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OPERATOR SPACE CHARACTERIZATIONS OF C*-ALGEBRAS

AND TERNARY RINGS

MATTHEW NEAL AND BERNARD RUSSO

Abstract. We prove that an operator space is completely isometric to a
ternary ring of operators if and only if the open unit balls of all of its ma-
trix spaces are bounded symmetric domains. From this we obtain an operator
space characterization of C*-algebras.

Introduction

In the category of operator spaces, that is, subspaces of the bounded linear op-
erators B(H) on a complex Hilbert space H together with the induced matricial
operator norm structure, objects are equivalent if they are completely isometric, i.e.
if there is a linear isomorphism between the spaces which preserves this matricial
norm structure. Since operator algebras, that is, subalgebras of B(H), are moti-
vating examples for much of operator space theory, it is natural to ask if one can
characterize which operator spaces are operator algebras. One satisfying answer
was given by Blecher, Ruan and Sinclair in [10], where it was shown that among
operator spaces A with a (unital but not necessarily associative) Banach algebra
product, those which are completely isometric to operator algebras are precisely the
ones whose multiplication is completely contractive with respect to the Haagerup
norm on A⊗A (For a completely bounded version of this result, see [7]).

A natural object to characterize in this context are the so called ternary rings of
operators (TRO’s). These are subspaces of B(H) which are closed under the ternary
product xy∗z. This class includes C*-algebras. TRO’s, like C*-algebras, carry a
natural operator space structure. In fact, every TRO is (completely) isometric to
a corner pA(1 − p) of a C*-algebra A. TRO’s are important because, as shown by
Ruan [34], the injectives in the category of operator spaces are TRO’s (corners of
injective C*-algebras) and not, in general, operator algebras (For the dual version
of this result see [16]). Injective envelopes of operator systems and of operator
spaces ([23],[34]) have proven to be important tools, see for example [9]. The
characterization of TRO’s among operator spaces is the subject of this paper (See
Theorem 4.3).

Closely related to TRO’s are the so called JC*-triples, norm closed subspaces of
B(H) which are closed under the triple product (xy∗z+ zy∗x)/2. These generalize
the class of TRO’s and have the property, as shown by Harris in [25], that isometries
coincide with algebraic isomorphisms. It is not hard to see this implies that the
algebraic isomorphisms in the class of TRO’s are complete isometries, since for each
TRO A, Mn(A) is a JC*-triple (For the converse of this, see [24, Proposition 2.1]).
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2 MATTHEW NEAL AND BERNARD RUSSO

As a consequence, if an operator space X is completely isometric to a TRO, then
the induced ternary product on X is unique, i.e., independent of the TRO.

Building on the pioneering work of Arveson ([3],[4]) on noncommutative analogs
of the Choquet and Shilov boundaries, Hamana (see [24]) proved that every operator
space A has a unique enveloping TRO T (A) which is an invariant of complete
isometry and has the property that for any TRO B generated by a realization of A,
there exists a homomorphism of B onto T (A). The space T (A) is also called the
Hilbert C*-envelope of A. The work in [8] suggests that the Hilbert C*-envelope is
an appropriate noncommutative generalization to operator spaces of the classical
theory of Shilov boundary of function spaces.

It is also true that a commutative TRO (xy∗z = zy∗x) is an associative JC*-
triple and hence by [19, Theorem 2], is isometric (actually completely isometric) to
a complex Chom-space, that is, the space of weak*-continuous functions on the set
of extreme points of the unit ball of the dual of a Banach space which are homo-
geneous with respect to the natural action of the circle group, see [19]. Hence, if
one views operator spaces as noncommutative Banach spaces, and C*-algebras as
noncommutative C(Ω)’s, then TRO’s and JC*-triples can be viewed as noncommu-
tative Chom-spaces.

As noted above, injective operator spaces, i.e., those which are the range of
a completely contractive projection on some B(H), are completely isometrically
TRO’s; the so called mixed injective operator spaces, those which are the range of
a contrative projection on some B(H), are isometrically JC*-triples. The operator
space classification of mixed injectives was begun by the authors in [32] and is
ongoing.

Relevant to this paper is another property shared by all JC*-triples (and hence
all TRO’s). For any Banach space X , we denote by X0 its open unit ball: {x ∈
X : ‖x‖ < 1}. The open unit ball of every JC*-triple is a bounded symmetric
domain. This is equivalent to saying that it has a transitive group of biholomorphic
automorphisms. It was shown by Koecher in finite dimensions (see [31]) and Kaup
[28] in the general case that this is a defining property for the slightly larger class
of JB*-triples. The only illustrative basic examples of JB*-triples which are not
JC*-triples are the space H3(O) of 3 x 3 hermitian matrices over the octonians
and a certain subtriple of H3(O). These are called exceptional triples, and they
cannot be represented as a JC*-triple. This holomorphic characterization has been
useful as it gives an elegant proof, due to Kaup [29], that the range of a contractive
projection on a JB*-triple is isometric to another JB*-triple. The same statement
holds for JC*-triples, as proven earlier by Friedman and Russo in [21]. Youngson
proved in [37] that the range of a completely contractive projection on a C*-algebra
is completely isometric to a TRO. These results, as well as those of [2] and [15],
are rooted in the fundamental result of Choi-Effros [12] for completely positive
projections on C*-algebras and the classical result ([30],[18, Theorem 5]) that the
range of a contractive projection on C(Ω) is isometric to a Cσ-space, hence a Chom-
space.

Motivated by this characterization for JB*-triples, we will give a holomorphic
characterization of TRO’s up to complete isometry. We will prove in Theorem 4.3
that an operator space A is completely isometric to a TRO if and only if the open
unit ballsMn(A)0 are bounded symmetric domains for all n ≥ 2. As a consequence,
we obtain in Theorem 4.7 a holomorphic operator space characterization of C*-
algebras as well. It should be mentioned that Upmeier (for the category of Banach
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spaces) in [36] and El Amin-Campoy-Palacios (for the category of Banach algebras)
in [1], gave different but still holomorphic characterizations of C*-algebras up to
isometry. We note in passing that injective operator spaces satisfy the hypothesis
of Theorem 4.3, so we obtain that they are (completely isometrically) TRO’s based
on deep results about JB*-triples rather than the deep result of Choi-Effros (See
Corollaries 4.5 and 4.6).

