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ABSTRACT OF THE DISSERTATION

Multi-Scale Modeling for Morphogenesis of Healthy and Diseased Tissue

By

Seth Amin Figueroa

Doctor of Philosophy in Biomedical Engineering

University of California, Irvine, 2017

Professor Qing Nie, Chair

In organisms, tissue development and maintenance must be precisely timed and spatially

coordinated to ensure proper form and function. This can be difficult both to develop and

to maintain in the complex environments present in organisms, and thus a mechanism that

can be finely tuned and regulated must be present. Therefore, when studying the underlying

principles of morphogenesis, it is important to consider the crucial biochemical, cellular,

and tissue scales simultaneously. This creates a need for a mathematical and computational

approach to understanding the complex biology of development. One way of achieving a

high level of precision of control is through stem cell lineages. These lineages employ the

use of stem cells and their progeny to maintain certain properties necessary for proper tissue

function. One such system is found in the stratified inter-follicular epidermis. Here, we

develop and use a two dimensional, multi-scale, cell lineage model to explore the molecular,

cellular, and physical properties of healthy and diseased epidermis. The model recapitulates

a variety of healthy epithelial tissue shapes, including the formation and maintenance of

undulating structures, known as rete-ridges. We find that the dermis compliance and the

cell-cell adhesion at the dermis-epidermis junction, in conjunction with internal physical

pressures due to cell lineage dynamics, play an important role in the tissue morphology.

We explore these dynamics to get a better understanding of morphological changes found

in diseased skin, including thickening of the tissue and deformation of rete-ridges. Another

xiii



system in which the molecular mechanisms and cell dynamics driving morphogenesis remains

unclear is in diversification of feather vane shapes. Here, we integrate a two dimensional,

multi modular mathematical model with transcriptome profiling to elucidate the anisotropic

signaling modules which break symmetry, alter cell shape, and generate diverse feather

shapes. Overall, this work provides multi-dimensional frameworks to study development and

applies them to various biological tissues to better understand their underlying processes.
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INTRODUCTION

A tissue is an organized network of cells that performs a specific function in a multi-cellular

organism. How the complex micro-environment at the molecular and gene-regulatory level,

in conjunction with the macro-environment, at the cellular and tissue level, work to correctly

grow and shape a tissue is still poorly understood. Moreover, understanding the pathology

of a diseased tissue can be made more complex when dealing with such a large number of

factors inherent in the development. The multi-scale nature of tissue development makes

study of the organism using experiments very challenging and time consuming. In order to

provide insight into a complex multi-level phenomenon, mathematical and computational

modeling can be used to account for different biological observations at distinct spatial and

temporal scales. For example, proteins often localize within a tissue on the order of minutes

or seconds [4],the cell cycle can be on the order of hours or days [5], and overall tissue behavior

can be on the time scale of weeks or months [6]. To integrate all these time scales into a

single mathematical model can present significant computational challenges. Also, when

handling all the spatial scales simultaneously in a mathematical model, the distribution of

biochemical molecules, cell-to-cell interactions, and overall tissue movement and growth must

be accounted for.

Tissue models that discretely account for cells can account for cell-to-cell interactions and

the individuality of cellular decisions, but they can be computationally expensive. When

modeling tissues using continuum methods, particularly in high dimensions, the growth of

the tissue must be accounted for using moving interfaces representing tissue boundaries

which often require special computational techniques. However, continuum models can be

computationally efficient and incorporate morphogen gradients in a simple fashion. For each

specific problem, tissue models and numerical methods can be developed to account for

the crucial aspects specific to the problem. For example, the epidermis is stratified, with
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stem cell accumulating in undulations that form at the basal boundary [7, 8], therefor a

careful treatment of interfacial motion is needed to explore it’s growth, morphology and

pathological distortions. The well-studied presence of notch signaling in developing tissues

[9] also serves as a specific problem that may need to be addressed using careful mechanisms

that incorporate the individuality of cells.

Even with such computational challenges, tissue models can be very insightful in studying

complex biological systems. In developmental biology, several important questions pertain to

the morphophogenesis of healthy and diseased tissue. Computational experiments using tis-

sue models provide a great avenue to explore the interdependence of these important concepts

in an efficient and cost-effective manner without the inherent constraints in experiments.

This thesis aims to study the morphogenesis of healthy and diseased tissues using math-

ematical modeling. The primary model biological systems that are studied are stratified

epithelia, the feather plumes, and the zebrafish pharyngeal jaw.
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Chapter 1

A Spatial Cell Lineage Model for

Healthy and Diseased Epidermis

1.1 Background

In organisms, proper tissue and organ development and maintenance must be precisely timed

and spatially coordinated to ensure proper function. This can be difficult both to develop and

to maintain in the complex environments present in organisms, and thus a mechanism that

can be finely tuned and regulated must be present at each stage and level of an organisms

life cycle. One way of achieving this precision of control is through stem cell lineages. These

lineages employ the use of stem cells, transit amplifying or progenitor cells, and terminally

differentiated cells to maintain tissues with certain properties necessary for proper tissue

function. The homeostatic upkeep of tissues through a stem cell lineage is present in a variety

of organisms, as well as a variety of tissues in each organism such as in the Zebrafish heart

[10, 11], vertebra teeth [12, 13], feather follicles [14], Hematopoetic stem cells [15], among
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others. In these organs, a balance between proliferation, differentiation, and apoptosis is

needed to keep a specific population of each subset of cells functional in the organ [16].

In many of these examples, not only the population of the cells needs to be maintained,

but also the organization and spatial distribution of the cells within the tissue often has an

important role in the organ’s function. It is often found that the stem cells form a niche, a

specialized micro-environment where the stem cells reside [17, 18] and are protected. The

local environment surrounding the niche also plays a role in cell fate determination of stem

cell progeny and thus influences tissue structure as a whole. It has been shown that the

stiffness and elasticity of structures surrounding the niche [19, 20], the surface chemistry

[21], and signaling factors, such as calcium gradients [22, 23, 24], can affect stem cell fate

and rate of proliferation. Due to the complexity of the surrounding environment, great

importance lies in studying structural and functional changes in the cell lineage to harness

its potential in regenerative medical applications, such as in scaffolding and tissue engineering

applications [25, 26, 27], and understanding of associated diseases.

Ectodermal organs have emerged as a good model system to study tissue development,

maintenance and organization. These organs can as they can continually turn over to regulate

their size, topology, and ratio of differentiated cell types, depending on physiological needs

or in response to injury [28]. Certain epithelia, such as epidermis, olfactory epithelium,

and the cerebral cortex [29, 7, 8], often stratify into apical-basal cell layers, where stem

cells reside in a niche along the basal layer and diffusive morphogens regulate the layering.

Mathematical modeling has been used to elucidate principles on cell lineage dynamics and

feedback regulations [30, 31, 32], as well as spatial dynamics of the tissue[26, 33, 34, 35].

For example, a one-dimensional continuum model has been developed to study Olfactory

Epithelial structure [36]. In this study, tissue stratification and homeostasis are achieved

through an apical-basal morphogen gradient and feedback regulation in the cell lineage.
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Epithelia, though stratified in one direction, often have specialized structures in other di-

mensions. In the epidermis, along the basal layer are finger like structures which protrude

into the basal-lamina known as rete-ridges [37]. It is at the base of these ridges that stem

cells reside and a protected niche is formed. The importance of the stem cell niche and

cell lineage feedback regulation as a cause of these undulating structures was studied pre-

viously [38]. Through computational analysis of the continuum two-dimensional model, it

was found that the morphologies of stratified epithelia depend on spatial structure of the

stem cell niche. In particular, undulating epithelial morphologies may develop when the

niche forms along a dynamic, variable basal lamina as opposed to when its movement and

formation are restricted by a rigid, fixed basal lamina.

In this model, one boundary has been assumed to be rigid and flat while the other is dy-

namic, allowing undulation and movement. It is unclear what will occur if both the apical

and the basal sides allowing dynamic movement and undulating with unique and different

morphologies. It has been observed that although undulations are more explicit along the

basal layer, the apical layer can have an associated morphology as can be seen in the dor-

sal tongue [39, 1]. Incorporating more detailed tissue mechanics and biology in both sides

into a model allow one to explore homeostasis and morphologies driven by fingerings of

both boundaries. This will enable one us to investigate more complex tissue morphologies,

including those that arise due to genetic diseases.

Here we investigate how dynamic structure of the boundaries and the feedback in the cell

lineage may affect the formation of healthy and diseased stratified epithelial morphologies.

We first present a two-dimensional continuum cell-lineage model with two dynamic interfaces

able to deform and undulate. We then systematically explore the cellular dynamics in the

model, which are driven by both the interactions between the tissue and the environment,

and the internal spatial and temporal dynamics of the cell lineage. Simulations show the

importance of rete-ridges in housing the stem-cell niche as well as increasing the surface
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area of the basal-lamina to allow a larger influx of nutrients from the basal lamina, both of

which can help the tissue grow to and maintain a proper homeostatic size. We also use the

model as a novel way to look at key epidermal cell lineage properties, as well as the role

of the epidermal-dermal interface to help us better understand the resulting morphology of

diseased tissue.
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1.2 Numerical Methods

1.2.1 Modeling the cell lineage in two dimensions with two dy-

namic boundaries

In this model, the cell lineage is made up of three distinct cell types: stem cells (SC),

transit amplifying cells (TA), and terminally differentiated cells (TD) denoted as C0, C1,

and C2, respectively ( fig. 1.1). Both SC and TA cells proliferate at rates ν0 and ν1. When

proliferating they can either self-replicate, with a probability of p0 and p1, or differentiate,

with a probability of 1− p0 and 1− p1. SC, TA cells and TD cells can undergo apoptosis at

rates d0, d1, and d2. The governing equations for the lineage accounting for growth of the

tissue are given by eqs. (1.1) to (1.3)[36, 38].

∂C0

∂t
+∇ ·

(
C0

−→
V
)

= (2p0 − 1) ν0C0 − d0C0 (1.1)

∂C1

∂t
+∇ ·

(
C1
−→
V
)

= 2 (1− p0) ν0C0 + (2p1 − 1) ν1C1 − d1C1 (1.2)

∂C2

∂t
+∇ ·

(
C2
−→
V
)

= 2 (1− p1) ν1C1 − d2C2 (1.3)

By assuming incompressibility of the cells and normalizing their total concentration, eq. (1.4),

we can sum eqs. (1.1) to (1.3) to give us the divergence of the velocity of the tissue due to

cell turnover ( eq. (1.5)). Furthermore, we assume the tissue follows Darcy’s Law [40, 41]

such that the cells move down a pressure gradient proportional to some constant (K), giving

us a Poisson equation for the pressure in the tissue due to cell turnover, seen in eq. (1.7).
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C0 + C1 + C2 = 1 (1.4)

∇
−→
·V = (ν0 − d0)C0 + (ν1 − d1)C1 − d2C2 = ϕ (1.5)

−→
V = −K∇P (1.6)

−∆KP = ϕ (1.7)

Here, we consider the tissue as a two-dimensional growing domain Ω̃ = (0, 1) × (h0, h1), in

which both h0 = h0(x, t) and h1 = h1 (x, t) are dynamic boundaries that are a function

of both space and time. h0 Is considered the boundary at the basal lamina while h1 is an

apical boundary. The domain is taken to be periodic in the x direction. Along the apical

and basal boundaries of the tissue, the different cell adhesion forces lead to surface tensions

that may be caused by inter-cellular forces and cell-surface mechanics [42, 43]. From the

Young-Laplace equation, the pressure difference across each of the boundaries is assumed to

be proportional to the local curvatures (κ) and some constant (ξ):

P inside
1 − P outside

1 = ξ1κ1 = ξ1

∂2h1
∂x2

[1 + (∂h1
∂x

)2]
3
2

(1.8)

P inside
0 − P outside

0 = ξ0κ0 = ξ0

∂2h0
∂x2

[1 + (∂h0
∂x

)2]
3
2

(1.9)

At the apical boundary, we assume the pressure outside the tissue is negligible, giving us

eq. (1.10) for the boundary pressure. For the basal boundary, we assume that due to the

compressive forces of the dermis, which consists of connective tissue, there is a non-negligible

pressure acting on the boundary. Here we model the compressive force of the dermis using
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Hooke’s law, whereby the amount of pressure the connective tissue exerts on the basal

boundary of the epidermis is proportional to the depth (z) of the epidermal rete-ridges,

where k is the spring constant of the dermis, giving us eq. (1.11) for the pressure at the

basal boundary.

P1 = ξ1

∂2h1
∂x2

[1 + (∂h1
∂x

)2]
3
2

(1.10)

P0 = ξ0

∂2h0
∂x2

[1 + (∂h0
∂x

)2]
3
2

− kz (1.11)

The kinematic condition governing the movement of the dynamic boundary, h0,1 is given by

eq. (1.12), where u and w are the velocities of tissue movement in the x and y directions,

i.e.
−→
V = ui + wj.

∂h0,1

∂t
+ u (x, h0,1, t) = w (x, h0,1, t) (1.12)

1.2.2 Transformation to the Unit Square

To solve the partial differential equations governing the system we transform the domain

Ω̃ = (0, 1)× (h0, h1) to the unit square Ω = (0, 1)× (0, 1). We apply the coordinate system

in eqs. (1.13) to (1.15), to give us the transformed derivatives for the system, eqs. (1.18)

to (1.21) [38, 44]. For all simulations, the transformation function found in eq. (1.24) is

used.
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t = τ (1.13)

x = X (1.14)

y = F (X, Y, τ) (1.15)

F (X, 0, τ) = h0 (x, t) (1.16)

F (X, 1, τ) = h1(x, t) (1.17)

∂

∂t
=

∂

∂τ
− g1

∂

∂Y
(1.18)

∂

∂x
=

∂

∂X
− g2

∂

∂Y
(1.19)

∂

∂y
= g3

∂

∂Y
(1.20)

∆ =
∂2

∂x2
+

∂2

∂y2
=

∂2

∂X2
+g4

∂2

∂Y 2
+ g5

∂2

∂XY
+ g6

∂

∂Y
(1.21)

g1 =
Fτ
FY

, g2 =
FX
FY

, g3 =
1

FY
(1.22)

g4 = (g2)2 + (g3)2 , g5 =− 2g2, g6 = g2
∂g2

∂Y
+ g3

∂g3

∂Y
− ∂g2

∂X
(1.23)

F (X, Y, τ) =
(h1 (X, τ)− h0 (X, τ))

(
arctan[(2Y−1) tan[ω]]

ω
+ 1
)

2
+ h0 (X, τ) (1.24)
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1.2.3 Modeling Diffusive Signaling Molecules

It has previously been shown that Calcium (Ca) is a signaling factor which regulates epider-

mal structure through inducing differentiation in keratinocytes [22, 23, 24]. In the epidermis,

a calcium gradient is formed where there is a high concentration near the apical cell layers,

where there are more differentiated cells, while near the basement membrane there is a low

concentration of calcium. In our model, we allow calcium to diffuse throughout the tissue and

influence the cell lineage through inhibiting both SC and TA cells self-renewal probabilities,

eq. (1.25). Similarly, we assume that nutrients (N) are able to diffuse from the dermis across

the dermis-epidermis junction and throughout the epidermis. These nutrients are necessary

for cell survival and thus an absence of nutrients will cause the cell to undergo apoptosis.

The concentration of N in the system increases cell death rates through, eq. (1.26).

The diffusion of the morphogens throughout the tissue is governed by eqs. (1.27) and (1.28),

where, DCa and DN are diffusion coefficients, Cadeg and Ndeg are degradation rates, and the

cell type Cj produces respective morphogen at a rate of µj, ηj, or consumes the morphogens at

a rate of ζj, and ρj. The apical boundary of the tissue is assumed to have tight junctions[45],

which are treated as an impermeable, no-flux boundary for both Ca and N. Calcium is

kept low in the basal layers of the tissue by making the basal boundary a leaky boundary,

meanwhile Dirichlet boundary conditions are used for Nutrition at basal boundary to account

for its influx from the dermis. This assumption gives the following boundary conditions in

eqs. (1.29) and (1.30), Where n̂ is the unit outward normal vector of the boundary.
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p0 =
p̄0

1 +
(

[Ca]
γ0

)m0
, p1 =

p̄1

1 +
(

[Ca]
γ1

)m1
(1.25)

d0 =
d̄0

1 +
(

[N ]
ς0

)n0
, d1 =

d̄1

1 +
(

[N ]
ς1

)n1
, d2 =

d̄2

1 +
(

[N ]
ς2

)n2
(1.26)

∂[Ca]

∂t
+∇

(
[Ca]
−→
V
)

= DCa∆[Ca] +
2∑
j

µjCj − Cadeg

2∑
j

ζjCj[Ca] (1.27)

∂[N ]

∂t
+∇

(
[N ]
−→
V
)

= DN∆[N ] +
2∑
j

ηjCj −Ndeg

2∑
j

ρjCj[N ] (1.28)

∇Ca · n̂|y=h1 = −α1[Ca], ∇Ca · n̂|y=h0 = −α0[Ca] (1.29)

∇N · n̂|y=h1 = −β1[N ], N |y=h0 = β0 (1.30)

1.2.4 Spatial and Temporal Discretizations

Now that the governing equations on Ω and Ω̃ have been transformed to a rectangular

domain, here we present the methods used to solve the transformed system in eqs. (1.7),

(1.27) and (1.28).

Both curvatures κ0,1 and g6 are functions of the second derivative of the kinematic boundaries

in the transformed domain regardless of the particular choice of F in eq. (1.15). As a result,

P depends on the second derivative of h0,1 while the partial derivatives of P govern the

movement of h0,1 as evident in eq. (1.12). Naturally, it follows that the movement of h0,1 is

implicitly dependent upon their own third derivative, and solving the transformed system of

equations requires a high-order accuracy of the spatial discretization in the X-direction to

maintain overall second-order accuracy.
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Here, we use fourth-order central difference approximations for the derivatives of h and the

partial derivatives of P in the X-direction:

∂f

∂X
≈−fi+2 + 8fi+1 − 8fi−1 + fi−2

12∆X
(1.31)

∂2f

∂X2
≈−fi+2 + 16fi+1 − 30fi + 16fi−1 − fi−2

12∆X2
(1.32)

Because of the assumed periodic boundary conditions in the X direction of our system, the

five-point stencil in the X-direction near the boundary can be implemented in a straight-

forward fashion. For the discretization of the partial derivatives in the Y -direction, we use

second-order central difference approximations.

