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MULTILEVEL STATISTICAL MODELS AND ECOLOGICAL
SCALING

RICHARD A. BERK
JAN DE LEEUW

DEPARTMENT OF STATISTICS
UCLA

1. INTRODUCTION

A useful way to conceptualize ecological processes operating at different
spatial scales is through what Wu [1999] calls hierarchical patch dynam-
ics. A key notion is that a few parts of a large hierarchical structure can be
studied in isolation insofar as these parts are distinguished from the rest by
“near-decomposability.” In effect, a segment of special interest within the
hierarchical structure interacts weakly with the rest and then only asymmet-
rically. In this chapter, we focus on a particular kind of segment comprised
of nested elements; higher levels are composed of the components of the
level below. We consider multilevel statistical models that can be used to
describe how variables characterizing higher levels affect processes operat-
ing at lower levels.

For simplicity, consider a subset of a hierarchy with two levels The ba-
sic idea is to have a regression equation characterizing relationships at the
lower, or micro, level and then have one or more of the regression coeffi-
cients at the micro level a function of predictors at the macro level. At the
micro level, for instance, taxa richness may be a function of stream velocity
(and other things). Then at the macro level, the regression coefficient link-
ing stream velocity to taxa richness may be a function of proximity of the
stream to land used for agriculture. Thus, one can address how the relation-
ship between stream velocity and taxa richness varies (or not) in different
locations, here with locale characterized by proximity to land used for agri-
culture. That is, one can learn when to generalize over sites and when not
to generalize over sites. One can also learn how different temporal and/or
spatial scales are related.

These sorts of relationships can easily be formulated as interaction effects
within a conventional regression analysis. However, the usual estimation
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procedures will not properly characterize the uncertainty in the output, so
that the confidence intervals and hypothesis tests will not perform properly.
A key problem is that the model’s errors (or disturbances) are not likely to
behave as if drawn independently from a single distribution. Special esti-
mation procedures are required. Such procedures, often constructed within
a multilevel framework, are well known and widely available in existing
software [Raudenbush and Bryk, 2002]. Our goal, therefore, is to summa-
rize some recent extensions of multilevel models to more complicated and
realistic situations common in ecological research.

In the next section of the paper, we provide an overview of the work.
Technical details follow in subsequent sections.1

2. EXTENSIONS OFMULTILEVEL MODELING

Our first extension of traditional multilevel modeling allows for spatial
autocorrelation in the disturbances of multilevel models. More proximate
spatial units at the micro level can be expected to have model disturbances
that are more alike than spatial units at the micro level that are more dis-
tant from one another. Thus, transects that are closer together will likely
have disturbances that are more similar than transects that are farther apart.
Failing to take this spatial autocorrelation into account will generally lead
to biased estimates of the standard errors, and hence, inaccurate confidence
intervals and hypothesis tests. Uncertainty will be characterized incorrectly.

Formally, a good solution to this problem for linear regression can be
found in a classic paper by J. Keith Ord [1975]. For the usual sorts of
regression models, one constructs a matrix capturing the distance between
all micro units within each macro unit (e.g., transects within research sites)
and builds that information into the estimation process. We initially adopted
this approach, introduced it into a multilevel formulation, and applied it to
two data sets. One data set was collected to study biodiversity in streams
located in Ventura County, California, and the other was collected to study
the impact of marine preserves on biodiversity and total fish biomass in
coral reefs in the Philippines.

Our early results were disappointing. First, there was essentially no the-
ory or empirical research in ecology or related disciplines to inform in suf-
ficient detail the construction of the distance matrix. One difficulty was that
it was not clear how to measure distance given ocean currents, for exam-
ple, transporting nutrients more readily between some locals than others.
”Distance” was function of spatial proximity and the direction and speed of
prevailing current; locations formally closer together could easily have less
in common than locations farther apart. Another difficulty was that there are

1 The more formal theoretical work in this paper is primarily the work of de Leeuw.
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a number of different functions of that distance that could have been used in
the distance matrix (e.g., exponential decay with increasing distance) and,
again, there is no guidance from the scientific literature. We believe that
similar problems are common for a wide variety of environmental applica-
tions.

Second, except for very simple and somewhat unrealistic models, the nu-
merical methods used in the estimation did not perform well. There were
several technical reasons, but a key obstacle was that the regression coeffi-
cients and the distance matrix were “competing” for much the same infor-
mation. This was because the predictors necessarily also contained spatial
information. Micro units that were closer were likely to be more similar
not just in their disturbances, but in the values of their predictors. Such
predictors could include composition of the streambed and the amount of
shading from trees along the banks, for instance. Because of the competi-
tion for spatial information, the output from the statistical models tended to
be very unstable. Small changes in the model or the data could introduce
large changes in the output, which is a sure sign of trouble.

Finally, we planned move beyond multilevel linear models to multilevel
generalized linear models. In generalized linear models outcome variables
can be counts or proportions. Thus, we would be able to include popular
procedures such as logistic regression for binary outcomes and Poisson re-
gression for count data. Unfortunately, the Ord approach led to effectively
intractable mathematical problems when applied to generalized linear mod-
els.

These difficulties forced us to reconsider the entire enterprise and indeed,
the usual philosophy by which spatial modeling is undertaken. To begin, we
suspect that for spatial regression models, far too much is made about the
exact form of the distance matrix. With scant scientific guidance about how
the distance matrix should be formulated, any one of several competing for-
mulations can be applicable. But, there is no way to know which is best. In
addition, the distance matrix by itself is rarely of much scientific interest.
Its usual role is to allow for more accurate estimates of the regression coef-
ficients that are the real focus of scientific concern. In statistical parlance,
the distance matrix represents a set of “nuisance parameters.”

