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiûi =

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xi

[
ui + εi − x′i

(
β̂D − β

)]
.

It follows from Lemma 6.1 that

1

Λ (n, δ)

n∑
i=1

xiεi =

√
δ√
n

n∑
i=1

xiεi =
√
δOp(1) = op(1),

and similarly, as each φj is bounded under Assumption 3.3,

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiεi = op(1), j = 1, . . . ,K.

Therefore, under the conditions of Lemma 6.1, the objects in Lemma 3.1 differ now only by
additive op(1) terms, and both objects there still jointly converge in distribution to the same
limits. It follows that under the conditions of Lemma 6.1, Theorem 3.1 remains valid, and this
is summarized in the following corollary to Lemma 6.1.

Corollary 6.1 Consider the stationary setting and let the conditions of Lemma 6.1 hold. The-
orem 3.1 remains valid when the observed discretized model contains additional low-frequency
noises as in (11).

In the nonstationary setting, it is easy to see that similar arguments to those in the proof of
Lemma 6.1, without any conditions on E(XtX

′
t−τ ), yield the following lemma.

Lemma 6.2 Let Assumptions 6.1 and 3.3 hold. Then for j = 1, . . . ,K,
n∑
i=1

φj

(
i

n

)
εi = Op

(√
n
)
.

Now, the only change to the objects in Lemma 4.1 is that

√
δW0·x

j =
√
δ

{
1√
n

n∑
i=1

φj

(
i

n

)
[u0i + εi − θ′0∆̃xi]

}
.

As
√
δ

{
1√
n

n∑
i=1

φj

(
i

n

)
εi

}
=
√
δOp(1) = op(1),

the only difference is an additive op(1) term, and Lemma 4.1 remains valid provided that As-
sumption 6.1 holds. Consequently, we have the following corollary to Lemma 6.2.

Corollary 6.2 Consider the nonstationary setting and let Assumption 6.1 hold. Then Theorem
4.1 remains valid when the observed discretized model contains additional low-frequency noises
as in (12).

Corollaries 6.1 and 6.2 show that our asymptotic theory is robust to the presence of additive
low-frequency noises. The estimation and inference procedures of Sections 3 and 4 can be carried
out without any modification.
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7 Conclusion

This paper provides a simple approach to linear hypothesis testing that is robust to potential
continuity of the underlying data generating processes. The test procedures demonstrate reduced
size distortion in finite samples relative to existing approaches and can accommodate endogeneity
in cointegration-type regressions. From a practical point of view, the tests have several desir-
able characteristics. Their direct correspondence to analogous discrete-time procedures clears the
practitioner from modeling choices that could influence test results. Additionally, the limiting dis-
tributions do not need any complicated simulations to derive critical values as some discrete-time
fixed-b approaches require; the tests rely only on standard F-distributions. In the cointegrating
regression setting, more accurate tests are delivered while maintaining greater generality with
regard to the limiting behavior of the regressor process. Lastly, our asymptotic F theory remains
valid in the presence of additive low-frequency noises in the regressor error.
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Figure 1: Empirical sizes for the stationary setting. The left hand side corresponds to T = 30
and the right to T = 60. In the bottom row, the processes are as described in 5. In the top row
κu and κx are multiplied by 4.
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Figure 2: Empirical sizes for the stationary setting. The left hand side corresponds to T = 30
and the right to T = 60. In the top panel, κu and κx are multiplied by 1/2 and in the bottom
panels they are multiplied by 1/4.
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Figure 3: Empirical sizes, nonstationary setting. The left is T = 30 and the right is T = 60. In
the top two rows, κu is multiplied by 4, and in the bottom two rows, κu is multiplied by 1.
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Figure 4: Empirical sizes, nonstationary setting. The left is T = 30 and the right is T = 60. In
the top two rows, κu is multiplied by 1/2, and in the bottom two rows, κu is multiplied by 1/4.
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Figure 5: Size-adjusted powers in the stationary setting. The left panel corresponds to T = 30
and right to T = 60.
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Figure 6: Size-adjusted powers in the nonstationary setting. The left panel corresponds to T = 30
and right to T = 60. In the upper row, the explanatory variables are exogenous (ϕ = 0). In the
lower row the explanatory variables are endogenous (ϕ = 0.75).
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8 Appendix of Proofs