To explicitly track the movement of the boundaries h0,1 governed by the kinematic equation

eq. (1.12), a second-order upwind approximation is used to discretize in space:

∂h

∂X
≈


3hi−4hi−1+hi−2

2∆X
, if u(X, Y |0,1, τ) > 0

−3hi+2+4hi+1−hi
2∆X

, if u(X, Y |0,1, τ) < 0

(1.33)

For time evolution, a second-order TVD Runge-Kutta is used [46]. The morphogens are

considered at a quasi-steady state, equating the left-hand side of eqs. (1.27) and (1.28) to

zero. All calculations and plots were carried out using MATLAB. We demonstrate the order

of accuracy for the mathematical model employed to solve the inter-facial motion using the

transformation scheme found in eqs. (1.13) to (1.23) in tables 1.1 to 1.4. The overall spatio-

temporal accuracy of the method is of second order. All simulations use the transformation

scaling function F described in eq. (1.24) seen in fig. 1.2. A maximum norm difference

between successive approximations is used to compute the error and order of accuracy.

Parameters for all simulations can be found in Appendix A.
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1.3 Model Captures Morphological Traits of Various

Healthy Epithelium Tissues

Our two-dimensional tissue model with two dynamic boundaries, shows that the spatial

gradients of morphogens and their regulations on self-replication can lead to formation of a

stem cell niche and stratification of the tissue ( fig. 1.3A). In particular, the stem cell niche

resides along the basal lamina, and TA cells reside near the bottom of the tissue as well, with

TD cells occupying the upper regions of the tissue. Such spatial organization is controlled

by the rapid uptake of calcium by the basal layer, forming a calcium gradient which is high

apically. This calcium gradient results in higher self-replication probabilities for SC and TA

cells ( eq. (1.25)) near the basal lamina, and lower self-replication probability nearer the top

of the tissue, prompting cells to differentiate as they migrate away from the basal lamina.

Nutrient influx from the dermis creates a gradient which is high near the dermis-epidermis

junction, and decreases apically. The nutrient gradient is partially responsible for the size

of the tissue, since the death rate of the cells increases as nutrient concentration becomes

sparse ( eq. (1.26)).

By inducing a small perturbation of the basal lamina ( fig. 1.3 B), rete-ridge formation

is prompted, whereby the niche is housed at the most basal portion of the ridge. As the

rete-ridges form and grow into the dermis, the calcium gradient within the ridge becomes

steeper. This creates a niche in which the probability of self-replication of SC increases as

the ridge grows larger. The pressure in the tissue due to the proliferation of SC and TA cells

becomes a driving force, forcing the tissue ridge to grow longer, and protrude deeper into the

dermis. Although the curvature of the boundary increases as the protrusions grow larger, it

appears that the deformation of the tissue continues indefinitely, previously seen in Ovadia

2013, meaning the tissue does not reach a steady state ( fig. 1.4 A, C). With the addition

of the pressure feedback on the epidermis by the dermis in eq. (1.11), as the rete-ridges
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grow longer, the force exerted on the tissue by the dermis becomes larger. Eventually a

balance occurs between the SC niche driving growth of the epidermis and the resistance of

the dermis, leading the tissue to reach a steady state ( fig. 1.4 B, D).

The model, which has two free moving boundary, allows for a high diversity of epidermis

morphologies, each with unique characteristics. In the oral cavity, a wide range of epidermis

morphology can be found. These can be separated into three types: masticatory, lining,

and specialized [1, 47, 48]. It is hypothesized that since masticatory epidermis, such as

gingiva, are exposed to more forces than lining epidermis, they have longer rete-ridges to

help dissipate the stress. The dorsal tongue, meanwhile, has papillae which protrude from

the apical surface of the epidermis. It is thought that this increases the surface area of

the tongue, helping the tongue grip food, clean the mouth, and spread saliva [49]. It has

previously been shown that in some oral mucosa, there are highly proliferative cells that

quickly lose a radio-labeled DNA nucleoside [50, 51], while in others the proliferation rate

is lower and the nucleoside label is preserved [52, 53]. In gingiva, compared to lining tissues

like ventral tongue, the number of cells which retained the nucleoside labels after 45 days

is much higher[54]. Most often it is found that masticatory tissue has a long turnover time

compared to lining mucosa, which replenishes all of the cells in the epithelium much more

quickly, possibly due to necessitating more wound healing abilities [55]. In our model we

simulated two tissues: One which had the low proliferation rate (ν1 = 0.1) and low turnover

rate (d2 = 0.5) of masticatory tissue, and one with high proliferation rate (ν1 = 1) and high

turnover rate (d2 = 2) of a lining tissue, ( fig. 1.5 A, B). The simulations captured similar

morphology to examples of masticatory (Gingiva) and lining (Lip) histologies found in mice

[1]. The with low TA proliferation and low apoptosis formed a tissue which is thick and has

large, wide rete-ridges. In contrast, by increasing TA proliferation as well as cell apoptosis,

the model simulates a thin, nearly flat tissue. Finally, by decreasing the stiffness of the

dynamic apical boundary, the model can simulate a tissue which forms long, protruding

papillae similar to dorsal tongue tissue ( fig. 1.5 C).
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1.4 Homeostatic Tissue Size Dependent Formation of

Rete-Ridges

Here we look at the influence rete-ridge formation and nutrition have on the final size of

the epidermis. We first look at the case where rete-ridge formation suppressed and a tissue

with a flat basal boundary is produced ( fig. 1.6 A,D,G). When there is a low production

of nutrition (β0) in the dermis, a thin tissue is formed. As the amount [N] produced in the

dermis increases, the final steady state size of the tissue increases ( fig. 1.6 J, blue solid line).

Note that the tissue area increases at a lower rate than the production of [N] in the dermis is

increased. This is due to nutrition produced along a single dimension, and therefore increases

linearly and not quadratically, as tissue area does. The increase in tissue area would also

depend on the cell type distribution, with different cells possibly consuming nutrition at

different rates.

When we do not inhibit the formation of rete-ridges, the same trend of tissue area increase

with the increase of β0 occurs ( fig. 1.6 J, red dashed, and black dotted line). Moreover,

we see that when keeping β0 constant, the steady state tissue area is influenced by the

number of rete-ridges that form. This occurs even when the length of the rete-ridges is kept

constant. One reason an increase in the number of rete-ridges formed increases the tissue

area is through increasing in surface area of the basal lamina. The undulations formed by the

rete-ridges create a larger area for nutrition flux from the dermis to the epidermis. We took

the length of the basal lamina into account when looking at final tissue size and interestingly

we still see that tissue simulations with two rete-ridges with equally long basal laminas do

not grow to the same size tissues with three rete-ridges ( fig. 1.6 K). We see that tissue

size is influenced by more than the surface area of the basal lamina produced by rete-ridge

formation. We hypothesize that there is also an importance in the rete-ridges forming and

housing the stem cell niche. An increase in the number of rete-ridges increase the amount
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of stem cell niches formed, which can then supply the tissue with a larger influx of TA and

ultimately TD cells, forming a larger tissue. The effect that rete-ridge size has on final tissue

size could have an impact on how tissues are grown in-vitro. New evidence suggests that

tissue grown on engineered scaffolds which allow for the formation of rete-ridges has an effect

on tissue health [56].
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1.5 Epidermal Cell Lineage Properties in Psoriasis

Psoriasis is a complex, chronic, inflammatory disease of the epidermis whose causes are

not yet fully understood. The disease ranges in severity from a few scattered red, scaly

plaques to involvement of almost the entire body surface and is estimated to affect about

24% of the population in western countries [57]. The degree of severity depends on genetic

and environmental factors, and there is currently no known cure. The histopathology of

psoriasis differs according to the stage and manner of the disease. Psoriasis vulgaris, the most

common form, causes a thickening of the epidermis (acanthosis), elongated epidermal rete-

ridges, an extended spinous layer, a diminished thickness of the stratum granulosum with less

discrete layers, an irregular and thickened stratum corneum (hyperkeratosis) and psoriatic

plaque formation [58, 59, 60]. The leading theory in plaque psoriasis is that pathogenic

immunity is responsible for an increase in keratinocyte proliferation. It is believed that

T cells and dendritic cells, together with the pro-inflammatory cytokines and chemokines

that they secrete, create a pro-inflammatory environment in the skin that stimulates the

proliferation of keratinocytes [58, 61]. It is also thought that apoptosis is decreased as a

result of the increased T cell inflammatory response [62, 63] further contributing to the

increase in keratinocyte presence [34, 64]. The increase in keratinocyte proliferation in the

basal layers of the epidermis as well as incomplete terminal differentiation of late stage

keratinocytes and decreased apoptosis is thought to distort the morphology of the tissue.

We first explore the effects of keratinocyte proliferation rate, modeled as the cell cycle rate of

TA cells (ν1), and its effects on healthy tissue. We look at two morphological elements of the

tissue, the length of the rete-ridges and the area of the tissue. The length of the rete-ridges is

the vertical distance between the lowest point of the basal boundary and the highest point of

the basal boundary (Length = max0≤x<1 h0(x)−min0≤x<1 h0(x)). We find that an increase

in the proliferation rate of TA cells decreases the rete-ridge length of the tissue and increases

the area of the tissue( fig. 1.7 A, B). The increase in tissue area is analogous to a thickening
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of the epidermis seen in psoriatic tissue. In this case, by increasing the cell cycle rate from

ν1 = 0.1 to ν1 = 1.2, the area of the tissue increased over 50%. The increase in tissue area

is due to the higher proliferation rate of TA cells causing an influx of cells increasing the

internal pressure, expanding the tissue. The rete-ridge length decreasing is less pronounced,

whereby increasing the cell cycle rate from ν1 = 0.1 to ν1 = 1.2, decreased the rete-ridge

length by 26%. When there is low TA cell proliferation, positive internal tissue pressure is

driven mainly by the SC niche, which is located at the most basal top of the rete-ridges

( fig. 1.7C). Pressure due to SC proliferation is what causes fingering to occur, and the rete-

ridges mainly expand downward, into the dermis. When there is high TA cell proliferation

then positive internal tissue pressure is located in more apical areas of the rete-ridge and

not concentrated at the basal tip ( fig. 1.7 D). This pressure profile distributes much of the

rete-ridge expansion laterally, creating wider, but ultimately shorter rete-ridges. We can also

observe that there are areas of high pressure near the apical boundary showing that slight

papillae formations.

We next explore how premature differentiation affects tissue morphology. We model pre-

mature differentiation as a decrease in a TA cell’s self-replication probability (p1). Along

the basal boundary, the model shows that, depending on whether p1 is greater than or less

than 0.5, an increase in keratinocyte differentiation can results in an increase or decrease in

rete-ridge length ( fig. 1.7 D). The biggest change in rete-ridge length occurs when p1 > 0.5,

whereby increasing TA cells self-replication probability from 0.5 to 0.9 decreases rete ridge

length by 37%. When p1 < 0.5, a change in TA cells self-replication probability from 0.5

to 0.1 decreases rete-ridge length by 5%. The reason for this discrepancy between TA cell

self-replication probability and tissue morphology occurring when p1 changes between 0.5, is

that TA cells change from sustaining or increasing its own population (p1 ≥ 0.5) to TA cells

being unable to sustain their own population size (p1 < 0.5). When TA cells cannot sustain

their own population size, then the driving force for rete-ridge elongation is located at their

basal tip ( fig. 1.7 G), similar to when TA cell proliferation rate is low. When p1 ≥ 0.5, the
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internal pressure driving rete-ridge is found in a larger area of the rete-ridge, creating wider,

yet shorter undulations ( fig. 1.7 H). The area of the tissue, however, consistently increases

as p1 increases, creating thicker tissues ( fig. 1.7 F).

Apoptosis of differentiated cells in the model is regulated by the parameter d2, which is

the rate at which TD cells exit the cell lineage. When decreasing d2, the area of the tissue

increases while there is no change in rete-ridge length ( fig. 1.7 I, J). We hypothesize the

reason there is no change in rete-ridge length is that TD cells are mostly found above the

rete-ridge, moreover their death occurs mainly at the most apical end of the tissue, and thus

a change in their behavior has little effect on the pressure in the rete-ridges. We can see

this in fig. 1.7K and L where the pressures at the basal boundaries are similar in shape and

magnitude. This means that the increase in tissue area comes solely from an increase in the

apical portion of the tissue. As few cells exit the system through apoptosis, the tissue is

forced to grow larger to accommodate.

Overall, the changes in internal pressure magnitude and location due to changes in cell

lineage dynamics can be seen to play a large role in rete-ridge size, and tissue area. Though

changes to ν1, p1, and d2 can result in an increased thickness of the tissue, as seen in psoriasis,

no parameter change alone can account for the drastic increase in rete-ridge size observed in

psoriatic tissue.
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1.6 Role of the Epidermal-Dermal Interface in Tissue

Architecture

With the dynamic, free moving boundaries of the tissue, the imposed surface tension from

cell-to-cell adhesion, as well as the compliance of the dermis, are forces that help maintain

the regularity of tissue morphology. We tested the effect of the epidermal-dermal physical

properties on the epidermis morphology. In the model the compliance of the dermis is

modeled by Hooke’s law ( eq. (1.11)), where its compliance is the coefficient k. Simulations

changing the stiffness of the dermis shows that a stiffer, non-compliant dermis will decrease

the rete-ridge length by preventing their ability to penetrate into the dermis ( fig. 1.8 A).

An increase in Dermis stiffness will also result in a smaller tissue area ( fig. 1.8 B). Similar

results are seen when the effects of increasing the surface tension (ξ0) at the dermis-epidermis

junction of in the basal boundary ( fig. 1.8 E, F). We found that a high surface tension,

representing strong cell-cell adhesion, reduced the length of the rete-ridges, while a low

surface tension resulted in longer ridges. We also see that in both cases of increasing the

surface tension of the basal boundary and decreasing the compliance of the dermis, the

area of the tissue decreases, meaning that the tissue is not compensating for the loss in

rete-ridges with an expanded layer of terminally differentiated cells. This loss of rete-ridge

formation again supports the importance of rete-ridges in determining the final epidermis

size. One difference that we see between changing basal boundary surface tension and dermis

compliance is internal tissue pressure profile ( fig. 1.8 C, D, G, H). Simulations show that a

lower dermis stiffness will allow the rete ridge to come into equilibrium with a lower internal

tissue pressure, while when the dermis is stiff the tissue will have a much higher internal

tissue pressure at steady state. On the other hand, higher internal tissue pressure is found

when boundary stiffness is low, compared to when boundary stiffness is high.

21



Another skin pathology, Acanthosis Nigricans (AN), manifests a variety of morphological

changes in the epidermis similar to those found in Psoriasis, including a thickening of the

epidermis and elongated rete-ridges [65, 66]. It is thought that that increase in keratinocyte

proliferation and differentiation seen in AN is caused by dysfunctional Insulin receptors, over

competition between insulin, and anti-insulin receptor antibodies affecting insulin growth

factor receptors [67, 68, 69]. Unlike in psoriasis, however, AN is also characterized by severe

papillomatous elevations, which are ridges formed at the apical boundary of the tissue.

One difference between AN and psoriasis is that in psoriasis, psoriatic plaques often form

at the top of the epidermis. It is thought that the abnormal retention of partly cornified

cells is due to incomplete terminal differentiation of keratinocytes as well as infiltration of

leukocytes [58]. It has been shown that cutaneous resonance running times (CRRTs), which

are inversely proportional to skin stiffness, are decreased as the severity of psoriasis increases

[70]. The formation of the psoriatic plaques could be one mechanism by which skin stiffness

is increased with the onset of psoriasis. In our model the increase in the surface tension

(ξ1) of the apical boundary can be said to be analogous to increasing the stiffness of the

boundary. We found that by decreasing the surface tension of the apical boundary there is

an increase in papillae length, with the apical boundary becoming very undulated ( 1.8 I-L).

When the surface tension of the apical boundary was increased, papillae formation could be

eliminated. This shows that a stiffness of the apical boundary is able to prevent or facilitate

the distortion of the tissue, possibly helping differentiate between the morphologies found

between psoriasis and AN. It is also noted that changes in apical boundary stiffness has a

small impact on tissue area, where formation of papillae increase tissue size.

The external environment surrounding the stem cell niche plays a large role in determining

the morphology of the tissue. Our model shows that a strong cell-cell adhesion, which is

modeled as a surface tension, at the basal boundary can impede fingering if it is too strong.