At a deeper level, George Box’s famous dictum applies: “all models
are wrong, but some are useful.” Given the current state of subject-matter
knowledge, it is naive to aim for the “right” model. And in the absence
of the right model, many of the usual statistical concerns become rela-
tively unimportant. In particular, confidence intervals and tests no longer
have much probative value. Rather, one should develop models that are de-
scriptively informative and relatively simple and that capture in broad-brush
strokes the essential features of the empirical world at hand[ Berk, 2003].



4 RICHARD A. BERK JAN DE LEEUW DEPARTMENT OF STATISTICS UCLA

These and other considerations led us to consider methods by which the
distance matrix could be well approximated and in a manner that eliminated
much of the instability produced by taking the Ord approach. Two methods
now seem to be especially effective. One method extracts the eigenvectors
of the distance matrix and uses the first few to adjust for spatial autocor-
relation. That still requires, however, that a distance matrix be specified.
The second method constructs simple functions of the spatial coordinates
(e.g., longitude and latitude) and uses these to adjust for spatial autocorre-
lation. For example, one might include longitude, latitude and their product.
Analyses of real data and our own simulations indicate that both methods
work well, although the second method is somewhat simpler to implement.
Moreover, one can in both cases improve the approximation of the distance
matrix as much as desired by using more of its eigenvectors or more com-
plicated functions of the spatial coordinates. That is, one can make the
approximations arbitrarily close to the specified distance matrix, although
at some point the instabilities reappear. Finally, we have developed novel
algorithms for estimating multilevel linear models with spatial autocorrela-
tion that have been implemented in our software. The formal properties of
these procedures have also been derived.

With our new approach, we can now more easily apply multilevel gen-
eralized linear models with spatial autocorrelation. It is important to em-
phasize again, however, that we have in important ways reformulated the
manner in which the modeling is approached; we are no longer seeking the
right model but rather, a useful model (For a rich elaboration on this point
see Berk, 2003, 206-218).

3. THE FORMAL STRUCTURE OFMULTILEVEL MODELS

We have built on several existing traditions in statistics. Spatial regres-
sion models [Anselin, 1988] are heteroscedastic linear models with cor-
related disturbances, in which the covariance between the disturbances de-
pends on the spatial distance of the sites. Random coefficient models [Long-
ford, 1993] are heteroscedastic linear models with correlated disturbances,
in which the covariance between the disturbances depends on the predic-
tor similarity of the sites. Multilevel models [Kreft and de Leeuw, 1998]
are random coefficient models in which the predictor similarity is deter-
mined by the fact that sites are grouped into clusters. Disturbances be-
tween clusters are uncorrelated, but within clusters the covariance depends
on the predictor similarity of the sites. Because distance and similarity are
closely related constructs, one would expect a relationship between these
three classes of models.
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Spatial regression models and random coefficient models both have cor-
related disturbances, with the size of the correlation depending on the sim-
ilarity of the sites. Similarity can be defined spatially or, more generally,
in terms of similarity of the sites on a number of predictors that may not
be spatial. Multilevel models simplify the overall correlation structure by
assuming that sites in different clusters are uncorrelated, which means that
the covariance matrix of the sites is block-diagonal, and presumably sparse.

It should come as no surprise, then, that much of our work relies on the
earlier work of many others. But, we make four contributions as follows.

(1) We combine autoregressive models with multilevel models.
(2) We consider spatial effects both as functions of non-spatial covari-

ates with random coefficients and as autocorrelated disturbances.
(3) We usefully approximate autocorrelated disturbance structures by

using spatial regressors with random coefficients.
(4) We develop augmentation and majorization methods to estimate

generalized multilevel autoregressive models. These are iterative
computational methods dealing with the nonlinearities in such mod-
els [De Leeuw, 1994].

The first three contributions are summarized below. Our work on the
fourth contribution is available upon request. We also have a single, broad
“take-home message.” The development of statistical tools for environ-
mental applications and the use of those tools should forego the traditional
search for the “correct model” and focus instead on building one or more
“useful models.”

3.1. Basics. We assumemultilevel data. In the simplest case with two lev-
els, the units of level one (which we call theone-units) are nested in units of
level two (thetwo-units). Because of our concentration on spatial examples,
we will often use the terminology of (research) “sites” and “transects” for
the units in our levels. Transects are nested in sites.

In the two-level case, we havem two-units, and within two-unitj, we
havenj one-units. For each two-unitj, there is a vectorzj, of lengthp,
of regressors describing the two-units. This implies that there will bep
regression coefficients, excluding the intercept, for two-units. There are
also(nj × q) matricesXj of regressors describing one-units. This implies
that there will beq regression coefficients, excluding the intercept, for one-
units. The total number of one-units in allm two-units isn.

We usually allow for an intercept in regression models. So, we add a
column ofnj × 1 columns of 1’s toXj, and a 1 as the lead element inzj.
Then, the standard two-level model2 assumes that within each two-unitj

2Random variables are always underlined.
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we have arandom-coefficient regression model3 of the form

(1) y
ij

=

q∑
s=0

xijsβjs
+ εij.

Here,i is the index used for one-units, which are nested in the two-units.
Thus(i = 1, · · · , nj). We follow conventional practice and assume that the
disturbancesεij are uncorrelated with the predictors; there are no “omitted
variables” at the one-unit level, and the functional forms are appropriate. In
practice, these assumptions must be carefully examined and justified. Often
they will be found wanting.