Proof of Lemma 3.1. We have shown that
√
T (β̂D − β) =

√
T (β̂C − β) + op (1) . But

√
T (β̂C − β) =

[
1

T

∫ T

0
XtX

′
tdt

]−1 [
1√
T

∫ T

0
XtUtdt

]
d→ Q−1Ω1/2Wd (1) ,

using Assumptions 3.1 and 3.2. Hence
√
T (β̂D − β)

d→ Q−1Ω1/2Wd (1) .
For the second part of the lemma, we use the first part of the lemma to obtain

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiûi

=
1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xi

[
ui − x′i

(
β̂D − β

)]
=

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiui +

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xix
′
i ·Op

(
1√
T

)
.

=
1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiui +

1

n

n∑
i=1

φj

(
i

n

)
xix
′
i ·Op (1) .

For the first term in the above expression, we let

SXU,i =
1

Λ (n, δ)

i∑
j=1

xjuj for i ≥ 1 and SXU,0 = 0.

Then, using the twice continuous differentiability of φj (·) , we obtain

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiui

=

n∑
i=1

φj

(
i

n

)
SXU,i −

n−1∑
i=0

φj

(
i+ 1

n

)
SXU,i

=
1

n

n−1∑
i=1

[φj (1/n)− φj ((i+ 1) /n)]

1/n
SXU,i + φj (1)SXU,n

=
1

n

n−1∑
i=1

φ̇j

(
1

n

)
SXU,i + φj (1)SXU,n +Op

(
1

n

)
1

n

n−1∑
i=1

‖SXU,i‖

d→ −Ω1/2

∫ 1

0
φ̇j (r)Wd(r)dr + φj (1) Ω1/2Wd(1)

= Ω1/2

∫ 1

0
φj (r) dWd(r),

where the second last equality follows from the continuous mapping theorem and the last equality
follows from integration by parts.
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For the second term, we let

SXX,i =
1

n

i∑
j=1

xix
′
i =

1

n

i∑
j=1

XiδX
′
iδ for i ≥ 1 and SXX,0 = 0.

Also, let

∆XX,i = SXX,i −Q ·
(
i

n

)
for i ≥ 1 and ∆XX,0 = 0.

Then, using
∫ 1

0 φj (r) dr = 0, we have

1

n

n∑
i=1

φj

(
i

n

)
xix
′
i

=
n∑
i=1

φj

(
i

n

)[
SXX,i − SXX,(i−1)

]
= Q

1

n

n∑
i=1

φj

(
i

n

)
+

n∑
i=1

φj

(
i

n

)
(∆XX,i −∆XX,i−1)

=

n∑
i=1

φj

(
i

n

)
(∆XX,i −∆XX,i−1) + op (1) .

For some finite integer Lj > 0, let ∪Lj

`=1Aj,` be the partition of [0, 1] such that φj (·) is monotonic
on each interval Aj,`. Then∣∣∣∣∣

n∑
i=1

φj

(
i

n

)
(∆XX,i −∆XX,i−1)

∣∣∣∣∣
≤

∣∣∣∣∣
n−1∑
i=1

[
φj

(
i

n

)
− φj

(
i+ 1

n

)]
∆XX,i

∣∣∣∣∣+ ‖φj (1) ∆XX,n‖

=

n−1∑
i=1

∣∣∣∣φj ( in
)
− φj

(
i+ 1

n

)∣∣∣∣ ‖∆XX,i‖+ op (1)

=

Lj∑
`=1

∑
i∈Aj,`

∣∣∣∣φj ( in
)
− φj

(
i+ 1

n

)∣∣∣∣ ‖∆XX,i‖+ op (1)

