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Abstract

The medial ganglionic eminence (MGE) is an embryonic forebrain structure that generates the majority of cortical
interneurons. MGE transplantation into specific regions of the postnatal central nervous system modifies circuit function
and improves deficits in mouse models of epilepsy, Parkinson’s disease, pain, and phencyclidine-induced cognitive deficits.
Herein, we describe approaches to generate MGE-like progenitor cells from mouse embryonic stem (ES) cells. Using a
modified embryoid body method, we provided gene expression evidence that mouse ES-derived Lhx6+ cells closely
resemble immature interneurons generated from authentic MGE-derived Lhx6+ cells. We hypothesized that enhancers that
are active in the mouse MGE would be useful tools in detecting when ES cells differentiate into MGE cells. Here we
demonstrate the utility of enhancer elements [422 (DlxI12b), Lhx6, 692, 1056, and 1538] as tools to mark MGE-like cells in ES
cell differentiation experiments. We found that enhancers DlxI12b, 692, and 1538 are active in Lhx6-GFP+ cells, while
enhancer 1056 is active in Olig2+ cells. These data demonstrate unique techniques to follow and purify MGE-like derivatives
from ES cells, including GABAergic cortical interneurons and oligodendrocytes, for use in stem cell-based therapeutic assays
and treatments.
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Introduction

Cortical interneuron dysfunction may contribute to the risk of

developing autism, epilepsy, bipolar disorder, schizophrenia, and

dementia [1,2,3,4,5]. Cortical interneurons are born in the

progenitor zones of the medial ganglionic eminence (MGE), the

caudal ganglionic eminence (CGE) and preoptic area (POA), and

migrate tangentially into the cortex [6,7,8] (abbreviations are listed

in Table S1 in File S2). Several transcription factors, such as

Dlx1&2, Nkx2-1 and Lhx6, regulate interneuron development. For

instance, Dlx1&2 are required for interneuron migration to the

cortex [6,9,10,11,12,13]. Dlx12/2 mice are viable, but, due to late-

onset interneuron loss, develop cortical dysrhythmias and epilepsy

[9]. Nkx2-1 specifies MGE identity; in Nkx2-1 null mice the MGE

acquires lateral ganglionic eminence (LGE)/CGE identity and

lacks MGE-derived interneurons, in part because they fail to

express Lhx6 [14,15,16,17]. In turn, Lhx6 is required for

differentiation of Parvalbumin+ and Somatostatin+ interneurons

[18,19].

Heterochronic transplantation of rodent embryonic MGE cells

into neonatal cortex or adult hippocampus results in their efficient
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dispersion and integration within host circuits [20,21,22,23].

Furthermore, studies have demonstrated a therapeutic proof of

concept that transplantation of MGE cells into rodent models of

neuropsychiatric or neurological disorders can suppress seizures,

reduce injury induced neuropathic pain, ameliorate phencycli-

dine-induced cognitive deficits and partially rescue Parkinsonian

symptoms [22,23,24,25,26,27,28,29].

While fetal MGE is a potential source for human transplanta-

tion, generating MGE cells from stem cells is advantageous due to

limited availability and ethical issues surrounding the use of fetal

tissue. Thus, several groups have embarked on generating MGE

cells from embryonic stem (ES) cells [30,31].

Subsequently, mouse and human ES cells lines were generated

expressing GFP under the control of loci that mark MGE cells.

The J14 mouse ES cell line expresses GFP from an Lhx6 bacterial

artificial chromosome (BAC) transgene and can differentiate into

mature Lhx6-GFP+ cortical interneurons after transplantation

[32]. Human NKX2-1GFP/w ES cells express GFP from the

endogenous NKX2-1 locus and were shown to differentiate into

NKX2-1-GFP+ basal forebrain progenitors that further differen-

tiated into GABA+ and TH+ neurons, and PDGFRa+ oligoden-

drocytes [33]. We hypothesize that small enhancer elements active

in the mouse MGE will be useful in detecting when ES cells

differentiate into MGE cells. Thus, we describe our alternative

approach to label specific stages of stem cell differentiation using

four small enhancer elements that drive expression in a highly

restricted repertoire of cell states related to the MGE and its

derivatives.

Materials and Methods

Ethics Statement
All animals were treated in accordance with the protocols

approved by the Institutional Animal Care and Use committee

(IACUC) at University of California, San Francisco (UCSF

approval number: AN083918-03A; Approval Date: August 29,

2012; Expiration Date: July 26, 2013). In all the animal

experiments, animals of either sex were used.

ES cells maintenance and differentiation
Mouse Foxg1::venus [30] and E14 embryonic stem (ES) (a kind

gift from Jeremy Reiter, UCSF; from Bay Genomics) cells

maintenance medium was GMEM medium supplemented with

10% Knock Out Serum Replacement (KSR) (Invitrogen), 1%

Fetal Bovine Serum (Hyclone, Define Serum), 1 mM sodium

pyruvate (Sigma), 0.1 mM MEM nonessential amino acids

(NEAA, Invitrogen), 0.1 mM 2-ME (2-mercaptoethanol, Sigma,

freshly prepared each time). For J14 cells [32], maintenance

medium was Knockout DMEM (Invitrogen) supplemented with

15% FBS, 2 mM glutamate (UCSF Cell Culture Facility), 0.1 mM

NEAA, 1X Pen/Strep (UCSF Cell Culture Facility), 0.1 mM 2-

ME. In all ES cells, 2000 U/ml Leukaemic Inhibitory Factor (LIF,

Millipore) was added freshly every other day. For feeder cells (SNL

and SNLB, see below in the section of Generation of
lentivirus-transduced ES cell clones) media: DMEM with

10% FBS with glutamate and 1X Pen/Strep. For all ES cell

differentiation media: GMEM medium supplemented with 10%

KSR, 1 mM sodium pyruvate, 0.1 mM NEAA, 0.1 mM 2-ME;

different lots of KSR produced different percentage of Lhx6-GFP+

cells (and Foxg1::venus+ cells) and therefore required testing for

inclusion in the differentiation media. For improved "serum-free

embryoid body-like" (SFEBq) culture (see Results, modified from

the study of [34]), ES cells were dissociated into single cells with

0.25% trypsin-EDTA (Invitrogen) and quickly re-aggregated in

the differentiation media containing 100 ng/ml Dickkopf-1(Dkk-1)

(5000 cells/100 ml/well) using 96-well low cell adhesion plates

(Lipidure-coat plate A-U96, NOF America). On day 3 of

differentiation (D3), 20 ml of differentiation media containing

SAG (Alexis Biochemicals) was added into each well so that the

final concentration of SAG was 6 nM. On D6, ES cell aggregates

(embryoid body (EB) aggregates) were transferred to a 10-cm

bacterial-grade dish with DMEM/F12 (Invitrogen) supplemented

with N2 (Invitrogen) and 6 nM SAG.

Immunohistochemistry
ES EB aggregates at various time points of differentiation were

collected and fixed with 4% paraformaldehyde, then cryopro-

tected with 15% sucrose overnight before embedding in optimal

cutting temperature (O.C.T.; Tissue-Tek, Sakura Finetek) media.

Each aggregate was frozen and cryostat sectioned into 30610 mm

sections for immunofluorescent analyses. For antibody staining,

glass slides with sections were washed with PBS three times and

permeabilized with 0.3% Triton X-100 before blocking with 2%

skim milk (Difco). Primary antibodies were, chicken anti-GFP

(1:500, Aves Labs), rabbit anti-Ds-Red (for mCherry staining)

(1:500, Clontech), rat anti-Ds-Red (1:500, ChromoTeK), mouse

anti-Nkx2-1 (1:200, Leica microsystems), rabbit anti-Nkx2-1

(1:200, Santa Cruz Biotechnology, Inc.), guinea pig anti-Dlx2

(1:2000, kindly provided by Kazuaki Yoshikawa, Osaka Univer-

sity, Osaka, Japan) [35], rabbit anti-Foxg1 (1:2000) [31], mouse

anti-Islet1 (1:250, IOWA Hybridoma Bank), mouse anti-human

Ki67 (1:200, BD Pharmingen), rabbit anti-Tbr1 (1:1000, Milli-

pore), rabbit anti-Olig2 (1:500, Millipore), mouse anti-Mash1

(1:500, BD Pharmingen), rabbit anti-GABA (1:1000, Sigma),

rabbit anti-Calbindin (1:2000, Swant), rabbit anti-Mafb (1:1000,

Bethyl Laboratories), rabbit anti-PV (1:2000, Swant), rat anti-Sst

(1:250, Millipore), goat anti-Sst (1:200, Santa Cruz Biotechnology,

Inc.), rabbit anti-NPY (1:250, ImmunoStar), mouse anti-b-III-

Tubulin (TUBIII) (1:1000, TUJ1, Covance). Alexa 488 and Alexa

594 secondary antibodies (1:500, Invitrogen) were used according

to the primary antibody species. Sections were counterstained with

49, 6-diamidino-2-phenylindole (DAPI, 5 ng/ml, Invitrogen).

Image analyses
Immunofluorescent images were taken using a Nikon Eclipse

80i microscope (Nikon), a CoolSnap camera (Photometrics), and

NIS Elements BR 3.00 software (Nikon). For marker co-

localization, we used image J for cell counting in the red, green

and red+green channels. Counting was performed on 2006
magnification images. At least three images were counted to

obtain mean 6 SEM. The degree of differentiation inside each EB

aggregate is different; thus we performed our quantification on

those EBs with high expression of GFP and Nkx2-1.

For co-localization of various markers with Lhx6-GFP+,

DlxI12b-bg-mCherry+, 692-mCherry+ (692-bg-mCherry+) and

1056- bg-mCherry+ cells we wrote a Macro (set of instructions)

in Image J to perform automated cell counting using each color

channel (red and green) and the red/green co-localized channel.

The threshold was set at 81–255 for the green channel, and 69–

255 for the red channel; then the Macro was set to ‘‘convert to

mask’’, ‘‘watershed’’, and ‘‘analyze particle size = 15–200; circu-

larity = 0.20–1.000 for the individual color and combined color

channels. For the co-localized channel the Macro was set to:

‘‘colocalization’’, "channel1 = red; channel2 = green, ratio = 50,

threshold channel 1 = 50, threshold channel 2 = 50, display = 255,

co-localized’’ (see Results section for the results of the automated

cell counting).

MGE Enhancers for ES Cells
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For co-localization of 692-mCherry+, 692-bg-mCherry+ cells

with Lhx6-GFP+, we manually counted cells from images taken

from immunofluorescent staining (the data was comparable to that

done by Image J analyses but included more in depth analyses).

GFP+ and mCherry+ cells were counted according to its expression

level as bright cells or dim cells (there were 3–10 times more of dim

mCherry+ cells than bright mCherry+ cells, whereas there were

usually 2–3 times more of bright GFP+ cells than dim GFP+ cells).

The percentage of co-localization in the result sections considered

all cells. From one of the clones from each construct (J6M1 and

J6bM31) we also calculated the percentage of co-localization

among bright GFP+ and mCherry+ cells. In summary,

92.94%69.85% of 692-mCherry+ cells were Lhx6-GFP+;

88.09%64.7% of 692-bg-mCherry+ cells were Lhx6-GFP+;

among Lhx6-GFP+ cells, 35.44%69.22% were 692-mCherry+

and 31.05%63.59% were 692-bg-mCherry+.

For co-localization of 1538-bg-mCherry+ cells with Lhx6-GFP+,

we manually counted cells from 6 images taken from immuno-

fluorescent staining on D14 (see Results section).

Transplantation
On D12 (day 12 of differentiation), ES EB aggregates from 20

96-wells plates were collected (1920 aggregates) and dissociated

with the enzyme solution of the Neural Tissue Dissociation Kit

(Sumitomo Bakelite, MB-X9901) [34]. Rock inhibitor Y-27632

(10 mM) was added in all the solutions to prevent cell death. Cells

were stained with Sytox Blue (Invitrogen, to eliminate dead cells)

in 1% BSA/HBSS 15 minutes before sorting to distinguish dead

vs. live cells. Lhx6-GFP+ cells were sorted with BD FACSAria II

using 100 mm nozzle and collected in 10% FBS/DMEM/F-12.