The internal pressures due to cell proliferation in the stem cell niche cannot overcome the

surface tension and thus, even with a perturbation, rete-ridges do not form resulting in a flat
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boundary [71]. It has recently been hypothesized that mechanical stresses due to the physical

pressures created by cell proliferation in the epidermis aid in remodeling the epidermis-dermis

boundary and help make the rete ridges in oral mucosa [48]. Here we see how tissue formation

is affected when the stem cell niche plays a role in determining the surface tension of the

boundary surrounding it. We assume that a local, short range morphogen (A) is secreted by

stem cells which are under high pressure ( eq. (1.34)). Since the variable describing pressure,

P, assumes both positive and negatives values, we use a modified hill function to model the

production of morphogen A by the stem cells ( eq. (1.35)). The morphogen acts locally to

weaken the surface tension of the basal boundary

∂[A]

∂t
+∇

(
[A]
−→
V
)

= DA∆[A] + ΓC0 − Adeg[A] (1.34)

Γ =


Pmax

1+(ωpP )qp
if, P ≥ 0

0 , Otherwise

(1.35)

∇A · n̂|y=h1 = 0 (1.36)

∇A · n̂|y=h0 = −σ0[A] (1.37)

Where, DA is the diffusion coefficient, Adeg is the degradation rate, and the SC C0 produces

respective morphogen at a rate of Γ, which is dependent on a modified hill function of

pressure (P ). The boundary conditions for morphogen A are:

The morphogen A, weakens the boundary through decreasing the surface tension:

ξ0 =
ξ̄

1 + (ωc[A])qc
+ ξmin (1.38)

Assuming that the rate of flux of calcium out of the basal lamina is dependent on the cell-

cell adhesion, then a weakening of the cell adhesion could also change the calcium flux (α0).
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Morphogen A acts on calcium flux through:

α0 =
ᾱ

1 + (ωα[A])qα
+ αmin (1.39)

We study the model by first simulating a tissue in which the surface tension of the basal

lamina is high enough to prevent rete-ridge formation entirely fig. 1.9 A, and morphogen

A has no impact on either tissue surface tension or bounday leakyness. We find that by

allowing the morphogen A to decrease the surface tension of the tissue, rete-ridges are able

to form fig. 1.9 B. The rete-ridges have a short length, and appear to be more pointy and

narrow than the usually formed ridges. This is most likely due to the boundary stiffness

remaining high at the lateral sides of the rete-ridges, while it decreases most at the center

line of the ridge. Finally by allowing the morphogen A to both weaken the surface tension

of the basal boundary, as well as increase the flux of [Ca] out of the epidermis, longer rete

ridges form fig. 1.9 C.
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1.7 Conclusion

In this chapter we explored the two-dimensional spatial effects of an epidermal stem-cell

lineage on stratified tissue morphology through modeling. The two-dimensional model has

two dynamic interfaces which are able to undulate and deform due to the internal tissue

pressure of cell proliferation and cell death. Cell stratification in the model is achieved

by the formation of a signaling morphogen gradient of Calcium, which is known to induce

differentiation in keratinocytes [22, 23, 24]. A second gradient of nutrition influx from the

dermis into the epidermis is formed which feeds cells, and inhibits cell apoptosis. The

undulating morphologies simulated by the model are able to capture the healthy epithelial

tissue forms [1], including those which have papillae protrusions on the apical boundary.

We found that cell turnover time plays a role in final tissue form. A fast cell turnover

times produce thinner, lining type tissue structures with small rete-ridges, while a slow cell

turnover time increased both the area of the tissue as well as the rete-ridge length.

We speculate that the formation of proper rete-ridge size and number are an important

part of healthy stratified tissue morphogenesis. When a flat tissue is assumed the tissue

size to which it can grow is limited directly by the amount of nutrients produced by the

dermis. However, when rete-ridges are able to form, the tissue is able to grow to a larger

size, despite the low production of nutrient. We speculate the reason to be two-fold. Firstly,

the increase in surface area of the epidermis-dermis boundary allows for a larger amount

of dermis nutrients to flow into the epidermis, allowing the sustainability of a larger tissue.

Simulations show, however, that the increase in surface area of the epidermis-dermis was not

sufficient to explain the expanded tissue sizes. Tissues with a larger number of rete-ridges

grew to a larger homeostatic size than their two rete-ridge counterparts, even when surface

areas were kept the same. We speculate that this is due to ridges housing the stem cell

niche. The protective niche environment formed houses the collection of stem cells which

then proliferate and produce TA, and ultimately TD cells, which give rise to the tissue. A
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larger number of these stem-cell niche environments is likely to give rise to a tissue with

a larger homeostatic size. The model gives us insight into the importance of rete-ridge

formation in ensuring a proper tissue size. This is something that can be important for use

in developing tissues in vitro, where often the formation of rete-ridges is not something that

is considered.

We used the model to explore epidermal cell lineage properties in psoriasis, a disease which

results in thickened epidermis, with psoriatic plaque forming along the apical boundary,

and elongated rete-ridges protruding deeply into the dermis. Psoriatic tissue differs from

healthy tissue in that it has over proliferating keratinocytes, incomplete differentiation of

keratinocytes, and decrease apoptosis. We explored these properties individually using out

model and show that, while they can each produce a tissue which has some of the character-

istic properties of psoriasis, they individually do not produce a thick tissue with elongated

rete-ridges usually seen. The model shows that increased proliferation rate of TA cells has

opposing effects on rete-ridge length and tissue area. As proliferation of TA cells increases

so does the tissue area, due to the influx of cells forcing the tissue to expand. This influx

of cells is located mainly in the middle regions of the rete-ridge, causing the ridges to have

a more lateral-medial expansion, causing a decrease in final rete-length. Similar results are

seen when the self-replication probability of TA cells are increased. As the probability of

TA cells self-replicating during cell proliferation increases so does the area of the tissue. In-

terestingly, when the probability of self-renewal is below 0.5, increasing probability slightly

increases rete-ridge length. However, once the threshold of 0.5 is crossed, increasing self-

renewal probability drastically decreases the rete-ridge length. We hypothesize this is due to

0.5 being the threshold where TA cells can maintain and grow their own population through

self-replication. At this threshold, the influx of TA cells again changes the pressure dynamics

in the tissue creating shorter and wider rete-ridges. Finally, the change in TD cell death

rate had a large effect on the final size attainable by the tissue. High levels of apoptosis

led to tissue of smaller area. The rete-ridge formation in these tissues, however, remained
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virtually unchanged by the change in apoptosis. We speculate this is due to the cellular

dynamics being of the stem cell niche and the TA cells being largely unaffected by the TD

cell population at the sizes we studied.

The role of the epidermis-dermis boundary is one which is still not fully understood and is

difficult to explore both in vitro and in vivo. As such little experimental work has looked

at the mechanical properties of the basal lamina in psoriasis. It is possible that the disease

results in a weaker cell-cell binding than healthy tissue, resulting in a more easily deformed

tissue shape. One possible reason for this is that psoriatic tissue has a higher in-flux of

lymphocytes, T cells, and other inflammatory response cells migrating across the dermis-

epidermis boundary [59, 60]. This movement of cells across the basal lamina would have

a disruptive effect on the cell-cell adhesion as well as in the extra cellular matrix which

comprises the structural integrity of the dermis [72, 73] leading to a more pliable bound-

ary. We see from simulations that both the integrity of the cell-cell adhesion creating the

surface tension at the boundary, and the compliance of the dermis, can allow or diminish

rete-ridge protrusion into the dermis. Therefore, a tissue with a compromised strength of

the epidermis-dermis boundary can distort, and allow excessively long rete-ridges to form.

Moreover, the model shows that the surface tension of the apical boundary can allow for the

formation of apical structures known as papillae to protrude outward. These protrusions are

a charactaristic morphology of Acanthosis Nigricans, a disease which also shows epidermal

thickening and formation of elongated rete-ridges, similar to psoriasis. The strength of the

cell-cell adhesions, or the fact that psoriasis forms a psoriatic plaque at the apical boundary

can be a reason why AN and psoriasis, though they have some similarity in morphology,

differ in whether they form papillae protrusions.

By combining the results of exploring the cell lineage and the physical properties of the

basal and apical boundaries we were able to simulate architecture of diseased diseased tis-

sues, including thickened epidermis, elongated rete-ridges, and papillae protrusions fig. 1.10.
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Psoriasis tissue was simulated by decreasing cell apoptosis, increasing keratinocyte prolif-

eration rate while keeping the self-replication probability below 0.5. The epidermal-dermal

junction compliance was also weakened. This allowed the tissue to increase in tissue area,

while also expanding its rete-ridges deep into the dermis. AN tissue was simulated by by

increasing cell proliferation rate and decreasing the stiffness of both the epidermal-dermal

junction and the apical boundary. Extensions of the current modeling framework to incor-

porate more detailed tissue mechanics and elaborate signaling networks into the continuum

model may also help understand the morphogenesis of healthy and abnormal epithelial tis-

sues, with potential to identify novel components that may aid in forming treatment of

epithelial diseases.
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1.8 Figures and Tables

Figure 1.1: Schematic diagram of two-dimensional tissue and stem-cell lineage. Stem and TA
cells proliferate with rates ν0 and ν1 and either self-replicate or differentiate upon division
to become TD cells. All cells undergo natural cell death at a rate of d0, d1, d2. The
regulatory molecule Calcium (Ca2+) is produced in the epithelium, diffuses throughout the
tissue and can exit the tissue through a permeable basal lamina. Ca2+ acts as a differentiation
signal and thus inhibits the self-replication probabilities of stem and TA cells, p0 and p1. A
nutrient (N) diffuses through the basal lamina from the dermis into the epidermis. It diffuses
throughout the tissue and is necessary for cellular survival. It therefore acts on the death
rates of the cells, by inhibiting apoptosis. The apical surface serves as a closed tissue surface
with tight junctions. Both apical and basal boundaries are free-moving.

29



Figure 1.2: Pressure plotted on computational grids for numerical tests where N=32. The
pressure equations being solved is ∆P = 1, with ξ1 = ξ0 = 1e − 3, K = 1e − 1. The
transformation scaling function F in eq. (1.24) is used. This scaling uses more grid points
near the interface boundaries where gradients are sharper.
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Figure 1.3: Tissue stratification and Morphogen gradients. Model simulation showing the
spatial dynamics of morphogens and their regulations on self-replication leads to formation
of a stem cell niche and stratification of the tissue. In particular, the stem cell niche (red)
resides along the basal lamina, and TA cells (blue) reside near the bottom of the tissue as well,
with TD cells (green) occupying the upper regions of the tissue. Such spatial organization
is partly controlled by the formation of a calcium gradient which can leak through the basal
lamina and has a no flux boundary condition along the apical layer. The tissue size is party
controlled by the nutrients supplied by the dermis available. A gradient is formed which is
high near the basal lamina and deceases nearer the apical boundary.
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Figure 1.4: Dermis pressure allows tissue to achieve steady state ( eq. (1.11)). A) Simulations
showing that without a compressive force from the dermis (k = 0) along the epidermis-dermis
junction, the rete-ridges formed will continue to elongate. B) Simulations showing that the
addition of a compressive force from the dermis (k = 0.003) allows the tissue to reach a
steady state. C) and D) Variation in tissue area and rete-ridge length over time.
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Figure 1.5: Model simulations of biological tissue morphologies found in oral epithelium [1].
With two dynamic boundaries, a large variety of stratified epithelial morphologies can be
modeled. In this figure we show (A) Gingiva, a masticatory epithelia which has large, thick
rete-ridges, (B) the inner lip tissue, which is a lining epithelia and is thin with almost no
protrusions into the dermis, and (C) a specialized epithelia found on the dorsal part of the
tongue, which has papillae protrusions on the apical surface.
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Figure 1.6: (A-I) Simulated steady-state tissue sizes with differing amounts of Nutrition
produced by the dermis, as well as different number of rete-ridges formed. Colorbar shows
the concentration of nutrition ([N]) (J) Steady state tissue area as a function of [N] produced
at the dermis. (K) Steady state tissue area as a function of length of the basal lamina.
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Figure 1.7: (A,B) An increase in the proliferation rate of TA cells (ν1) decreases the rete-
ridge length of the tissue and increases the area of the tissue. (C,D) Internal pressure of the
tissues for low proliferation rare (ν1 = 0.2) and for high proliferation rate (ν1 = 1.2). (E) Cell
replication probability (p1) correlates positively with rete-ridge length when p1 < 0.5 and
negatively when p1 > 0.5. (F) An increase in p1 increases the tissue area regardless of if p1

is greater than or less than 0.5. (G,H) Internal pressure of the tissue for low self-replication
probability (p1 = 0.2) and high self-replication probability (p1 = 0.9). (I) Apoptosis of TD
cells (d2) has little effect on rete-ridge length and shape. (J) However, a decrease in cell
death increases the area of the tissue, resulting in a thinner tissue. (K,L) Internal pressure
of the tissue for low apoptosis (d2 = 0.1) and high apoptosis (d2 = 2).
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Figure 1.8: (A,B) Simulations changing the stiffness of the dermis ( eq. (1.6)) shows that a
stiffer, non-compliable dermis will decrease the rete-ridge length as well as the tissue area.
(C,D) The internal tissue pressure shows that a lower dermis stiffness (k = 10e−3) will allow
the rete ridge to come into equilibrium with a lower internal tissue pressure, while when the
dermis is stiff (k = 200e − 3) the tissue will have a much higher internal tissue pressure at
steady state. (E, F) An increase in basal boundary stiffness (ξ0) decreases the rete-ridge
length and decreases tissue area. (G, H) Internal tissue pressure of low basal boundary
stiffness (ξ0 = 1e − 4) and high basal boundary stiffness (ξ0 = 9e − 4). (I,J) Simulations
changing the stiffness of the apical boundary show that papillae are able to form, and increase
in size as apical boundary stiffness decreases. This formation also results in a slight increase
in tissue size. (K,L) Internal tissue pressure show that papillae formation occurs adjacent to
the location of rete-ridges in the x-spatial direction, where pressure at the apical boundary
is highest. Simulations of (K) and (L) use parameters ξ1 = 0.2e− 3 and ξ = 1e− 3.
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Figure 1.9: (A) A tissue with a high basal boundary stiffness is unable to form rete-ridges.
(B) Pruduction of a morphogen A by SC in high pressure locally weakens boundary stiffness
and allows formation of small rete-ridges (C) Morphogen A weakens boundary stiffness as
well as increases the flux of morphogen Ca out of the epidermis, increasing the size of rete-
ridges formed. Colorbar shows concentration of morphogen A.
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Figure 1.10: Simulations of a healthy tissue, a psoriatic tissue, and an Acanthosis Nigricans
Tissue.
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Table 1.1: Errors and orders of accuracy for calculations of the internal tissue pressure
eq. (1.7), morphogen Ca eq. (1.27), and the calculations for tissue velocity due to pressure
in both the x- and y-directions eq. (1.6), without time evolution. The boundaries are given
by h1 (x) = 0.1 ∗ cos (2πx) + 1, h0 (x) = 0.1 ∗ sin (4πx) and an influx of cells of ψ = 1.
Parameters chosen for solving the internal pressure are K = 1, ξ1 = ξ0 = 1e− 5. Parameters
chosen for solving the morphogen are ∇Ca · n̂|y=h1 = ∇Ca · n̂|y=h0 = −200, DCa = µj = 1,
adeg = 0.1, βj = 0. Parameters chosen for solving the velocity due to pressure are K =
1, P = cos (2 ∗ pi ∗ x) sin (2 ∗ pi ∗ y). Parameters ω = 1.25 is chosen for all simulations

Pressure Ca Velocity x Velocity y

N Error Order Error Order Error Order Error

8 -- -- -- -- -- -- -- --

16 1.34 e-2 -- 9.15 e-3 -- 2.74 -- 2.48 --

32 0.27 e-2 2.34 1.43 e-3 1.67 4.19 e-1 2.71 3.58 e-1 2.79

64 6.28 e-4 2.08 5.15 e-4 1.47 7.82 e-2 2.42 5.84 e-2 2.62

128 1.55 e-4 2.02 1.32 e-4 1.96 1.78 e-2 2.14 1.47 e-2 1.99

256 3.86 e-5 2.00 2.85 e-5 2.22 4.33 e-3 2.04 3.67 e-3 2.00
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Table 1.2: Errors and orders of accuracy for calculations of the internal tissue pressure
eq. (1.7), and the kinematic boundary conditions eq. (1.12), with time evolution. The
simulations are run until a final time of t = 6.25e− 2. The boundaries are given by h1 (x) =
0.1∗ cos (2πx) + 1, h0 (x) = 0.1∗ sin (4πx) and an influx of cells of ψ = 1. Parameters chosen
for solving the internal pressure are K = 1, ξ1 = ξ0 = 1e− 5, ω = 1.25 and ∆τ = ∆x2

Pressure h0 h1

N Error Order Error Order Error

8 -- -- -- -- -- --

16 2.12 e-2 -- 2.21 e-5 -- 2.82 e-2 --

32 6.22 e-3 1.77 1.19 e-5 0.89 4.41 e-3 2.68

64 1.34 e-3 2.12 2.04 e-6 2.55 9.61 e-4 2.20

128 2.95 e-4 2.18 4.56 e-7 2.16 2.29 e-4 2.07

256 6.87 e-5 2.10 1.18 e-7 1.95 4.79 e-5 2.26
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Table 1.3: Errors and orders of accuracy for calculations of the internal tissue pressure
eq. (1.7), and the kinematic boundary conditions eq. (1.12), with time evolution. The
simulations are run until a final time of t = 6.25e− 2. The boundaries are given by h1 (x) =
0.1∗ cos (2πx) + 1, h0 (x) = 0.1∗ sin (4πx) and an influx of cells of ψ = 1. Parameters chosen
for solving the internal pressure are K = 1, ξ1 = ξ0 = 1e− 5, ω = 1.25 and N = 128

Pressure h0 h1

∆t Error Order Error Order Error

1 e-2 -- -- -- -- -- --

5 e-3 2.16 e-4 -- 9.84 e-7 -- 2.01 e-7 --

2.5 e-3 4.40 e-5 2.29 2.56 e-7 1.94 3.51 e-8 2.52

1.3 e-3 1.01 e-5 2.13 5.08 e-8 2.33 7.51 e-9 2.23

6.25 e-4 2.41 e-6 2.07 1.28 e-8 1.98 1.74 e-9 2.11

3.13 e-4 5.88 e-7 2.03 3.14 e-9 2.03 4.22 e-10 2.05

1.56 e-4 1.45 e-7 2.02 7.76 e-10 2.02 1.04 e-10 2.02
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Table 1.4: Errors and orders of accuracy for calculations of epithelial growth and stratifica-
tion. The simulations are run until a final time of t = 6.25e−2, with ∆τ = ∆x2. Parameters
chosen can be found in table (REF TABLE) in the appendix.