We now describe the organization of this paper. Section 1 contains the necessary
background and some preliminary results on contractive projections. In section 2,
three auxiliary ternary products are introduced and are shown to yield the original
JB*-triple product upon symmetrization. Section 3 is devoted to proving that these
three ternary products all coincide. Section 4 contains the statement and proof of
the main result and its consequences.

The authors wish to thank Profesors Zhong-Jin Ruan and David Blecher for
their advice and encouragement at the beginning stages of this work.

1. Preliminaries

An operator space will be defined as a normed space A together with a linearly
isometric representation as a subspace of some B(H). This gives A a family of
operator norms ‖ · ‖n on Mn(A) ⊂ B(Hn). As proved in [33], an operator space
can also be defined abstractly as a normed space A having a norm on Mn(A)
(n ≥ 2) satisfying certain properties. Each such family of norms is regarded as
a “quantization” of the underlying Banach space. These properties give rise to
an isometric representation of the operator space as a subspace of B(H) where the
natural amplification maps preserve the matricial norm structure. This is analagous
to (and generalizes) the way an abstract Banach space B can be isometrically
embedded as a subspace of C(Ω). The resulting operator space structure in this
case is called MIN(B) and is seen as a commutative quantization of B.

Two operator spaces A and B are n-isometric if there exists an isometry φ
from A onto B such that the amplification mapping φn :Mn(A) →Mn(B) defined
by φ([aij ]) = [φ(aij)] is an isometry. A and B are completely isometric if there
exists a mapping φ from A onto B which is an n-isometry for all n. For other basic
results about operator spaces, see [17].

The following definition is a Hilbert space-free generalization of the TRO’s men-
tioned in the introduction.

Definition 1.1 (Zettl [38]). A C*-ternary ring is a Banach space A with ternary
product [x, y, z] : A × A × A → A which is linear in the outer variables, conjugate
linear in the middle variable, is associative:

[ab[cde]] = [a[dcb]e] = [ab[cde]],

and satisfies ‖[xyz]‖ ≤ ‖x‖‖y‖‖z‖ and ‖[xxx]‖ = ‖x‖3.
A TRO is a C*-ternary ring under any of the products [xyz]λ = λxy∗z, for any

complex number λ with |λ| = 1.
A linear map ϕ between C*-ternary rings is a homomorphism if ϕ([xyz]) =

[ϕ(x), ϕ(y), ϕ(z)] and an anti-homomorphism if ϕ([xyz]) = −[ϕ(x), ϕ(y), ϕ(z)].
The following is a Gelfand-Naimark representation theorem for C*-ternary rings.

Theorem 1.2 ([38]). For any C*-ternary ring A, A = A1 ⊕ A−1, where A1 and
A−1 are sub-C*-ternary rings, A1 is isometrically isomorphic to a TRO B1 and
A−1 is isometrically anti-isomorphic to a TRO B−1.
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It follows that A−1 = 0 if and only if A is ternary isomorphic to a TRO. In
Theorem 4.3, we shall show that under suitable assumptions on an operator space
A, it becomes a C*-ternary ring with A−1 = 0 and the above ternary isomorphism
is a complete isometry from A with its original operator space structure to a TRO
with its natural operator space structure.

An immediate consequence of our proof of Theorem 4.3 is an answer to a question
posed by Zettl [38, p.136]: for a C*-ternary ring A, A−1 = 0 if and only if A is a
JB*-triple (see the next definition) under the triple product

{abc} =
1

2
([abc] + [cba]).

The following definition generalizes the JC*-triples defined in the introduction.

Definition 1.3 ([28]). A JB*-triple is a Banach space A with a product D(x, y)z =
{x y z} which is linear in the outer variables, conjugate linear in the middle vari-
able, is commutative: {x y z} = {z y x}, satisfies an associativity condition:

[D(x, y), D(a, b)] = D({x y a}, b)−D(a, {b x y})(1)

and has the topological properties that (1) ‖D(x, x)‖ = ‖x‖2 (2) D(x, x) is her-
mitian (in the sense that ‖eitD(x,x)‖ = 1) and has positive spectrum in the Banach
algebra B(A). We abbreviate D(x, x) to D(x).

As noted in the introduction, JC*-triples, (and hence TRO’s and C*-algebras)
are examples of JB*-triples. Other examples include any Hilbert space, and the
spaces of symmetric and anti-symmetric elements of B(H) under a transpose map
defined by a conjugation.

If one ignores the norm and the topological properties in Definition 1.3, the
algebraic structure which results, called a Jordan triple system, or Jordan
pair, has a life of its own, [31]. Note that (1) can be written as

{x, y, {abz}}− {a, b, {xyz}} = {{xya}, b, z}− {a, {yxb}, z}.(2)

For easy reference we record here two identities for Jordan triple systems which
can be derived from (1) ([31, JP8,JP16]).

2D(x, {yxz}) = D({xyx}, z) +D({xzx}, y)(3)

{{xya}, b, z}− {a, {yxb}, z} = {x, {bay}, z} − {{abx}, y, z}(4)

We will now list some facts about JB*-triples that are relevant to our paper.
A survey of the basic theory can be found in [35]. As proved by Kaup [28], JB*-
triples are in 1-1 isometric correspondence with Banach spaces whose open unit ball
is a bounded symmetric domain. The triple product here arises from the Lie
algebra of the group of biholomorphic automorphisms. This Lie algebra is the space
of complete vector fields on the open unit ball and consists of certain polynomials
of degree at most 2. The quadratic term in each of these polynomials is determined
by the constant term. For a bounded symmetric domain, the constant terms which
occur exhaust A. Thus, linearizing the quadratic term for every element a ∈ A
leads to a triple product on A.
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It is this correspondence which motivates the study of the more general JB*-
triples. Indeed, the proofs of two important facts follow naturally from the holo-
morphic point of view [29]. Firstly, the isometries between JB*-triples are precisely
the algebraic isomorphisms. From this follows the important fact, used several
times in this paper, that, unlike the case for binary products, the triple product
of a JB*-triple is unique. Secondly, the range of a contractive projection P on
a JB*-triple Z is isometric to a JB*-triple. More precisely, P (Z) is a JB*-triple
under the norm and linear operations it inherits from Z and the triple product
{xyz}P (Z) := P ({xyz}Z), for x, y, z ∈ P (Z).