Fifty to one hundred thousand sorted ES-Lhx6-GFP+ cells were

microinjected into the cortex of P0–P2 anesthetized CD-1 mice

(iced for 3 min) using pulled capillary glass pipettes. To anesthetize

young pups, mice were placed on the ice for 3 minutes. For each

experiment, 5–12 animals were injected depending on the cells

collected on that day and the pups born in one litter. Cells were

transplanted into three sites in each hemisphere at a depth of

,1 mm from the surface of skull. The pups were then warmed at

37uC on a warm plate before being returned to the dam. After

transplantation (4 days, 1 month, or 2 months), the mice were

deeply anesthetized (in a CO2 chamber) and then perfused

transcardially with 4% paraformaldehyde, post-fixed in 4%

paraformaldehyde overnight, and cryo-protected in 30% su-

crose/PBS overnight before frozen in the optimal cutting

temperature (O.C.T.; Tissue-Tek, Sakura Finetek) compound.

Fifty mm brain cryo-sections were obtained with cryostat for

immunostaining.

RNA microarray analyses
RNA was isolated from fluorescent activated cell sorting (FACS)

purified ES-Lhx6-GFP+, ES-Lhx6-GFP2, and MGE-Lhx6-GFP+

cells using RNeasy Micro kit (QIAGEN) according manufacturer’s

instructions. The procedures of EB aggregates dissociation, FACS

purification and collection of cells were the same as described

above for cell transplantation. Embryonic 12.5 (E12.5) MGE from

Lhx6-GFP transgenic mouse (in CD-1 background) brains were

dissected and dissociated into single cells with 0.05% Trypsin/

EDTA (UCSF CCF) with 10 mg/ml DNase I (Roche) at 37uC for

15 min. Purified total RNA was submitted to the Genomic Core at

UCSF (http://www.arrays.ucsf.edu), for quality assessment using a

RNA Pico Chip on an Agilent 2100 Bioanalyzer (Agilent

Technologies). Total RNA was amplified using the Sigma whole

transcriptome amplification kits following the manufacturer’s

protocol (Sigma) and Cy3-CTP labeled with NimbleGen one-

color labeling kits (Roche-NimbleGen Inc). Equal amounts of Cy3

labeled targets were hybridized to Agilent whole mouse genome

8660 K Ink-jet arrays. The data was extracted with Feature

Extraction v10.1 software (Agilent).

Genome coordinates of enhancers
Enhancer 422 is located between Dlx1 and Dlx2 genes (human:

chr2:172,955,879–172,957,052[hg19]; corresponding to mouse:

chr2:71,373,435–71,374,614[mm9]), and encompasses the Dlx1

and Dlx2 intragenic enhancer, DlxI12b, (mouse: chr2:71,374,047–

71,374,552[mm9]) [36,37]. Enhancer 692 is located on human

chromosome 11 (chr11:15,587,041–15,588,314[hg19]) near Sox6

gene. Enhancer 1056 is on human chromosome 18 (human

coordinates: chr18:76,481,720–76,483,257[hg19]) near Sall3 gene.

Enhancer 1538 is on human chromosome 14 (ch14: 36,911,162–

36,914,360[hg19]) near Nkx2-1 gene. The 2.1 kb mouse Lhx6

enhancer with proximal promoter was described by Du et al.,

2008; it extends from the 5’ non-coding sequence through the end

of intron 1 of Lhx6 gene.

Transgenic mouse enhancer assay
Enhancer candidates were amplified by polymerase chain

reaction (PCR) from human genomic DNA (Clontech) and cloned

into the Hsp68 promoter-b-galactosidase (LacZ) reporter vector as

previously described [38]. Transgenic mouse embryos were

generated by pronuclear injection and F0 embryos were collected

at E11.5 and stained for b-galactosidase (b-gal) activity with 5-

bromo-4-chloro-3-indolyl b-D-galactopyranoside (X-Gal). Since a

sufficient number of embryos expressed LacZ (had b-gal blue

staining in some structures) were obtained, no PCR genotyping

was done. We used "blue in any structure" as the transgenic count,

and the proportion of embryos with forebrain staining (as assessed

from the whole-mount) as a measure of reproducibility. Only

patterns that were observed in at least three different embryos

resulting from independent transgenic integration events of the

same construct were considered reproducible. Here are the

numbers for each enhancer. In all cases, the [x/y/z] numbers

below indicate E11.5 embryos with staining in that feature/the

total number of blue embryos (embryos with blue staining in at

least some structures, regardless of the pattern)/the total numbers

of embryos that were collected at E11.5. Enhancer 422: midbrain

(mesencephalon) [7/7/38]; forebrain [6/7/38]; nose [6/7/38].

Enhancer 692: forebrain [9/9/83]. Enhancer 1056: neural tube

[5/8/40]; midbrain [5/8/40]; forebrain [7/8/40]. Enhancer

1538: forebrain [4/4/34]. In summary, all of the enhancers

exhibited greater than 80% of consistent patterns in transgenic

mouse enhancer assay. For detailed section analyses, embryos

collected at E11.5 were fixed in 4% paraformaldehyde and stained

with X-Gal overnight. X-Gal–stained embryos were then embed-

ded in paraffin using standard methods. Coronal sections of the

head were cut using standard methods, counterstained with Eosin

for visualization of X-Gal -negative embryonic structures and

photographed.

Lentiviral vector generation
The DlxI12b DNA fragment was PCR amplified from the

DlxI12b-bglobin-Cre vector [37] with introduced 59 BamHI and

39 AgeI sites in the primers: (forward: 59-CTCTGGATCCACA-

CAGCTTAATGATTATC-39, reverse: 59-GAGAACCGGTG-

CAGGAATTCATCGATGATA-39). The 692, 1056 and 1538

DNA fragments were PCR amplified from human genomic DNA

(Roche) with introduced 59 BamHI and 39 AgeI sites in the

primers: (692 forward: 59-ACAAGGATCCCACATCT-

CAGTGGCTCAT-39, reverse: 59-TCTAACCGGT-

MGE Enhancers for ES Cells
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CAGGGTGTCTGTGTTGATG-39), (1056 forward: 59-GA-

CAGGATCCGTCCCTCACAGAACTCAG-39, reverse: 59-GA-

CAACCGGTGATGCCTGCCTTGAAGTC-39), (1538 forward:

59-TCTAGGATCCTGCTGCCTCAAACAAGAATG-39, re-

verse: 59-AGTTACCGGTTTGGATGAGGGAAAGACCTG-

39). Digested DNA fragments of enhancers were cloned into the

BamHI and AgeI sites of the pLenti-mcs-mCherry_Rex1-Blasticidinr

vector [39]. The b-globin minimal promoter (template: DlxI12b-b-

globin-Cre) and the hsp68 minimal promoter [40] were PCR

amplified with the following primers: (b-globin forward: 59-

CTATACCGGTAGCCCGGGCTGGGCATAA-39, reverse: 59-

GAGAACCGGTCGCCGCGCTCTGCTTCTGG-39), (hsp68

forward: 59-GAGAACCGGTGCATCGGCGCGCCGACC-39,

reverse: 59-ATATTCCGGAGGCGCCGCGCTCTGCTTC-39).

See Table S10 in File S2 for full list of primers. The minimal

promoters were inserted into the AgeI site that preceded the

mCherry gene. The Dlx-I12b-b-globin fragment was PCR amplified

directly from [37], using the Dlx-I12b forward and b-globin reverse

primers described above. All of the primer sequences are in Table

S10 in File S2. All PCR fragments and lentiviral constructs were

verified by restriction enzyme digests and DNA sequencing.

Lentivirus production
HEK293T cells (a gift from Daniel Lim, UCSF; from Thermo

Scientific) grown in DMEM with 10% FBS were transfected using

Fugene 6 transfection reagent (Roche) with four plasmids to

generate lentivirus particles. Plasmids used for a 10 cm tissue

culture plate of HEK293T cells (at about 50–70% confluence):

6.4 mg of lentiviral vector DNA and 1.2 mg each of 3 helper

plasmids (pVSV-g, pRSVr and pMDLg-pRRE). Media was complete-

ly replaced 4 hours after transfection, and cells were grown for

four days before harvesting. On day four, all the media was

collected and filtered through a 0.45 low protein binding

membrane to remove cells and large debris. Filtered media was

either aliquoted then stored at 280uC (unconcentrated), or pooled

and ultracentrifuged at 100,0006 g for 2.5 hours at 4uC. The

concentrated viral pellet was resuspended overnight in sterile PBS

(adding 50 ml of PBS to the pellet for each 10 cm plate used), then

stored at 280uC.

Generation of lentivirus-transduced ES cell clones
To generate ES cell clones containing lentiviral constructs,

proliferating cells (E14 or J14) were dissociated and 400,000 cells

were incubated with concentrated virus in a 1.5-ml microcen-

trifuge tube at 37uC for 1 hour (mixing every 15 min). The cells/

virus were then transferred into ES maintenance media containing

LIF for an overnight incubation [E14 cells were seeded onto

gelatin coated plates without feeders; for J14, cells were seeded

onto mitomycin C-treated SNLB feeder cells (see below)]. The

next day, the supernatant/virus was removed and fresh media

with LIF was supplied for another day before adding blasticidin

(20 mg/ml for E14 cells and 4 mg/ml for J14) for 1 week of

selection (changing media daily or every other day depending on

cell density). Individual colonies emerged ,1 week after virus

infection and were picked up by blunt 10 ml tips, then trypsinized

into one well of a 96-well plates. Each clone was expanded and

frozen down for further analysis. To establish blasticidin-resistant

feeder cells SNLB, an STO cell line (SNL76/7, a kind gift from

Louis Reichardt, UCSF; from ATCC) that expresses a Neomycin

resistance gene and a LIF gene, was transfected with pcDNA6/V5-

His ABC plasmid (Invitrogen, empty vector with Blasticidin resistance

gene driven by EM7). Mixed colonies of blasticidin-resistant SNLB

cells were expanded for frozen aliquots, or treated with mitomycin

C for J14 enhancer cell line selection and maintenance.

Results

Dissociated MGE cells cultured in vitro lose Lhx6-GFP
expression

We first attempted to expand MGE progenitors directly from

dissociated embryonic mouse MGE tissue. Since previous studies

had been successful in expanding neural stem cells in serum-free or

serum-containing media with the addition of epidermal growth

factor (EGF) and basic fibroblast growth factor (bFGF, or FGF-2)

[41,42], we tested these different protocols for MGE cells. We used

MGE cells dissociated from E12.5/E13.5 transgenic embryos that

expressed b-Galactosidase (b-Gal) or GFP in postmitotic MGE

neurons, including immature cortical interneurons, under the

control of a zebrafish Dlx5/6 enhancer or a mouse Lhx6-GFP BAC

transgene [43,44,45]. Prolonged MGE culture (more than 10 days

in vitro), or passage of cells that involved trypsinization, resulted in a

marked decrease in Nkx2-1 (data not shown) and Lhx6-GFP

expression (See Text T1, Methods M1, M2 and Figure S1 in File

S1). Neonatal cortical transplantation of MGE-derived cells grown

for 21 days in culture resulted in no detectable GFP+ cells in the

adult cortex. Because we were unable to produce stable pools of

Lhx6-GFP+ neurons from MGE primary dissociated cultures, we

concentrated on using embryonic stem cells to generate Lhx6-

GFP+ MGE-like neurons.

Using embryonic stem cells to generate cortical
interneuron precursors

Embryonic stem (ES) cells, grown feeder-free in suspension or as

adherent culture, can be expanded and differentiated into

forebrain progenitors and neurons [31,32,33,46]. The serum-free,

floating culture of embryoid body-like aggregates (‘SFEB’) method

is an efficient approach for converting ES cells into neural stem

cells [31]. In particular, addition of two growth factor inhibitors,

the anti-Wnt reagent Dickkopf-1 (Dkk-1) and the anti-Nodal

reagent Lefty-A (or SB431542), during the early time points of

differentiation efficiently generates Foxg1+ telencephalic neural

stem cells from ES cells [30,31]. An improved serum-free

embryoid body-like (SFEBq) method using low cell-adhesion U-

shape 96-well plates facilitates the aggregation of mouse ES cells

after dissociation, generating aggregates of uniform size during

differentiation and higher efficiency of production of Foxg1+ cells

[30]. To convert neural stem cells into ventral telencephalic cells,

Sonic hedgehog (Shh) recombinant protein or SAG, a small

molecule that binds to Smoothened and activates Shh downstream

pathway, was added on days 3 and 6 (D3 and D6) after

differentiation [34].