Pressure C0 Ca

N Error Order Error Order Error

8 -- -- -- -- -- --

16 8.56 e-4 -- 2.98 e-3 -- 1.71 e-2 --

32 1.85 e-4 2.21 4.88 e-4 2.61 4.32 e-3 1.98

64 4.51 e-5 2.04 1.24 e-4 1.98 1.34 e-3 1.69

128 1.12 e-5 2.01 4.93 e-5 1.33 4.77 e-4 1.49

256 2.81 e-6 2.00 1.32 e-5 1.93 1.39 e-4 1.78
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Chapter 2

A Multi-Regulatory Feather Model

for Diverse Feather Shapes

2.1 Background

Over the last two decades, spectacular palaeontological discoveries, mainly from China, have

revolutionized our understanding in the origin and evolution of feathers [74, 75, 76, 77, 78, 79,

80, 81]. Major novel functions of feathers that evolved include endothermy, communication,

aerodynamic flight and so on. These are achieved through stepwise retrofitting of the original

feather forms [74, 75, 76, 80, 81].

The three major transformative events that occurred during feather shape evolution are:

(i) singular cylindrical filaments to periodically branched feathers; (ii) radially symmetric

feathers to bilaterally symmetric feathers by developing mirror-imaged vanes separated by a

central shaft (rachis) and (iii) symmetric or asymmetric alterations of vane shapes, including

the innovation of feathers specialized for flight. Previous comparative analysis of flight

feather (remige) shapes in a variety of birds indicates a strong association between the
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level of vane asymmetry and flying ability [82]. These feathers serve as mini-airfoils that

can generate lift. The co-localization of the center of gravity and the center of the lifting

force in these feathers make the birds more stable in the air. These feathers also facilitate

unidirectional pass-through of air during flapping. Additionally, they can separate from each

other to minimize wind resistance [82, 83, 84, 85, 86]. Besides these major transformative

events, other morphologic features that emerged during evolution include the deep follicles

containing stem cells for cyclic regeneration[80], the hooklets and curved flanges in barbules

and the solid cortex and air-filled pith in rachis and ramus[87]. Together, these features

enhanced feather mechanical strength, reduced weight, improved air-trapping efficiency and

ensured renewability of feathers after damage.

In the past, efforts have been made to unveil the patterning rules and molecular circuitry

generating different feather forms. For the previously mentioned transformative event (i),

BMP and its antagonist, NOGGIN, were shown to regulate branching periodicity [88]. An

activator/inhibitor periodic-branching (PB) model was further used to explain how branch-

ing morphogenesis occurs autonomously by interactions of diffusible morphogens in the ep-

ithelium [89]. For event (ii), feather stem cells were found to exhibit a ring configuration,

horizontally placed in downy feathers but tilted downward anteriorly (rachis side) in bilat-

erally symmetric feathers [14]. An anteriorposterior WNT3A gradient was shown to convert

radial to bilateral feather symmetry. Flattening of the gradient converted bilaterally to radi-

ally symmetric feathers [90]. Yet for event (iii), it remains unclear how feather vane shapes

are altered in different body regions (for example, symmetric body plumes vs asymmetric

remiges along the wing), at different growth phases (for example, primary remiges of large

flying birds have naturally occurring emarginated notches, meaning different vane widths

at different phases of feather growth). Understanding of feather polymorphism at different

physiological developmental stages (for example, natal down and adult plumes) and across

different genders (for example, sail-shaped remiges occur in male but not female mandarin

ducks) is also lacking. We believe studying the complex feather vane shapes in Aves provides
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great opportunities to understand how systematic and environmental information are sensed

and interpreted by skin appendage stem cells.

Here, through anatomic and computational analysis we found two morphological parameters

highly associated with feather vane shape diversity: the topology of the barb generative zone

(BGZ) and the insertion angles of barbs into the rachis. The BGZ is where the regularly

spaced barbs initiate and hence it has also been called the new barb locus [91]. Morpho-

logically it is thinner than the neighbouring epithelial regions, containing irregularly spaced

small branches. Eventually it disintegrates to allow vanes to separate and the feather cylinder

to open up upon feather maturation.

Through transcriptome profiling and functional perturbations, we identify mesenchyme (pulp)

derived GDF10 and GREM1 as key regulators for rachis and BGZ topology, respectively.

They function by modulating BMP signalling in adjacent epithelium. The interaction be-

tween WNT signalling, GDF10 and GREM1 establishes the symmetric vane configuration.

Additionally, differentially localized CYP26B1, CRABP1 and RALDH3 in the pulp estab-

lish anisotropic RA signalling. This modulates GREM1 expression and epithelial cell shapes

which then adjusts BGZ topology and the barb-rachis angle, resulting in alterations of vane

width and symmetry. Thus the co-option of multi-scale mesenchymal signalling modules by

feather epithelial progenitor cells likely drives vane shape diversification
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2.2 Experimental Observations

Analysis of feather morphology was conducted on rooster remiges with different asymmetry

levels (primary and secondary remiges) and body plumes with different vane widths (dorsal

and breast plumes). Before feather maturation, the pulp (considered to be the source of

nutrition during growth) is en-wrapped by epithelium. This, in turn, is wrapped inside the

feather sheath which gives the feather primordium a cylinder conformation. Upon matura-

tion the pulp retreats and the BGZ disintegrates, allowing the vanes to separate ( fig. 2.1).

A morphological parameter associated with vane shape variation is the barb-rachis angle.

Measurement show that narrower vanes have a statistically significant smaller helical growth

angle, while barb length remains relatively similar. This was true for both body plumes and

wing plumes.

Another morphological difference between vanes was the width of the BGZ. Experiments

show the width of the BGZ is inversely correlated with the width of the vanes. For asym-

metric remiges, higher asymmetry levels are associated with a larger BGZ that expands

toward the lateral side, restricting the epithelial area for lateral vane formation. For sym-

metric body plumes, narrower vanes are associated with a larger BGZ which expands in both

lateral and medial directions.

Crucial molecular regulators of vane shape were identified through RNA-seq. Analysis in-

dicated that GDF10, a BMP family member, is downregulated in the pulp of lateral side

primary remiges and dorsal plumes. In situ hybridization unveiled highly localized GDF10

expression in the pulp adjacent to the rachis. RNA-seq also indicated that the BMP antago-

nists, GREM1, is upregulated in the pulp of lateral side primary remiges and dorsal plumes.

In situ hybridization demonstrated localized GREM1 expression in the pulp adjacent to the

BGZ. Similar expression patterns of GDF10 and GREM1 were also seen in zebra finch and

Japanese quail remiges.
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The differential localization of Retinoic Acid (RA) regulators, CYP26b1 and CRABP1 in

asymmetric remiges implies a potential link between the RA gradient and vane asymme-

try. In symmetric feathers CRABP1 and CYP26b1 had homogeneous expression. Wide

symmetric vanes had high Crabp1 and low CYP26b1, while narrow symmetric vanes had

low CRABP1 and high CYP26b1. Furthermore, downregulation of RA signaling decreases

feather vane widths and results in significantly sharper barb-rachis angles. In asymmetric

plumes, CRABP1 and CYP26b1 had opposing medial-lateral gradients. In situ hybridization

of RA related factors in different types of feathers implies an association between increased

RA levels and decreased GREM1 expression, therefore, we hypothesize RA signalling works

upstream to inhibit GREM1 expression.
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2.3 A Multi-Module Regulatory Model

To better understand the molecular regulation of feather vane shapes we turned to math-

ematical modeling. The cylindrical growing domain of the feather is modeled as a one di-

mensional spatial domain with periodic boundary conditions. Here, the molecular interplay

is solved using a series of ordinary and partial differential equations. The circular domain

grows downward in time to represent the proliferation of new cells pushing the previous cells

upward during development.

Our new Multi-Module Regulatory Feather (MRF) model includes the new experimental

findings on on GDF10, GREM1, RA and WNT signaling. In the MRF model the concen-

tration of extra-cellular diffusible RA is represented by [RAo], diffusible WNT by [WNT ],

diffusible GDF10 by [GDF ] and diffusible GREM1 by [GREM ]. The concentrations of

non-diffusible molecules are similarly represented, intracellular RA by [RAi], CRABP1 by

[BP ], CYP26B1 by [CY P ] and RA receptors by [R]. [RAi] bound with [R] forms the com-

plex [RAR], which we use as an RA signal, and [RAi] bound with [BP ] forms the complex

[RABP ], eqs. (2.1) to (2.6). The interactions between RAo, RAi, BP , CY P and R are

based on a previous zebrafish model [92], with the WNT , GDF and GREM interactions

added based on our experimental result eqs. (2.7) to (2.9).

48



∂[RAo]

∂t
=DRAo

∂2[RAo]

∂x2 + VRAo

BRAo + 1

1 +
(

k1
[WNT ]

)n1


− (1 + β) kp[RAo] + kp[RAi]

(2.1)

∂[RAi]

∂t
=kp[RAi] + rR2 [RAR] + rBP2 [RABP ]− rRAi1[CY P ][RAi]− kp[RAi]

− kon[RAi] [R] + koff [RAR]−mon[RAi] [BP ] +moff [RABP ]

(2.2)

∂[R]

∂t
=VR − rR1 [R]− kon[RAi] [R] + koff [RAR]− jα [RABP ] [R] + jβ [BP ] [RAR] (2.3)

∂[RAR]

∂t
=kon[RAi] [R]− koff [RAR] + jα [RABP ] [R]− jβ [BP ] [RAR]− rR2 [RAR] (2.4)

∂[BP ]

∂t
=VBP (x)− rBP1 [BP ] + rRAi2 [CY P ] [RABP ]

−mon [RAi] [BP ] +moff [RABP ] + jα [RABP ] [R]− jβ [BP ] [RAR]
(2.5)

∂[RABP ]

∂t
=− rRAi2[CY P ] [RABP ] +mon[RAi] [BP ]−moff [RABP ]

− jα [RABP ] [R] + jβ [BP ] [RAR]− rBP2 [RABP ]

(2.6)

∂[WNT ]

∂t
=DWNT

∂2[WNT ]

∂x2 + VWNT (x)

BWNT +
1

1 +
(

k2
[GDF ]

)n2

− rWNT [WNT ] (2.7)

∂[GDF ]

∂t
=DGDF

∂2[GDF ]

∂x2 + VGDF (x)

BGDF +
1

1 +
(

k3
[RAR]

)n3

− rGDF [GDF ] (2.8)

∂[GREM ]

∂t
=DGREM

∂2[GREM ]

∂x2

+ VGREM

BGREM +
1

1 +
(

k4
[RAR]

)n4

+
(

k5
[WNT ]

)n5

− rGREM [GREM ]
(2.9)
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Here, Vi, Bi, Di and ri are the maximum production rates, basal production rates, diffusion

coefficients and the decay rates of molecule type i(RAo, RAi, R, RAR, BP , RABP , WNT ,

GDF , GREM), respectively. In some cases, a molecule can decay when it is both unbound

and bound in a complex. Therefore, two decay rates are given: rBP1 and rBP2 for CRABP1

unbound and bound to RA, rR1 and rR2 for the RA receptor unbound and bound to RA, and

rRAi1 and rRAi2 for RAi unbound and bound to CRABP1. Parameters kon, koff , mon and

moff , are on and off rates for complexes RAR and RABP . The rate at which RA in complex

[RAR] unbinds and binds with CRABP1 to form [RABP ]is ja, while the rate at which RA

in complex [RABP ] unbinds and binds to RA receptors to form [RAR] is jb. Diffusible

extracellular RA is modeled as entering the cell at rate kp, and b is the proportion of RA lost

from the system in this transition. Regulation of activation and inhibition between molecular

species are regulated by Hill functions, where k1, k2, k3, k4 and k5 are dissociation constants

and n1, n2, n3, n4 and n5 are Hill coefficients. Some maximum production rates, as well as

the concentration of CYP26B1 are spatially dependent and are defined as follows:

x = [0, 1) (2.10)

[CY P ]j =acyp ∗ Exp[vcyp (sin (2πx)− 1)] +BCY P (2.11)

VBP (x) =abp ∗ Exp[vbp (sin (2π(x+ 0.5))− 1)] +BBP (2.12)

VWNT (x) =awnt ∗ Exp[vwnt (cos (2π(x+ 0.5))− 1)] (2.13)

VGDF (x) =agdf ∗ Exp[vgdf (cos (2π(x+ 0.5))− 1)] (2.14)

Here, ai is a scaling coefficient and vi defines the slope of the gradient formed for molecule

type i(CY P , BP , WNT , GDF ).
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The formation of the barbs which make up feather vanes is modeled using a Periodic Branch-

ing (PB) model. The PB model is based on a previous activatorinhibitor model [89], where

a slow diffusing, self-regulating activator (A), activates a fast diffusing inhibitor (B) and a

non-diffusible inhibitor (C). Both inhibitors B and C downregulate activator A. Recent evi-

dence suggests that BMP may act as the fast diffusing inhibitor in feather development. The

[GREM1] and [GDF10] steady state profiles formed in the MRF model are incorporated in

the PB model through inhibiting B downregulation of A, and upregulating basal production

of B, respectively eqs. (2.15) to (2.17).

∂ [A]

∂t
= DA

∂2[A]

∂x2
+

(
[A]2 + bA

)
s
(
1 + sA [A]2

) ( sB [B]
1+(sG/[GREM ])nG

+ sC [C]
) − rA [A] (2.15)

∂ [B]

∂t
= DB

∂2B

∂x2
+ rA [A]2 + bB [GDF ]− rB [B] (2.16)

∂ [C]

∂t
= bC [A]2 − rC [C] (2.17)

The concentration of activator A is represented by [A], inhibitors B and C by [B] and [C],

Grem1 by [GREM ] and GDF10 by [GDF ]. Here, DA and DB are the diffusion coefficients of

A and B, rA, rB and rC are decay rates of A, B and C. Parameter s modulates the maximum

auto-catalytic reaction of A, sA, sB, sC and sG are saturation coefficients, bA and bB are the

basal production of A and B, while bC modulates the maximum production of C. nG is a

Hill coefficient. Parameters for all simulations can be found in Appendix B.
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2.4 Mechanisms Regulating Barb-Rachis Helical Angle

From the unfolding cylinder in fig. 2.1 we can see that the helical barb-rachis angle (θ)

during growth may be influenced by the proximal-distal growth rate of the feather, i.e. how

quickley the feather propagates upward, as well as the propagation speed of the traveling

waves around the feather collar. We theorize that the helical angle can be calculated by a

trigonometric relationship between the traveling wave speed and the proximal-distal growth

rate (eq. (2.18)).

θ = arctan

(
W

V

)
(2.18)

We first explored the effect on helical angle due to a change in the P-D growth rate of the

feather. We found that by increasing this growth rate the helical angle became more narrow

(fig. 2.3 A). Since no other parameters in the model were altered, the speed of propagation of

the activator remained constant, meaning all change in helical angle is due to the change in

the growth rate. In order for P-D growth rate to alter helical angle there needs to be a way in

which the tissue can control its growth rate. Several possibilities exist: cell proliferation rate

can be changed, the volume to which the cell grows can be changed, or the proximal-distal

length of the cell can be changed.

We looked at the varying components of the PB model and tested how changes in parameter

values altered the feather form and found that the largest change in helical angle occurred

due to changes made to the diffusivity of the activator (fig. 2.3 B). While other parameters

were able to change the helical angle by a few degrees, the change in activator diffusivity

gave the largest range of possible helical angles formed. The change in helical angle is due

to the propagation of the activator wave speed. We can intuitiviley deduce why increasing
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the diffusivity of the activator increases the traveling wave speed. As a peak of activator

increases, it diffuses outward upregulating the activator concentration in neighboring cells.

The faster the diffusion of the activator, the sooner it activates a neighboring cell. Since

the inhibitor does not turn on until after the activator has reached a certain threshold, it

lags behind the activator, unable to speed up or slow down the propagating wave ( fig. 2.3

C). With the P-D growth rate kept constant, a faster traveling wave means that the barbs

formed at the BGZ reach the rachis quicker and thus form shorter vanes with wider angles.

Interestingly, epithelial cells (especially those in BGZ regions) in growing remiges of narrow

feathers have a more elongated appearance (in the proximaldistal direction) than those of

wider vanes. A similar situation is also seen in feather epithelial cells exposed to different

endogenous RA levels. We hypothesize that proximal-distal cell elongation would increase

the P-D growth rate (provided cell proliferation rates remain unchanged) thereby reduce the

helical growth angle according to eq. (2.18).

A second potential mechanisms through which cell shapes can affect the helical growth angle

is through altering the tissue tortuosity. It has been noted that diffusivity can be affected

through the tortuosity of the system’s medium [93]. Assuming diffusion of the molecule is

quickest through the ECM and not through cell cytoplasm, then tissue architecture, which

is affected by the size, shape and arrangement of cells, can affect tissue tortuosity [94].

Tortuosity is described by λ and is defined by the length of the shortest possible path

between two points that a molecule can travel through divided by the straight line distance

between the two points ( eq. (2.19)). In effect, by forcing the particle to take a longer path

to get to the same destination, its transport speed has been slowed down. Since the PB

model relies on diffusion as a main transport mechanism, increasing tortuosity results in

a decrease in diffusivity ( eq. (2.20)) and thus a decrease in barb-rachis angle. A change

in tissue tortuosity could account for the discrepancy between the predicted angle and the

observed angle found when changing only the P-D growth rate of the feathers. One reason
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is that diffusivity being inversely proportional to the square of tortuosity, so a small change

in tortuosity can result in a large change in diffusivity. Through image analysis, outlined the

cell shapes of two feathers, a wide vaned breast plume and a narrow vaned dorsal plume. We

calculated the tortuosity of each tissue by randomly generating two points within the tissue

and calculating the shortest path around the cells between them fig. 2.4. This was done 2000

times for each tissue. The tortuosity of the breast plume was found to be λB = 1.13± 0.04,

and for the dorsal plume λD = 1.61±0.4. This results in the breast plume having a diffusivity

twice that of the dorsal plume.