In the context of JC*-triples, these facts were proven by functional analytic meth-
ods in [25] and [21] respectively. These facts show that JB*-triples are a natural
category in which to study isometries and contractive projections. Recently, in [13]
the authors with C-H. Chu have shown that w*-continuous contractive projections
on dual JB*-triples (called JBW*-triples) preserve the Jordan triple generaliza-
tion of the Murray-von-Neumann type decomposition established in [26] and [27].
Two other properties of contractive projections were used in that work and will be
needed in the present paper. They consist of two conditional expectation formulas
for contractive projections on JC*-triples ([20, Corollary 1])

P{Px, Py, Pz} = P{Px, Py, z} = P{Px, y, Pz};(5)

and the fact that the range of a bicontractive projection on a JC*-triple is a subtriple
[20, Proposition 1].

Let A be a JB*-triple. For any a ∈ A, there is a triple functional calculus,
that is, a triple isomorphism of the closed subtriple C(a) generated by a onto the
commutative C*-algebra C0(SpD(a, a) ∪ {0}) of continuous functions vanishing
at zero, with the triple product fgh. Any JBW*-triple (defined above) has the
propertly that it is the norm closure of the linear span of its tripotents, that
is, elements e with e = {eee}. A unitary tripotent is a tripotent v such that
D(v, v) = Id. For a C*-algebra, tripotents are the partial isometries and for unital
C*-algebras, unitary tripotents are precisely the unitaries. For tripotents u and v,
algebraic orthogonality, i.e. D(u, v) = 0, coincides with Banach space othogonality:
‖u± v‖ = 1. For a and b in A, we will denote the property D(a, b) = 0 by a ⊥ b.

As proved in [14], the second dual A∗∗ of a JB*-triple A is a JBW*-triple con-
taining A as a subtriple. Multiplication in a JBW*-triple is norm continuous and,
as proved in [5], separately w*-continuous.

We close this section of preliminaries with an elementary proposition showing
that certain concrete projections are contractive.

Proposition 1.4. Let A be an operator space in B(H).

(a): Define a projection P on M2(A) by

P (

[

a b
c d

]

) =
1

2

[

a+ b a+ b
0 0

]

.

Then ‖P‖ ≤ 1. Moreover, the restriction of P to {
[

a b
0 0

]

: a, b ∈ A} is

bicontractive.

(b): Let P11 : M2(A) → M2(A) be the map

[

a11 a12
a21 a22

]

7→
[

a11 0
0 0

]

, and

similarly for P12, P21, P22. Then Pij is contractive and P11 + P21, P11 + P12,
and P11 + P22 are bicontractive. More generally, the Pij : Mn(A) → Mn(A)
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are contractive and for any subset S ⊂ {1, 2, . . . , n}, ∑

i∈S

∑n
j=1 Pij and

∑

j∈S

∑n
i=1 Pij are bicontractive.

(c): The projections P : M2(A) → M2(A) and Q : P (M2(A)) → P (M2(A))
defined by

P (

[

a b
c d

]

) =
1

2

[

a+ d b+ c
b+ c a+ d

]

and

Q(

[

a b
b a

]

) =
1

2

[

a+ b a+ b
a+ b a+ b

]

are bicontractive.

Proof. We omit the proofs of (a) and (b). To prove (c), since for example I − P =
(I − (2P − I))/2 and P = (I + (2P − I))/2, it suffices to show that 2P − I and
2Q− I are contractive. But

(2P − I)(

[

a b
c d

]

) =

[

d c
b a

]

=

[

0 1
1 0

] [

a b
c d

] [

0 1
1 0

]

,

and

(2Q− I)(

[

a b
b a

]

) =

[

b a
a b

]

=

[

0 1
1 0

] [

a b
b a

]

.

2. Additivity of the ternary products

Throughout this section, A ⊂ B(H) will be an operator space such that the
open unit ballM2(A)0 is a bounded symmetric domain. Let {·, ·, ·}M2(A) denote the
associated JB∗-triple product on M2(A). Note that although M2(A) inherits the
norm and linear structure of M2(B(H)) = B(H ⊕H), its triple product {· · ·}M2(A)

in general differs from the concrete triple product (XY ∗Z+ZY ∗X)/2 of B(H⊕H).
In fact, the results of this section would become trivial if these two triple products
were the same.

By properties of contractive projections and the uniqueness of the triple product,
A, being linearly isometric to Pij(M2(A)) becomes a JB*-triple whose triple product
{xyz}A is given, for example, by

[

{xyz}A 0
0 0

]

= P11

(

{
[

x 0
0 0

] [

y 0
0 0

] [

z 0
0 0

]

}M2(A)

)

,

and similarly using the other Pij . Usually we shall just use the notation {· · ·} for
either of the triple products {xyz}A and {·, ·, ·}M2(A). Lemma 2.6 shows that the
projection P11 could be removed in this definition.

We assume A is as above and proceed to define (in Definition 2.7, three auxiliary
ternary products, denoted [·, ·, ·], (·, ·, ·), and 〈·, ·, ·〉 and show their relation to {·, ·, ·}.
We begin with a sequence of lemmas which establish some properties of the terms
in the following identity, where a, b, c ∈ A.
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{
[

a a
0 0

] [

0 b
0 0

] [

c c
0 0

]

} = {
[

a 0
0 0

] [

0 b
0 0

] [

c 0
0 0

]

}(6)

+ {
[

a 0
0 0

] [

0 b
0 0

] [

0 c
0 0

]

}

+ {
[

0 a
0 0

] [

0 b
0 0

] [

0 c
0 0

]

}

+ {
[

0 a
0 0

] [

0 b
0 0

] [

c 0
0 0

]

}.

It will be shown in Lemma 2.2 that the left side of (6) has the form
[

x y
z w

]

,

where (x+ y)/2 = {abc}. In Lemmas 2.4-2.6, each term on the right side of (6) will
be analyzed.

Remark 2.1. The space

Ã = {ã =

[

a a
0 0

]

: a ∈ A}

with the triple product

{ãb̃c̃}
Ã

:=

[

2{abc} 2{abc}
0 0

]

(7)

and the norm of M2(A), is a JB∗-triple.

Note that by Proposition 1.4(a), Ã is a subtriple of M2(A), but we do not know
a priori that its triple product is given by (7).

Proof. The proposed triple product, which we denote by {ãb̃c̃}, is obviously linear

and symmetric in ã and c̃, and conjugate linear in b̃. Since, for example,

{ãb̃{c̃d̃ẽ}} =

[

2{ab{cde}} 2{ab{cde}}
0 0

]

,

the main identity (2) is satisfied.