We used the SFEBq method (Figure 1A and Figure 2A) to

generate MGE progenitor-like cells with three mouse ES cell lines:

Foxg1::venus [30], E14 (the parental cell line for Foxg1::venus)

and J14 (Lhx6-GFP transgenic line) [32]. We optimized concen-

trations of Dkk-1, Shh, SAG, and other growth factors for MGE-

like cell production based on Nkx2-1, Lhx6-GFP, and/or Foxg1

expression (Figure 1A and Figure S2 in File S1). We found that a

modification of Danjo et al., 2011 [34] (Condition 1 in Figure 1A:

using KSR-based media, adding 100 ng/ml Dkk-1 on day 0, and

adding 6 nM SAG on day 3 and day 6 of differentiation; now

referred to as the ES-MGE differentiation protocol, Figure 1A,

Figure 2A and Figure S2 in File S1) was the best procedure for

generating Lhx6-GFP+ cells from J14 and J14-derived cells (see

below for J14 enhancer cell lines) (Figure 1B-C). In addition SAG

was more efficient and reproducible than recombinant Shh at

generating Nkx2-1+ cells (data not shown). The efficiency of the

ES-MGE differentiation protocol for induction of Lhx6-GFP

expression at D15 (day 15 of differentiation) was ,2-fold greater
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than the protocol of Danjo et al., 2011 [34] (Figure S2A-A9 in File

S1). Among all the protocol tested, ES-MGE differentiation

protocol was most efficient in generating Lhx6-GFP+ and

Foxg1::venus+ cells (Figure S2B-B9 and S2C-C0 in File S1).

On D9 (day 9 of differentiation), the E14 cells expressed

markers of MGE and POA ventricular zone (VZ) and subven-

tricular zone (SVZ) progenitors (such as Nkx2-1, Mash1, and Islet

1; Figure S3A and B in File S1); by D15 (day 15 of differentiation),

there was a reduction of the number of Nkx2-1 expressing cells

Figure 1. Comparison of various conditions for mouse ES cells differentiation using Lhx6-GFP+ cell percentage as a criteria for
optimization. J14-derived ES cell line J6M1 (J14 carrying lentiviral enhancer 692-mCherry) were tested for differentiation using four conditions
listed. (A): In condition 1 and 2 (shown in blue and green), cells were differentiated in GMEM+10% KSR media while in condition 3 and 4 (shown in red
and purple), cells were differentiated in Neurobasal media supplemented with B27 without retinoic acid (NB/B27), a commonly used media for neural
progenitor differentiation [69]. Either 100 or 200 ng/ml Dkk-1 was added on day 0 of differentiation (D0), (B): Among all four conditions, KSR-
containing media surpassed NB/B27 media in the generation of Lhx6-GFP+ cells. Addition of 26more Dkk-1 on D0 did not improve the efficiency of
Lhx6-GFP+ cells with KSR-containing media. (C): FACS analyses of Lhx6-GFP+ cells with Condition 1. The X-axis showed green fluorescent gating with
the log scale.
doi:10.1371/journal.pone.0061956.g001
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(Figure S3A9 and B9 in File S1), suggesting a reduction in MGE

and POA-type progenitors. On the other hand, between D9–D15,

there was an increase in cells expressing GABA and Calbindin,

markers of MGE and POA-type neurons (Figure S3C–D9 in File

S1). To obtain better evidence for MGE neuronal differentiation

we needed more specific markers for this cell type, and therefore

turned to the J14 ES cell line.

MGE progenitor cells give rise to Lhx6+ cortical interneurons,

striatal interneurons, and globus pallidus neurons [47,48,49]. To

examine if Lhx6 was expressed in our ES-MGE differentiation

protocol, we studied GFP expression in J14 cells. Using the SFEBq

method with our ES-MGE differentiation protocol, we found that

Lhx6-GFP+ cells began to emerge on D9–10 of differentiation,

when there was robust induction of Nkx2-1 expression (Figure 2B-

B0). The number of Lhx6-GFP+ cells peaked on D12–13

(Figure 2C9) with a slight decline on D15–16 (Figure 2E9). By

contrast, the number of Nkx2-1+ cells peaked on D9–D10 and

gradually decreased from D12 to D16 (Figure 2B–E). We

measured the fraction of Nkx2-1+ cells that expressed Lhx6-GFP

by immunofluorescence. On D10, about 50% of Nkx2-1+ cells

were Lhx6-GFP+ (mean 6 SEM: 48.963.8%, n = 3), whereas

70% of Lhx6-GFP+ cells were Nkx2-1+ (72.1615.0%). On D12,

75% of Nkx2-1+ cells were Lhx6-GFP+ (75.3612.9%), and 63% of

Lhx6-GFP+ cells were Nkx2-1+ (62.966.0%, n = 3). By D14 and

D16, the percentage of Nkx2-1 and Lhx6-GFP co-expression

decreased; only 43.361.9% and 42.865.2% of Nkx2-1+ cells were

Lhx6-GFP+, and 34.761.8% and 47.3613.8% of Lhx6-GFP+

cells were Nkx2-1+ on D14 and D16 respectively (n = 3). Thus, by

using an optimized SFEBq method (our ES-MGE differentiation

protocol), J14 and E14 ES cells can be differentiated into MGE-

like Nkx2-1+ progenitors and Lhx6-GFP+ neurons.

Comparison of RNA expression profiles between ES-
Lhx6-GFP+ cells and ES-Lhx6-GFP2 cells generated from
mouse J14 ES cells

To further define the molecular properties of the Lhx6-GFP+

cells, we used RNA expression array to investigate molecular

properties of Lhx6-GFP+ (ES-Lhx6-GFP+) cells generated from

J14 cells at D12 of the ES-MGE differentiation protocol. ES-Lhx6-

GFP+ cells and ES-Lhx6-GFP2 cells (both from D12 EB

aggregates) were isolated by fluorescent activated cell sorting

(FACS) and were subjected to RNA expression microarray

analyses (Figure 3, Tables 1; Table S2 and Table S6 in File S2).

Compared to ES-Lhx6-GFP2 cells, the ES-Lhx6-GFP+ cells had

lower expression of neural progenitor markers such as the HES

genes (HES5 in Table 1 and HES1 in Table S2 in File S2),

suggesting that the ES-Lhx6-GFP2 cells were in a more

proliferative state. Consistently, the expression level of the

proliferation marker Mki67 (recognized by the Ki67antibody)

was lower in ES-Lhx6-GFP+ cells (Table S6 in File S2). Subpallial-

specific genes Dlx1, Dlx2, Dlx5, Dlx6, GAD1 (GAD67) and GAD2

(GAD65) were present at higher levels in the ES-Lhx6-GFP+ cells,

consistent with its ventral telencephalic identity (Table 1; Table S2

in File S2). There were also higher mRNA expression of Nkx2-1,

Lhx6, Lhx8 and Sox6 (Table 1) in the ES-Lhx6-GFP+ cells,

consistent with MGE identity. Markers present in migrating

immature interneurons such as ErbB4, MafB, Npas1, Sst (Somato-

statin) (Table 1), NPY (Neuropeptide Y) and Calb1 (Calbindin) (Table S2

in File S2) were also expressed at higher levels in ES-Lhx6-GFP+

cells. In contrast, genes expressed in oligodendrocyte precursors

and oligodendrocytes, such as Olig2 and Sox10, were expressed at

higher levels in the ES-Lhx6-GFP2 cells (Table 1; Table S2 in File

S2). There was also higher expression of pallial markers (Pax6,

Tbr1, Tbr2 and Neurod1) and LGE (striatal) markers (Ebf1 and

FoxP1) in the ES-Lhx6-GFP2 cells (Table 1; Table S2 in File S2).

We also examined hypothalamic and retinal marker expression

by microarray analyses. Rax (Rx) expression was higher in the ES-

Lhx6-GFP+ cells than in the ES-Lhx6-GFP2 cells (Table 1),

suggesting that some of these cells have either hypothalamic or

retinal properties as Rax is essential for early retinal and

hypothalamic development [50,51,52]. On the other hand,

Nkx2-2 expression was lower in the ES-Lhx6-GFP+ cells

compared to the ES-Lhx6-GFP2 cells (Table 1). Nkx2-2 is a

marker of the hypothalamus and not the early retina [53,54],

although at mature stages it is expressed in retinal glia [55].

Finally, Otp (a marker of paraventricular nucleus anlage) [50,56] is

expressed near background levels in all three samples (Table 1).

Since Lhx6 is expressed in a small domain of the caudoventral

hypothalamus (Allen Brain Atlas), it is possible that some of the ES

Lhx6-GFP+ cells differentiated towards a hypothalamic fate.

To confirm these data, we analyzed protein expression with

immunostaining on ES embryoid body (EB) aggregates collected

9–16 days after differentiation (D9–D16) (Fig. 2F–K and Figure

S4–S9 in File S1). Consistent with our microarray data, ,50% of

the Lhx6-GFP+ cells co-expressed Dlx2 and ,75% of the Lhx6-

GFP+ cells co-expressed Foxg1 at D12 (Figure 2F and G), few

Lhx6-GFP+ cells expressed Islet1 (Figure 2H), and none co-

expressed Mki67, Tbr1 or Olig2 (Figure 2I–J) on D11–D13. Thus

the RNA expression array and immunostaining result provide

strong evidence that Lhx6-GFP+ cells from J14 ES cells resemble

MGE-derived neurons.

Comparing RNA expression profiles between Lhx6-GFP+

MGE cells and ES-derived Lhx6-GFP+ cells
To further investigate how closely ES cells-derived Lhx6-GFP+

cells resembled authentic Lhx6+ MGE cells, we compared their

gene expression profiles. We used fluorescent activated cell sorting

(FACS) to purify GFP+ cells from the E12.5 MGE of Lhx6-GFP

transgenic mice, and from J14 differentiated ES cells at D12 (see

above). RNA was isolated from the cells and analyzed by gene

Figure 2. MGE differentiation protocol from mouse ES cells (ES-MGE) and characterization of MGE-like differentiated J14 (Lhx6-
GFP) cells. (A): Schema outlining the ES-MGE differentiation protocol. The black horizontal line: time line of days after initiation of differentiation.
Days when a treatment was introduced are indicated (see Materials and Methods for details). From day 0 (D0) to day 6 (D6), cells were cultured with
GMEM and 10% KSR (shown in purple) in a lipidure-coated 96-well plate (shown in cyan). Dkk-1 (100 ng/ml) was added on D0 and SAG (6 nM) was
added on D3 shown in red. On D6, cell aggregates were collected and transferred to a bacterial grade sterile petri dish in DMEM/F-12 supplemented
with N2. Additional SAG (6 nM) was added to the medium on D6. Starting on D9 (and the following days), aggregates were collected either for
immunofluorescent staining, FACS analysis, or FACS purification followed by gene expression microarray analysis, or transplantation. (B–E0): Nkx2-1
expression is shown in red; Lhx6-GFP expression is shown in green; DAPI stains the nucleus blue. B-B0: D10; C-C0: D12; D-D0: D14; E-E0: D16. White
arrows indicate cells co-expressing Nkx2-1 and Lhx6-GFP. (F): Dlx2 (red) and Lhx6-GFP (green) expression on D12. White arrows indicate co-
localization of Dlx2 and Lhx6-GFP. (G): Foxg1 (red) and Lhx6-GFP (green) expression on D12. White arrows indicate co-localization of Foxg1 and Lhx6-
GFP. (H): Islet1 (red) and Lhx6-GFP (green) expression on D12. (I): There were only a few Mki67+ (red) cells that expressed Lhx6-GFP (green) on D11.
(J): No Tbr1+ (red) cells were detected on D12. (K): Olig2+ (red) cells and Lhx6-GFP+ (green) cells were mutually exclusive on D12. Scale bar for all
panels: 100 mm.
doi:10.1371/journal.pone.0061956.g002
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expression array. We focused on the expression levels of genes with

known regulatory functions and/or expression within the

forebrain. We compared expression between the MGE Lhx6-

GFP+ (MGE-GFP+) and J14 Lhx6-GFP+ (ES-GFP+) cells, and

between MGE-GFP+ cells and J14 Lhx6-GFP2(ES-GFP2) cells

(Tables 1; Table S2, Table S7 and Table S8 in File S2). There was

a remarkable similarity in the properties of the MGE-GFP+ and

ES-GFP+ cells (genes shown in bold typed had higher expression

in both MGE-GFP+ and ES-GFP+ compared to ES-GFP2 while

genes underlined had the opposite trends in Table 1). MGE-GFP+

and ES-GFP+ cells both had relatively high expression (.10

arbitrary units) of MGE progenitor markers (Dlx1, Lhx6, Lhx8,

Nkx2-1 and Sox6) and markers of immature MGE-derived pallial

interneurons (ErbB4, GAD1, Lhx6, MafB, Sox6, and Sst). High levels

of Coup-TFI (NR2F1) suggest that the cells have properties of the

dorsal MGE and/or the caudal MGE and CGE.