≤
Lj∑
`=1

2 max
i∈Aj,`

∣∣∣∣φj ( in
)∣∣∣∣ ‖∆XX,i‖+ op (1) = op (1) ,

where the last line holds because, due to the monotonicity,
∑

i∈Aj,`

∣∣φj ( in)− φj ( i+1
n

)∣∣ is equal

to the absolute difference of φj (·) evaluated at the two endpoints of Aj,`.
Therefore, 1

n

∑n
i=1 φj

(
i
n

)
xix
′
i = op (1) and

1

Λ (n, δ)

n∑
i=1

φj

(
i

n

)
xiûi

d→ Ω1/2

∫ 1

0
φj (r) dWd(r).
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Proof of Theorem 3.2. Note that

var

vec

Ω1/2 1

K

K∑
j=1

[∫ 1

0
φj (r) dWd (r)

]⊗2

Ω1/2


=

1

K2
var

(Ω1/2 ⊗ Ω1/2
)

vec

 K∑
j=1

[∫ 1

0
φj (r) dWd (r)

]⊗2


=
1

K2

(
Ω1/2 ⊗ Ω1/2

)
var

vec

 K∑
j=1

[∫ 1

0
φj (r) dWd (r)

]⊗2
(Ω1/2 ⊗ Ω1/2

)
=

1

K

(
Ω1/2 ⊗ Ω1/2

)
(Id2 + Kdd)

(
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1

K
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Ω1/2 ⊗ Ω1/2

)(
Ω1/2 ⊗ Ω1/2

)
(Id2 + Kdd)

=
1

K
(Ω⊗ Ω) (Id2 + Kdd) .

Hence, under Assumption 3.4(i), we have

var
[
vec(Ω̂∗)

]
=

1

K
(Ω⊗ Ω) (Id2 + Kdd) (1 + o (1)) .

To compute the bias of Ω̂∗, we denote E
[
(xiui) (x`u`)

′] = Γxu (i− `). Note that

E
(

Ω̂∗
)

=
1

K

K∑
j=1

[
1

Λ (n, δ)2

n∑
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n∑
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(
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)
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)
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]

=
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K∑
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1
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φj

(
i
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)
φj

(
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)
Γxu (i− `)

=
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K

K∑
j=1

1

Λ (n, δ)2

n∑
i=1

i−1∑
k=i−n

φj

(
i

n

)
φj

(
i− k
n

)
Γxu (k)

=
1

K

K∑
j=1

n

Λ (n, δ)2

n−1∑
k=−n+1

{
1

n

n∑
i=1

1

{
1

n
≤ i− k

n
≤ 1

}
φj

(
i

n

)
φj

(
i− k
n

)}
Γxu (k)

=
1

K

K∑
j=1

δ

n−1∑
k=−n+1

ωj,n

(
k

n

)
Γxu (k)

where

ωj,n

(
k

n

)
=

1

n

n∑
i=1

1

{
1

n
≤ i− k

n
≤ 1

}
φj

(
i

n

)
φj

(
i− k
n

)
.
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The bias is then equal to

Bn = E
(

Ω̂∗
)
− Ω

=
1

K

K∑
j=1

δ

n−1∑
k=−n+1

[
ωj,n

(
k

n

)
− 1

]
Γxu (k) + δ

n−1∑
k=−n+1

Γxu (k)− Ω

:= B1n +B2n.

For B2n, we use Assumptions 3.4(ii) and 3.4(iii) to obtain:

B2n = δ
n−1∑

k=−n+1

Γxu (k)− Ω = δ
n−1∑

k=−n+1

ΓXU (kδ)− Ω

= δ

n−1∑
k=−n+1

ΓXU (kδ)−
∫ T

−T
ΓXU (τ) dτ +O

(
1

T 2

)
= O (δ) +O

(
1

T 2

)
,

where the O
(
T−2

)
term holds because∥∥∥∥∫ ∞

−∞
ΓXU (τ) dτ −

∫ T

−T
ΓXU (τ) dτ

∥∥∥∥
=

∥∥∥∥∫ ∞
−∞

1 {|τ | ≥ T}ΓXU (τ) dτ

∥∥∥∥
≤ 1

T 2

∫ ∞
−∞

τ21 {|τ | ≥ T} ‖ΓXU (τ)‖ dτ

≤ 1

T 2

∫ ∞
−∞

τ2 ‖ΓXU (τ)‖ dτ = O

(
1

T 2

)
.