λ =
L

C
(2.19)

D? =
D

λ2
(2.20)
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2.5 Anisotropic RA Signaling Modulates Vane Width

We used the MRF model to explore the landscape of RA and its effect on vane width

modulation. We first explore a simpler MRF model with no RA module. In this case RA,

CRABP1 and CYP26b1 are removed from the model leaving only the interaction between

WNT, GDF and GREM2. The model is able to produce a rachis with extremely short vanes

( fig. 2.5), predicting that early feathers found in dinosaurs which may not have expressed

RA signaling were possible. It also shows that the anterior-posterior axis of the feather is

regulated by opposing gradients of GDF, Wnt and GREM1, which supports evidence that

a WNT gradient is responsible for the conversion of a radially symmetric feather (one in

which no rachis is formed) to a bilaterally symmetric feather [90]. Simulations show that

the addition of the RA module mediates the width of the feather vanes. Whereby high

concentration of CRABP1 in conjunction with low concentrations of CYP26B1, produce a

high level of RA signaling. This in turn downregulates the expression of GREM1 at the

posterior end of the feather follicle, decreasing BGZ size. A high concentration of CYP26b1

and a low concentration of CRABP1 has the opposing effect, decreasing RA signaling. In

turn, the BGZ expands due to a higher expression of GREM1 posteriorly, resulting in narrow

feather vanes( fig. 2.5).

Furthermore, our model shows that RA signaling is the lateralmedial regulatory module,

controlling the asymmetry between feather vanes fig. 2.6. Through opposing gradients of

CYP26B1 and CRABP1 in the lateral-medial direction, an anisotropic landscape of RA is

formed. This gradient of RA signaling shifts the size and position of the BGZ with respect

to the rachis, forming a wide vane where RA signaling is high, and a narrow vane where RA

signaling is low. Through incrementally changing the expressions of CRABP1 and CYP26B1

in the opposite direction, changes the slope of the RA gradient. A continuum of asymmetry

levels can be produced. Such a continuum of asymmetry is commonly observed in a row of

remiges along the the bird wing.

55



From here we move forward to examine how flight feathers retrogressed in diverse plumage

of flightless birds. We explored the model to study if retrogressed morphology of ostrich and

emu remiges are associated with altered expression patterns of the key molecular signals in

the MRF model. We looked at a diverse set of plumes, including the ostrich remige, which has

wide vanes and a narrow rachis, chicken breast feathers with after-plumes, and emu primary

remige with dual rachis. The model shows that GDF10 is a crucial regulator of rachis

width. An increase in RA signaling, which increases vane width through down regulation

of GREM1, could result in a decrease in GDF. This increase in RA expression would be

responsible for the ostrich plume morphology ( fig. 2.7 C, G). Moreover, simulations show

that a higher expression of GDF10 in the anterior side of the chicken after feather could

cause the anterior after feather to have a larger rachis and vane than the posterior after

feather, creating two feathers of asymmetric proportions( fig. 2.7 B,F). This asymmetry in

the chicken after-feather would not be observed in emu primary remige, where CRABP1

epression is homogeneous( fig. 2.7 D, H). Finally, dual gradients of WNT signaling, one

at the anterior and one at the posterior have been observed in feathers with dual rachis.

Simulations show that activation of WNT signaling at the posterior side of the feather could

induce additional rachis and vane formation ( fig. 2.7 B, D, F, H).
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2.6 Discussion

Organ shaping is a fundamental issue in development and critical in tissue engineering. In

many cases organ shapes are influenced by signals arising both within and outside the organ.

We believe the diverse feather vane shapes in modern birds provide a great opportunity to

decipher the principles of morphogenesis and understand how stem cells can alter their

behaviors in response to different environmental information.

Here we established a multi-module regulatory model revealing that the feather mesenchyme

provides micro-environmental signals to tune the self-organized branching program of feather

epithelial progenitors. First, branching of the feather epithelial cylinder requires interactions

between activators and inhibitors. Second, GDF10 and GREM1 acted on inhibitor signaling

to tune the branching process, leading to the establishment of Rachis and BGZ topology, re-

spectively. Third, a WNT gradient coordinated the position of the rachis and BGZ through

interactions with GDF10 and GREM1, which established the bilateral-symmetric vane con-

figuration. Fourth, the anisotropic RA landscape, shaped by differential levels of CYP26B1

and CRABP1 over different body regions and time, introduced a new dimension of vane

shape variations through crosstalk with GREM1 to adjust the BGZ topology (and poten-

tially GDF10 to adjust rachis topology) and barb-rachis angles.

Differential RA signaling activities have been implicated as a key regulator of region-specific

phenotypes. For example, RALDH2/ mouse embryos have been reported to show bilat-

erally asymmetric somitogenesis due to leftright desynchronization of segmentation clock

oscillations [95]. Previous analyses of naked neck chickens revealed elevated RA in the neck

potentiates BMP signalling, which inhibits feather formation [96]. Our findings here indicate

GREM1 as a potential candidate to explain the potentiation effect of RA on BMP signalling.

During limb development, RA forms a gradient for proximaldistal limb patterning [97], which

is in the same direction as those in primary remiges. Therefore, it is possible that the limb
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RA gradient is somehow imprinted within the remige pulp cells and the steepness of the limb

RA gradient is used to establish a continuum of asymmetry levels in remiges along the wing.

Besides its effect on BGZ topology, RA signaling also modulates barb-rachis angles, which

may further contribute to the diversification of vane shapes. We observe different feather

epithelial cell shapes in feather vanes having different RA levels. Lower RA is associated

with a more elongated cell shape in the proximaldistal direction. Through mathematical

modeling we demonstrate two potential mechanisms through which cell shapes could affect

helical growth angles. One is through the increase in feather growth rate, which would also

result in increased barb lengths. The second is through cell shape altering the tortuosity of

the feather tissue, affecting diffusivity of the activator and thus the propagation speed at

which barbs form from the BGZ to the rachis.

In summary, our study here reveals a multi-module regulatory network in feather mes-

enchyme that facilitates the diversification of feather vane shapes through regulating the

branching morphogenesis of feather epithelial progenitors. Such interactions between organ

stem cells and their microenvironment are also observed in the development and regeneration

of other organs. It would be intriguing to investigate how these microenvironment signals

crosstalk with systematic signals, such as differential hormone levels in different genders,

seasons and physiological developmental stages.
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2.7 Figures

Figure 2.1: Schematic drawing of feather before and after maturation. The barb-rachis angle
is a combination of the helical growth angle (θ) during branching morphogenesis and the
expansion angle (β) after maturation. Feather barbs are generated at the Barb generative
zone (BGZ) and propagate around the feather follicle toward the rachis.
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Figure 2.2: Schematic representation of the infrastructure of the multi-module regulatory
feather (MRF) model and the corresponding transformative events of feather shapes in evo-
lution. Dashed lines denote crosstalk relationships not fully confirmed.
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Figure 2.3: (A) Helical growth angle decreases with the increase of gross feather growth rate.
Feather simulations of selected data points are also shown. Simulation angles are simulated
using the Periodic Branching model. (B) Helical growth angle increases with the increase of
activator’s diffusivity. (C) Increasing inhibitor diffusivity only trivially alters helical growth
angle.
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Figure 2.4: Differential epithelium tortuosity in different feathers. Red lines: shortest path
around the cells; blue lines: the distance between two points. Tissue tortuosity is inversely
correlated with activator/inhibitor diffusivity eq. (2.20).
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Figure 2.5: Representative simulations of vane shape variations using the MRF model either
without RA module, with high RA (CRABP1 level set at 1.1, CYP26B1 at 0.02, arbitrary
units), or with low RA (CRABP1 at 0.005, CYP26B1 at 0.2).
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Figure 2.6: Representative simulations of feathers with different levels of vane asymmetry
by changing the slope of RA gradient (CRABP1 at 0.006, CYP26B1 at 5 for the steeper RA
gradient, CRABP1 at 0.03, CYP26B1 at 0.5 for the intermediate RA gradient, CRABP1 at
0.06, CYP26B1 at 0.3 for the shallower RA gradient)
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Figure 2.7: Modeling and simulating the change of rachis number and size based on observed
gene expression patterns. (A-D) Schematic representation of the multi-module regulatory
feather model (MRF) in different feather forms. Periodical branching (PB) model is shown in
(A). (E-H) Simulations of diverse feather forms as a result of changes in molecular expression
patterns.
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Chapter 3

A Single-Cell Tracking Model for

Irregular Cell Shapes

3.1 Background

In many biological systems there are individual cell interactions, such as cell-cell signaling

[9], cell-extracellular matrix signaling [98], and cell adhesion junctions [99], which govern

aspects of tissue morphogenesis. Moreover, cells are often found to take on specific shapes

which can also influence the systems behavior [100, 101, 102]. These shapes are a times

highly irregular, whereby one axis is much longer than the other or the cells have a specific

geometry to them such as culumnar, cuboidal, elliptical, or spherical. There is therefore a

need to be able to model a tissue at the scale of the individual cells, which can properly

capture their bio chemical and bio mechanical interactions, aswell as model their cell shapes,

to properly understand development.

An often used approach is cell-center agent based modeling, in which cells operate under

specific biological and physical rules given [103, 104]. While these can capture some cell
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interactions and tissue population dynamics, they often do not take into account the cell’s

shape. More recently cell-center based models have attempted to resolve this by approxi-

mating irregular shapes by ellipses [34, 105]. While these can account for changes in the

aspect ratio of cells, it does not take into account the cells specific geometry.

Here we present a single-cell tracking model for irregular cell shapes which combines realistic

cell morphologies with cell-cell bio-mechanics and tissue population dynamics. Our model

includes an ability to describe the cell’s shape in terms of its geometric features as well as

changes in its aspect ratio. Cell bio mechanical interactions include cells adhesion as well

as repelling one another. The population dynamics of the tissue are scholastically modeled

at the individual cell level, and therefore can allow for cells to make informed decisions on

their fates based on both temporal and spatial cues.

Parameters for all simulations can be found in Appendix C.
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3.2 Model Formulation

3.2.1 Cell Movement

Let us consider an arrangement of N cells whose centers of mass are located at nk = (xk, yk)

for 1 ≤ k ≤ N . We define a tissue network from the cells (T ) by taking the Delaunay

triangulation of the spatial point arrangement of cell centers of mass. This triangulation

forms a graph of nodes, representing the cell centers of mass, and edges, representing cell-

to-cell contacts [106]. This gives rise to a tissue network in which only neighboring cells are

assumed to be in contact, and can therefore interact with one another.

In order to model cell bio-mechanics we must determine exactly how near or far the cells are

from one anther. We do this by calculating the distance between surfaces of interacting cells

in our network T . The distance between the surface of cell k and another cell i is represented

by δki. By the symmetric property, the distance from the surface of cell i to cell is δik = −δki.

We assume the bio-mechanical forces involved in cell interaction are of two varieties. The

first is an outward pressure exerted by the cells on one another if they are too close (defined

by δpik < 0). The second is an attractive force, whereby the cells bind to one another when

they are in a close enough range. The adhesion between cells is caused in part by adhesive

molecules, such as cadherin and integrin [107], present on the cell surface. We model these

attractive and repulsive forces using eqs. (3.1) and (3.2) [34, 108, 109]. Where the amount of

repulsive force on cell k by cell i (Vk,i) is proportional to the overlapping length of the cells.

The adhesive force (Uk,i) is linearly proportional to the space between the distance of the cell

surfaces, given that δki > 0, and that the cells are within a range close enough for adhesive

molecules to bind (δki < σ). V0 and U0 are constants of proportionality. By symmetry, the

force acting on cell i is equal and opposite the force acting on cell k, therefore computation

times can be minimized.
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Vk,i =


V0δik if, δik < 0

0 Otherwise

(3.1)

Uk,i =


U0δik if, 0 > δik < σ

0 Otherwise

(3.2)

(3.3)

The direction of the force is along the vector vki, which is a vector pointing from the center

of mass of cell k to the cell center of mass on cell i. By computing the forces acting on cell

k by all the cells in which it is connected to by an edge in T we can get the overall force

acting on the k fig. 3.1 A.

Fk = ΣO(i)Vk,ivki + ΣO(i)Uk,ivki (3.4)

We can the calculate the motion of the cell due to the force exerted on it by:

µ
dnk
dt

= Fk (3.5)

Which we can solve for numerically using a the forward euler method, giving us:

nk(t+ ∆t) ≈ nk −
Fk
µ

∆t (3.6)
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3.2.2 Irregular Cell Shapes

In some models the Delaunay triangulation is used with a Morse potential [108] to calculate

cell movement and the cell size is simply determined by how far two cell nodes are from one

another. However, this necessitates the assumtion that cells are perfect circles. Due to the

possibility of the cells having highly irregular shapes, i.e. where one axis is much longer than

the other, simply using the edges from the triangulated mesh may not always result in desired

cell interaction ( fig. 3.1 B). Others have developed cell center based models which account

for irregular shapes by approximating cells by various ellipses and calculating the distance

between the cell surfaces, or the area of overlap between cells, to model more complex shapes

[34, 105]. While these methods can account for cells which have elongated shapes, the cells

must still be modeled as ellipses which cannot account for cuboidal or columnar cells, as

can be found in several tissues ( fig. 3.1 C) [100, 110, 111]. Here we develop a new method

of modeling cell-cell interaction that allows for bio-mechanical interaction between cells of

highly irregular shapes that can differentiate between ellipsoid cell types and cuboidal cell

types.

The shape and size of each cell is described by three parameters, ak, bk and sk such that

they form a type of ”rectellipse” eq. (3.7) [2, 3], where the cell k has width 2ak and a height

of 2bk. The value of sk describes the degree of curvature of the cell walls, where a cell with

s = 1 is perfectly rectangular, and a cell with s = 0 is perfectly round, seen in fig. 3.2 A.

The formula for a rectellipse is a semi-algebraic curve, therefore in order to prevent multiple

branches to form our cells we restrict the values of χk and γk to eqs. (3.8) and (3.9).
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(
sk
χk
ak

γk
bk

)2

−
(
χ2
k

a2
k

+
γ2
k

b2
k

)
+ 1 = 0 (3.7)

|χk| ≤ ak (3.8)

|γk| ≤ bk (3.9)

In order to remedy the issue of cell center nodes being unable to account for irregular cells

interacting along long axis, cells of highly irregular shapes have additional cell points Pk

added along the longer cell axis. The new cell nodes for cell k are located at npk = (xpk, y
p
k),

where 1 ≤ p ≤ Pk. The number of additional cell points is determined by eq. (3.10), and

the points are located at points equidistant from one another and the boundary of the cell,

along the longer cell axis . If both axis of the cell are equal then the cell is represented by a

single node, n1
k = nk ( fig. 3.2 B).

Pk = floor

(
max(ak, bk)

min(ak, bk)

)
(3.10)

A new tissue network of the cells (T ∗) is found with a Delauney Triangulation using the new

cell centers, whereby edges connecting two nodes within the same cell are disregarded. We

also only allow cells to interact once with another specific cell, therefore if two nodes from

a single cell have an edge with another cell, the only the closest pair is considered. The

translated equation for the rectellipse drawn around node npk becomes:
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(
sk
χk − α
ak

γk − β
bk

)2

−
(

(χk − α)2

a2
k

+
(γk − β)2

b2
k

)
+ 1 = 0 (3.11)

α = xpk − xk (3.12)

β = ypk − yk (3.13)

The question now arises as to how to find the δki for cells of highly irregular shapes. To

do this we first determine the direction vector vpki through the translated cell node, npk,

connected by an edge on T ∗ to the translated node of another cell, ni. We then find where

along the cell surfaces the direction vector crosses, allowing us to compute rpki and ri, which

are the distances from the cell centers npk and ni to their respective cell surfaces along vector

vpki ( fig. 3.2 C). If the direction vector points to a cardinal direction (i.e. the vector is a unit

vector), then the distance from the cell center of mass npk to the cell surface along vpki can

be found trivially by solving for χki or γki in eq. (3.14), depending on the vector bearing.



(
sk

χki−α
ak

β
bk

)2

−
(

(χki−α)2

a2k
+ β2

b2k

)
+ 1 = 0 if, vpki =

±1

0


(
sk

α
ak

γki−β
bk

)2

−
(
α2

a2k
+ (γki−β)2

b2k

)
+ 1 = 0 if, vpki =

 0

±1


(3.14)

Since solving for either χki or γki will yield two solutions, we define rpki as the minimum of

the absolute value between the two solutions. The larger solution would be the distance

from the node npk to the cell surface along vector −vpki.
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rpki =



min(|χki|) if, vpki =

±1

0


min(|γki|) if, vpki =

 0

±1


(3.15)

The distance ri is found similarly.

If the vector does not equate to a cardinal direction, then to find the distance from npki to the

cell surface along vector vpki we need to solve our rearranged form of eq. (3.11) for γki. We

make the solved form of γki be a function of ξ ( eq. (3.16)). Once again, there are multiple

solutions for γki. We choose which function of γki to use based on the relative position of

the two cell nodes, npki and ni, to one another. We also constrain our model to have sk < 1

to avoid dividing by zero.

γki(χ) =


β + bk

√
a2k+(χ−α)2

a2k−s
2
k(χ−α)2

if, ypk < yi

β − bk
√

a2k+(χ−α)2

a2k−s
2
k(χ−α)2

if, ypk > yi

(3.16)

We then define a new function f(χ), which describes a line drawn along vector vpki. Finally,

we define a function F (χ), which is a linear combination of γki(ξ) and f(ξ). By solving for

the root of F (χ) we can determine where along the cell boundary the vector vki crosses.
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vpki =uî+ wĵ (3.17)

f(χ) =
ν

u
χ− α (3.18)

F (χ) =γki − f(χ) (3.19)

To find the root we employ the use of the Interval Newton’s Method [112]. This is done

in order to find the solution on the correct quadrant of the cell. Interval Newton’s Method

works as follows, we begin by defining a function F (x), such that its derivative is continuous

in the interval [a, b]:

0 /∈ {F ′x, x ∈ [h1, h2]} and F (h1) · F (h2) < 0 (3.20)

An interval Xn, which is within [h1, h2] and contains the zero of function F (x) is improved

to a smaller interval Xn+1 by:

Xn+1 :=

(
m(Xn)− F (m(Xn))

F ′(Xn)

)
∩Xn (3.21)

Where m(Xn) is a point within the interval Xn. In our model we define m(Xn) as the

midpoint in Xn. We choose the initial interval X0 = [h1, h2] based on where the two cell

nodes npik and ni are relative to one another. The iterative root finding method is run until

the range between Xn reaches a certain tolerance or a max iteration has been reached. In the

case of a max iteration being reached, a bisect method is used to find the root. Figure 3.3

A and B shows the Iterative Newton’s Method converging to the solution on circular (s = 0)

and cuboidal (s = 0.99) cell shapes. The tolerance used as a stopping criteria was 1e − 4,

74



which the method was able to achieve in 6 or fewer iterations. The method is also able to

converge to the solution in more complex elongated shapes ( fig. 3.4 A) as well as when the

cell node is displaced from the cell center of mass ( fig. 3.4 B).