While MGE-GFP+ and ES-GFP+ cells shared properties of the

MGE and immature cortical interneurons, only the MGE-GFP+

cells showed robust expression of globus pallidus markers (Tables 1;

Table S2 and Table S7 in File S2), including Etv1 (ER81), Gbx2,

Figure 3. Supervised clustering showing all differentially expressed (DE) genes. Microarray comparison of RNA expression from primary
E12.5 MGE Lhx6-GFP+ cells, ES-Lhx6-GFP+ and ES-Lhx6-GFP2 cells. Heatmap includes 1821 probes that exhibit a fold change (FC) of greater than 4 in
any one of the possible 3 pairwise comparisons. Heatmap colors correspond to the signal intensity relative to the global average for that probe. Color
spectrum ranges from red (5) to black (0) to green (-4): red blocks represent sample-specific expression that is elevated relative to the average across
all samples; green blocks represent genes whose transcripts are relatively less abundant. Two areas (A and B, bracketed on the right side) in the
supervised heatmap contain many of the genes that regulate and/or mark developing cortical interneurons (see Tables S2 and S3 in File S2).
doi:10.1371/journal.pone.0061956.g003
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Kctd12, Lhx8 and Zic1 [49] [57]. Furthermore, markers of the

ventricular zone (Hes5), oligodendrocytes (Olig2 and Sox10),

pallium (i.e. cortex; Pax6 and Neurod1), LGE/striatum (Ebf1) and

hypothalamus (Nkx2-2) were expressed lower in both MGE-GFP+

and ES-GFP+ cells than in ES-GFP2 (shown in red in Table S2 in

File S2). Therefore, in vitro D12 differentiated J14-GFP+ cells

exhibit an expression profile similar to immature MGE-derived

interneurons, but do not resemble MGE-derived projection

neurons (i.e. globus pallidus) or other MGE-derived cells such as

oligodendrocytes.

We generated a supervised heatmap (Figure 3; Table S9 in File

S2) and an unsupervised clustering (Figure S12 in File S3) to

Table 1. Select marker genes expression from differentiated ES cells (ES Lhx6-GFP+ and ES Lhx6-GFP2) and E12.5 MGE cells (MGE
Lhx6-GFP+) and the comparisons (fold change) of ES Lhx6-GFP+ vs. ES Lhx6-GFP2, MGE Lhx6-GFP+ vs. ES Lhx6-GFP2, and MGE
Lhx6-GFP+ vs. ES Lhx6-GFP+.

1 2 3 4 5 6 7

Areas or cells of interest Expression levels

Comparison
between groups
(fold changes)

Genes of interest ES Lhx6-GFP+ ES Lhx6-GFP2

MGE Lhx6-
GFP+

ES-GFP+ vs ES-
GFP2

MGE-GFP+ vs ES-
GFP2 MGE-GFP+ vs ES-GFP+

Ventricular Zone

Hes5 11.62 13.39 11.72 0.29 0.31 1.07

Oligodendrocytes

Olig2 8.80 11.63 9.59 0.14 0.24 1.73

Pallial

Neurog2 6.46 9.77 6.22 0.10 0.09 0.85

Pax6 6.38 7.65 5.97 0.43 0.33 0.75

Subpallial

Dlx1 14.14 12.14 14.36 4.00 4.67 1.17

GAD1 13.89 11.59 13.28 4.92 3.22 0.65

LGE/striatum

Ebf1 8.67 10.35 8.25 0.31 0.23 0.75

MGE & CGE progenitors

Nkx2-1 11.67 10.09 12.94 2.98 7.20 2.41

NR2F1 (dorsal MGE & CGE) 13.23 12.62 12.71 1.52 1.07 0.70

MGE subpallial neurons &
globus pallidus

Lhx6 13.16 9.20 14.02 15.50 28.20 1.83

Lhx8 11.49 7.55 13.13 15.31 47.56 3.11

Sox6 11.86 9.89 13.21 3.92 10.00 2.55

Globus pallidus

Etv1 (ER81) 7.04 8.51 11.12 0.43 6.75 17.20

MGE interneurons

ErbB4 10.16 8.39 10.13 3.46 3.33 1.01

MafB 11.63 9.68 11.78 3.86 4.28 1.11

Maf (cMaf, vMaf) 9.94 8.22 10.29 3.30 4.19 1.27

Npas1 10.69 7.86 8.31 7.13 1.57 0.22

Sst 14.22 11.79 13.21 5.39 2.69 0.50

Hypothalamus

Nkx2-2 9.24 10.61 6.68 0.44 0.07 0.19

Otp 6.92 7.16 6.84 0.85 0.80 0.95

Rax 9.10 7.21 7.05 3.70 0.89 0.24

Column 1 lists marker genes for specific cell types and regions. Note that many of these are not specific for those cells states, but are recognized as useful markers.
The expression levels in the columns 2–4 represent the averaged normalized log2 intensity for each gene. The numbers in columns 5–7 (the fold change) are ratios of
the average signal intensity (unlogged) of the two groups in comparison.
Genes that are underlined (shown in red in Table S2 in File S2) are enriched in ES Lhx6-GFP2 cells whereas bold-typed genes (shown in green in Table S2 in File S2) are
enriched in both MGE Lhx6-GFP+ and ES Lhx6-GFP+ cells. For most of the genes, the expression in the ES Lhx6-GFP+ cells and MGE Lhx6-GFP+ cells show similar
expression trends, in comparison to ES Lhx6-GFP2 cells. However, there are a few genes (shown in regular font here, and in black in Table S2 in File S2) that don’t follow
this trend.
doi:10.1371/journal.pone.0061956.t001
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compare differences in global mRNA levels. The supervised

heatmap showed that while the MGE Lhx6-GFP+ and ES Lhx6-

GFP+ cells share commonalities (Table 1; Table S2 and Table S7

in File S2) in their RNA expression profiles, they also have

differences. Importantly, both highly expressed genes that are

known to be required for the development of MGE-derived

cortical interneurons, including Arx, Dlx1, Dlx2, Dlx5, ErbB4,

Foxg1, GAD1, Lhx6, Lhx8, Maf, MafB, Mef2C, Nkx2-1, Nrp1,and

Sox6 (in block A and B in the supervised heatmap in Figure 3; these

genes are included in Tables S2 and S3 in File S2). None-the-less,

the fact that the clustering of MGE Lhx6-GFP+ and ES Lhx6-

GFP+ cells differed provide evidence that additional work needs to

be done to increase the fidelity of the differentiation/purification

protocols to obtain MGE-like cells from ES cells. All of the data

from this microarray study was submitted to GEO database as

GSE43508 (http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE43508).

Lhx6-GFP+ cells derived from mouse J14 ES cells become
cortical interneurons after transplantation into mouse
neonatal cortices

We next studied the properties of these cells in vivo. Our analyses

indicated that our ES-MGE differentiation protocol generates

MGE-type immature interneurons from J14 ES cells. Previous

study of J14 ES cells showed that they can become cortical

interneurons after transplantation into neonatal brains [32]. We

confirmed this by transplanting sorted D12 Lhx6-GFP+ cells from

our ES-MGE differentiation protocol. Four days after transplan-

tation (4 DAT), about 20% of these Lhx6-GFP+ cells expressed

markers of migrating cortical interneurons including GABA,

Calbindin and MafB (Figure S13A–C in File S3). Thirty to sixty-

nine days after transplantation, the Lhx6-GFP+ cells had a very

low survival rate (,1%), similar to the previous report [32].

Among Lhx6-GFP+ cells that survived at 69 DAT, 22% (mean 6

SEM: 22.3865.01%, n = 4) also expressed Parvalbumin; 58%

(57.96611.50%, n = 3) expressed Somatostatin; and 16%

(15.5166.57%, n = 4) co-expressed Neuropeptide Y (Figure

S13D–G in File S3 and Table S4 in File S2). Our results are

similar to Maroof et al., 2010 [32]. Therefore, the Lhx6-GFP+

cells derived from J14 ES cells have properties of MGE cells based

on gene expression profiling (see above) and have properties of

cortical interneurons based on transplantation analysis.

Novel small enhancers that can be used to enrich MGE-
derived cells

Multiple small DNA enhancer elements that drive expression in

mouse MGE cells have been identified. These include Dlx1 & Dlx2

(Dlx1/2) intergenic enhancer, Dlx5 & Dlx6 (Dlx5/6) intergenic

enhancer, and Lhx6 promoter/enhancers [15,36,37,58]. In addi-

tion, we have been characterizing novel human telencephalic

enhancers, some of which drive expression in MGE cells [59]

(http://enhancer.lbl.gov/). Although none of the enhancers is

entirely specific to MGE cells, their unique expression patterns

may be extremely useful in stem cell studies. Thus, we have

explored their utility in identifying cell types using the ES-MGE

differentiation protocol in mouse E14 and J14 ES cells. We

compared the enhancer activities with markers of MGE cell

identity, including expression of Lhx6-GFP.

We focused on five enhancers that show expression in the

mouse embryonic MGE (Figure 4, see Materials and Methods
for genome coordinates and details). Enhancer 422 is located

between human Dlx1 and Dlx2, and includes the Dlx1/2 intergenic

enhancer DlxI12b that drives expression in forebrain GABAergic

neurons, including those derived from the MGE [36]. Similar to

the reported mouse enhancer DlxI12b activity [37], human

enhancer 422 (driving b-Gal expression) was active in MGE

subventricular zone (SVZ) and mantle zones (MZ), as well as in the

LGE/striatum region of E11.5 transgenic mouse brains

(Figure 4A). Enhancer 692 is located on human chromosome

11,500 Kb away from Sox6, a gene that is expressed in the MGE,

its derived neurons, and progenitors of cortical projection neurons

[60,61]. Enhancer 692 drove b-Gal expression in VZ, SVZ, and

MZ of MGE, as well as in migrating neurons of E11.5 transgenic

embryonic brains (Figure 4B). Enhancer 1056 was active only in

the ventral part of the E11.5 MGE VZ and SVZ region

(Figure 4C). The nearest gene from enhancer 1056 is Sal-like 3

(Sall3), at about 250 Kb away. Enhancer 1538 was active in the

VZ, SVZ and MZ of the ventral E11.5 MGE (Figure 4D) and

resides in the vicinity of the Nkx2-1 gene (,70 Kb away). Lhx6

enhancer with proximal promoter (Lhx6 E/P) sits just 59 to the

Lhx6 translational start site and presumably contains an Lhx6

promoter [15]. The Lhx6 E/P is active in regions where

endogenous Nkx2-1 is expressed; it responds to exogenous Nkx2-

1 induction in brain slices and its activities were lost in Nkx2-1-null

brain slices [15].

To determine if these enhancers could be used in labeling

mouse ES cells differentiated toward an MGE fate, we utilized a

lentiviral vector, a-MHC-mCherry_Rex-Blasticidinr, that previ-

ously was used to detect and isolate specific populations of

differentiated ES cells [39]. As mouse DlxI12b enhancer is smaller

than the human enhancer 422 (see Materials and Methods),

and its activities are well documented, we used mouse DlxI12b

instead of 422 for the lentiviral constructs. Three versions of the

lentiviral vector for each enhancer, with different minimal

promoters or none at all, were tested (Figure 4E). Enhancer

activities were evaluated using lentiviruses carrying three different

vectors for DlxI12b & 692 in dissociated primary E13.5 MGE cells.