The q + 1 random regression coefficientsβ
js

in equation 1 express the
relationship between thefirst-level predictorsand theoutcomes. These ran-
dom coefficients, of which there arep+1 for each two-unitj, are themselves
outcomes of a second regression model, with fixed regression coefficients,
shown in equation 2

(2) β
js

=

p∑
r=0

zjrγrs + δjs,

in which the random regression coefficients are outcomes predicted bysecond-
level predictors. Again following convention, we assume that the distur-
bancesδjs are uncorrelated with the predictors; there are no “omitted vari-
ables” at the two-unit level, and the functional forms are appropriate. Of
course, both assumptions are likely to be substantially wrong in practice,
which again underscores the need to focus on useful models, not correct
models. More will be said about this later.

In the spatial case, the first level predictors describe properties of the
transects. They can be spatial, in the sense that they are functions of the
coordinates of the transects, or non-spatial. The second level predictors
describe properties of the sites, and again they can be spatial or non-spatial.

One can substitute equation 2 into equation 1 to write the model as a
single equation.

y
ij

=
∑q

s=0 xijs{
∑p

r=0 zjrγrs + δjs} + εij(3)

=
∑q

s=0

∑p
r=0 xijszjrγrs +

∑q
s=1 xijsδjs + εij(4)

Thus we see that the fixed part for two-unitj has the form

(5) E(y
ij
) =

p∑
r=0

q∑
s=0

γrszjrxijs

3 We use element-wise notation initially, matrix notation further on.
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with (p + 1)(q + 1) fixed predictors, each of which is a product of a first-
level and a second-level variable, often called “interaction variables,” and
the random part has the form

(6) y
ij
− E(y

ij
) =

q∑
s=0

xijsδjs + εij

We now need some additional assumptions on the distribution of the dis-
turbance terms. Some very general ones are

E(εij) = 0,

E(δjs) = 0,

C(εij, εk`) = 0 if j 6= `,

C(δjs, δ`t) = 0 if j 6= `,

C(εij, δ`s) = 0.

Thus, first-level disturbances for different two-units are uncorrelated, and
so are second level disturbances. The dispersion matrices of the first-level
disturbances are

(7) E(εjε
′
j) = σ2

j Λj,

and those of the second-level disturbances are

(8) E(δjδ
′
j) = σ2

j Ωj.

The dispersion matrixσ2
j Λj allows the one-unit disturbancesεij for a

given two-unit to have different variances and to be correlated with one
another. The dispersion matrixσ2

j Ωj allows the disturbancesδjs for a given
two-unit to have different variances and to be correlated with one another.
The former is where spatial dependence not captured by the regressors is
likely to be seen. The latter will reflect dependence between the random
coefficients that is not spatial, but a result of chance processes not captured
by the two-unit model.

As a practical matter, it will be impossible to estimate the values ofΛj

andΩj. These matrices contain weights that determine the disturbance vari-
ances and covariances and as such, there are far too many parameters to
estimate. Often to simplify we suppose that theΩj are the same for all two-
units, and usually theσ2

j are supposed to be the same too. Still, in most
cases (see the examples below) theΩj andΛj are assumed to depend on a
small number of parametersθ, which may again be constant over two-units.

3.2. An Example. A simple spatial example may help clarify the model.
It’s not intended to be realistic, but to illustrate some key concepts. The
one-units are observation stations, the two-units are one of three counties.
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We suppose rainfall at stationi in countyj depends on altitude (alt) and
distance from the ocean (dfo).

(9) rainij = β
0j
1ij + β

1j
altij + β

2j
dfoij + εij,

where1ij is the intercept, which is equal to one for all one-units. We do not
assume that the regression coefficients are the same for all three counties.
In fact, they vary according to a second regression model, for which we use
indicator variables coding for the counties in the study. Thus, fors = 0, 1, 2,

(10) β
js

= γ0s1j + γ1sLAj + γ2sSBj + δjs,

where again1j is the intercept, now equal to one for all two-units. All
observation stations in Los Angeles County (LA) have the same random
coefficient distribution, and so do the observation stations in San Bernadino
County (SB) and those in neither Los Angeles or San Bernadino County.

If one substitutes the equations at the county level into the equations at
the station level, fori 6= k, and assuming for notational simplicity thatσ2

j

andΩj are the same for all two-units,

C(rainij, rainkj) =

σ2
[
1 altij dfoij

] ω00 ω01 ω02

ω10 ω11 ω12

ω20 ω21 ω22

 1
altkj

dfokj


Thus, the covariance between the one-units in the same two-unit is deter-
mined by the similarity of predictor values of the one-units, where similar-
ity is measured by their inner product in the metricΩ. This is a key insight,
which shows why estimation of the parameters in spatial multilevel mod-
els can be difficult when one believes that certain sets of disturbances are
correlated as well.

3.3. Matrix Notation. Define the matrixZj as the direct sum ofq copies
of the row vectorz′j. Thus it isq by qp, and it looks like

(11) Zj =


z′j 0 0 · · · 0
0 z′j 0 · · · 0
0 0 z′j · · · 0
...

...
...

.. .
...