The solution to the root of F (χ) is χpki, which we then input in eq. (3.16) to get γpki. The

distance rpki is then defined as:

rpki =
√

(χpki)
2 + (γpki)

2 (3.22)

Distance ri is found in a similar fashion.

Using rpk and ri, as well as the distance between nodes npk and ni, we can determine the

distance δpik between the cell surfaces of cell k and i eq. (3.23).

δpik =
√

(xpk − xi)2 + (ypk − yi)2 − |rpk| − |ri| (3.23)

The force, however, does not act on the node npk. Instead assume the force acts on the

original cell center of mass nk, giving us the force acting on cell k at one instant as ( fig. 3.2

C):

Fk = ΣO(p)ΣO(i)V
p
k,iv

p
ki + ΣO(p)ΣO(i)U

p
k,iv

p
ki (3.24)

Figure 3.5 shows a the time evolution of a cluster made up of three distinct types of cells

of various shapes and sizes and how they are able to arrange themselves. We see that as

time evolved the cells that are overlapping move away from one another. The model is able
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to arrange the cells despite their being cuboidal, round, or rectangular. The simulation is

terminated when the maximum force F of each cell is less than a given tolerance.

3.2.3 Tissue Growth

Tissues growth and homeostasis is often the result of cell proliferation balanced with cell

apoptosis. Often cells, such as stem cells and transit amplifying cells are able to self-replicate

during proliferation, or differentiate. To implement the proliferation, self-replication, and

apoptosis undergone by cells in a tissue we first describe the cell-lineage by a set of modified

cell lineage ODEs [30] to allow for differences in asymmetric and symmetric differentiation

[113, 114, 115]. Suppose that the tissue is composed ofM+1 cell types, then each cell type, cj,

where j = 0, ...,M , has an associated proliferation rate, νj and a cell apoptosis rate, dj. Each

cell type j, that undergoes cell division also has a probability of symmetrically differentiating,

psj , asymmetrically differentiating, paj , or self-replicating, prj , where psj + paj + prj = 1. The

governing deterministic ODE’s for this system are as follows:

c0 = c0ν0(pr0 − ps0)− c0d0

c1 = c0ν0(2ps0 + pa0) + c1ν1(pr1 − ps1)− c1d1

...

cM−1 = cM−2νM−2(2psM−2 + paM−2) + cM−1νM−1(prM−1 − psM−1)− cM−1dM−1

cM = cM−1νM−1(2psM−1 + paM−1)− cMdM

(3.25)

Since the number of cell we are modeling is small, we can stochastically simulate the dynamics

of the cells using a Stochastic Simulation Algorithm (SSA), [116, 117]. Here, we are modeling

events at an individual cell level, and not the population dynamics as a whole, so we must
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modify the above ODEs to treat each individual cell as its own differential equation, otherwise

the SSA model would give us the event that occurred to a specific cell population type, but

not to which specific cell. The event rates, therefore, for a particular cell k, in a population

of N cells, can be though of as νkjp
s
j , νkjp

a
j , νkjp

r
j and dkj if k is of cell type j. Therefore,

the number of possible events which can occur when solving the SSA is equal to 4N . By

modeling the SSA at the individual cell level we are able to use the spatial information of

the tissue.

The ODEs for a sample deterministic model consisting of three cell types, a stem cell c0, a

transit amplifying cell c1, and a terminally differentiated cell c2, are as follows:

c′0 =c0ν0(pr0 − ps0)− c0d0

c′1 =c0ν0(2ps0 + pa0) + c1ν1(pr1 − ps1)− c1d1

c′2 =c1ν1(2ps1 + pa1)− c2d2

(3.26)

In the above system c0 can either self-replicate or differentiate into c1. Similarly c1 can

self-replicate or differentiate into c2. In 3.6, we can see the deterministic solution plotted

over several iterations of the SSA solution. We see that modeling the system dynamics

at the cell level is able to produce the population dynamics. In 3.5, we simulate a tissue

which incorporates both the cell lineage dynamics and the cell-biomechanics of the single cell

tracking model. When a cell dies it is removed from the system, an offspring cell is placed

in a random position near the mother cell. The model assumes that the movement of cells

occurs at a much faster rate than the cell lineage dynamics, therefore after each gillespie

time-stem, the single cell tracking model is iterated until the tissue reaches an equilibrium.
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3.3 Conclusion

In this chapter we have presented a novel single cell tracking model able to simulate the bio-

mechanical interactions between cells of highly irregular shapes. The cells are represented

by ”rectellipses” [2, 3], and thus can take a variety of forms found in biological systems

which previous cell-center models are unable to account for. In order to model cells of highly

elongated shapes (where one cell axis is much longer than the other) the we add additional

nodes to along the longer cell axis. A Delauney Triangulation is then used with these

additional nodes, giving a more accurate representation of which cells are in contact with

one another. Furthermore, the model employs the use of root-finding methods to calculate

the distances between cell nodes and cell surface boundaries, giving us a highly accurate

approximation to the distance between the surfaces of interacting cells. These methods

together allow us to more accurately simulate the bio-mechanical forces and cell movement

than previous models have allowed for irregular cell shapes.

The model also employs a novel approach to the use of a Stochastic Simulation Algorithm

for modeling population cell lineage dynamics and tissue growth. Rather than applying the

SSA to pools of cell populations in the system, each cell rate and probability of division is

treated individually. This allows us to not only calculate which reaction in the population

occurs, but also to which specific cell it occurs to. This can be highly useful in modeling

tissues where the cell population dynamics are highly spatially dependent such as in stratified

epidermis [71, 23, 24] and drosophila wing disk [118]. In these systems morphogens, which are

diffusible signaling molecules, form gradients which cue cell growth, differentiation, and cell

fate determination. Therefore, a model must be able to model proliferation rates, division

probabilities, and cell apoptosis in both a spatial and temporal manner. The addition of

diffusible signaling molecules, as well as internal regulatory networks in the cells can improve

the single cell tracking model presented.
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3.4 Figures

Figure 3.1: (A)Schematic for traditional cell center-based model. The distance between cell
surfaces δki is used to determine the forces acting on cell k. Cell k and cell 1 are overlapping
thus cell k will be pushed away from cell 1 along vector vk1. Cell 2 is near enough to k
to attach to it, thus cell k will move toward to cell 2 along vector vk2. Cell 3 is too far to
interact with cell k and thus has no influence on cell k’s movement. The red arrow shows the
direction of cell k’s movement due to forces exerted on it by cells 1 and 2. (B,C) Illustrations
describing the pitfalls of the traditional cell-center based models when applied to irregular
shapes. Cells of elongated shapes may be modeled as not interacting due to their nodes
being too far away, despite that the cells are in fact overlapping at their edges. Cells of
cuboidal shape are poorly approximated with circles, resulting in an overlap of cells.
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Figure 3.2: (A) Cell shapes are approximated by ”rectellipses” [2, 3], where their height is
and length are described by variables a and b, and the roundness of their boundary is a
function of s in 3.7. (B) Additional cell nodes (red stars) are added to cells with elongated
shapes. The number of added nodes corresponds to the ratio of the height and the width of
the cell. (C) The distances, rki and ri, from interacting nodes (red stars), to the cell surface
boundary along a line which connects them, is used to calculate δki, the distance between
the surfaces of interacting nodes. The force due to the interaction between translated nodes
acts on the center of mass of the cell (red arrow).
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Figure 3.3: Iterations of Interval Newton’s Method applied to finding the intersection be-
tween a line connecting the black and blue dots, and the surface of the cell. The red dots
represent the interval distance being iterated. The stopping criteria used is when the width
of the interval is less than 1e − 4(A) A perfectly round cell (s = 0, a = 1, b = 1). (B) A
cuboidal cell s = 0.99, a = 1, b = 1
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Figure 3.4: Iterations of Interval Newton’s Method applied to finding the intersection be-
tween a line connecting the black and blue dots, and the surface of the cell. The red dots
represent the interval distance being iterated. The stopping criteria used is when the width
of the interval is less than 1e− 4. (A) Elongated rounded cells (s = 0.5, a = 2, b = 1). (B)
Elongated cells where the node is translated along the longer axis (s = 0.9, a = 1, b = 2)
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Figure 3.5: Time course of cells rearranging using the single cell tracking model developed.
Initial cell positions and type are randomly chosen within a specified domain. The model is
able simulate cell bio mechanics regardless of cell shape and size.
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Figure 3.6: Stochastic simulation and deterministic solution to eq. (3.26) with parameters.
The stochastic simulations were run 200 times for a specific set of initial conditions.
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Figure 3.7: Temporal evolution using the Single cell tracking model to simulate cell-cell
interaction forces and the Stochasitc Simulation Algorithm to simulate population dynamics
of eq. (3.26). (A) An initial condition of 15 c0 cells(red, (s = 0.9, a = 1, b = 1)) was given.
(B,D) Temporal evolution of the system. c1 cells (cyan, s = 0, a = 1, b = 1) are the offspring
of c0 cells and can differentiate into c2 cells (grey, s = 0.5, a = 1, b = 2)
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Chapter 4

Notch Signaling as a Strategy for

Robust Barb Formation in Feathers

4.1 Background

Pattern formation in developing organisms has been a longstanding problem in developmen-

tal biology. To create a specific pattern in developing tissues, cells must adopt fates which

depends both on their location in space and in time. In 1952 Dr. Alan Turing proposed

that cells self organize based on fluctuations in the concentration of diffusible molecules[119].

Since then, it has been shown that the dynamics of activator-inhibitor systems of patterning

can be found in many aspects of biology [120, 121, 122, 123]. The specification of cells in an

activator-inhibitor system can be complex, however, and as such is sensitive to external en-

vironmental influences. This can become an issue once a cell must firmly establish a specific

fate, since an activator-inhibitor model may continue to change its fate over time.

One such system can be found in aves, where it is hypothesized that feather barbs are formed

through the dynamics of an activator-inhibitor mechanism [89, 100]. In the patterning of
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ave plumes, it is believed that the activator expression level in a cell causes it to undergo

apoptosis [124, 125]. Therefore, incorrect determination of cell fate can result in a misshapen,

and weak feather.

Often times a cell-cell contact based signaling method can be used to help a cell adopt and

maintain cell fate. One system often employed for this is a notch based signaling system

[126, 127, 128]. A notch regulatory system has been seen in early plume development of

aves. It is thought to be responsible for specifying the location of where new feather buds

form, as well as being involved in directing their growth [129, 130]. Notch expression has

also been noted in early plume develpment, forming along barb-ridges, while serrated, a

known transmembrane signaling protein, is expressed at a similar time along the marginal

plates [129]. This dual expression is similar to that of BMP, which is expressed in the barb-

ridge [88], and Sonic Hendgehog (SHH), which is expresed in the marginal plate [124], of

the growing feather barb. BMP is a strong candidate for being the diffusible inhibitor in

the activator-inhibitor system, while SHH shares many similarities with the profile of the

activator [89].

Here we use our single cell tracking model to explore a notch-serrated signaling mechanism

as a way to help determine cell fates in barb formation. We find that the activator-inhibitor

model of barb formation is unable to properly determine cell fates in higher dimensions.

Through the integration of the activator-inhibitor model with cell-cell contact mediated

signaling the we are able to robustly regain the proper pattern of barbs.
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4.2 A Discrete Spatial Model of Activator-Inhibitor

Mediated Barb Formation

In this section we will adapt the single cell tracking model developed in the previous chapter

to study barb formation in feathers. Parameters for all simulations can be found in Appendix

D.

In order to use the single cell tracking model for irrgular shapes, we must incorporate diffusion

and gene-regulatory dynamics into the model. Diffusion in the system is modeled using a

discrete laplace operator eq. (4.1) [131], where ωk is the number of edges attached to cell k.

The cell network T ∗ is used to define ωk.

∆uk ≈ (Lu)k = Σi
1

ωk
(uk − ui) (4.1)

This reduces the diffusion of a signaling molecule in the system to a source sink model.

Coupled with a reaction kinetics within the cell a simple reaction-diffusion equation shown

in eq. (4.2) can be discritized using a forward euler scheme to become eq. (4.3).

∂u

∂τ
=Du∆u+ v − deguu (4.2)

Un+1
k − Un

k

∆t
=
Du

ωk
Σi(Uk − Ui) + Vk − deguUk (4.3)

It has previously been shown that in feather development the cell shape changes based on

environmental factors [100]. It is hypothesized that the cell shape change is one crucial

mechanism for determining the feather morphology. Through proximal-distal elongation,
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the feather is may be able to grow more quickly, thereby decreasing the barb-helical angle.

The feather cell shapes are highly cuboidal, and experiments have shown that their proximal-

distal length may be as much as three times as long as their medial-lateral width, giving

them a highly complex morphology. Our new cell-center based model can be used to study

the development of a feather with complicated cell shapes.

Feather barb formation has previously been modeled as an activator inhibitor system along a

ring eqs. (4.4) to (4.6) [89, 100], where a slow diffusing, self-regulating activator (A), activates

a fast diffusing inhibitor (B) and a non-diffusible inhibitor (C).

∂ [A]

∂t
= DA

∂2[A]

∂x2
+

(
[A]2 + bA

)
s
(
1 + sA [A]2

) (
sB [B]

1+(sG/[GREM ])nG
+ sC [C]

) − rA [A] (4.4)

∂ [B]

∂t
= DB

∂2B

∂x2
rA [A]2 + bB [GDF ]− rB [B] (4.5)

∂ [C]

∂t
= bC [A]2 − rC [C] (4.6)

The concentration of activator A is represented by [A], inhibitors B and C by [B] and [C],

Grem1 by [GREM ] and GDF10 by [GDF ]. Here, DA and DB are the diffusion coefficients of

A and B, rA, rB and rC are decay rates of A, B and C. Parameter s modulates the maximum

autocatalytic reaction of A, sA, sB, sC and sG are saturation coefficients, bA and bB are the

basal production of A and B, while bC modulates the maximum production of C. nG is a

Hill coefficient.

Using a forward euler method for time discretization, eqs. (4.4) to (4.6) are transformed into

eqs. (4.7) to (4.9):
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Ak(t+ ∆t) = Ak(t)+DAΣi
1

ωk
(Ak − Ai) +

A2
k + ba

s(1 + sAA2
k)
(

sBBk
1+(sG/gremk)nG

+ sCCk

) − rAAk
∆t

(4.7)

Bk(t+ ∆t) = Bk(t) +

[
DBΣi

1

ωk
(Bk −Bi) + rAA

2
k + bbgdfk − rBBk

]
∆t (4.8)

Ck(t+ ∆t) = Ck(t) +
[
bCA

2
k − rCCk

]
∆t (4.9)

In order to save computational time, the activator-inhibitor model is not solved on a ring of

cells, rather a domain is defined from the Barb Generative Zone (BGZ) of the feather follicle

to the rachis. We have a high production of gdf at the rachis, and a high production of grem

at the BGZ. Both grem and gdf are diffusible molecules, modeled in a similar fashion to the

activator inhibitor system. We define the length of our domain as 24 cells wide. We first

begin by showing that the activator-inhibitor model presented in this computational frame

work is able to produce traveling waves of activator from the BGZ to the rachis, consistent

with previous models fig. 4.1. In this instance there is no cell movement or cell proliferation,

rather snapshots in time are taken and plotted in reverse chronological order, simulating the

growth of a feather. Notice that although the feather formed does not have sharp boundaries

between cells with high (black) and cells with low (white) concentrations of activator, the

barbs formed are easily distinguishable.

In order to simulate a more realistic model of feather growth the original cell layer is allowed

to proliferate upward in time. Biomechanical cellular forces can now move cells, and organize

them accordingly. Cell proliferation in here is modeled as a new offspring cell being formed

directly above the mother cell. Offspring cells no longer have the capability of proliferating,

however they still undergo fate determination through the activator-inhibitor model. Cells
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undergo final fate determination once they propagate upward a specified distance from the

initial row of proliferating cells. At this point they are removed from the system and become

a part of the formed feather.

In fig. 4.2 we can see this process, whereby cells are removed from the system and are

considered terminally differentiated once they pass 4 cell heights away from the initial row of

proliferating cells. We can see that, even though the parameters for the activator-inhibitor

model are unchanged, the feather barbs are no longer properly formed. This is due to the

fact that the activator-diffusion coupling is now occuring in two dimension, rather than in

a single dimension as has been previously studied. This addition of a second dimension

creates a much more difficult environment for the activator waves to propagate properly,

and activator signaling is lost. In order tp further study the formation of feathers we must

first make the cell specification signal clearer in a system with two spatial dimensions.
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4.3 Notch-Serrate Signaling in Cell Specification

The notch contact signaling systems most often works in a sender/receiver system. In these

systems, when two cells come into contact surface molecules on the sender cell, such as

Jagged, Serrated, or Delta [127], bind to a transmembrane protein Notch expressed on the

receiver cell. Receiver cells come in one of two flavors[132]. 1)The signal in the receiver

cell upregulates the production of notch, while simultaneously inhibiting the production

of the second trans-membrane protein (i.e. Serrated) or 2) The signal in the receiver cell

upregulates the production of both notch and the second trans-membrane protein. In the

feather system it is unclear which flavor of notch signaling is occuring.