As shown in Figure S14 in File S3, both enhancer DlxI12b and

enhancer 692 drove mCherry expression in dissociated primary

MGE cells in the absence of an introduced minimal promoter

(Figure S14A and D in File S3; DlxI12b-mCherry and 692-mCherry).

In the presence of the heat shock promoter 68 minimal promoter

(hsp68), both DlxI12b and 692 produced mCherry+ cell clusters;

however, these cells had no 49, 6-diamidino-2-phenylindole

(DAPI) nuclear stains, suggesting cell death (Figure S14B and E

in File S3). The addition of a b-globin minimal promoter (bg)

resulted in stronger mCherry expression driven by DlxI12b, and

increased the number of mCherry+ cells compared to DlxI12b-

mCherry (Figure S14C and A in File S3). By contrast, no obvious

effect was observed from the addition of the b-globin promoter to

the enhancer 692 construct (692-bg-mCherry, Figure S14F in File

S3). We also tested enhancer-less hsp68-mCherry and bg-mCherry

lentiviral constructs in dissociated primary MGE cells. We found

that hsp68 promoter alone drove mCherry expression, whereas b-

globin promoter did not (data not shown). Thus, the b-globin

promoter appeared to be more suitable for our experiments.

We also tested these lentiviruses by infecting MGE-like

differentiated and dissociated mouse ES cells (infected on D11,

and harvested on D14) with the various lentiviral constructs for

DlxI12b and 692, and found results similar to dissociated primary

MGE cells (data not shown).

Enhancer 1056 with or without a b-globin promoter produced

similar numbers of mCherry+ cells in dissociated primary MGE

cells (data not shown). In contrast, enhancer 1538 without a

minimal promoter did not drive mCherry expression in dissociated

primary MGE cells (data not shown).
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Enhancer DlxI12b drives mCherry expression in ,30% of
Lhx6-GFP+ mouse ES-derived MGE-like cells

To explore DlxI12b enhancer activities in MGE-like, differen-

tiated mouse ES cells, we generated stable mouse ES clones from

both the E14 and J14 (Lhx6-GFP) cell lines with the DlxI12b-bg-

mCherry_Rex-Blasticidinr lentiviral vector (the Foxg1::venus cell line

is blasticidin-resistant and cannot be used for this purpose). We

analyzed mCherry expression from two independent stable clones

from each cell line (EI12bBM7, EI12bBM8; JI12bBM11,

JI12bBM12). All four clones produced similar numbers of

mCherry+ cells in MGE-like differentiated ES cells (using our

ES-MGE differentiation protocol). We then analyzed the expres-

sion of mCherry along the time course of ES cells differentiation.

We started to detect a few DlxI12b-bg-mCherry+ cells at D9

(Figure 5J). Their number increased substantially on D11 and

D13, but by D15 there was little increase (Figure 5A–C). Double

staining of mCherry with Lhx6-GFP revealed frequent mCherry/

GFP co-expression on D11, D13 and D15 (Figure 5A0–C0). FACS

analyses provided quantification of mCherry/GFP co-expression

and individual protein expression (Figure 5J). The percentage of

Lhx6-GFP+, DlxI12b-bg-mCherry+ and GFP+/mCherry+ cells

was low on D9 and increased from D11. From D11–D15, about

22–30% of the DlxI12b-bg-mCherry+ cells co-expressed Lhx6-

GFP (Figure 5J).

Examining DlxI12b-bg-mCherry expression with markers of

telencephalic cell types showed that 49% of the mCherry+ cells co-

expressed Nkx2-1 on D13, and 55% of the Nkx2-1+ cells co-

expressed mCherry (Figure 5D and Figure S15A-A0 in File S4).

The vast majority of DlxI12b-bg-mCherry+ cells co-expressed

Dlx2 and Calbindin on D11, D13, and D15 (Figure 5E&I; Figure

S15B-B0 and F-F0 in File S4). Some of the DlxI12b-bg-mCherry+

cells also express Foxg1, although to a smaller extent (Figure 5F

and Figure S15C-C0 in File S4), perhaps because DlxI12b-bg-

mCherry expression increased after D9, whereas Foxg1 expression

Figure 4. Expression of MGE enhancers in embryonic forebrains, and lentiviral constructs used to transduce them into primary
MGE cells and ES cells. (A–D): MGE enhancers driving b-galactosidase expression (X-Gal staining) of E11.5 telencephalic sections from transient
transgenic mice. Coronal sections are shown from rostral to caudal (left to right). Each transgene is composed of one enhancer element 422 (A), 692
(B), 1056 (C), or 1538 (D), followed by an hsp68 minimal promoter that drives expression of LacZ (b-galactosidase). (E): Lentiviral constructs harboring
each enhancer reporter cassette for making stable mouse embryonic stem cell clones. Each construct is flanked by a lentiviral 59LTR and a 39LTR, and
contains two separated gene expression cassettes: the first is the enhancer/promotor driving a mCherry reporter gene; the second is Rex-1 promoter
driving the Blasticidin resistant gene (BlaR) [39]. Three lentiviral constructs differed in the first cassette were tested: one without minimal promoter,
one with the heat shock protein 68 (hsp68) minimal promoter, and the last one with the b-globin (bg) minimal promoter. The enhancers tested in this
study were: mouse DlxI12b enhancer (a shorter version of enhancer 422), three novel human enhancers (692, 1056, and 1538), and a mouse Lhx6
proximal enhancer/promoter DNA element [15].
doi:10.1371/journal.pone.0061956.g004
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Figure 5. Characterization of DlxI12b-bglobin-mCherry in E14 & J14 ES cells differentiated with ES-MGE protocol. Marker expression
analyses were done with immunofluorescence of sections from aggregates of differentiated ES cells (ES EBs). (A–C): mCherry expression (red) driven
by the DlxI12b-bglobin enhancer/promoter; Lhx6-GFP expression (green) in panels A-A0 (D11 EBs), B-B0 (D13), C-C0 (D15). (D): DlxI12b-bg-mCherry
(red) and Nkx2-1 (green) expression on D13 of differentiation. (E): DlxI12b-bg-mCherry (red) and Dlx2 (green) expression on D13. (F): DlxI12b-bg-
mCherry (red) and Foxg1 (green) expression on D11. (G): DlxI12b-bg-mCherry (red) and Islet1 (green) expression on D13. (H): DlxI12b-bg-mCherry
(red) and Olig2 (green) expression on day 12. (I): Most of the DlxI12b-bg-mCherry+ (red) cells also express Calbindin (green). Scale bar, 100 mm. White
arrows indicate markers co-labeling. (J) FACS analyses of Lhx6-GFP+ cells (on x-axis) and DlxI12b-bg-mCherry+ cells (y-axis) from day 0, day 9, day 11,
day 13 and day 15 of ES-MGE differentiation.
doi:10.1371/journal.pone.0061956.g005
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decreased after D9. None of the DlxI12b-bg-mCherry+ cells

expressed Islet1 or Olig2 (Figure 5G & H; Figure S15D-D0 and E-

E0 in File S4), providing evidence that DlxI12b enhancer was

active in the MGE-derived cortical interneuron progenitors, rather

than LGE (Islet1 is expressed in LGE neurons), or oligodendro-

cytes (Olig2 is an early marker of oligodendrocytes).

Enhancer 692 drives mCherry expression in .70% of
Lhx6-GFP+ mouse ES-derived MGE-like cells

To analyze enhancer 692 activity we attempted to generate

stable ES clones from all three lentiviral vectors (692-mCherry_Rex-

Blasticidinr, 692-hsp68-mCherry_Rex-Blasticidinr, and 692- bg-mCher-

ry_Rex-Blasticidinr). With the 692-mCherry_Rex-Blasticidinr lentivirus,

8 out of the 13 E14 clones (from two different screens) and 6 out of

the 7 J14 clones analyzed contained mCherry+ cells. With the 692-

hsp68-mCherry_Rex-Blasticidinr lentivirus, none of the 6 E14 clones

and none of the only 2 J14 clones analyzed contained mCherry+

cells. With the 692-bg-mCherry_Rex-Blasticidinr lentivirus, 1 out of

the 3 E14 clones and 4 out of 8 J14 clones (from two different

screens) contained mCherry+ cells. The lack of mCherry+ cells in

692-hsp68-mCherry clones may reflect the hsp68-dependent toxicity

we identified in transiently infected MGE cells (Figure S14B and F

in File S3). Thus, we focused on the 692-mCherry and 692-bg-

mCherry clones.

We began by studying the time course of mCherry expression.

Both 692-mCherry and 692-bg-mCherry expression began in a

few cells at D9 in all of the clones examined (Figure 6A; Figure

S16A & E in File S4). By D11, a few more 692-bg-mCherry+ and

692-mCherry+ cells appeared (Figure 6B; Figure S16B, F and I in

File S4). By D13, D15, and D17 there were increasing numbers of

692-mCherry+ and 692-bg-mCherry+ cells (Figure 6C & D; Figure

S16C, D, G, H, and J in File S4).

The emergence of 692-mCherry+ and 692-bg-mCherry+ cells

was positively correlated with the increase of Lhx6-GFP+ cells.

Indeed more than 50% of the Lhx6-GFP+ cells co-localized with

the 692-mCherry+ and 692-bg-mCherry+ cells at all the time

points examined. This was particularly obvious when the fraction

of mCherry+ cells reached its highest on D15 and D17 (Figure 6D–

D0; Figure S17A–C in File S4). Image analyses on three J14 692-

mCherry clones (J6M1, J6M2, and J6M7) on D17 and three J14

692-bg-mCherry clones (J6bM31, J6bM32, J6bM33) on D15

indicated that 692-mCherry and 692-bg-mCherry were present in

similar numbers of cells and the percentages of co-localization

between Lhx6-GFP and mCherry were comparable

(43.28%66.13% of 692-mCherry+ cells were Lhx6-GFP+;

51.04%68.48% of 692-bg-mCherry+ cells were Lhx6-GFP+;

among Lhx6-GFP+ cells, 72.87%65.22% were 692-mCherry+

and 70.08%64.02% were 692- bg-mCherry+).

About 30–50% of 692-mCherry+ and 692-bg-mCherry+ cells

co-expressed Nkx2-1 on D15 and D17; among Nkx2-1+ cells, 63%

were 692-mCherry+ or 692-bg-mCherry+ (white arrows in

Figure 6E; Figure S17A0 in File S4). On the other hand, we did

not detect co-expression of mCherry with Mki67 (Figure 6F;

Figures S16I & J and S17C0 in File S4), suggesting that 692

enhancer was active only in postmitotic cells. Essentially all 692-

mCherry+ cells were Sox6+ (Figure 6G), an MGE marker as well

as a marker for precursors of cortical projection neurons [60,61].

This is interesting considering that enhancer 692 resides near the

Sox6 gene.

Unfortunately, mCherry expression from enhancer 692 was not

robust enough to be seen by mCherry’s intrinsic fluorescence

(Figure 6H); all of our analyses required immunofluoresence.

Thus, we could not use FACS to isolate 692-mCherry+ or 692-bg-

mCherry+ cells.

Enhancer 1056 drives mCherry expression in Olig2+ cells
and not Lhx6-GFP+ cells

Next we made J14 ES cell clones with 1056-bg-mCherry_Rex-

Blasticidinr. From the 4 colonies that we picked and analyzed, just 1

of them expressed mCherry. To our surprise, 1056-bg-mCherry

expression did not co-localize with Lhx6-GFP expression

(Figure 7F & K; Figure S18A-E in File S4). Nor did 1056-bg-

mCherry+ cells express Calbindin or GABA at any of the time

points examined, despite the fact that there were substantial

numbers of mCherry+ cells (Figure 7I and data not shown). Nkx2-

1 was co-expressed in less than 5% of mCherry+ cells (Figure 7G;

Figure S18F-J in File S4). Likewise, very few of 1056-bg-mCherry+

cells co-expressed Islet1+ (Figure 7J).