From ‖
[

a a
0 0

]

‖ =
√
2‖a‖ one obtains ‖{ããã}‖ = ‖ã‖3, ‖{ãb̃c̃}‖ ≤ ‖ã‖|‖b̃‖‖c̃‖

and hence ‖D(ã)‖ = ‖ã‖2.
Since eitD(x̃)ỹ = (e2itD(x)y)̃, ‖eitD(x̃)ỹ‖ =

√
2‖e2itD(x)y‖ =

√
2‖y‖ = ‖ỹ‖, so

D(x̃) is hermitian.
Finally, for λ < 0, the inverse of λ−D(x̃) is given by

ỹ 7→
[

(λ− 2D(x))−1y (λ − 2D(x))−1y
0 0

]

.

Hence, SpB(Ã)(D(x̃)) ⊂ [0,∞).

Lemma 2.2. For a, b, c ∈ A, there exist x, y, z, w ∈ A such that

{
[

a a
0 0

] [

0 b
0 0

] [

c c
0 0

]

} =

[

x y
z w

]

,

and (x+ y)/2 = {abc}.
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Proof. Consider the projection P defined in Proposition 1.4(a). By (5),

P ({
[

a a
0 0

] [

0 b
0 0

] [

c c
0 0

]

}) = P ({
[

a a
0 0

] [

b/2 b/2
0 0

] [

c c
0 0

]

}).

By Remark 2.1 and the uniqueness of the triple product in a JB∗-triple,

P ({
[

a a
0 0

] [

b b
0 0

] [

c c
0 0

]

}) = 2

[

{abc} {abc}
0 0

]

.

Thus, if

{
[

a a
0 0

] [

0 b
0 0

] [

c c
0 0

]

} =

[

x y
z w

]

,

then
[

{abc} {abc}
0 0

]

=

[

(x+ y)/2 (x+ y)/2
0 0

]

.

It will be shown below in the proof of Lemma 2.8 that x = y = {abc} and that
each z = w = 0.

Lemma 2.3. For each a, b ∈ A,
[

a 0
0 0

]

⊥
[

0 0
0 b

]

and

[

0 0
a 0

]

⊥
[

0 b
0 0

]

Proof. Suppose first that a =
∑

λiui where λi > 0 and the ui are tripotents in A,
and similarly for b =

∑

µjvj . Because the image of a bicontractive projection is a

subtriple ([20, Proposition 1]), Ui :=

[

ui 0
0 0

]

and Vj :=

[

0 0
0 vj

]

are tripotents,

and since they are orthogonal in B(H ⊕H), ‖Ui ± Vj‖ = 1. Hence D(Ui, Vj) = 0
in (the abstract triple product of) M2(A) and so for all x, y, z, w ∈ A,

{
[

a 0
0 0

] [

0 0
0 b

] [

x y
z w

]

} =
∑

i,j

λiµj{
[

ui 0
0 0

] [

0 0
0 vj

] [

x y
z w

]

} = 0.

For the general case, note that, by [17, 3.2.1], there is an operator space structure
on the dual of any operator space A such that the canonical inclusion of A into
A∗∗ is a complete isometry. Moreover, by [6, Theorem 2.5] the norm structure on
Mn(A

∗∗) coincides with that obtained from the identificationMn(A
∗∗) =Mn(A)

∗∗.
Hence, for all n, Mn(A

∗∗) is a JBW*-triple containing Mn(A) as subtriple. Since
each element of A can be approximated in norm by finite linear combinations of
tripotents in A∗∗, the first statement in the lemma follows from the norm continuity
of the triple product.

Since interchanging rows is an isometry, hence an isomorphism, the second state-
ment follows.

Lemma 2.4. Let a, b, c ∈ A. Then

{
[

a 0
0 0

] [

0 b
0 0

] [

c 0
0 0

]

} = 0,

{
[

a 0
0 0

] [

0 0
b 0

] [

c 0
0 0

]

} = 0,(8)

.
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Proof. To prove the first statement, let X denote {
[

a 0
0 0

] [

0 b
0 0

] [

c 0
0 0

]

}.
By (5),

P11(X) = P11({
[

a 0
0 0

] [

0 0
0 0

] [

c 0
0 0

]

}) = 0.

Similarly, (P11 + P21)(X) = (P21 + P22)(X) = 0, so that X =

[

0 x
0 0

]

.

Let X ′ =

[

0 0
0 x

]

. We claim that for any Y ∈ M2(A), {XX ′Y } = 0. Indeed,

with A =

[

a 0
0 0

]

, B =

[

0 b
0 0

]

, C =

[

c 0
0 0

]

, we have A ⊥ X ′, C ⊥ X ′ and

by (4),

{XX ′Y } = {{ABC}X ′Y } = {C{BAX ′}Y }+ {A{X ′CB}Y } − {{CX ′A}BY } = 0.

Thus D(X,X ′) = 0, which, by [22, Lemma 1.3(a)], implies that X and X ′ are
orthogonal in the Banach space sense: ‖X ±X ′‖ = max(‖X‖, ‖X ′‖). Since ‖X +

X ′‖ = ‖
[

0 x
0 x

]

‖ =
√
2‖x‖, it follows that x = 0. The second assertion is proved

similarly, using X =

[

0 0
x 0

]

, X ′ =

[

0 0
0 x

]

.

By interchanging rows and columns, it follows that the following triple products
all vanish (the last three by orthogonality):

{
[

0 0
0 a

] [

0 0
b 0

] [

0 0
0 c

]

}, {
[

0 a
0 0

] [

b 0
0 0

] [

0 c
0 0

]

},(9)

{
[

0 0
a 0

] [

0 0
0 b

] [

0 0
c 0

]

}, {
[

0 0
a 0

] [

0 b
0 0

] [

0 0
0 c

]

},(10)

{
[

0 a
0 0

] [

0 0
b 0

] [

c 0
0 0

]

}, {
[

0 0
0 a

] [

b 0
0 0

] [

0 0
c 0

]

}.(11)

For use in Lemma 4.2, we adjoin

{
[

0 0
a 0

] [

b 0
0 0

] [

0 0
c 0

]

} = {
[

0 a
0 0

] [

0 0
0 b

] [

0 c
0 0

]

} = 0,

and

{
[

0 0
0 a

] [

0 b
0 0

] [

0 0
0 c

]

} = 0.

Lemma 2.5. For a, b, c ∈ A, there exists z ∈ A such that

{
[

a 0
0 0

] [

0 b
0 0

] [

0 c
0 0

]

} =

[

z 0
0 0

]

.