0 0 0 · · · z′j


Using this matrix, and stacking theγrs in a single vectorγ, we can rewrite (2)
as

(12) β
j
= Zjγ + δj,
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If we substitute (12) into (1) we find

(13) y
j
= Ujγ +Xjδj + εj,

with Uj
∆
=XjZj, and thus

E(y
j
) = Ujγ,(14a)

V(y
j
) = σ2

j (XjΩjX
′
j + Λj).(14b)

It is convenient to writeΣj for XjΩjX
′
j + Λj.

NowUj is of the form

(15) Uj =
[
xj1z

′
j | · · · | xjqz

′
j

]
,

wherexjr is columnr of Xj. Thus, in Equation (14a), the predictors inUj

are products of a first-level predictor fromX and a second-level predictor
fromZ. In principle, all thesecross-level interactionsare part of the model,
but we can eliminate some of them by setting the corresponding element
of γ equal to zero. Also observe that often the first column of both the
Xj and ofZ is an interceptcolumn with all elements equal to+1. If we
form all cross-level interactions, this implies that the columns ofX andZ
themselves also occur as predictors, because they are the intersections with
the intercept at the other level.

3.4. Generalizations.

3.4.1. More Than Two Levels.In a more-than-two-level model, there are
one-units, two-units, and three-units, and so on, nestedwithin each other.
For instance, we can have transects nested within streams nested within
watersheds, and so on. For this case we can adopt a more general notation.

Suppose we havenr observations on levelr, andqr predictors on that
level. Thus, we havenr × (qr + 1) matricesX(r) with predictors. We also
use indicator matricesG(r), which arenr × nr+1, and which indicate how
ther-units map into the(r + 1)-units.

The first two equations defining our multilevel model are

y(1)

i1
=

q1∑
s1=0

x
(1)
i1s1

n2∑
i2=1

g
(1)
i1i2
y(2)

i2s1

+ ε
(1)
i1
,(16a)

y(2)

i2s1

=

q2∑
s2=0

x
(2)
i2s2

n3∑
i3=1

g
(2)
i2i3
y(3)

i3s1s2

+ ε
(s)
i2s1

.(16b)

Thus, we haven1 random variables iny(1). These are the observed out-
comes. We haven2 × q1 unobserved random variables iny(2), these are
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the random regression coefficients from our previous formulation. Then we
haven3 × q1 × q2 unobserved random coefficients iny(3), and so on.

In the same way as before we can combine equations to form single equa-
tions, which rapidly become unwieldy. For both mathematical reasons and
ease of interpretation, it is wise to work with the fewest levels one can be
justify. In practice, complex models also can have very unstable results and
often will not converge at all. It is far better to have a model that is too
simple than a model than is too complex. From (16) we find, for example,

(17) y(1)

i1
=

q1∑
s1=0

x
(1)
i1s1

n2∑
i2=1

g
(1)
i1i2

[

q2∑
s2=0

x
(2)
i2s1s2

n3∑
i3=1

g
(2)
i2i3
y(3)

i3s1s2

+ ε
(s)
i2s1

] + ε
(1)
i1
.

3.4.2. Multivariate Outcomes.If there is more than one outcome variable,
we can use a simple trick to force the model into the multilevel framework.
We usevariablesas the first level. Thus variables are nested in transects,
transects in sites, and so on. For example, if there are three outcomes con-
tained in 3 columns of the data set, one can reorganize the data so that
within each one-unit there are three rows, one for each outcome. In each
of these rows is the value for each of the three outcome variables respec-
tively, with the values in the columns for predictor variables duplicated three
times. Having multiple outcomes just adds a level to the hierarchy. In ad-
dition, missing data on the outcomes can be incorporated without difficulty,
because some transects simply have fewer units (i.e. variables) than others.

We suspect that because there are often several ecologically interesting
response variables for a given analysis, this approach to multiple outcomes
can be widely useful. That is, even if there is no need for multilevel models
because of a particular hierarchical structure, multilevel level models can
be used when there is a need to consider more than one outcome at a time.

3.4.3. Non-independent Two-Units.In our models, we usually assume that
Ωj are the same for all sites. With this assumption, it is possible to use a
simple model for correlated sites, which has

(18a) C(y
j
, y

`
) = σjl(XjΩX

′
` + Λ

1/2
j Λ

1/2
` )

for all j 6= `, and

(18b) C(y
j
, y

j
) = σjj(XjΩX

′
j + Λj)

for all j, where theσj` are the covariances between sites.
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3.4.4. Generalized MAR Models.In the same way as linear models are
generalized to generalized linear models, one can try to construct gener-
alized mixed linear models from mixed linear models. The trick is simply
to condition on the random effects. In generalized linear models first-level
observations are independent given the random effects, and thus, the con-
ditional distribution is a simple product of univariate Poisson, binomials,
or gammas. But in generalized mixed linear models with autocorrelated
or spatially correlated first-level disturbances, one no longer can use inde-
pendence, and there is a need to assume that the disturbances within sites
have multivariate Poisson, binomial, or gamma distributions. There is no
agreement in statistics how to define such multivariate distributions, and the
definitions that are popular do not have many of the simplifying properties
of the univariate versions.

We shall see below, however, that models with correlated first-level dis-
turbances can be approximated by models with additional random effects
and uncorrelated first-level disturbances. In these approximations, condi-
tioning on the random effects makes the observations independent again,
and the results developed for generalized mixed linear models apply again.
This is perhaps the key technical point of this paper. To see why this work,
we need to consider in greater detail the nature of the disturbances in the
models.