The MGE generates GABAergic neurons and oligodendrocytes

[11,62]. Thus, we tested whether 1056-bg-mCherry+ cells had

properties of immature oligodendrocytes, by studying Olig2

expression. As shown in Figure 7A–E0, 65–80% of 1056-bg-

mCherry+ cells expressed Olig2. Among Olig2+ cells, 20% of them

were 1056-bg-mCherry+ on day 9 and 56%–70% of them were

1056-bg-mCherry+ on day 11-day 17. In addition, we found 1056-

bg-mCherry/Mki67 double positive cells at all of time points

examined (white arrows in Figure 7H and in Figure S18K-O in

File S4 on D9–D17). This suggested some of the 1056 enhancer-

labeled cells continued to divide at late time points of differen-

tiation.

Interestingly, 1056-bg-mCherry+ (as well as Olig2+) cells

appeared randomly distributed inside the EB aggregates, whereas

Lhx6-GFP+ cells and Nkx2-1+ cells were usually clustered at the

outer surface of the EB aggregate. Consistent with 1056’s selective

activity in Olig2+ cells, FACS analyses of the 1056-bg-mCherry

J14 clone showed that Lhx6-GFP+ cells did not overlap with the

1056-bg-mCherry+ cells population from D9–D17 (Figure 7K).

Enhancer 1538 drives mCherry expression in .40% of
Lhx6-GFP+ mouse ES-derived MGE-like cells

To test enhancer 1538 activity, we generated J14 stable ES lines

with 1538-bg-mCherry_Rex-Blasticidinr. We analyzed 5 clones; 2 of

the clones had mCherry expression starting at D12 (Figure 8A &

B). There were almost no mCherry+ cells on D10 (Figure 8A). On

D12–D14, many 1538-bg-mCherry+ cells appeared (Figure 8B &

C). Though 1538 enhancer resides in close proximity to Nkx2-1

gene locus, its activity in the differentiating ES cells did not fully

correlate with that of Nkx2-1 expression (Figure 8E; Figure S19A–

D in File S4): endogenous Nkx2-1 expression appeared early at D9

(Figure S10 in File S1) whereas 1538-driven mCherry expression

was not detected at D10, but was found later on D12 (Figure 8A &

B). There were more Nkx2-1+ cells than 1538-bg-mCherry+ cells

(Figure 8E; Figure S19A–D in File S4); nevertheless, all of the

1538-bg-mCherry+ cells appeared to be Nkx2-1+. A few cells with

enhancer 1538 activity expressed MKi67+, suggesting that they

were mitotically active (arrows in Figure 8F; Figure S19E–H in

File S4). 1538-driven mCherry expression was highly correlated

with Lhx6-GFP expression (Figure 8B0–D0). We analyzed the

Lhx6-GFP+ and mCherry+ cells on D14: 40% (41.18%64.32%) of

Lhx6-GFP+ cells were mCherry+; 90% (92.26%63.78%) of

mCherry+ cells were Lhx6-GFP+. 1538 driven mCherry expres-

sion was too low for FACS detection (Figure 8G); therefore our

analyses required mCherry detection by immunofluoresence.

No mCherry expression was detected with Lhx6
enhancer/promoter constructs

We also generated a lentiviral vector with a putative Lhx6

promoter/enhancer DNA fragment (Lhx6 E/P-mCherry_Rex-blas-
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ticidinr) hoping that it could substitute Lhx6-GFP BAC’s activities.

Unfortunately despite the fact that it was active in dissociated

MGE cells (Figure S14G in File S3), we did not see any mCherry+

cells from MGE-like differentiated ES cells in any of the 7 stable

J14 ES clones infected with this construct.

The DlxI12b enhancer continued to be active in the adult
cortex

While our work focused on the activity of the enhancers in

MGE-like differentiated ES cells in vitro, we explored whether the

Figure 6. Enhancer 692-bg-mCherry was active in 70% of Lhx6 GFP+ cells. (A–D0): mCherry expression (red) driven by 692-bg and Lhx6-GFP
(green) expression on D9 (A-A0), D11 (B-B0), D13(C-C0), and D15 (D-D0) ES EB aggregates. On D13 and D15, about 70% of the 692-mCherry+ cells
were labeled with Lhx6-GFP (white arrows). (E): 692-bg-mCherry (red) and Nkx2-1 (green) expression on D15. (F): 692-bg-mCherry+ (red) cells are
postmitotic, as they don’t express Mki67 (green) on D15 (and other earlier time points). (G): E14 cells line carrying 692-mCherry was examined with
Sox6 expression. All of the 692-mCherry+ (red) cells express Sox6 (green). White arrows indicate markers co-labeling. Scale bar, 100 mm. (H) FACS
analyses of Lhx6-GFP+ cells (on x-axis) and 692-mCherry+ cells (y-axis) from day 0, day 9, day 11, day 13 and day 16 of ES-MGE differentiation. Though
692-mCherry+ (and 692-bg-mCherry+) cells was detected with immunostaining and showed extensive co-localization with Lhx6-GFP signals, their
endogenous intensity was too low to be detected by FACS (no staining was done with FACS analyses).
doi:10.1371/journal.pone.0061956.g006
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DlxI12b and 692 enhancers maintained their expression in vivo

following transplantation into neonatal mouse cortex. We used

FACS to purify GFP+ cells from differentiated (D12) J14 ES cells

that also carried either enhancer DlxI12b [line: DlxI12b-bg-

mCherry (JI12bbM11)] or 692: [line: 692-mCherry (J6M1)]. As

described above, in vitro (on D12) 30% of these Lhx6-GFP+ cells

are DlxI12b-bg-mCherry+ (for JI12bbM11), and 70% of the Lhx6-

GFP+ cells are 692-mCherry+ (for J6M1).

Analyses of seven transplants from JI12bbM11 [4 animals from

69 DAT, and 3 animals from 33 DAT] found 28.3362.81%

(mean 6 SEM, n = 7) of Lhx6-GFP+ cells were DlxI12b-bg-

mCherry+ (Figure S20A–B0 in File S5), showing that the DlxI12b

enhancer continued to be active in the adult cortex. On the other

hand, we had difficulty finding 692-mCherry+/Lhx6-GFP+ cells in

4 transplants from J6M1 (33 DAT) suggesting that either enhancer

692 is not active, or had low activity, in mature neurons (data not

shown). Thus, enhancer DlxI12b, but not 692, is effective for

labeling ES cell-derived MGE-derived mature neurons in the adult

cortex.

Discussion

MGE-derived interneuron progenitors have tremendous poten-

tial for regenerative medicine [24,26,63]. Towards this end, we

explored methods to generate and purify these MGE-like

interneuron progenitors.

Figure 7. Characterization of 1056-bg-mCherry in J14 ES cells differentiated with ES-MGE protocol. Enhancer 1056-bg-mCherry+ cells are
Olig2+ and don’t express markers of MGE-derived neurons. (A–E0): mCherry expression (red) driven by the 1056-bg and Olig2 (green) expression are
shown in panels A-A0 (D9 aggregates), B-B0 (D11), C-C0 (D13), D-D0 (D15) and E-E0 (D17). Almost all of the 1056-bg-mCherry+ cells express Olig2
(white arrows) on all the time points examined. Only a few 1056-bg-mCherry+ cells are Olig22 (white arrowheads in B-B0 and C-C0). (F): 1056-bg-
mCherry (red) and Lhx6-GFP (green) expression on D11. (G):, 1056-bg-mCherry (red) and Nkx2-1 (green) expression on D11. Some of the Nkx2-1+ cells
are also 1056-bg-mCherry+. (H): A few 1056-bg-mCherry (red)+ cells are still mitotically active, as indicated by Mki67+ (green) staining on D11. (I):
1056-bg-mCherry (red) and Calbindin (green) expression on D11. (J): 1056-bg-mCherry (red) and Islet1 (green) expression on D11. White arrows
indicate co-labeling of respective markers shown. Scale bar for all panels, 100 mm. (K) FACS analyses of Lhx6-GFP+ cells (on x-axis) and 1056-bg-
mCherry+ cells (y-axis) from day 0, day 9, day 11, day 13, day 15 and day 17 of ES-MGE differentiation. There was no detectable GFP/mCherry double
positive cell.
doi:10.1371/journal.pone.0061956.g007
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Generation of MGE-like Cells in vitro
Our approach to expand MGE-derived neurons in vitro from

dissociated primary cells failed. We found that while MGE cells

became Dlx2+ GABAergic neurons, they lost Lhx6-GFP expres-

sion, highlighting the need to identify factors necessary to maintain

Lhx6 expression. In contrast, methods to differentiate ES cells into

MGE-like progenitors and neurons have been evolving

[31,32,33,34]. Using a modified SFEBq protocol (ES-MGE) we

improved the efficiency (about 2-fold increase; Fig. S2A9 in File

S1) of inducing Lhx6-GFP+ cells compared to that of Danjo et al.,

2011.

Figure 8. Enhancer 1538-bg-mCherry+ labeled 40% of Lhx6-GFP+ cells. (A–D0): mCherry expression (red) driven by 1538-bg and Lhx6-GFP
(green) expression in panels A-A0 (D10 aggregates), B-B0 (D12), C-C0 (D14), and D-D0 (D16). On D14, 40% of Lhx6-GFP+ cells are 1538-mCherry+ and
more than 90% of the 1538-bg-mCherry+ cells were also labeled with Lhx6-GFP (white arrows). (E): 1538-bg-mCherry (red) and Nkx2-1 (green)
expression on D14. (F): Most of the 1538-bg-mCherry (red)+ cells were postmitotic, as they don’t express Mki67 (green) on D14 (and other earlier time
points). There were a few exceptions (white arrows). Scale bar, 100 mm. (G) FACS analyses of Lhx6-GFP+ cells (on x-axis) and 1538-bg-mCherry+ cells
(y-axis) from day 0, day 8, day 10, day 12, day 14 and day 16 of ES-MGE differentiation. Similar to the enhancer 692, the mCherry expression activity of
enhancer 1538 appeared too low to be detected by FACS (no staining was done with FACS analyses).
doi:10.1371/journal.pone.0061956.g008
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Our ES-MGE differentiation protocol generated progenitors

and neurons with MGE-like molecular properties. At D12, cell

clusters within the ES aggregates (EBs) expressed markers of

immature MGE-derived neurons (Nkx2-1+/Lhx6+) (Figure 2B0).

While many cells did not express MGE markers, they lacked

detectable expression of pallial markers (Tbr1 and Pax6) (Figure 2J;

Table S2 in File S2). The Nkx2-12/Lhx62 regions may contain

LGE/striatal cells (Islet1+ and CTIP2+ expression, Figure 2H and

data not shown), but neither marker is LGE-specific. Olig2+ cells

contributed to some of the Nkx2-12/Lhx6-GFP2 cells (Figure 2K;

Figures S9, and S11 in File S1), and probably correspond to

immature oligodendrocytes. Therefore, our ES-MGE differentia-

tion protocol, while relatively specific for MGE specification, is not

highly efficient.

The Nkx2-1+ MGE-like domains within the EBs appeared

around D8–9, similar to previous reports [31,34]. More than 50%

of these Nkx2-1+ cells were proliferating at D9 based on Mki67

expression (Figure S10 in File S1). From D10 to D12, there was an

increase of Nkx2-1+/Lhx6+ cells (Figure 2B–C0); this expansion of

the ‘‘MGE’’ clusters from D9–D13 suggested that Nkx2-1+ cells

continued to divide. Later at D14–D16, the EBs expressed makers

of immature MGE-derived neurons (Lhx6, GABA and Calbindin;

Figure 2D9 and Figure S3 in File S1). Furthermore, transplanta-

tion of FAC-sorted Lhx6-GFP+ cells generated neurons that

expressed markers of mature interneurons (Figure S13D–F0 in File

S3) as reported by Maroof et al., 2010.

Comprehensive gene expression analysis showed that partial

RNA profiles of ES-derived Lhx6-GFP+ cells (at D12 of

differentiation) were similar to E12.5 mouse Lhx6-GFP+ MGE

cells: both types of Lhx6-GFP+ cells resembled immature MGE-

derived interneurons, and lacked prominent expression of markers

of other MGE-derived cells such as oligodendrocytes (Table 1;

Table S2 & S3 in File S2).