For B1n, we have, using Assumption 3.4(iv):

ωj,n (ζ) =
1

n

n∑
i=1

1

{
1

n
≤ i

n
− ζ ≤ 1

}
φj

(
i

n

)
φj

(
i

n
− ζ
)

=
1

n

n∑
i=1

1

{
1

n
+ ζ ≤ i

n
≤ 1 + ζ

}
φj

(
i

n

)
φj

(
i

n
− ζ
)

=

∫ min(1+ζ,1)

max(0,ζ)
φj (r)φj (r − ζ) dr +O

(
j

n

)
:= ωj (ζ) +O

(
j

n

)
,

uniformly over j = 1, 2, ...,K and ζ ∈ [−1, 1] where

ωj (ζ) =

∫ min(1+ζ,1)

max(0,ζ)
φj (r)φj (r − ζ) dr.
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Note that ωj (0) = 1. Then we have, as n→∞,

B1n =
1

K

K∑
j=1

δ

n−1∑
k=−n+1

[
ωj,n

(
k

n

)
− 1

]
Γxu (k)

=
1

K

K∑
j=1

δ
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[
ωj

(
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− 1

]
Γxu (k) + δ
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K

K∑
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O
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=
1

K
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(
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(
K

n

)
δ
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1

K

K∑
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δ

n−1∑
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[
ωj

(
k

n

)
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]
Γxu (k) +O

(
K

n

)
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(
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)
,

where
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K
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δ
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[
ωj

(
k
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)
− 1

]
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Now,

B̃1n =
1

K

K∑
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δ

n−1∑
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[
ωj

(
k

n

)
− 1

]
Γxu (k)

= δ
∑

n/ logn<|k|≤n−1

 1

K
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j=1

ωj

(
k

n

)
− 1

Γxu (k) + δ
∑
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 1

K

K∑
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ωj

(
k

n

)
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Γxu (k)
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where
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(
k
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k
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= C

(
log n
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)2 1

δ2

[
δ

∞∑
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(log n)2
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and

B̃12,n =
1

K

K∑
j=1

δ
∑

|k|≤n/ logn

[
ωj

(
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)
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Γxu (k)
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K∑
j=1
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(
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]
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=
1
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(
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n
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ΓXU (kδ)

=
1

nδ

 1

K

K∑
j=1

ω̇j (0)

 δ ∑
|k|≤n/ logn

kδΓXU (kδ)

+

(
1
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K

K∑
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∑

|k|≤n/ logn

[
1

2
ω̈j

(
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n
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(kδ)2 ΓXU (kδ)

=
K2

T 2

1

K3

K∑
j=1

1

2
ω̈j (0) δ

∑
|k|≤n/ logn

(kδ)2 ΓXU (kδ) (1 + o (1)) +O

 1

nδ

1

K

K∑
j=1

ω̇j (0)


=
K2

T 2

 1

K3

K∑
j=1

1
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ω̈j (0)

(∫ ∞
−∞

τ2ΓXU (τ) dτ

)
(1 + o (1)) +O

 1

nδ

1

K

K∑
j=1

ω̇j (0)


Given that ωj (ζ) =

∫ 1
ζ φj (r)φj (r − ζ) dr, we have

ω̇j (ζ) = −φj (ζ)φj (0)−
∫ 1

ζ
φj (r) φ̇j (r − ζ) dr,

ω̈j (ζ) = −φ̇j (ζ)φj (0) + φj (ζ) φ̇j (0) +

∫ 1

ζ
φj (r) φ̈j (r − ζ) dr =

∫ 1

ζ
φj (r) φ̈j (r − ζ) dr.