4. MODELS FORDISTURBANCE DISPERSIONS

The dispersion matricesΛj of first-level disturbances can take many dif-
ferent forms. Generally, they are a function of a number of unknown pa-
rameters, collected in a vectorρ. Estimation simplifies considerably if the
Λj are known, and in particular in the homoscedastic case with uncorrelated
disturbances in whichΛj = Ij, the identity matrix of ordernj. But in spa-
tial situations the assumption that the disturbances are uncorrelated often is
difficult to defend.

This is why a great deal of attention has been paid to modeling the depen-
dence of spatial observations, taking as the main inspiration the literature on
time series models. The key paper in spatial autoregressive (SA) modeling
is Ord [1975]. Also compare Griffith [2002b] and Anselin [2001]. There
are various forms of these SA models, but the most important ones are one-
parameter models, in which the single parameterρ is interpreted as spatial
autocorrelation. It indicates the strength of the spatial effects.

In multilevel models, restrictions are often placed on theΩj. For instance,
it is common to assume that they are equal or that specific elements are zero.
We shall discuss these restrictions later, and concentrate here on the first-
level disturbances.
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4.1. The Spatial Lag Model. The spatial lag model also known as the AR,
or autoregressive reponse model. It specifies

(19) y
j
= ρjWjyj

+Xjβj
+ εj,

whereεj is homoscedastic with varianceσ2
j . With y

j
on both sides of the

equal sign, this is an AR model with

E(y
j
| βj) = (Ij − ρjWj)

−1Xjβj and,(20a)

V(y
j
| βj) = σ2

j [(Ij − ρjWj)(Ij − ρjW
′
j)]

−1.(20b)

In this formulation, the autoregression is defined directly in terms of the
outcomes. The spatial dependence is built into the model in a structural
manner. That is, the data analyst will typically have a subject-matter ra-
tionale for why and how values of the outcome variable are related. For
example, if water quality in a lake is the outcome of interest, there may
be diffusion of pollution from any one location to locations near by. De-
pending on the value ofρj, the diffusion affects might be large or small, or
perhaps even be negative. Note also that to isolate the role of the predictors,
adjustments have to be made for the diffusion process, which links the out-
come across locations. A failure to make such adjustments may mean that
effects attributed to one or more of the predictors are really just a result of
the movement of pollution from one place to another.

4.2. The Spatial Error Model. The spatial error model is also known as
the SAR or simultaneous autoregressive model [Anselin, 2001]. It has

(21a) y
j
= Xjβj

+ ζ
j
,

and it assumes an autoregression structure for the error terms. Thus

(21b) ζ
j
= ρjWjζj

+ εj,

where theεj are homoscedastic with varianceσ2
j .

This leads to

E(y
j
| βj) = Xjβj,(22a)

V(y
j
| βj) = σ2

j [(Ij − ρjWj)(Ij − ρjW
′
j)]

−1.(22b)

This formulation implies that the spatial dependence is not potentially
confounded with the predictors. It derives solely from dependence among
the disturbances themselves. Disturbances that are more proximate in space,
for instance, may tend to be more alike that disturbances that are farther
apart. The reasons for the dependence are usually not of much interest.
As such, the dependence is a mere nuisance and/or beyond current subject
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matter interest. The goal is to “mop up” the spatial dependence in the dis-
turbances so that it does not affect the precision of estimates of theβj or
estimates of their standard errors.

4.3. The Conditional Autoregression Model. Under the conditonal au-
toregression model (CAR), also discussed in Anselin [2001], we let

(23) y
j
= Xjβj

+ (Ij − ρjWj)
−1/2εj,

whereWj is now a symmetric weight matrix, and whereεj is homoscedastic
with varianceσ2

j . This implies

E(y
j
| βj) = Xjβj,(24a)

V(y
j
| βj) = σ2

j (Ij − ρjWj)
−1(24b)

If dependence in the disturbances can be treated as a mere nuisance, the
model one uses for the disturbances is of little importance as long as the
dependence is taken into account when the regression coefficients are esti-
mated. In this context, the conditional autoregressive model can be seen as
an alternative to the spatial error model, and it has some of the same look
and feel. Larger values ofρj imply more dependence among the distur-
bances. And just as for the spatial error model, the dependence may be a
function of distance; closer disturbances may tend to be more alike. The
main advantage of the conditional autoregressive model is that it can be as
effective in mopping up dependence in the disturbances as the spatial errors
model, but will be far easier to compute.

4.4. Weight Matrices. How to choose theWj has been discussed many
times in the geostatistics literature. A good review is Bavaud [1998]; see
also Cressie [1991]. Although it is possible to give some general indica-
tions, choosing a precise and appropriateWj is difficult, probably even
more difficult than choosing a correct set of predictors. The usual prob-
lem is that there is too little a priori knowledge to inform the choice and at
best some general clues in the data.

4.4.1. Choice of Weights.ForWj we assume, in spatial situations, that its
elements are similarities of transects in sitej. The more similar (the closer)
the transects, the larger the corresponding element inWj. If we do not have
a good reason to choose a specificWj, we can make it some (decreasing)
function of the transect distances, but again choosing the function is often
disturbingly arbitrary. In many cases, moreover, we even want to replace
simple Euclidean distance by other distances (measured along a network
or stream, for instance), which take the actual spatial setting into account.
Throughout, we suppose the elements ofWj are non-negative.
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4.4.2. Large matrices.In spatial analysis we often encounter situations in
which the order of theWj is very large, maybe105 or 106. Obviously in
such cases, it will generally not be possible to store floating-point matri-
ces of this size, let alone compute their determinants, inverse, or eigen-
decomposition.