Since the ES-Lhx6-GFP+ cells expressed Nkx2-1 and Lhx8

RNAs (Table 1), they probably correspond to cells that can

differentiate into several lineages of MGE-derived neurons,

including pallial interneurons, striatal interneurons and the globus

pallidus neurons [49,64,65]. However, the gene expression array

data showed lower expression of markers of globus pallidus

neurons (e.g. ER81; Table 1; Table S2 in File S2); therefore, we

postulate that the ES-Lhx6-GFP+ cells are most similar to bi-

potential (pallial and striatal) immature interneurons. Further-

more, we suggest that these cells do not differentiate into subpallial

cholinergic neurons because they have low expression of Islet1 and

Gbx2 [65,66,67] based on immunofluorescence (Figure 2H) and

array data (Table S2 in File S2). Finally, we found higher

expression of MGE-derived cortical interneuron markers MafB

and cMaf (Table 1; [57]) in the ES-Lhx6-GFP+ cells, providing

evidence that they are biased towards pallial vs. striatal

GABAergic interneurons.

We showed that ES-Lhx6-GFP+ cells transplantation into

neonatal mouse produced cortical interneurons (Figure S13 in

File S3). We did not test striatal transplantation; it is possible that

these cells would produce some striatal interneurons, as found for

MGE transplantation [28]. Future studies are needed to establish

methods to promote pallial interneuron differentiation from these

bi-potential progenitors. For instance, we have evidence that

Zfhx1b transcription factor participates in the switch between

pallial and striatal interneuron identity [57]. Zfhx1b was expressed

3-fold higher in MGE-Lhx6-GFP+ cells than the ES-Lhx6-GFP+

cells (Table S2 in File S2); perhaps increased Zfhx1b function

would repress Nkx2-1 and Lhx8, and potentiate the differentiation

of pallial interneurons.

Use of ‘‘MGE Enhancers’’ to monitor MGE cell
differentiation

The use of molecular markers of specific cell states is a powerful

tool for studying cell differentiation. In particular, expression of

fluorescent proteins, from specific endogenous gene loci, or from

transgenes (e.g. BACs), is an effective method to identify and purify

cells. Two published ES cell lines mark MGE differentiation: 1)

mouse J14 ES cells that express GFP from an Lhx6 BAC [32]; 2)

human ES cells that express GFP from the Nkx2-1 locus [33]. Our

alternative approach, driving reporter expression using cell/tissue-

specific promoters and/or small enhancer elements [39], has

several potential advantages: 1) the small size of the enhancers,

often less than 1 kb, makes them ideal for insertion into viral

vectors; 2) the small enhancers often have a more restricted range

of tissue and cell type expression; 3) the approach is ideal for

marking multiple cell lines, which would be extremely difficult

using BAC transgenic or knock-in strategies; 4) knock-in strategies

can alter gene function.

We have identified a large number of enhancer elements in the

human genome that drive expression in specific subdivisions of the

E11.5 mouse telencephalon, including the MGE [68] (see http://

enhancer.lbl.gov/). We explored the function of three of these

(novel enhancers 692, 1056, and 1538), in addition to the mouse

DlxI12b and Lhx6 promoter/enhancers [15,36,37]. We introduced

each of these five enhancers into the E14 and J14 mouse ES cells

[32] using the vector described by Kita-Matsuo et al., (2009),

subjected them to the ES-MGE differentiation protocol, and

analyzed mCherry expression in EBs. Four of the enhancers drove

mCherry expression in MGE-like cells; only the Lhx6 enhancer did

not work. Enhancer 1056 drove expression in Olig2+/Lhx6-GFP2

cells (Figure 7). As the MGE also generates oligodendrocytes

[11,62], we predict that enhancer 1056 will be useful for driving

expression in oligodendrocyte progenitors. A subset of enhancer

1056+ cells also expressed Nkx2-1 (Figure 7G); these may be

progenitors capable of generating MGE-type neurons, as Olig2 is

co-expressed with Nkx2-1 in the ventricular zone of the E11.5

MGE (Figure S21 in File S5; also see Figure S11 in File S1 for

differentiated ES data).

Enhancers DlxI12b, 692, and 1538 drove mCherry expression in

MGE-like neurons (Nkx2-1+/Lhx6-GFP+), but not Olig2+ cells

(Figure 5, 6 & 8). Given that ES-Lhx6-GFP+ cells have properties

of immature pallial interneurons, based on gene expression array

analysis (Table 1 and Table S2 in File S2) and in transplantation

assays (Figure S13 in File S3; [32]), we propose that DlxI12b, 692,

and 1538 drive expression in cells with properties of MGE-derived

interneurons.

DlxI12b enhancer was active in both immature and mature

pallial interneurons (Figure S20 in File S5), whereas enhancer 692

appeared to be active only in immature MGE cells (data not

shown). Furthermore, it will be of interest to follow the fate of

enhancer 1056 marked cells (1056-bg-mCherry+ cells) following

cortical transplantation to determine whether they develop into

mature oligodendrocytes [62].

The survival rate of FACS sorted cells followed by cortical

transplantation was ,1% (similar to Maroof et al., 2010[32]).

Because we suspect that FACS cell sorting contributes to the low

viability, it will be beneficial to pursue other methods for cell

purification, including magnetic bead-conjugated antibodies, and

the use of enhancer-driven drug selectable markers.

Overall, comparing enhancer activities in transgenic mice and

in differentiated mouse ES cells (Table S5 in File S2), only

enhancer DlxI12b faithfully conveys its activity from in vivo to in

vitro. It is not active in VZ and SVZ (cells from VZ and SVZ are

actively dividing) of embryonic MGE in transgenic mice
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(Figure 4A), nor in mitotically active mKi67+ differentiated ES

cells (data not shown). It is active in MZ (cells from MZ are mostly

postmitotic cells) of embryonic MGE in transgenic mice

(Figure 4A) and is active in mKi672 differentiated ES cells (data

not shown). In transgenic mice three of the enhancers (692, 1056,

and 1538) are active in the VZ and SVZ of embryonic MGE

(Figure 4B–D); however only two of the enhancers have some

activity in mitotically active differentiated ES cells (i.e. 1056 and

1538) (Figure 7H and 8F). Enhancer 1056 is active in VZ and SVZ

of MGE, but it is not active in MZ of MGE in transgenic embryos

(Figure 4C). In contrast, about 5% of 1056-mCherry+ cells are

mitotically active in differentiated ES cells in vitro (Figure S18K-O

in File S4). We hypothesize that as 1056-mCherry+ cells mature,

they turn off Nkx2-1 and differentiate along the oligodendrocyte

lineage.

It will be helpful to identify an ‘‘MGE enhancer’’ that more

effectively drives expression in dividing cells, to enable selection

with a drug-resistance gene. This would greatly facilitate

generating large numbers of homogeneous MGE interneuron

progenitors for further study and, ultimately, for transplantation in

diseased states.

Our approach of using highly specific small enhancers has

general utility for generating diverse types of CNS cells. For

instance, we have identified enhancers for the LGE and pallium,

including its regional subdivisions [68] (see http://enhancer.lbl.

gov/) that can be used for selecting these types of progenitors and

their derivatives. Introducing these enhancer constructs into ES

and iPS cells may facilitate identification and isolation of many

different neural cell lineages for basic and translational studies.

Supporting Information

File S1 Text T1, Method M1 & M2, Figure S1–S11. Text

T1: Dissociated MGE cells grown in vitro lose Lhx6-GFP

expression. Method M1: MGE primary culture and antibodies

for immunofluorescent studies. Method M2: Transient lentiviral

infection in primary MGE and dissociated/differentiated ES cells.

Figure S1: Primary MGE cells in vitro differentiate into Dlx2+

GABAergic neurons, but lose Lhx6 expression. A–D’’, E13.5 MGE

(ventricular and subventricular zone of the MGE) from Dlx5/6-

LacZ+ embryos was removed from the telencephalon, dissociated

and cultured in vitro using the media as described (Walton et al.,

2006). Ten days after growing in the proliferation media (10

DIVpro), the cells were differentiated using differentiation media

(DIVdiff). The state of differentiation was compared during

proliferation (A-A0 and C-C0) or after 4 days of differentiation (B-

B0 and D-D0) by immunostaining with antibodies to b-Galactosi-

dase (b-Gal), GAD1 (GAD67), Dlx2 and Class III b-Tubulin

(Tuj1). Scale bar, 100 mm. E–K, Lhx6-GFP expression in cells

derived from E12.5 MGE (ventricular and subventricular zone of

the MGE). The Lhx6-GFP+ MGEs were dissociated and cultured

in vitro. Top row: MGE cells grown in proliferation media for 3 (E),

7 (F), 10 (G) and 13 (H) days. Cells were passaged by trypsinization

and expansion onto bigger culture dishes on day 7. Bottom row:

MGE cells cultured in proliferation media for seven days and then

in differentiation media for 0 (I), 3 (J), and 6 (K) days. Images are

overlay of DIC images and green fluorescent images. Scale bar,

150 mm. Figure S2: Comparison of various conditions for mouse

ES cells differentiation. (A and A9): J14 was subjected to three

different conditions for differentiation (the schematic was the same

as shown in main figure 2 A) as shown. On D12 and D15, cells

were analyzed by FACS analyses to determine the percentage of

Lhx6-GFP+ cells. Both condition 1 (ES-MGE differentiation

protocol, our current protocol, shown in blue) and condition 2

(MGE-type cells protocol, shown in red, (Danjo et al., 2011))

included Shh pathway activators and promoted MGE-like

progenitor cells. Condition 3 (cortical cell protocol, in grey,

(Eiraku et al., 2008): addition of Dkk-1, without Shh or SAG)

generated very few Lhx6-GFP+ cells from J14 cell line. (A9):

Compared to condition 2 and 3, condition 1 produced the most of

Lhx6-GFP+ cells on D12 and D15 of differentiation. (B and B9):

Four conditions were used to differentiate JI12bBM11 cell line

(J14 carrying DlxI12b-bg-mCherry). In Condition 1 (shown in blue)

6 nM SAG was applied while in condition 2 (in green) 2 mM

purmophamine was used to promote MGE-like progenitor cells.

In condition 3 (in purple), 1 mg/ml Dkk-1 was added on D0, in

compared to 100 ng/ml Dkk-1 in condition 1 and 2. In condition

4 (shown in red), additional growth factors and small molecule

(BMPR1A and SB431542) was added on day 0. (B9): Much more

purmophamine is required (2 mM) (Condition 2) to reach the same

efficiency generated by SAG (6 nM) (Condition 1). Ten times

more Dkk-1 (1 mg/ml) (Condition 3) only produced slightly more

Lhx6-GFP+ cells on D12 but not on D14. Addition of activin/

nodal inhibitor SB431542 and BMP activator BMPR1A on D0

(Condition 4) diminished the effects of 1 mg/ml Dkk-1 on Lhx6-

GFP+ cells production. (C, C9 and C0): Foxg1::venus and

JI12bBM11 (J14 carrying lentiviral enhancer DlxI12b-bg-

mCherry) were tested for differentiation using four conditions

listed (as shown in Figure 1). In condition 1 and 2 (shown in blue

and green), cells were differentiated in GMEM+10% KSR media

while in condition 3 and 4 (shown in red and purple), cells were

differentiated in Neurobasal media supplemented with B27

without retinoic acid (NB/B27), a commonly used media for

neural progenitor differentiation (Turksen and Troy, 2006). Either

100 or 200 ng/ml Dkk-1 was added on D0. For all three cell lines

tested (including J6M1 in Figure 1), KSR-containing media

surpassed NB/B27 media in the generation of Foxg1::venus+ cells

or Lhx6-GFP+ cells. Addition of 26 more Dkk-1 on D0 did not

improve the efficiency of Lhx6-GFP+ cells or Foxg1::venus+

production with KSR media. Figure S3: Characterization of

differentiated E14 cells. Expression of Nkx2-1 (red in all panels)

with other markers (shown in green): Mash1 (A, A9), Islet1 (B, B9),

GABA (C, C9), and Calbindin (D, D9), in E14 cell line on D9 and

D15 after differentiation. DAPI nucleus staining was shown in blue

in all panels. There are more Mash1+ cells than Nkx2-1+ cells (and

some of them express both proteins) on D9. On D15, both protein

expressions are reduced with more Nkx2-1+ cells than Mash1+

cells. Scale bar: 100 mm. Figure S4: Expression of Lhx6-GFP and

Dlx2 in J14 cells. J14 cells were differentiated with our ES-MGE

protocol. On day 10 (D10; A, A9, A0), D12 (B, B9, B0), D14 (C, C9,

C0) and D16 (D, D9, D0), cell aggregates were collected for

analyses by immunofluorescent staining for Dlx2 (red) and GFP

(green). Similar to Lhx6-GFP+ cells, the number of Dlx2+ cells

peaked on D12–14. Arrows indicate co-localization of Dlx2 and

Lhx6-GFP. Scale bar, 100 mm. Figure S5: Expression of Lhx6-

GFP and Foxg1 in J14 cells. J14 cells were differentiated with our

ES-MGE protocol. Expression of Foxg1 (red) and Lhx6-GFP

(green) were examined from cell aggregates collected on D10 (A,

A9, A0), D12 (B, B9, B0), D14 (C, C9, C0) and D16 (D, D9, D0). The

expression of Foxg1 was highest at D10–D12 of differentiation and

went down at D14–D16. Scale bar, 100 mm. Figure S6:

Expression of Lhx6-GFP and Islet1 in J14 cells. J14 cells were

differentiated with our ES-MGE protocol. On D9 (A, A9, A0), D11

(B, B9, B0), D13 (C, C9, C0) and D15 (D, D9, D0), cell aggregates

were collected for analyses by immunofluorescent staining: Islet1

(red) and GFP (green). Note the random distribution of Islet+ cells

within the aggregates compared to the clustered Lhx6-GFP+ cells.