Notch signaling requires cell-cell contact, and therefore cell-center based models are optimal

for studying these types of systems. Here we study both flavors of notch signaling using the

our new cell-center based model. We assume that serrated production is upregulated by the

activator, and that it also auto-regulates. We also assume that internal notch and serrate

concentrations mutually inhibit one another. Cell-Cell contact notch signaling upregulates

internal notch concentrations and can either inhibit serrate production, which we will refer

to as model A fig. 4.3A) or can activate serrate production, which will be referred to as model

B ( fig. 4.3B). Notch is described by eq. (4.10) for both models. The dynamics of Serrated

is described by eq. (4.11) for model A and eq. (4.12) for model B. Here, I represents the

cell-cell signaling.

∂N

∂t
= sN

I + bN
1 + I + (γNN)nN

− degNN (4.10)

∂S

∂t
= sS

bSS
nS + A2

1 + SnS + I + (γSN)nS
− degSS (4.11)

∂S

∂t
= sS

bSS
nS + A2 + I

1 + SnS + (γSN)nS
− degSS (4.12)
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We discratize eqs. (4.10) to (4.12) in a similar fashion as above. The levels of trans-membrane

notch and serrate are considered to be directly proportional to the concentration of internal

notch and serrated concentrations, therefore notch serrate signaling (I) can be modeled by

eq. (4.13).

Ik = NkΣO(i)Si (4.13)

We begin by studying the notch-serrated dynamics of model A when exposed to a steady

state, undulating gradient of activator as seen in fig. 4.4 A. We see in that as time evolves

serrate expression is high where activator expression in high, while notch expression is high

where activator expression is low ( fig. 4.4 B). After a certain time activator expression is

turned off ( fig. 4.4 C). At this time we see that notch and serrate expression is highest when

they are touching a cell which is expressing the other signaling molecule. Notch has formed

wide bands, while serrate has very narrow bands of single cell width. Although notch bands

are wide, the cells in the middle of the bands express a much lower level of notch than cells

at the edges of the bands. At a later time, even though activator expression has been turned

off, notch and serrate expression is still high fig. 4.4 D. The bands remain similar in size and

shape as when activator expression was initially turned off. Cells, however, do not express

levels of notch or serrate at the high levels seen when activator expression was on.

When the same activator pattern was tested with model B, similar initial results were seen

( fig. 4.5 A,B). Serrate and notch formed sharp bands of expression depending on the level

of activator concentration. The bands formed by serrate, however are noticibly wider than

the bands formed in model A. The expression of serrate in cells located at the center of the

bands is higher than the expression of serrate at cells neighboring cells expressing high levels

of notch. Notch expressing cells display similar dynamics as to those seen in model A, where
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the cells at the edges of the bands in contact with serrate expressing cells have the highest

expression of notch. After a certain time activator expression is turned off fig. 4.5 C. We see

that as time evolves the expression of notch in cells at the band edges express higher levels

of notch than when activator was present. The notch expressing cells in the middle of their

bands continue to express lower levels. Serrate expressing cells appear to express high and

uniform levels of serrate regardless of where in the band the cell is located.

From these results we gather that both models of notch-serrate signaling are able to form

sharp interfaces when expressed to steady state gradients of activator. Model A formed

thinner serrate expressing cell bands, while model B formed wider, even levels of serrate

expressing cell bands.

Next we looked to see the influence of the notch-serrate signaling models on barb-rachis

formation. We integrated both the notch-serrate models with the activator-inhibitor model

of barb-rachis formation (eqs. (4.4) to (4.6)), by having cell fates determined by the levels of

serrate, rather than the levels of activator, when cells differentiated. We assumed that the

proliferating cells at the bottom of the feather do not express notch or serrate. The offspring

cells are able to express both notch and serrate and move upward as new offspring cells

are formed. When cells grow past a certain height they are assumed to have become fully

differentiated. Cells expressing high levels of serrate undergo apoptosis, while cells that do

not express high levels of serrate form the barbs and the rachis. We can see in 4.6 A, that

model A forms a feather with alternating bands of high and low serrate. A basic pattern of

barb-rachis formation is visible, however, the alternating serrate bands distort the feather

morphology. The alternating expression of notch and serrate are characteristic of notch

signaling inhibiting the second trans-membrane protein [133, 134]. As one cell expresses a

high level of serrate, the cell which proliferates below it and comes into contact with it will

have serrate expression inhibited due to notch signaling. This cell therefore does not express

serrate, so it cannot inhibit serrate expression in the cell bellow it. This pattern continues
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as cells proliferate upward, being broken intermittently by high levels of activator, forming a

visible but distorted barb and rachis. Model B, on the other hand, is able to form very clear

and sharp barbs and rachis 4.6 B. In this case the activator is able to clearly define which

cells express serrate. The notch signaling then aids in the formation of sharp boundaries.

With the notch-serrate model B, we are able use the activator-inhibitor model to study the

dynamics of feather development in two dimensions with cell proliferation. We re-visit the

hypothesis that cell expansion in the proximal-distal direction can be used as a mechanism

to control feather vane shape. Be elongating proximal distal axis of the offspring cells by a

factor of two we ran the cell-center based model with the activator-inhibitor dynamics. We

see that the barb-rachis angle formed with shorter cells is wider than the barb-rachis angle

formed with longer cells fig. 4.7.
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4.4 Conclusion

In this chapter we use the Single Cell Tracking model formulated in chapter 3 to explore the

two dimensional spatial effects of cell proliferation and shape on barb rachis formation. The

use of the single cell tracking model was employed due to the irregular cell shapes feather

tissue has been found to have [100]. It was hypothesized that the cell shape elongation found

in ave feathers contributed to the formation of barbs with a small helical. Previous models

used a continuum approach to simulating barb formation in which growth was defined as a

passage of time and did not specifically take cell proliferation or shape into account [89, 100].

We found that when the activator-inhibitor system used in previous barb formation models

was applied to a two dimensional spatial system it was unable to produce proper feather

morphology. We hypothesized that notch-serrate signaling, which has been shown to form

alternating sharp boundaries in the feather follicle [129], can be used in conjunction with

the activator-inhibitor system to specify sharp barb boundaries. We showed that a notch

signaling system which up-regulates both notch and serrate production, while notch and

serrate mutually inhibit one another, can robustly pattern feathers.

Activator-inhibitoe systems has been likened to a language that can be very expressive in

placing patterning [172]. As the complexity of the environment grows, the ability for an

activator-inhibitor system to properly pattern a system become increasingly difficult. We

observe that a system that utilizes the fickle activator-inhibitor system must also utilize a

method which is robust to complicated environment to aid the system in proper development

and formation. The notch-serrate signaling system proposed in this chapter is one way of

achieving that.
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4.5 Figures

Figure 4.1: Dynamics of activator inhibitor system in single cell-tracking model. Waves
of activator initiate from the BGZ (right of x-axis) and propagate to the rachis (left of x-
axis) forming feather barbs. There is no cell proliferation, rather the feather is formed from
snapshots in time of activator levels in cells. (A) is early time, (B) is later in time
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Figure 4.2: Activator-inhibitor system fails to produce proper barbs when cell proliferation
is added to the model.

98



Figure 4.3: Two possible notch-serrate signaling mechanisms in the cell. (A) Notch-serrate
signaling inhibits serrate production. (B) Notch-Serrate signaling activates serrate produc-
tion
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Figure 4.4: Dynamics of notch and serrate signaling inhibits serrate production. (A) initial
conditions where activator expression is stratified. (B) Notch and serrate form bands of
alternating expression. (C) Activator expression is turned off. (D) Notch serrate band
expression remains even with no activator present.
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Figure 4.5: Dynamics of notch and serrate signaling activates serrate production. (A) initial
conditions where activator expression is stratified. (B) Notch and serrate form bands of
alternating expression. (C) Activator expression is turned off. (D) Notch serrate band
expression remains even with no activator present.
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Figure 4.6: (A) Notch-serrate signaling inhibits serrate production does not produce sharp
barbs. (B) Notch-serrate signaling upregulates serrate production produces sharp barbs.
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Figure 4.7: Cell elongation in proximal dorsal direction decreases barb-rachis angle. (A)
Norma cell astect ratio (B) Elongated cell aspect ratio.
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Chapter 5

A Discrete Modeling Framework for

Zebrafish Jaw Formation

5.1 Introduction and Biological Background

Pattern formation in developing organisms has been a longstanding problem in develop-

mental biology. To create a specific pattern in developing tissues, cells must adopt fates

according to their location. This is can be orchestrated by gradients of secreted signaling

molecules, termed morphogens. These morphogens are able to diffuse from a localized source

and convey positional information by specifying different cells fates at different morphogen

levels [123, 135].

One such system is in zebrafish pharyngeal arch development, where morphogen gradients

of Edn and BMP arise and pattern a ventral, intermediate, and dorsal domain in the arch.

The ventral domain is specified by expression of Hand, the intermediate domain is specified

by Dlx, and the Dorsal domain is specified by Jag, which is part of a Notch-Jag signaling

patheway [136, 137, 138]. The gene regulatory network is shown in 5.1. While morphogen
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gradients give rise to spatial cues, the boundary specification in arch development in zebrafish

also has a temporal aspect in terms of boundary formation order. The intermediate and

ventral domains form a sharp boundary early in development, while the dorsal domain

appears later and forms a sharp boundary with the intermediate domain. To add complexity

to the system, this all occurs while cells are proliferating, and the tissue is growing.

Here, we develop a discrete two-dimensional cell network tissue model to study the role of

Notch-Jag signaling in growing zebrafish pharangeal arches. The discrete tissue model is

specifically developed to account for the following: (i) cell bio-mechanics, including cell-to-

cell adhesion; (ii) cell size; (iii) growth and cell division; (iv) gene regulatory network within

cells; and (v) cell contact signaling.
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5.2 Model Formulation

5.2.1 Tissue architecture, Cell movement, and Growth

We begin formulating the model in a similar manner to the single cell tracking model in

Chapter 3. However, there is no need for modeling cells of irregular shapes, thus we will

assume the cells have a spherical shape. Let us consider an arrangement of M cells whose

centers of mass are located at nk for 1 ≤ k ≤ M . We define a tissue network from the cells

by taking the Delaunay triangulation of the spatial point arrangement of cell centers of mass

to form a graph of nodes, representing the cell centers of mass, and edges, representing cell-

to-cell contacts[106]. Edges are removed from this graph if their length exceeds a threshold

value J∗, giving rise to a tissue network in which only neighboring cells are assumed to be

in contact.

To introduce cell bio mechanics into our tissue network, we allow cells to repulse one another

when too close, so that each cell essentially consists of a certain amount of volume, and also

attract one another when in a certain range, as would be a result of binding of adhesive

molecules, such as cadherin and integrin [107] , using the Morse potential [108],

V (r) = U0e
−r/ξ − V0e

−r/η (5.1)

In this form, r is the distance from the center of mass of one cell to that of its neighbor

and the parameters ξ and η describes the scales in which cell-to-cell attraction and repulsion

occur. As a result, the movement of cell k’s center of mass is governed by:

µ
dyk
dt

= −ΣO(i)V (|yk − yi|) (5.2)
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where the set i denotes the indices of neighbors of the kth cell. Figure 5.2 shows the cell

centers of mass of a tissue reaching an equilibrium.

In order to model the growth and differentiation of the tissue and cells, we define a growth

function gk of the cell. As the cell grows, we assume that once its radius is 3
√

2 times larger

than its initial radius it divides. This is assuming the cell is a sphere, and therefor its

volume has doubled before it divides [5]. As a result, we begin with the following equations

to describe the behavior of the growth function:

gk(t = 0) = 1 + (
3
√

2− 1)σ1 (5.3)

dgk
dt

=
3
√

2− 1

ζ
(5.4)

with the kth cell dividing into two cells when gk exceeds 3
√

2. Here, σ1 is a uniformly

distributed random variable between 0 and 1, and ζ is the cell cycle time. For spatial

integration of the growth function of our model, we scale the Morse potential functions

accordingly:

µ
dyk
dt

= −ΣO(i)V (|yk − yi|) (5.5)

As a result, cells become physically larger in the tissue network before they divide. When a

cell divides in our model, we place the cell at a randomly chosen angle θ, at an ε distance

away. When the cell divides the mother cell cells is given a new gk of 1+σ2 and the offspring

is assigned gN+1 = 3
√

2− g3
k. Figure 5.3 demonstrates a representation of a network of cells

before and after growth occurs, with and without cell division.
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Finally, we assume that the domain we assume that the domain in which the cells grow is

restricted by a pre-formed extra-cellular environment, which restricts movement ventrally

and laterally, but allows the tissue to grow upward. In order to do this we impose strict

boundaries on our movement, whereby a cell which is slated to move outside the boundary

from eq. (5.2) does not move that time step.

Parameters for all simulations can be found in Appendix E.

5.2.2 Morphogens and the Gene Regulatory Network

The morphogens Edn (E) and BMP (B) are produced outside and ventral to the pharangeal

arch, and create a gradient which is high ventrally and low dorsally. Due to our assumption

that the tissue growth is restricted to a specified environment, we model diffusion in a

growing rectangular domain where the left, right, and dorsal edges have reflective boundary

conditions, while the ventral edge has Dirichlet boundary conditions whose values are αE

and αB, for Edna and BMP, respectively. The equations for the morphogens are:

∂E

∂t
= DE∆E − rEE (5.6)

∂B

∂t
= DB∆B − rBB (5.7)

(5.8)

Where DE and DB are diffusion coefficients and rE and rB are degradation rates.

Since the boundary in which the cells grow is known and there is no influence from the

system to the morphogens, we can solve for the steady state of E and B for use throughout

the simulation.
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To incorporate the effect of the morphogens on the gene network we calculate the weighted

value of the morphogens at the four grid-points surrounding the cell center of mass, giving

us the concentration of Edn and BMP inside cell k,Ek and Bk.

The equations describing the gene-regulatory network are:

∂J

∂t
= JM

bJ + (γJ1S)2

1 + (γJ1S)2 + (γJ2E)2 + (γJ3D)2 + (γJ4H)2
− rJJ (5.9)

∂N

∂t
= NM

bN + (γN1S)2

1 + (γN1S)2
− rNN (5.10)

∂D

∂t
= DM

bD + (γD1B)2 + (γD2E)2

1 + (γD1B)2 + (γD2E)2 + (γD3H)2 + (γD4J)2
− rDD (5.11)

∂H

∂t
= HM

bH + (γH1B)2

1 + (γH1B)2 + (γH2D)2
− rHH (5.12)

Where, J, N, D, and H are the genes Jag, Notch, Dlx and Hand with degradation rates rJ ,

rN , rD, and rH , respectively. JM , NM , DM , and HM represents a maximum production rate,

bJ , bN , bD, and bH are basal production rates, and γ’s are EC50 values for each interaction.

S represents a signal which is turned on by notch-jag binding and is defined as:

∂S

∂t
= konNΣO(i)Ji − rSS (5.13)

Where kon is a binding rate between cell surface notch and the jag neighboring cells i, and

rSS is the degradation rate of the signal in the cell.
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5.3 Results

Our simulations of the system for zebrafish pharyngeal jaw development captures the ob-

served spatial and temporal patterning phenomena. First the ventral and intermediate genes,

Hand and Dlx, are expressed in the entire tissue ( fig. 5.4 A). As the tissue grows dorsally,

the expression the intermediate and ventral boundary begins to form, as Hand remains ex-

pressed in the more dorsal region of the arch, while Dlx is expressed in the dorsal region of

the arch ( fig. 5.4 B). Finally, Jag expression is turned on in the most dorsal portion of the

arch, forming the dorsal-intermediate boundary with Dlx ( fig. 5.4 C).

Next we use the model to study the purpose of the notch jag signaling present in the system.

We find that by turning off notch signaling in the system γj1 = 0, the system has a higher

difficulty patterning the dorsal-intermediate boundary. When JM is low the boundary fails

to form ( fig. 5.5 A). This is due to Jag being unable to express high enough levels to down-

regulate Dlx in the dorsal region, meanwhile Dlx is able to remain high enough to down-

regulate Jag. When JM is increased past a certain threshold then the dorsal-intermediate

boundary formation occurs ( fig. 5.5 B,C). Conversely, when notch signaling is enabled,

pharyngeal arch with low JM forms dorsal boundary. The notch signaling provides the

dorsal cells with a way to overcome the down-regulation of Jag by Dlx and up-regulate

Jag production allowing the dorsal-intermediate boundary to form ( fig. 5.6 A). When JM

is increased, the dorsal-intermediate boundary shifts ventrally, decreasing the intermediate

domain size while increasing the dorsal domain size ( fig. 5.6 B), which is consistent with

results found in experiments [137]. Interestingly the sharpness of the dorsal intermediate

boundary appears to be unaffected by the increase in JM . We also note that there is no

difference between the boundary sharpness with and without notch signaling. Most likely

the signaling is present to aid in ensuring the dorsal intermediate boundary forms, while the

boundary sharpness is determined by the mutual inhibition of Jag and Dlx.
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5.4 Conclusion

As an organism or tissue develops, some of its primary functions are to grow and pattern

simultaneously. The zebrafish pharyngeal arch serves as a great model to study the morpho-

genesis of a biological system which is dependent on several temporal and spacial scales.

In this chapter, we developed a discrete tissue model framework for the zebrafish pharyngeal

arch that accounts for growth, bio-mechanical cell-cell interaction, cell-cell signaling, gradient

formation and gene regulation. Our model is able to capture the experimental results of

both the spatial and temporal dynamics of boundary specification. The initial formation of

a ventral intermediate boundary arises quickly due to the dual Edn and Bmp gradients. The

tissue must grow to a certain size before the formation of the dorsal region. This is due to

the Edn concentration decreasing as the tissue grows dorsally.

The model predicts that the presence of a Notch-Jag signaling mechanism adds robustness

to the formation of the dorsal region. Though the region is able to form without the presence

of notch signaling, it must have a very high production rate to do so. Notch signaling is

able to overcome this and the tissue can form properly with a lower maximum production

rate of Jag. Interestingly, notch signaling appears to have little or no influence on boundary

sharpening. The model simulations show that the boundary is not sharpened by the addition

of notch-jag signaling pathway. Instead the tissue relies on the mutual inhibition between

Jag and Dlx to sharpen the dorsal intermediate boundary, and between Hand and Dlx to

sharpen the ventral intermediate boundary.