So

ω̇j (0) = −φ2
j (0)− 1

2

[
φ2
j (1)− φ2

j (0)
]

= −1

2

[
φ2
j (1) + φ2

j (0)
]

ω̈j (0) =

∫ 1

0
φj (r) φ̈j (r) dr.

Therefore, under Assumption 3.4(iii), we have
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1

K3
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1
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ω̈j (0) δ
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(kδ)2 ΓXU (kδ)
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K3
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1

2
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φj (r) φ̈j (r) dr
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τ2ΓXU (τ) dτ (1 + o (1)) +O

(
1

T

)
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2

T 2
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−∞

τ2ΓXU (τ) dτ (1 + o (1)) +O

(
1
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)
.
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Combining the above results yields the asymptotic bias formula.

Proof of Lemma 4.1. Consider n−1/2WxΛ−1
T . Let gn : Dd[0, 1] → Dd[0, 1] map f ∈ Dd[0, 1]

to the cadlag simple function with gn(f)(t−) = f(t) at points t ∈ {1/n, 2/n, . . . , 1} and with
jumps only at the points {1/n, 2/n . . . , (n − 1)/n}. If fn ∈ Dd[0, 1] are such that fn → f
where f is continuous, basic properties of the Skorokhod topology combined with the continuous
differentiability in Assumption 3.3 give that gn(φjfn) → φjf . Then Assumption 4.1 and the
extended continuous mapping theorem (c.f. Theorem 1.11.1 of van der Vaart and Wellner (1996))
yield that gn(φj(t)

(
Λ−1
T XTt

)
) ⇒ φj(t)X

◦(t), t ∈ [0, 1]. Combining this with the continuous
mapping theorem,

1√
n

Λ−1
T Wx

j =
1

n

n∑
i=1

φj

(
i

n

)
Λ−1
T xi =

1

n

n∑
i=1

φj

(
i

n

)
Λ−1
T Xiδ

=
1

n

n∑
i=1

φj

(
i

n

)
Λ−1
T X i

n
T =

∫ 1

0
gn
(
φj(t)Λ

−1
T XTt

)
dt

d→
∫ 1

0
φj (r)X◦(r)dr = ηj .

This holds jointly for j = 1, . . . ,K and therefore,

1√
n
WxΛ−1

T
d→ η. (13)

By Assumption 4.2, Λ−1
T X0 = op(1) and by Assumption 3.3, [φj(t + 1/n) − φj(t)]/(1/n) =

φ̇j(t) + o(1) uniformly in t ∈ [0, 1− 1/n]. Then, similarly to the above, for
√
δW∆̃x

j we obtain

√
δW∆̃x

j =
n∑
i=1

φj

(
i

n

)
Λ−1
T [xi − xi−1]

=
1

n

n−1∑
i=1

[
φj
(
i
n

)
− φj

(
i+1
n

)]
1
n

Λ−1
T xi + φj(1)Λ−1

T xn − φj
(

1

n

)
Λ−1
T x0

=
1

n

n−1∑
i=1

[
φj
(
i
n

)
− φj

(
i+1
n

)]
1
n

Λ−1
T X i

n
T + φj(1)Λ−1

T Xn
n
T + op (1)

d→ −
∫ 1

0
φ̇j(r)X

◦(r)dr + φj(1)X◦(1) =

∫ 1

0
φj(r)dX

◦(r) = ξj .