Scale bar, 100 mm. Figure S7: Expression of Lhx6-GFP and
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Mki67 in J14 cells. J14 cells were differentiated with our ES-MGE

protocol. On D9 (A, A9, A0), D11 (B, B9, B0), D13 (C, C9, C0) and

D15 (D, D9, D0), cell aggregates were collected for analyses by

immunofluorescent staining: Mki67 (red) and GFP (green). All of

the Lhx6-GFP+ cells were postmitotic. Scale bar, 100 mm. Figure

S8: Expression of Lhx6-GFP and Tbr1 in J14 cells. J14 cells were

differentiated with our ES-MGE protocol. On D10 (A, A9, A0),

D12 (B, B9, B0), D14 (C, C9, C0) and D16 (D, D9, D0), cell

aggregates were collected for analysesby immunofluorescent

staining: Tbr1 (red) and GFP (green). There was no Tbr1+ cell

in any time point examined. Scale bar, 200 mm. Figure S9:

Expression of Lhx6-GFP and Olig2 in J14 cells. J14 cells were

differentiated with our ES-MGE protocol. On D10 (A, A9, A0),

D12 (B, B9, B0), D14 (C, C9, C0) and D16 (D, D9, D0), cell

aggregates were collected for analyses by immunofluorescent

staining: Olig2 (red) and GFP (green). Similar to Lhx6-GFP+ cells,

the number of Olig2+ cells peaked on D12–14. All of the Lhx6-

GFP+ cells were Olig22. Scale bar, 100 mm. Figure S10:

Expression of Nkx2-1 and Mki67 in J14 cells. J14 cells were

differentiated with our ES-MGE protocol. On D9 (A, A9, A0), D11

(B, B9, B0), D13 (C, C9, C0) and D15 (D, D9, D0), cell aggregates

were collected for analyses by immunofluorescent staining: Mki67

(red) and Nkx2-1 (green). Plenty of Mki67+ cells were present and

co-labeled with Nkx2-1 on day 9 and the number of Ki67+ cells

went down on subsequent time points. There were significantly

lower Nkx2-1+ that were also Mki67+ on D11 and D13. Scale bar,

100 mm. Figure S11: Expression of Nkx2-1 and Olig2 in J14 cells.

J14 cells were differentiated with our ES-MGE protocol. On D10

(A, A9, A0), D12 (B, B9, B0), D14 (C, C9, C0) and D16 (D, D9, D0),

cell aggregates were collected for analyses by immunofluorescent

staining: Nkx2-1(red) and Olig2 (green). About 5% of Olig2+ cells

co-labeled with Nkx2-1 on D9 and the number of Nkx2-1+/Olig2+

(double positive) cells decreased on subsequent time points. Scale

bar, 100 mm.

(PDF)

File S2 Table S1–S10. Table S1: Abbreviated Names. Table

S2: Select marker genes expression from differentiated ES cells (ES

Lhx6-GFP+ and ES Lhx6-GFP2) and E12.5 MGE cells (MGE

Lhx6-GFP+) and the comparisons (fold change) of ES Lhx6-GFP+

vs. ES Lhx6-GFP2, MGE Lhx6-GFP+ vs. ES Lhx6-GFP2, and

MGE Lhx6-GFP+ vs. ES Lhx6-GFP+. Column 1 lists marker

genes for specific cell types and regions. Note that many of these

are not specific for those cells states, but are recognized as useful

markers. The expression levels in the columns 2–4 represent the

averaged normalized log2 intensity for each gene. The numbers in

columns 5–7 (the fold change) are ratios of the average signal

intensity (unlogged) of the two groups in comparison. Red colored

genes are enriched in ES Lhx6-GFP2 cells whereas green colored

genes are enriched in both MGE Lhx6-GFP+ and ES Lhx6-GFP+

cells. For most of the genes, the expression in the ES Lhx6-GFP+

cells and MGE Lhx6-GFP+ cells show similar expression trends, in

comparison to ES Lhx6-GFP2 cells. However, there are a few

genes (shown in black) that don’t follow this trend. Table S3: Block

A and Block B from the supervised clustering map (Figure 3).

Genes from block A and B of the supervised heatmap (Figure 3)

are list below (the order of the genes are the same as in the map

(from top to bottom). Many of the genes that regulate and/or

mark developing cortical interneurons as shown in Tables 1 and

S2 are bold-typed. Table S4: Cell counts from 69 days after

transplantation. Four transplants (mice that received Lhx6-GFP+
cells and had at least 10 Lhx6-GFP+ cells in the cortex: N1, R3,

R5 and R6) were examined for co-labeling of Lhx6-GFP with

parvalbumin (PV), somatostatin (SOM), and neuropeptide Y

(NPY). Total numbers, average, and standard errors from 3–4

transplants were shown. Table S5: Comparison of enhancer

activities in transgenic embryos and differentiated ES cells. Table

S6: Differentially expressed (Fold change are . = 4) genes between

ES Lhx6-GFP+ vs ES Lhx6-GFP- cells. Table S7: Differentially

expressed (Fold change are . = 4) genes between MGE Lhx6-

GFP+ vs ES Lhx6-GFP+ cells. Table S8: Differentially expressed

(Fold change are . = 4) genes between MGE Lhx6-GFP+ vs ES

Lhx6-GFP- cells. Table S9: Supervised heatmap genes (1821

probes). Table S10: Primer sequences used for lentiviral construct.

(PDF)

File S3 Figure S12–S14. Figure S12: Unsupervised clustering

showing 1000 most variable probes.Microarray comparison of

RNA expression from primary E12.5 MGE Lhx6-GFP+ cells, ES-

Lhx6-GFP+ and ES-Lhx6-GFP2 cells. Show here are 1000 most

variable probes. Figure S13: Transplanted Lhx6-GFP+ cells

express cortical interneuron markers in the cortex. (A–C) Four

days after transplantation, some of the Lhx6-GFP+ cells were also

GABA+ (A), Calbindin+ (B), or MafB+ (C). White arrows indicate

double positive cells. (D–F’’) Sixty-nine days after transplantation,

Lhx6-GFP+ cells expressed parvalbumin (PV) (D, D9, D0),

somatostatin (SST) (E, E9, E0) and neuropeptide Y (NPY) (F, F9,

F0). Arrows indicate markers co-labeling. In PV/GFP co-staining,

there were some GFP+ cells that have weak PV expression (white

arrowheads). Scale bar, 100 mm. (G) Average (data are mean 6

SEM) percentages of parvalbumin+ (PV+/GFP+), somatostain+

(SST+/GFP+), neuropeptide Y+ (NPY+/GFP+) cells among all

Lhx6-GFP+ cells (n = 3–4). Figure S14: Test of lentiviral constructs

in dissociated primary MGE cells. Dissociated primary MGE cells

(E13.5) were infected with each of the lentiviruses indicated (A:

DlxI12b-mCherry, B: DlxI12b-hsp68-mCherry, C: DlxI12b-bg-mCherry,

D:692-mCherry, E: 692-hsp68-mCherry, F:692-bg-mCherry, G: Lhx6-

E/P-mCherry) for three days before being fixed for immunostaining.

Pictures are composites from several different fields (A–F) or from

one single field (G). Shown here are Nkx2-1 staining in green,

mCherry in red, and DAPI nuclear stain in blue. Scale bar,

50 mm.

(PDF)

File S4 Figure S15–S19. Figure S15: Additional characteriza-

tion of the enhancer DlxI12b. Mouse ES cell lines E14 (B-B0 & E-

E0) and J14 (A-A0, C-D0 & F-F0) carrying enhancer DlxI12b-bg-

mCherry were differentiated with our ES-MGE protocol. Expres-

sion of DlxI12b-bg-mCherry (red) was examined on D11, D13,

and D15 together with other markers (shown in green): (A) Nkx2-

1, (B) Dlx2, (C) Foxg1, (D) Islet1, (E) Olig2, (F) Calbindin. Scale

bar, 200 mm. Figure S16: Additional characterization of the

enhancer 692. (A–D) Mouse ES cell lines J14 carrying enhancer

692-bg-mCherry were differentiated with our ES-MGE protocol.

Expression of 692-bg-mCherry (red) was examined together with

Nkx2-1 (shown in green) on D9, D11, D13, and D15. Scale bar,

200 mm. (E–J) Mouse ES cell lines E14 carrying 692-mCherry were

differentiated with our current MGE protocol. Expression of 692-

mCherry (red) was examined with Nkx2-1 (E–H) and Mki67 (I, J)

(shown in green) on days indicated. Scale bar, 100 mm. White

arrows indicate co-labeling of respective markers shown. Figure

S17: Additional characterization of the enhancer 692. Mouse ES

cell lines J14 carrying enhancer 692-mCherry were differentiated

with our ES-MGE protocol. Expression of 692-mCherry (red) was

examined on D17 together with other markers (shown in green):

(A) Nkx2-1, (B) Lhx6-GFP, (C) Mki67. White arrows indicate co-

labeling of respective markers shown. Scale bar, 100 mm. Figure

S18: Additional characterization of the enhancer 1056. Mouse ES

cell line J14 carrying enhancer 1056-bg-mCherry were differentiated

with our ES-MGE protocol. Expression of 1056-bg-mCherry (red)
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was examined on D9, 11, 13, 15 and 17 together with other

markers (shown in green): (A–E) Lhx6-GFP, (F–J) Nkx2-1, (K-O)

Mki67. Scale bar, 100 mm. Figure S19: Additional characteriza-

tion of the enhancer 1538. Mouse ES cell line J14 carrying

enhancer 1538-bg-mCherry were differentiated with our ES-MGE

protocol. Expression of 1538-bg-mCherry (red) was examined on

D10, 12, 14 and 16 together with other markers (shown in green):

(A–D) Nkx2-1, (E–H) Mki67. Scale bar, 100 mm.

(PDF)

File S5 Figure S20–S21. Figure S20: All of the DlxI12b-bg-

mCherry+ cells express Lhx6-GFP thirty-three days after trans-

plantation into the neocortex (white arrows in A-A0). About 28%

of Lhx6-GFP+ cells are also DlxI12b-mCherry+. One of the double

positive cells (DlxI12b-bg-mCherry+, Lhx6-GFP+) is shown in B-

B0. Scale bar for A-A0: 200 mm; for B-B0: 50 mm. Figure S21:

Expression and colocalization of Olig2 and Nkx2-1 in the

progenitor zones of the embryonic MGE. E11.5 coronal section

through mouse forebrain showing Nkx2-1 (red), Olig2 (green), and

DAPI (blue) as visualized by indirect immunofluorescence at the

level of the MGE and LGE. At the ventricular zone and

subventricular zone of the MGE, all of the cells are labeled by

both Nkx2-1 and Olig2 (as shown by double labeling on the lower

right panel). The images were taken at a Zeiss Confocal

Microscope LSM 510 NLO Meta. Scale bar, 50 mm.

(PDF)
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