Proof. Let X denote {
[

a 0
0 0

] [

0 b
0 0

] [

0 c
0 0

]

}. By (5), (P12 + P22)(X) = 0

and (P12 + P21)(X) = 0.
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Lemma 2.6. For a, b, c ∈ A,

{
[

0 a
0 0

] [

0 b
0 0

] [

0 c
0 0

]

} =

[

0 {abc}
0 0

]

.

Proof. Since P11 + P12 and P12 + P22 are bicontractive, the intersection of their
ranges is a subtriple. Since A is a JB∗-triple under the product induced by P12,
and triple products are unique, the result follows.

As noted in the proof of Lemma 2.3, interchanging rows or columns is an isom-
etry, hence an isomorphism. Therefore we also have, for example,

{
[

a 0
0 0

] [

b 0
0 0

] [

c 0
0 0

]

} =

[

{abc} 0
0 0

]

,

and so forth.

Definition 2.7. Define a ternary product [a, b, c] or [abc] on A by

[a, b, c] = 2p11({
[

0 a
0 0

] [

0 b
0 0

] [

c 0
0 0

]

}),

where p11(

[

a b
c d

]

) = a. Similarly, define two more ternary products (abc) and

〈abc〉 as follows:

(abc) = 2p11({
[

a 0
0 0

] [

0 0
b 0

] [

0 0
c 0

]

})(12)

and

〈abc〉 = 2p11({
[

0 0
c 0

] [

0 0
0 b

] [

0 a
0 0

]

}).(13)

We treat first the ternary product [a, b, c]. Note that, by Lemma 2.5,

1

2

[

[a, b, c] 0
0 0

]

= {
[

0 a
0 0

] [

0 b
0 0

] [

c 0
0 0

]

},(14)

and that by interchanging suitable rows and columns,

[a, b, c] = 2p21({
[

0 0
0 a

] [

0 0
0 b

] [

0 0
c 0

]

})

= 2p12({
[

a 0
0 0

] [

b 0
0 0

] [

0 c
0 0

]

})

= 2p22({
[

0 0
a 0

] [

0 0
b 0

] [

0 0
0 c

]

}).

Lemma 2.8. For a, b, c ∈ A,

[a, b, c] + [c, b, a] = 2{abc},

and hence

‖[a, a, a]‖ = ‖a‖3.
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Proof. Given a, b, c ∈ A, it follows from Lemma 2.2, Lemmas 2.4-2.6, Definition 2.7
and (6) that there are elements x, y, z, w ∈ A such that x+ y = 2{abc} and

[

x y
z w

]

=

[

0 0
0 0

]

+

[

[abc]/2 0
0 0

]

+

[

0 {abc}
0 0

]

+

[

[cba]/2 0
0 0

]

.

Hence [abc]/2 + [cba]/2 = x = y = {abc} (and z = w = 0).

We shall see later in Proposition 3.5 that in fact [abc] = (abc) = 〈abc〉. First
we shall show the analog of Lemma 2.8 for each of the ternary products (abc) and
〈abc〉. We note that, as above,

[

(abc)/2 0
0 0

]

= {
[

a 0
0 0

] [

0 0
b 0

] [

0 0
c 0

]

}(15)

and
[

〈abc〉/2 0
0 0

]

= {
[

0 0
c 0

] [

0 0
0 b

] [

0 a
0 0

]

}.

Moreover, by interchanging rows and/or columns,

(abc) = 2p22({
[

0 0
0 a

] [

0 b
0 0

] [

0 c
0 0

]

})

= 2p12({
[

0 a
0 0

] [

0 0
0 b

] [

0 0
0 c

]

})

= 2p21({
[

0 0
a 0

] [

b 0
0 0

] [

c 0
0 0

]

})

and

〈abc〉 = 2p22({
[

0 c
0 0

] [

b 0
0 0

] [

0 0
a 0

]

})(16)

= 2p12({
[

0 0
0 c

] [

0 0
b 0

] [

a 0
0 0

]

})

= 2p21({
[

c 0
0 0

] [

0 b
0 0

] [

0 0
0 a

]

}).

Proposition 2.9. If A is an operator space such thatM2(A)0 is a bounded symmet-
ric domain (and consequently M2(A) and A are JB*-triples), then 〈abc〉+ 〈cba〉 =
2{abc}A and (abc) + (cba) = 2{abc}A.

Proof. The proof for (·, ·, ·) is similar to the proof for [·, ·, ·], using instead the identity

{
[

a 0
a 0

] [

0 0
b 0

] [

c 0
c 0

]

} = {
[

0 0
c 0

] [

0 0
b 0

] [

0 0
a 0

]

}

+ {
[

c 0
0 0

] [

0 0
b 0

] [

0 0
a 0

]

}

+ {
[

a 0
0 0

] [

0 0
b 0

] [

c 0
0 0

]

}

+ {
[

a 0
0 0

] [

0 0
b 0

] [

0 0
c 0

]

}
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and the projection

P (

[

a b
c d

]

) =
1

2

[

a+ c 0
a+ c 0

]

.

To prove the statement for 〈·, ·, ·〉 consider (cf. Remark 2.1) the space

Ã = {ã =

[

a a
a a

]

: a ∈ A},

which is a subtriple ofM2(A) since it is the range of a product QP of the bicontrac-
tive projections Q,P of Proposition 1.4(c). It follows as in the proof of Remark 2.1

that Ã is a JB∗-triple under the triple product {· · ·}′ defined by {ãb̃c̃}′ = 4({abc})˜.
To see this, let D′(x̃)ã = {x̃x̃ã}′ and note that ‖x̃‖ = 2‖x‖, D′(x̃)ã = 4(D(x)a)˜,

eitD
′(x̃)ỹ = (e4itD(x)y)˜ and that (λ−D(x̃))−1ỹ = ((λ−D(x))−1y)˜.

By the uniqueness of the triple product on M2(A), {ãb̃c̃} = {ãb̃c̃}′. Hence, by

expanding {x̃ỹz̃} = {
[

x x
x x

] [

y y
y y

] [

z z
z z

]

} into computable terms,

4{xyz}˜= {x̃ỹz̃}
= ({xyz}+ (xyz)/2 + (zyx)/2 + [xyz]/2 + [zyx]/2 + 〈xyz〉/2 + 〈zyx〉/2)˜

= (3{xyz}+ 〈xyz〉/2 + 〈zyx〉/2)˜.