This holds jointly for j = 1, . . . ,K so that

√
δW∆̃x d→ ξ. (14)
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Finally, using standard arguments, we obtain, jointly for j = 1, . . . ,K,

√
δW0·x

j =

√
δ√
n

n∑
i=1

φj

(
i

n

)
[u0i − θ′0∆̃xi]

=

√
T√
nδ

n∑
i=1

φj

(
i

n

)
δ√
T
U0, i

n
T − θ

′
0

√
T

√
δ√
n

1

δ

n∑
i=1

φj

(
i

n

)
Λ−1
T [xi − xi−1]

=
n∑
i=1

φj

(
i

n

)
δ√
T
U0, i

n
T − θ

′
0

n∑
i=1

φj

(
i

n

)
Λ−1
T [xi − xi−1]

d→
∫ 1

0
φj(r)dB(r)−

∫ 1

0
φj(r)θ

′
0dX

◦(r)

= σ0

∫ 1

0
φj(r)dW0(r) = νj .

Therefore, √
δW0·x d→ ν. (15)

Assumption 4.2 and the joint convergence of T−1/2
∫ Tt

0 U0sds and Λ−1
T XTt in Assumption 4.1

yield that (13), (14), and (15) hold jointly, i.e.,
(
n−1/2WxΛ−1

T ,
√
δW∆̃x,

√
δW0·x

j

)
d→ (η, ξ, ν).

Proof of Theorem 4.1. We write

Wy = W̃γ0 + W0·x + α0Wα (16)

where

Wα
j =

1√
n

n∑
i=1

φj

(
i

n

)
, Wα = (Wα

1 , . . . ,Wα
K)′ .

Note that for each j = 1, . . . ,K we have

1√
n

n∑
i=1

φj

(
i

n

)
=
√
n

1

n

n∑
i=1

φj

(
i

n

)
=
√
n

(∫ 1

0
φj (r) dr +O

(
1

n

))
= O

(
1√
n

)
= o (1) .

Therefore, combined with (7), (16) yields

ΥT (γ̂ − γ0) =
(√

δΥ−1
T W̃′W̃Υ−1

T

√
δ
)−1√

δΥ−1
T W̃′

√
δ
[
W0·x + o (1)

]
. (17)

By Lemma 4.1, recalling ζ = (η, ξ),(
W̃Υ−1

T

√
δ,
√
δW0·x

)
d→ (ζ, ν) , (18)

where ζ and ν are independent as W0 and X◦ are independent. From (17), (18), and the
continuous mapping theorem,

ΥT (γ̂ − γ0)
d→
(
ζ ′ζ
)−1

ζ ′ν
d
= MN

[
0, σ2

0

(
ζ ′ζ
)−1
]
,
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a mixed normal distribution.
The limiting distribution is the same as that in Theorem 1 of Hwang and Sun (2018). From

(7), taking a block inverse and simplifying, it is straightforward to show that

β̂TAOLS − β0 =
[
Wx′M∆̃xW

x
]−1 Wx′M∆̃xW

0·x.

Then, utilizing Lemma 4.1 and similar steps as above, we obtain that

√
TΛT

(
β̂TAOLS − β0

)
d→
(
η′Mξη

)−1
η′Mξν,

which is identical to the decomposition Hwang and Sun (2018) obtains directly from (ζ ′ζ)−1 ζ ′ν.
Hence, under H0,

√
T Λ̃T

(
Rβ̂TAOLS − r

)
= Λ̃TRΛ−1

T

√
TΛT (β̂TAOLS − β0)

d→ A
(
η′Mξη

)−1
η′Mξν. (19)

Now, by (7) and (16),

Ŵ0·x = Wy − W̃γ̂ =

[
IK − W̃

(
W̃′W̃

)−1
W̃′
]
W0·x + o(1).

Combining this with Lemma 4.1, the definition in (9) and denoting Mζ = IK − ζ(ζ ′ζ)−1ζ ′,

δ · σ̂2
0·x =

1

K

√
δW0·x′

[
IK − W̃

(
W̃′W̃

)−1
W̃′
]√

δW0·x + op(1)

=
1

K

√
δW0·x′

{
IK − W̃Υ−1

T

[(
W̃Υ−1

T

)′
W̃Υ−1

T

]−1 (
W̃Υ−1

T

)′}√
δW0·x + op(1)

d→ 1

K
ν ′Mζν. (20)