There are several ways around this problem. The first is to use patterned
weight matrices of zeroes and ones (coding adjacency or nearest neigh-
bor, for instance), with a determinant or an inverse available in analytical
form [Pace and Zou, 2000]. The second is to use sparse matrix techniques
for weight matrices with a very large proportions of zeroes [Pace and Barry,
1997a,b,c] (again, adjacency matrices come to mind). We have also seen
that multilevel analysis suggests partitioning transects or sites into clusters,
and making the between cluster covariance equal to zero. This also intro-
duces a great deal of sparseness. And finally, fast numerical approximations
to the loss function are also a possibility. Specifically, techniques for ap-
proximating the determinant in the normal log-likelihood for all AR, SAR,
and CAR models are in Smirnov and Anselin [2001] and Griffith [2002a].

In the models discussed in this paper, we have the additional complication
that the dispersion matrix is made up out of two components: a part based
on similarity of the regressors and a part based on spatial information, coded
in the weight matrices. This makes patterned weight matrix and sparse
matrix techniques more difficult to use, and we have to resort to other types
of approximations.

4.4.3. Normalizing the Weights.It is computationally convenient if the weight
matrices in the SAR and AR models are symmetric. Then, we get a more
simple formulation,

(Ij − ρjWj)(Ij − ρjW
′
j) = (Ij − ρjWj)

2,

which is easier to work with. Unfortunately, in many applications an asym-
metric set of weights may make more sense (think of the influence of stream
flow or hillside slope on ecological distance, for instance).

Consider why having symmetric matrices is convenient. If theWj are
known symmetric matrices, one can compute the spectral decomposition
Wj = KjΦjK

′
j, and we find

(25a) Λj(ρj) =
∑

s

1

(1 − ρjφjs)2
kjsk

′
js

for SAR and

(25b) Λj(ρj) =
∑

s

1

1 − ρjφjs

kjsk
′
js
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for CAR. Thus, the eigenvectors ofΛj(ρj) are the same as those ofWj,
and the eigenvalues are simple functions of the eigenvalues ofWj. If ρj

changes, only the eigenvalues change; the eigenvectors remain the same.
For interpretation purposes, one can normalize the weights in such a way

that the rows ofWj sum to unity. This makes the weight matrix stochastic,
and by Frobenius theorem implies that the largest eigenvalue ofWj is equal
to +1. This means that the smallest eigenvalue ofIj − ρjWj is 1 − ρj, and
thusIj − ρjWj is positive definite as long asρj < 1, which helps in the
interpretation ofρ as a type of autocorrelation coefficient.

In some cases, it is desirable forWj to be both symmetric and normalized
(i.e. doubly stochastic). This is discussed for CAR models in Page and
LeSage [2002]. We have developed an algorithm and computer code to
normalize non-negative symmetric matrices in such a way that they become
doubly stochastic.4

4.5. Special Case: Time Series Models.If the outcomes are one-dimensional
(for instance if transects are arranged in lines), then it makes sense to use a
time series model for the first-level disturbances [Hedeker, 1989, Hedeker
and Gibbons, 1996]. We discuss these models here briefly because they
show where the SA models come from, and because they are more likely to
be familiar.

A first obvious choice for a time-series model is therandom walk, which
has

(26) εj = Wjεj + ζ
j
,

whereWj has all elements equal to zero, except those immediately below
the main diagonal, which are one. It follows that

(27) εj = Tjζj
,

whereTj has all elements on and below the main diagonal equal to one and
all elements above the main diagonal equal to zero. Thus,

(28) Λj = TjT
′
j ,

which means that element(s, t) is equal tomin(s, t).
In an AR(p) process,

(29) εj = Wjεj + ζ
j
,

whereWj has a band of widthp below the diagonal and zeroes elsewhere.
There arep parameters, the autoregression coefficients, inWj. The AR(1)
model is very much like the random walk, except that the element below
the diagonal is the single parameterρj.

4 This is available upon request.
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An MA(q) process also uses a banded matrix with parameter values, but
now

(30) εj = Wjζj
,

whereWj has diagonal one, and a band of widthq in each row below the
diagonal. Thus, an MA(1) has diagonal one, andρj below the diagonal.

It is easy to extend this to ARMA(p,q) and even more complicated pro-
cesses, but this is comparatively straightforward and it may be overkill in
many practical situations. For our purposes, the most interesting models are
AR(1) and MA(1), which can be defined in term of the backshift matrixBj,
which has elements equal to one below the diagonal only. Then for AR(1),
we have

(31a) Λj(ρj) = (Ij − ρjBj)
−1(Ij − ρjB

′
j)

−1,

and for MA(1) we have

(31b) Λj(ρj) = (Ij + ρjBj)(Ij + ρjB
′
j).

The random walk is AR(1) withρj = 1.

5. MODEL APPROXIMATION

It is now time to turn to approximations of various AR models that can
lead to practical computational results. Because, as noted earlier, the con-
cept of “the true model” is at least obscure and because even if we know
how to think about “the true model,” we usually do not have very precise
information about whichWj produces it, it makes sense to employ an ap-
proximation of the dispersion matrix that is computationally convenient.
We will first simplify the model by an approximation that works well for
smallρj, and then we approximate the model by another formulation with
homoscedastic first-level disturbances (i.e. a model withΛj = Ij).