This proves the statement for 〈·, ·, ·〉.

3. Equality of the ternary products

In this section, we continue to assume that A ⊂ B(H) is an operator space such
that the open unit ball M2(A)0 is a bounded symmetric domain. We shall prove
the equality of the three ternary products defined in section 2. Even though they
agree, all three products are needed in the proof of the crucial Proposition 4.1.

In the following we shall let a ∈M2(A) denote

[

a 0
0 a

]

and a ∈M2(A) denote
[

0 a
a 0

]

. By Lemmas 2.3 and 2.6, the ranges of P12 + P21 and P11 + P22 are

invariant under the continuous functional calculus in a JB∗-triple. In particular,
for any λ > 0,

aλ =

[

aλ 0
0 aλ

]

and (a)λ =

[

0 aλ

aλ 0

]

.

Here, aλ is defined by the triple functional calculus in the JB*-triple M2(A) and
aλ is defined by the triple functional calculus in the JB*-triple A.

Lemma 3.1. Let λ, µ, ν be positive numbers and let a ∈ A. Then

aλ+µ+ν = {aλaµaν} = {aλaµaν} = {aλaµaν}

and

aλ+µ+ν = {aλaµaν} = {aλaµaν} = {aλaµaν}.
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Proof. aλ+µ+ν = {aλaµaν} is immediate from the functional calculus. The proofs
of the other statements are all proved in the same way, for example,

{aλaµaν} = {
[

0 aλ

aλ 0

] [

aµ 0
0 aµ

] [

0 aν

aν 0

]

} =

{
[

0 aλ

0 0

] [

aµ 0
0 0

] [

0 aν

aν 0

]

}

+ {
[

0 aλ

0 0

] [

0 0
0 aµ

] [

0 aν

aν 0

]

}

+ {
[

0 0
aλ 0

] [

aµ 0
0 0

] [

0 aν

aν 0

]

}

+ {
[

0 0
aλ 0

] [

0 0
0 aµ

] [

0 aν

aν 0

]

},

which further expands, using (8)-(11) into

{
[

0 aλ

0 0

] [

aµ 0
0 0

] [

0 0
aν 0

]

}

+ {
[

0 aλ

0 0

] [

0 0
0 aµ

] [

0 0
aν 0

]

}

+ {
[

0 0
aλ 0

] [

aµ 0
0 0

] [

0 aν

0 0

]

}

+ {
[

0 0
aλ 0

] [

0 0
0 aµ

] [

0 aν

0 0

]

}

=

[

0 0
0 〈aνaµaλ〉/2

]

+

[

〈aλaµaν〉/2 0
0 0

]

+

[

0 0
0 〈aλaµaν〉/2

]

+

[

〈aνaµaλ〉/2 0
0 0

]

= aλ+µ+ν .

Lemma 3.2. D(a, a) = D(a, a).

Proof. We shall use (3) with z = {xxy}, which states that

D({xyx}, {xxy}) = 2D(x, {yx{xxy}})−D({x{xxy}x}, y).(17)

We have, by (17) and Lemma 3.1,

D(a, a) = D({a1/3, a1/3, a1/3}, {a1/3, a1/3, a1/3}
= 2D(a1/3, {a1/3, a1/3, {a1/3, a1/3, a1/3}})
− D({a1/3, {a1/3, a1/3, a1/3}, a1/3}, a1/3)
= 2D(a1/3, {a1/3, a1/3, a})−D({a1/3, a, a1/3}, a1/3)
= 2D(a1/3, a5/3)−D(a5/3, a1/3)

= 2D(a, a)−D(a, a),

which proves the lemma.

Lemma 3.3. D(a, a) = D(a, a).
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Proof. By Lemma 3.1 and two applications of (1),

D(a, a) = D({a1/4, a1/4, a1/2}, a)
= D(a1/2, {a a1/4 a1/4}) + [D(a1/4, a1/4), D(a1/2, a)]

= D(a1/2, a3/2) + [D(a1/4, a1/4), D(a1/2, a)]

( by Lemma 3.2 since D(a1/2, a) = D(a3/4, a3/4))

= D(a1/2, a3/2) +D({a1/4a1/4a1/2}, a)−D(a1/2, {aa1/4a1/4})
= D(a1/2, a3/2) +D(a, a)−D(a1/2, a3/2).

Hence D(a, a)−D(a, a) = D(a1/2, a3/2)−D(a1/2, a3/2).
It remains to show that D(a, a3)−D(a, a3) = 0 for every a ∈ A.
Now by (3) and Lemma 3.1,

D(a, a3) = D(a, {a, a, a})
= D({aaa}, a)/2 +D(a3, a)/2

= D(a3, a)/2 +D(a3, a)/2

= D(a, a3) (by interchanging a and a).

This proves the lemma.

By linearization from the preceding two lemmas we obtain

Lemma 3.4. D(a,b) = D(a,b); D(a,b) = D(a,b)

Proof. From D(a+b, a+b) = D(a+b, a+b) follows D(b, a)+D(a,b) = D(a,b)+
D(b, a). Now replace a by ia and add to obtain D(a,b) = D(a,b). The second
statement follows similarly from D(a+ b, a+ b) = D(a+ b, a+ b).

Proposition 3.5. If A is an operator space such that M2(A)0 is a bounded sym-
metric domain, then [abc] = (abc) = 〈abc〉
Proof. By expanding as in the second part of the proof of Lemma 3.3,

D(a,b)

[

x 0
0 0

]

= {
[

a 0
0 a

] [

b 0
0 b

] [

x 0
0 0

]

}

= {
[

a 0
0 0

] [

b 0
0 0

] [

x 0
0 0

]

}

=

[

{abx} 0
0 0

]

and

D(a,b)

[

x 0
0 0

]

= {
[

0 a
a 0

] [

0 b
b 0

] [

x 0
0 0

]

}

= {
[

0 a
0 0

] [

0 b
0 0

] [

x 0
0 0

]

}

+ {
[

0 0
a 0

] [

0 0
b 0

] [

x 0
0 0

]

}

=

[

[abx]/2 + (xba)/2 0
0 0

]

,

so that [xba] = (xba).
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Similarly,

[

0 〈xba〉/2
〈abx〉/2 0

]

= {
[

a 0
0 a

] [

0 b
b 0

] [

x 0
0 0

]

} = D(a,b)

[

x 0
0 0

]

= D(a,b)

[

x 0
0 0

]

= {
[

0 a
a 0

] [

b 0
0 b

] [

x 0
0 0

]

}

=

[

0 [xba]/2
(abx)/2 0

]

,

so that 〈xba〉 = [xba].