Additionally,

1

δ

√
T Λ̃TR

{
Wx′M∆xWx

}−1
R′Λ̃T

√
T

= Λ̃TRΛ−1
T

{√
δ√
T

Λ−1
T Wx′

[
IK −W∆̃x(W∆̃x′W∆̃x)−1W∆̃x′

] √δ√
T
WxΛ−1

T

}−1

Λ−1
T R′Λ̃T

d→ A
(
η′Mξη

)−1
A′. (21)

Via the joint convergence in (18), the analysis producing (19), (20), and (21), and the con-

38



tinuous mapping theorem, we obtain that under H0,

FTAOLS =
1

σ̂2
0·x

(
Rβ̂TAOLS − r

)′ [
R
(
Wx′M∆̃xW

x
)−1

R′
]−1 (

Rβ̂TAOLS − r
)
/p

=
1

p

1

δσ̂2
0·x

(
Rβ̂TAOLS − r

)′√
T Λ̃T

×
[

1

δ

√
T Λ̃TR

(
Wx′M∆̃xW

x
)−1

R′Λ̃T
√
T

]−1√
T Λ̃T

(
Rβ̂TAOLS − r

)
d→ K

p

[
A(η′Mξη)−1η′Mξν

]′ (
A (η′Mξη)−1A′

)−1 [
A(η′Mξη)−1η′Mξν

]
ν ′Mζν

=
K

p

Q′
(
A (η′Mξη)−1A′

)−1
Q

ν ′Mζν/σ
2
0

, (22)

where Q = A(η′Mξη)−1η′Mξν/σ0. Now, conditional on ζ = (η, ξ) ,

Q′
(
A
(
η′Mξη

)−1
A′
)−1

Q
d
= χ2

p, and ν ′Mζν/σ
2
0·x

d
= χ2

K−2d.

Additionally, conditional on ζ, Mζν =
[
IK − ζ (ζ ′ζ)−1 ζ ′

]
ν and η′Mξν are independent, as

both Mζν and η′Mξν are normal and the conditional covariance is

cov
(
Mζν, η

′Mξν
)

=
[
IK − ζ

(
ζ ′ζ
)−1

ζ ′
]
Mξη = 0.

Thus, conditional on ζ, the numerator and the denominator in (22) are independent chi-squared
variates. This implies that

K

p

Q′
(
R (η′Mξη)−1R′

)−1
Q

ν ′Mζν/σ
2
0

=
K

K − 2d

Q′
(
R (η′Mξη)−1R′

)−1
Q/p

ν ′Mζν/
[
σ2

0(K − 2d)
] d

=
K

K − 2d
Fp,K−2d

conditional on ζ. But the conditional distribution does not depend on the conditioning variable
ζ, so it is also the unconditional distribution. This proves the second and final statement of the
theorem.

Proof of Lemma 6.1. First, Assumptions 6.1 (ii) and (iii), imply (see, for example, Lemma 1,
p. 166 of Billingsley (1968))

|cov(εt, εt+`)| ≤ 2ϕ
1/2
` var(ε1).

Let C denote a constant greater than the absolute value of each component of ΓX(τ) for all
τ ≥ 0. It is sufficient to show that each coordinate of

∑n
i=1 xiεi is Op(

√
n). So without loss of
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generality, we can assume that xi ∈ R. We have

E

[
1√
n

n∑
i=1

xiεi

]2

= E

 1

n

n∑
i=1

ε2ix
2
i +

2

n

n−1∑
j=1

n−j∑
i=1

εiεi+jxixi+j


≤ 2var(ε1)

 1

n

n∑
i=1

E
[
X2
iδ

]
+

2

n

n−1∑
j=1

n−j∑
i=1

ϕ
1/2
j

∣∣E [XiδX(i+j)δ

]∣∣
≤ 2Cvar(ε1)

1 + 2
∞∑
j=1

ϕ
1/2
j

 <∞.

Then
∑n

i=1 xiεi = Op(
√
n) follows by Markov’s inequality.
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