5.1. Simplified AR. Consider again the SAR model described in Section
4.2. Recall that the variance-covariance matrix of the disturbances was
σ2

j [(Ij − ρjWj)(Ij − ρjW
′
j)]

−1, where all of the terms to the right ofσ2
j

representΛj(θ). In theSimplifiedAR Model (SIMAR), assume

(32) Λj(θ) = Ij + ρjWj,

where the off-diagonal elements of the symmetric matrixWj are again some
decreasing function of the Euclidean distances between the transects or,
more generally, of the spatial dissimilarities.

In the CAR model, ifρj is small,

(33) (Ij − ρjWj)
−1 = Ij + ρjWj + o(ρj),
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and in the SAR and CAR models,

(34) Λj(ρj) = (Ij − ρjWj)
−1(Ij − ρW ′

j)
−1 = Ij + ρj(Wj +W ′

j) + o(ρj),

which are both of the SIMAR form.
For both AR(1) and MA(1), and smallρj,

(35) Λj = Ij + ρj(Bj +B′
j) + o(ρj),

which is again of the required SIMAR form.

5.2. Spatial Effects as Random Coefficients.By using random coeffi-
cients in appropriate ways, one can emulate the covariance structure of the
SIMAR without assuming correlated disturbances for the first-level units.
Thus, one can maintainΛj = Ij.

The trick is really quite simple. In our spatial multilevel models

(36) y
j
= Ujγ +Xjδj + εj,

where

(37) V(εj) = σ2
j (Ij + ρjWj).

Now supposeWj = KjΦjK
′
j is the spectral decomposition ofWj. Then,

(38) y
j
= Ujγ +Xjδj +Kjηj

+ ζ
j
,

whereδj andη
j

are uncorrelated, and where

V(η
j
) = σ2

jρjΦj,(39a)

V(ζ
j
) = σ2

j Ij.(39b)

But, (38) and (39) can be interpreted as a simple multilevel model in which
the covariance matrix of the random effects is of the form

(40)

[
Ωj 0
0 ρjΦj

]
.

First-level disturbances are homoscedastic, and the regression coefficients
corresponding with the eigenvector-predictorsKj only have a random part
and a vanishing fixed part. Moreover, the random parts are uncorrelated,
with a diagonal dispersion matrix proportional to the eigenvalues ofWj. In
short, one can write the SIMAR model as a multilevel model with restric-
tions on the covariance matrix of the random effects.



18 RICHARD A. BERK JAN DE LEEUW DEPARTMENT OF STATISTICS UCLA

5.3. Positive definite variances.One problem with this formulation is that
it is not guaranteed that the eigenvaluesΦj of Wj are non-negative. If there
are negative eigenvalues, then Equation (39a) is difficult to interprete.

One can use the fact, however, thatIj + ρjWj must be positive definite.
Supposeρj > 0, and writeψj for the smallest eigenvalue ofWj. Then,

(41) Ij + ρjWj = (1 + ρjψj)Ij + ρjKj(Φj − ψjIj)K
′
j,

and we can rewrite (39) as

V(η
j
) = σ2

jρj(Φj − ψjIj),(42a)

V(ζ
j
) = σ2

j (1 + ρjψj)Ij.(42b)

These are somewhat more complicated restrictions, but they always give
positive semidefinite dispersion matrices.

5.4. Using Fewer Eigenvalues.A second problem with our approxima-
tion is that we replace a very large spatial disturbance covariance matrix
with a very large number of random effects. The number of random effects
added is equal to the order of the spatial covariance matrix.

We attack this problem by using only a small number of eigenvectors of
Wj, those corresponding with the largest eigenvalues (in modulus). Thus,
we use a principal component type approximation to the random effects.
With spatial information inWj using some function of the distances, two or
three principal components are likely to give a rather good approximation.

5.5. General Approach. Instead of approximating the SA models by SIMAR,
and then approximating SIMAR by using eigenvectors, one can employ a
more straightforward approach that can reduce the computational burdens.

Consider the following multilevel model for sitej

(43) y
j
= Xjβj

+ Zjηj
+ εj,

whereXj contains regression coordinates, andZj contains functions of the
spatial coordinates. For our second level model, we use

β
j
= Ajγ + δj,(44a)

η
j
= Bjκ+ ξ

j
.(44b)

This implies

(45a) y
j
= XjAjγ + ZjBjκ+ νj,

where

(45b) νj = Xjδj + Zjξj
+ εj,
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and thus, with suitable uncorrelatedness assumptions,

E(y
j
) = XjAjγ + ZjBjκ,(46a)

V(y
j
) = σ2

j (XjΩjX
′
j + ZjΘjZ

′
j + Ij).(46b)

This becomes an approximate multilevel Ord model if we letBj = 0 (i.e.
the spatial regression coefficients do not have a fixed part), and we letΘj =

ρ2
jIj (i.e. the spatial regression coefficients are uncorrelated). Then,

E(y
j
) = XjAjγ,(47a)

V(y
j
) = σ2

j [XjΩjX
′
j + (Ij + ρ2

jZjZ
′
j)].(47b)

Moreover, to get closer to SA, one can chooseZj in clever ways, using
the results we discussed earlier in this section. If theWj matrix in the Ord
model is a function of the spatial distances, then it obviously is a function
of the coordinates, and thus all its eigenvectors are functions of the coordi-
nates. If we chooseZj as a low-rank (principal component) approximation
of Wj, using the eigenvectors, then we can get very close to the Ord model.

And with the practical approximation of the Ord Model, applications to
the generalized linear model follow easily and directly. Work on these ex-
tensions is nearly completed, and software development has begun.