4. Main result

Proposition 4.1. Let X be an operator space such that M2(X)0 is a bounded
symmetric domain. Then (X, [· · ·], ‖ · ‖) is a C∗-ternary ring in the sense of Zettl
[38] (see Definition 1.3) and its JB∗-triple product (see the beginning of section 2)
satisfies {abc} = ([abc] + [cba])/2.

Proof. It was already shown in Lemma 2.8 that {abc} = ([abc] + [cba])/2 and that
‖[aaa]‖ = ‖a‖3 and it is clear that ‖[abc]‖ ≤ ‖a‖‖b‖‖c‖.

It remains to show associativity. To prove this we will use Lemma 2.3 and
Proposition 3.5. For a, b, c, d, e ∈ X , let

A =

[

0 a
0 0

]

, B =

[

0 b
0 0

]

, C =

[

c 0
0 0

]

, D =

[

0 0
d 0

]

, E =

[

0 0
e 0

]

.

Then

[[abc]de] = ([abc]de) = 2p11({
[

[abc] 0
0 0

]

,

[

0 0
d 0

]

,

[

0 0
e 0

]

}) (by (12))

= 4p11({{
[

0 a
0 0

] [

0 b
0 0

] [

c 0
0 0

]

},
[

0 0
d 0

]

,

[

0 0
e 0

]

})

(by (14))

= 4p11({ED{CBA}}) (by commutativity of the triple product)

= 4p11({CB{EDA}}) + 4p11({{EDC}BA})
−4p11({C{BED}A}) (by (2))

= 0 + 4p11({{
[

0 0
e 0

] [

0 0
d 0

] [

c 0
0 0

]

},
[

0 b
0 0

]

,

[

0 a
0 0

]

}) + 0

= 2p11({
[

0 a
0 0

] [

0 b
0 0

] [

(cde) 0
0 0

]

}) (by (15))

= [ab(cde)] = [ab[cde]].
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To complete the proof of associativity, consider

[a[dcb]e] = 〈a〈dcb〉e〉

= 2p11({
[

0 a
0 0

] [

0 0
0 〈dcb〉

] [

0 0
e 0

]

}) (by (13))

= 4p11({
[

0 a
0 0

]

, {
[

0 0
d 0

] [

c 0
0 0

] [

0 b
0 0

]

},
[

0 0
e 0

]

})

(by (16))

= 4p11({A{DCB}E})
= 4p11({{ABC}DE}) + 4p11({EB{ADC}})− 4p11({C{BAD}E})

(by (4))

= 4p11({{ABC}DE}) (since A ⊥ D)

= 4p11({{
[

0 a
0 0

] [

0 b
0 0

] [

c 0
0 0

]

},
[

0 0
d 0

]

,

[

0 0
e 0

]

})

= 2p11({
[

[abc] 0
0 0

] [

0 0
d 0

] [

0 0
e 0

]

}) = ([abc]de) (by (15))

= [[abc]de].

Lemma 4.2. Let A be an operator space such that M2(A)0 is a bounded symmetric
domain, so that by Proposition 4.1, A is a C*-ternary ring. Suppose that the C*-
ternary ring A is isomorphic to a TRO, that is, A−1 = 0 in Theorem 1.2. Form the
ternary product [· · ·]M2(A) induced by the ternary product on A as if it was ordinary
matrix multiplication, that is, if X = [xij ], Y = [ykl], Z = [zpq] ∈ M2(A), then
[XY Z]M2(A) is the matrix whose (i, j)-entry is

∑

p,q[xipyqpzqj ]. Then

2{XYZ}M2(A) = [XY Z]M2(A) + [ZY X ]M2(A)

Proof. It suffices to prove that {XXX}M2(A) = [XXX ]M2(A).
In the first place,

[XXX ]M2(A) =

































[x11x11x11] + [x12x12x11] [x11x11x12] + [x12x12x12]

+[x11x21x21] + [x12x22x21] +[x11x21x22] + [x12x22x22]

[x21x11x11] + [x22x12x11] [x21x11x12] + [x22x12x12]

+[x21x21x21] + [x22x22x21] +[x21x21x22] + [x22x22x22]
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On the other hand, by using Lemmas 2.3,2.4,2.6 and 2.8, and Proposition 2.9,

∑

k,l,p,q

{P11(X)Pkl(X)Ppq(X)} =

























{x11x11x11}+ [x12x12x11]/2 [x11x11x12]/2

+[x11x21x21]/2 +[x11x21x22]/2

[x21x11x11]/2 + [x22x12x11]/2 0

























,

∑

k,l,p,q

{P12(X)Pkl(X)Ppq(X)} =

























[x12x22x21]/2 {x12x12x12}+ [x11x11x12]/2

+[x12x12x11]/2 +[x12x22x22]/2

0 [x21x11x12]/2 + [x22x12x12]/2

























,

∑

k,l,p,q

{P21(X)Pkl(X)Ppq(X)} =

























[x11x21x21]/2 + [x12x22x21]/2 0

{x21x21x21}+ [x21x11x11]/2 [x21x11x12]/2

+[x22x22x21]/2 +[x21x21x22]/2

























,

and

∑

k,l,p,q

{P22(X)Pkl(X)Ppq(X)} =

























0 [x11x21x22]/2 + [x12x22x22]/2

[x22x12x11]/2 {x22x22x22}+ [x21x21x22]/2

+[x22x22x21]/2 [x22x12x12]/2

























.

Since {XXX}M2(A) =
∑

i,j

∑

k,l,p,q{Pij(X)Pkl(X)Ppq(X)} and {xxx} = [xxx],
the lemma follows.

We now state and prove the main result of this paper.

Theorem 4.3. Let A ⊂ B(H) be an operator space and suppose that Mn(A)0 is
a bounded symmetric domain for some n ≥ 2. Then A is n-isometric to a ternary
ring of operators (TRO). If Mn(A)0 is a bounded symmetric domain for all n ≥ 2,
then A is ternary isomorphic and completely isometric to a TRO.