6. EMPIRICAL EXAMPLE

We have data from coral reefs along Olango Island in the Phillipines.5

There are thirty-three sites with four transects in each. There are fourteen
sites in areas that are protected; fishing is prohibited. There are nineteen
sites that are in unprotected areas; fishing is allowed (and is common). And
the fishing can include such very distructive practices such as poisoning
fish. The data we analyze is an aggregate over four equally spaced obser-
vations along each transect. Thus, transects are our lowest level, and the
second level is sites in the multilevel spatial model.

To keep the example simple, we use the same formulation illustrated in
Section 3.2. The main difference is that the specific response is the number
of different fish species. Therefore, the results we report are for a Poisson
response variable within our multilevel framework. At the lowest level, the
number of fish species is a function of how sandy the bottom is. The larger
the percent of the bottom that is sandy, the fewer species one would expect.
This relationship depends on the intercept (β0) and the slope (β1) at the level
of the site. Then, the intercept is a function of whether the reef is protect
via γ0.6 The slope is also a function of whether the reef is protected viaγ1.

5 The data were provided by Craig Schuman and Domingo Ochavillo.
6 Whether a reef is protected is coded 1 if the reef is protected and 0 otherwise.
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Thus, both of the parameters at the level of the site are treated as random
coefficients with a structural component determined by whether the reef is
protected. For the results in Table 1, we used an augmentation algorithm,
but the results are much the same for any of the simplifications we have
discussed.

Predictor Coefficient Std. Error
Protected (γ0) 5.58 3.75
% Sandy Bottom (β1) -0.18 0.04
Protect X % Sandy (γ1) 0.05 0.08
Constant (β0) 27.6 2.10
θ (AR parameter) .44 –

TABLE 1. Model for Species Counts Estimated by an Aug-
mentation Algorithm (N=132)

Focusing first on the regression coefficients From Table 1, one can see
that if a reef is unprotected there are on average nearly 28 distinct fish
species at a site. At these unprotected sites, for each addition percent of
the bottom that is sandy, the number of species drops by .18; for every ad-
ditional 10%, the number of species drops by 1.8. In the protected sites, the
number of fish species is greater by 5.58. Finally, in the protected sites, the
the negative impact of a sandy bottom on the number of species is a bit less
pronounced. The regression coefficient of -.18 is now -.13. For every 10%
increase in sandy bottom, the number of species is reduced by 1.3.

The autoregressive parameter is .44, which is of moderate size. There is
some meaningful spatial autocorrelation in the residuals. When this is taken
into account, we see in Table 1 that the percent of the bottom that is sandy
is easily twice the standard error. The impact of a protecting a reef about
1.5 times its standard error, statistically significant at the .10 level for a one-
tailed test. The coefficient for the interaction effect is less than its standard
error. One should treat any formal tests with great caution, in part because
the data were not collected by random sampling, and there is no compelling
model-based sampling alternative. Also, it is virtually certain that important
explanatory variables have been overlooked. But if one chooses to take
formal tests seriously, the interaction effect can be discarded.

7. SOFTWARE

The results shown in Table 1 were produced by developmental software
we wrote in R. But, one can obtain consistent estimates of all the regres-
sion parameters using any software for Poisson regression, usually as a spe-
cial case of the generalized linear model. One just has to substitute the
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higher level equations into the lower level equations, simplify, and proceed
as usual. And if confidence intervals and tests are not formally justified
(which is often be the case), one does not have to proceed any farther. More-
over, all of the conventional regression diagnostics for the generalized linear
model apply [Cook and Weisberg, 1999].

Getting the uncertainty right is more difficult and at this point, requires
special software. We hope to have ours available soon. In the meantime,
there are two good options that can be employed with existing software.

First, if one can justify the spatial lag model in Section 4.1, then once the
substitution of the two-unit model into the one-unit model is completed, the
GLM version of equation 19 (e.g., logistic regression or Poisson regression)
can be estimated in all of the major statistical packages with their routine
GLM procedures. Consistent parameter estimation follow.

Second, and far more generally, there exists at least in SAS PROC MIXED
[Littell et al, 1996], MLwiN [Goldstein, 1995], GLLAMM [Rabe-Hesketh
et al, 2002], and HLM [Raudenbush and Bryk, 2002] the ability to do mixed
effects generalized linear models. For a comparison of these packages we
refer to De Leeuw and Kreft [2001]. In each of them one can include func-
tions the spatial coordinates for the one-units but with their regression co-
efficients constrained to be equal to zero. We have had good success in-
cluding just the horizontal coordinate, the vertical coordinate (e.g. latitude
and longitude) and their product as one-unit predictors. Most of the spa-
tial autocorrelation in the will likely be “soaked-up.” If there is reason to
believe that the pattern of spatial autocorrelation is highly variable, then
quadratic functions of the two coordinates and their product can be added.
In our experience, including still more functions of the coordinates risks
very unstable results. And even with simple functions of the coordinates,
the standard errors should be sufficiently accurate for most purposes.

8. CONCLUSIONS

In this paper, we discussed tools for the construction of multilevel linear
models with ecological data. Extensions to multilevel generalized linear
models followed directly. With these tools, one can examine how variables
at one level are related to processes at another level; one can study the
interactions between phenomena at different spatial/temporal scales.

If one can also make the case that the structure of a model is very nearly
right, and one has either random sampling or credible-model based sam-
pling [Berk, 2003], conventional ways of representing uncertainty apply.
Our suggestions for obtaining useful estimates of the standard errors are
then appropriate. However, we favor a more realistic approach in which
description is the primary goal.
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