Proof. The second statement follows from the first one. Suppose n = 2. From
Theorem 1.2 and Proposition 4.1, we know that A = A1⊕A−1 where A1 is ternary
isomorphic to a TRO B and A−1 is anti-isomorphic to a TRO C. Let ϕ : A−1 → C
be an anti-isomorphism. Since C is a JB*-triple under the product {x y z} =
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(1/2)(xy∗z + zy∗x) and ϕ is an isometry, hence a triple isomorphism, it follows
that

ϕ(x)ϕ(x)∗ϕ(x) = ϕ{xxx} = ϕ[xxx] = −ϕ(x)ϕ(x)∗ϕ(x)
so that ϕ(x)ϕ(x)∗ϕ(x) = 0 and x = 0. Thus A−1 = 0 and A is ternary isomorphic
to a TRO B. Let ψ : A → B be a surjective ternary isomorphism. Then by
Lemma 4.2, the amplification ψ2 is a triple isomorphism of the JB*-triple M2(A)
onto the JB*-triple M2(B), with the triple product

{RST }M2(B) := (RS∗T + TS∗R)/2,

implying that ψ2 is a triple isomorphism, hence an isometry. Thus, A is 2-isometric
to B, proving the theorem for n = 2.

The general case for Mn(A) is now not difficult to obtain. We require only one
short lemma.

Lemma 4.4. Let A be an operator space such that for some n ≥ 3, Mn(A) has a
JB*-triple structure. Then for X,Y, Z ∈Mn(A), the following products all vanish:

• {Pij(X) Pkj(Y ) Plj(Z)} (for distinct i, k, l)
• {Pij(X) Pik(Y ) Pil(Z)} (for distinct j, k, l)
• {Pij(X) Pkl(Y ) Ppq(Z)} (for i 6= k, j 6= l and either p 6∈ {i, k} or q 6∈ {j, l}

Proof. Two applications of the fact that the range of a bicontractive projection on
a JB*-triple is a subtriple yield that {Pij(X) Pkj(Y ) Plj(Z)} lies in (Pij + Pkj +
Plj)Mn(A). However, by a conditional expectation property,

(Pij + Pkj){Pij(X) Pkj(Y ) Plj(Z)} = (Pij + Pkj){Pij(X) Pkj(Y ) 0} = 0.

A similar calculation shows (Pkj + Plj){Pij(X) Pkj(Y ) Plj(Z)} = 0, proving the
first statement. A similar agrument proves the second statement. The proof of the
last statement is the same as the proof of Lemma 2.3. For n = 3, one needs to
prove, for example, that

D(





a 0 0
0 0 0
0 0 0



 ,





0 0 0
0 b 0
0 0 0



) = 0

Returning to the proof of Theorem 4.3, if Mn(A) is a JB*-triple, then M2(A),
which is isometric to the range of a contractive projection on Mn(A), is also a JB*-
triple. Hence, by the n = 2 case, A is a C*-ternary ring which is ternary isomorphic
and isometric under a map φ to a TRO B and M2(A) is triple isomorphic and
isometric to M2(B) under the amplification φ2. Every triple product {XY Z} in
Mn(A) is the sum of products of the form {Pij(X) Pkl(Y ) Ppq(Z)}. By Lemma
4.4, every such product of matrix elements in Mn(A) is either zero or takes place
in the intersection of two rows with two columns. The subspace of Mn(A) defined
by one such intersection is a subtriple of Mn(A) since it is the range of the product
of two bicontractive projections. It is isometric, via

Pij(X) + Pil(Y ) + Pkj(Z) + Pkl(W ) 7→
[

Pij(X) Pil(Y )
Pkj(Z) Pkl(W )

]

,

hence triple isomorphic, to M2(A). Hence, by the proof of the n = 2 case, all triple
products in Mn(A) are the natural ones obtained from the ternary structure on
A as in Lemma 4.2. It follows that Mn(A) is triple isomorphic to Mn(B) via the
amplification map φn which is thus an isometry.
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As application, we offer two corollaries.

Corollary 4.5. Let A ⊂ B(H,K) be a TRO and let P be a completely contractive
projection on A. Then the range of P is completely isometric to another TRO.

Proof. SinceA is a TRO,Mn(A) is a JB*-triple. ThereforeMn(P (A)) = Pn(Mn(A))
is a JB*-triple, and its unit ball is a bounded symmetric domain.

Another way to obtain this corollary is to note that every TRO is a corner of
a C*-algebra and hence the range of a completely contractive projection on that
algebra. By composing these two projections, the corollary is reduced to [37].

Our second corollary is a variant of the fundamental Choi-Effros result.

Corollary 4.6. Let P be a unital 2-positive projection on a unital JC*-algebra A.
Then P (A) is 2-isometric to a C*-algebra. If P is completely positive and unital,
then P (A) is completely isometric to a C*-algebra.

In order to state our second theorem, we recall that a complex Banach space A
is linearly isometric to a unital JB*-algebra if and only if its open unit ball A0 is
a bounded symmetric domain of tube type [11]. In [36], a necessary and sufficient
condition, involving the Lie algebra of all complete holomorphic vector fields on
A0, is given for such A to be obtained from a C*-algebra with the anticommutator
product. Our next theorem gives a holomorphic characterization of C*-algebras up
to complete isometry.

Theorem 4.7. Let A ⊂ B(H) be an operator space and suppose that Mn(A)0 is
a bounded symmetric domain for some n ≥ 2. If the induced bounded symmetric
domain structure on A0 is of tube type, then A is n-isometric to a C*-algebra. If
Mn(A)0 is a bounded symmetric domain for all n ≥ 2 and A0 is of tube type, then
A is completely isometric to a C*-algebra.

Proof. By Theorem 4.3, we may assume that A is a TRO. Since A has the structure
of a unital JB*-algebra, there is a partial isometry u ∈ A such that au∗u = uu∗a = a
for every a ∈ A. Then A becomes a C*-algebra with product a · b = au∗b and
involution a♯ = ua∗u. Since ab∗c = a · b♯ · c, and ternary isomorphisms of TRO’s
are complete isometries, the result follows.

Remark 4.8. One can construct operator spaces that are 2-isometric to a C*-
algebra A which are not completely isometric to A. Hence, if M2(A)0 is a bounded
symmetric domain it does not follow that Mn(A)0 is a bounded symmetric domain
for every n ≥ 2. It would be interesting to see if this were true under some further
condition on A.

The proof of Theorem 4.3 seems to require a bounded symmetric domain structure
onM2(A)0, not simply on M1,2(A)0 for example. It would be interesting to see what
could be said if it is assumed that M1,n(A)0 were a bounded symmetric domain for
every n ≥ 2.
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