While the modeling framework presented here focuses on the pharyngeal development of

zebrafish, it can be useful in several other tissues in which cell-cell contact signaling and

bio-mechanics are of interest such as the drosophila eye and wing disc [139], or its role in

tumorogenesis [140].
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5.5 Figures

Figure 5.1: (A) schematic diagram of gene regulatory network regulating region specification
in zebrafish pharyngeal arch. Edn and Bmp are morphogen gradients produced ventral to
the arch. (B) Schematic of temporal and spacial patterning of the arch formation. The
arch regions are specified initially in the most ventral region, expressing Dlx, and eventual
intermediate gene marker, and Hand, the ventral marker. As time evolves the arch grows dor-
sally and the ventral-intermediate boundary is formed. The Dorsal-intermediate boundary
is formed last, and is specified by Jag expression.
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Figure 5.2: Cell center of mass distribution before and after time evolution.
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Figure 5.3: Cell center of mass distribution when tissue growth is enabled. (A) Cells grow
but do not undergo cell division. (B) Cells grow and undergo cell division when their radius
reaches a certain threshold. Red marker represents initial population of cells, blue markers
are offspring cells.
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Figure 5.4: Tissue growth and patterning in pharyngeal arch. (A) Early time shows no clear
ventral intermediate boundary. (B) Ventral intermediate regions form separated by a sharp
boundary. (C) Dorsal region is final region to develop.
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Figure 5.5: Pharyngeal arch without Notch signaling. (A) Tissue with low max production
rate (JM) of jag fails to form a dorsal boundary. (B,C) Increase in JM forms dorsal boundary
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Figure 5.6: Pharyngeal arch with Notch signaling. (A) Dorsal boundary forms with low JM .
(B) Dorsal region expands ventraly as JM increases.
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Chapter 6

Conclusion

Now that more and more biological knowledge at the biochemical, cellular, and tissue level

is accumulating, it is important to find unified understandings and make sense of this well-

correlated information. Mathematical modeling of biological tissues serves as a particularly

useful avenue to achieve this. Tissue models can account for multiple spatial and temporal

scales to integrate several experimental findings, give insight into the occurrence of such

findings, and perform new in silico experiments, though this process can pose significant

challenges from computational and modeling standpoints.

The modeling studies performed in this thesis provide new insight on the roles of tissue and

diseased morphogenesis in developmental biology. Spatial cell lineage models accounting

for two moving interfaces in two dimensions revealed how the cell lineage properties in

conjunction with the physical properties at the boundary can give rise to specialized forms

for proper function in tissue found in the oral cavity. Moreover, pathological tissue shapes

can be caused by the combination of improper cell-lineage and boundary properties. A

multi-module feather model developed, allowed us to explore the regulatory system which

gives rise to a diverse set of feather shape. Using the model in conjuction with experimental
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findings we developed hypothesis on the role of cell shape changes in feather morphology,

as well as gained a deeper understanding of the anisotropic RA topology in the evolution

of feathers. Two distinct discrete cell models used in different biological systems allowed us

to study the complex role of cell contact based signaling in boundary formation. The single

cell tracking model is able to simulate the bio chemical and bio mechanical interactions

between cells of irregular shapes, and the population dynamics of the tissue as a whole.

The discrete cell network model of zebrafish pharyngeal arch development provided a way

to study tissue growth and boundary specification in a temporal and spatial manner using

morphogen gradients.

To arrive to these new findings, new tissue modeling frameworks needed to be developed.

These innovative frameworks can be put to future use to answer more questions, study other

biological systems, or be extended as newer discoveries are made about their model systems.
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[97] M. Rhinn and P. Dollé, “Retinoic acid signalling during development.,” Development
(Cambridge, England), vol. 139, pp. 843–58, mar 2012.

[98] K. M. Crawford and P. C. Zambryski, “Plasmodesmata signaling: many roles, sophis-
ticated statutes.,” Current opinion in plant biology, vol. 2, pp. 382–7, oct 1999.

[99] N. Kirschner, R. Rosenthal, M. Furuse, I. Moll, M. Fromm, and J. M. Brandner,
“Contribution of Tight Junction Proteins to Ion, Macromolecule, and Water Barrier
in Keratinocytes,” Journal of Investigative Dermatology, vol. 133, pp. 1161–1169, may
2013.

[100] A. Li, S. Figueroa, T.-X. Jiang, P. Wu, R. Widelitz, Q. Nie, and C.-M. Chuong,
“Diverse feather shape evolution enabled by coupling anisotropic signalling mod-
ules with self-organizing branching programme,” Nature Communications, vol. 8,
p. ncomms14139, jan 2017.

[101] A. Baroni, E. Buommino, V. De Gregorio, E. Ruocco, V. Ruocco, and R. Wolf, “Struc-
ture and function of the epidermis related to barrier properties,” Clinics in Dermatol-
ogy, vol. 30, pp. 257–262, may 2012.

[102] R. G. Thakar, Q. Cheng, S. Patel, J. Chu, M. Nasir, D. Liepmann, K. Komvopoulos,
and S. Li, “Cell-shape regulation of smooth muscle cell proliferation.,” Biophysical
journal, vol. 96, pp. 3423–32, apr 2009.

[103] D. Stekel, J. Rashbass, and E. D. Williams, “A computer graphic simulation of squa-
mous epithelium.,” Journal of theoretical biology, vol. 175, pp. 283–93, aug 1995.

[104] T. Sutterlin, S. Huber, H. Dickhaus, and N. Grabe, “Modeling multi-cellular behav-
ior in epidermal tissue homeostasis via finite state machines in multi-agent systems,”
Bioinformatics, vol. 25, pp. 2057–2063, aug 2009.

[105] T. Sütterlin, E. Tsingos, J. Bensaci, G. N. Stamatas, and N. Grabe, “A 3D self-
organizing multicellular epidermis model of barrier formation and hydration with re-
alistic cell morphology based on EPISIM,” Scientific Reports, vol. 7, p. 43472, mar
2017.

[106] G. Grise and M. Meyer-Hermann, “Towards sub-cellular modeling with delaunay trian-
gulation,” Mathematical Modelling of Natural Phenomena, vol. 5, no. 1, pp. 224–238,
2010.

[107] S. M. Albelda and C. A. Buck, “Integrins and other cell adhesion molecules,” The
FASEB Journal, vol. 4, no. 11, pp. 2868–80, 1990.

127



[108] T. J. Newman, “Modeling Multicellular Systems Using Subcellular Elements,” Math-
ematical Biosciences and Engineering, vol. 2, pp. 613–624, aug 2005.

[109] J. C. Dallon and H. G. Othmer, “How cellular movement determines the collective
force generated by the Dictyostelium discoideum slug,” Journal of Theoretical Biology,
vol. 231, no. 2, pp. 203–222, 2004.

[110] A. T. L. Van Lommel, From Cells to Organs. Kluwer Academic Publishers, 2003.

[111] E. M. Marieb, Human Anatomy and Physiology. Benjamin-Cummings, 3rd ed. ed.,
1995.

[112] G. Alefeld and J. Herzberger, Introduction to Interval Analysis. New York: Academic
Press, 1983.

[113] M. Mangel and M. B. Bonsall, “Phenotypic Evolutionary Models in Stem Cell Biology:
Replacement, Quiescence, and Variability,” PloS one, vol. 3, no. 2, p. e1591, 2008.

[114] S. J. Morrison and J. Kimble, “Asymmetric and symmetric stem-cell divisions in de-
velopment and cancer.,” Nature, vol. 441, pp. 1068–74, jun 2006.
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Jacob, H. Levine, and J. N. Onuchic, “Notch-Jagged signalling can give rise to clusters
of cells exhibiting a hybrid epithelial/mesenchymal phenotype,” Journal of The Royal
Society Interface, vol. 13, no. 118, 2016.

[128] A. Louvi and S. Artavanis-Tsakonas, “Notch signalling in vertebrate neural develop-
ment,” Nature Reviews Neuroscience, vol. 7, pp. 93–102, feb 2006.

[129] R. Crowe, D. Henrique, D. Ish-Horowicz, and L. Niswander, “A new role for Notch
and Delta in cell fate decisions: patterning the feather array,” Development, vol. 125,
no. 4, 1998.

[130] A. Li, M. Chen, T.-X. Jiang, P. Wu, Q. Nie, R. Widelitz, and C.-M. Chuong, “Shaping
organs by a wingless-int/Notch/nonmuscle myosin module which orients feather bud
elongation.,” Proceedings of the National Academy of Sciences of the United States of
America, vol. 110, pp. E1452–61, apr 2013.

[131] M. Wardetzky, S. Mathur, F. Kaelberer, and E. Grinspun, “Discrete Laplace operators:
No free lunch,” jan 2007.

[132] M. Boareto, M. K. Jolly, M. Lu, J. N. Onuchic, C. Clementi, and E. Ben-Jacob,
“JaggedDelta asymmetry in Notch signaling can give rise to a Sender/Receiver hybrid
phenotype,” Proceedings of the National Academy of Sciences, vol. 112, pp. E402–E409,
feb 2015.

[133] D. Sprinzak, A. Lakhanpal, L. Lebon, L. A. Santat, M. E. Fontes, G. A. Anderson,
J. Garcia-Ojalvo, and M. B. Elowitz, “Cis-interactions between Notch and Delta gen-
erate mutually exclusive signalling states.,” Nature, vol. 465, pp. 86–90, may 2010.
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Appendix A

A Spatial Cell Lineage Model for

Healthy and Diseased Epidermis

All simulations are run using MATLAB 2016a. An N of 128 is chosen, with a time step of

τ = ∆X/4.

Initial perturbation for all simulation unless otherwise stated is:

h0 (x, 0) = 0.2 cos (4πx) , h1 (x, 0) = 0.54

Parameters for all simulations unless otherwise stated are:
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Variable Value

p0, p1 1.0, 0.7
ν0, ν1 1, 1

d0, d1, d2 0.1, 0.1, 1
K 1e-1
ξ0, ξ1 1e-4, 1e-2
k 3e-3
γ0, γ1 0.3, 0.7
m0, m1 10, 4
ς0, ς1, ς2 0.1, 0.1, 0.1
n0, n1, n2 2, 2, 2
DCa, DN 1e-2, 1e-2
Cadeg, Ndeg 1, 0
µ0, µ1, µ2 0, 1, 1
η0, η1, η2 0, 0, 0
ζ0, ζ1, ζ2 0, 0, 0
ρ0, ρ1, ρ2 1, 0.5, 0.1
α0, α1 -200, 0
β0, β1 0.3, 0

Figure 1.3A:

Initial boundary conditions:

h0 (x, 0) = 0, h1 (x, 0) = 0.54
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Figure 1.4A:

Variable Value

k 0

Figure 1.5A:

Variable Value

ν1 0.1

d2 0.5

Figure 1.5B:

Variable Value

ν1 1

d2 2

Figure 1.5C:

h0 (x, 0) = 0.2 cos (8πx)

Variable Value

ξ0, ξ1 1e-7, 1e-5

k 1e-4

For figure 1.6 the basal boundary was fixed and not allowed to evolve over time. The apical

boundary remained dynamic, allowing the tissue to grow.

For figure 1.6A,D,G:

h0 (x, 0) = 0
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For figure 1.6B,E,H:

h0 (x, 0) = B cos (4πx)

For figure 1.6C,F,I:

h0 (x, 0) = B cos (6πx)

Figure 1.6A,B,C:

Variable Value

β0, β1 0.3, 0

Figure 1.6D,E,F:

Variable Value

β0, β1 0.3, 0

Figure 1.6G,H,I:

Variable Value

β0, β1 0.3, 0

For figure 6J, β0 was varied between 0 and 1.

For figure 6J the basal boundary was fixed by equations, where was B varied between 0.1

and 0.4.
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Figure 1.9C:

Variable Value

ξ0, ξmin 1e-3, 5e-5
DA 1e-6
Adeg 5
Pmax 10
α0, αmin -185, -15
ωp 5e3
qp 2
ωc 2
qc 2
ωα 2
qα 2
σ0 0

Figure 1.10 Healthy Tissue:

Variable Value

p0, p1 1.0, 0.5

ν0, ν1 1, 1

d0, d1, d2 0, 0, 0.1

K 1e-1

ξ0, ξ1 5e-5, 5e-4

k 15e-4
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Figure 1.10 Psoriatic Tissue:

Variable Value

p0, p1 1.0, 0.4

ν0, ν1 1, 1.2

d0, d1, d2 0, 0, 0.1

K 1e-1

ξ0, ξ1 5e-5, 2e-3

k 3e-4

Figure 1.10 AN Tissue:

Variable Value

p0, p1 1.0, 0.9

ν0, ν1 1, 1.2

d0, d1, d2 0.1, 0.1, 1

K 1e-1

ξ0, ξ1 5e-5, 5e-5

k 5e-4
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Appendix B

A Multi-Regulatory Feather Model

for Diverse Feather Shapes

All simulations are run using MATLAB 2016a. We solved the system of partial differential

equations using a second order finite difference scheme in space. For the temporal discretiza-

tion, the MRF model uses a fourth order Runge-Kutta time integration method while the

PB model uses a first order Euler method. The MRF model is run to steady state. Different

spatial resolutions have been used to test the code for the order of accuracy of the numer-

ical method, including N = 200, 400 and 800, where N is the number of points for spatial

discretization. Similarly, the temporal order of accuracy of the approximation has also been

tested and studied

Parameters for the Multi-Module Regulatory Feather Model
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Variable Value
DRA [1e-2, 1e-1]
DWNT 1e-2
DGDF 1e-2
DGREM 1e-2
VRAo [0, 1e-5]
VR 2e-6
VGREM 1e-6
BRAo 1e-1
BWNT 0.1
BGDF 0
BGREM 0
BCYP [0, 1e-1]
BBP [0, 1e-1]
radeg 1
rdeg1 1e-4
rdeg2 1e-5
bpdeg1 1e-4
bpdeg2 1e-5
rabpdeg 1e-1
wntdeg 1e-4
gdfdeg 1e-4
gremdeg 1e-4
ron 1e-3
roff 1e-6
mon 1
moff 1e-3
jα 1
jβ 1e-3
kp 5e-1
k1 1e-2
k2 1e-1
k3 4e-3
k4 5e-5
k5 1e-1
n1 2
n2 1
n3 -1
n4, n5 -2
β [0, .5]
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Variable Value
vcyp [1, 20]
vbp [1, 5]
vwnt [1, 5]
vgdf [1, 20]
acyp [0, 15]
abp [0, 1]
awnt 1
agdf 1

Parameters for the model of Periodic Branching model

Variable Value
Da [8e-3, 2e-2]
Db [0.2, 0.5]
ra 0.01
rb 0.015
rc 3e-4
ba [0, 1e-3]
bb [0.15, 0.3]
bc 5e-4
s 1e-2
sa 1.8
sb 1.8
sc 0.35
sg 1e-3
ng -2

When modeling the retrogressed feathers (fig())In the PB and MRF models we replace the

previously equations CHANGE THESE, which represent the spatially dependent production

of CYP26B1 (CYP), CRABP1 (BP), WNT3A (WNT), and GDF10 (GDF), with equations

B.1-B.4, B.5-B.8, B.9-B.12, or B.13-B.16 for each of the four feathers studied. All other

equations for both the PB and MRF models remain unchanged.

For, x ∈ [0, 1)
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Chicken primary remige

[CY P ]j = acyp ∗ Exp[vcyp (sin (2π(x+ 0.075))− 1)] +BCYP (B.1)

VBP (x) = abp ∗ Exp[vbp (sin (2π(x+ 0.5))− 1)] +BBP (B.2)

VWNT (x) = awnt ∗ [1 + (vwnt1 (1− cos (2πx)))ηwnt ]−1 (B.3)

VGDF (x) = agdf ∗ Exp[vgdf1 (cos (2π(x+ 0.5))− 1)] (B.4)

Chicken breast plume (with after-feather)

[CY P ]j = acyp (B.5)

VBP (x) = abp ∗ [1 + (vbp (1− κbp sin (2πx)))ηwnt ]−1 (B.6)

VWNT (x) = awnt ∗ [1 + (vwnt1 (1− sin (2πx)))ηwnt ]−1

+ awnt ∗ [1 + (vwnt2 (1− sin (2π(x+ 0.5))))ηwnt ]−1

(B.7)

VGDF (x) = agdf ∗ [1 + (vgdf1 (1− sin (2πx)))ηgdf ]−1

+ agdf ∗ [1 + (vgdf2 (1− sin (2π(x+ 0.5))))ηgdf ]−1

(B.8)

Ostrich primary remige

[CY P ]j = acyp (B.9)

VBP (x) = abp (B.10)

VWNT (x) = awnt ∗ [1 + (vwnt1 (1− cos (2πx)))ηwnt ]−1 (B.11)

VGDF (x) = agdf ∗ Exp[vgdf1 (cos (2π(x+ 0.5))− 1)] (B.12)
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Emu primary remige

[CY P ]j = acyp (B.13)

VBP (x) = abp (B.14)

VWNT (x) = awnt ∗ [1 + (vwnt1 (1− sin (2πx)))ηwnt ]−1

+ awnt ∗ [1 + (vwnt2 (1− sin (2π(x+ 0.5))))ηwnt ]−1

(B.15)

VGDF (x) = agdf ∗ [1 + (vgdf1 (1− sin (2πx)))ηgdf ]−1

+ agdf ∗ [1 + (vgdf2 (1− sin (2π(x+ 0.5))))ηgdf ]−1

(B.16)

The parameters used for the PB, MRF models for the retrogressed feathers are listed bellow:

Parameters for the PB model

Variable Value
Da 1e-2
Db 4e-1
ra 1e-2
rb 15e-3
rc 3e-4
ba 0
bb 2e-1
bc 5e-4
s 1e-2
sa 18e-1
sb 18e-1
sc 35e-2
sg 1e-3
ng -2
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Parameters for the MRF model

Parameter

Chicken
primary
remige

Chicken
breast
plume
(with after-
feather)

Ostrich
primary
remige

Emu
primary
remige

DRA 1e-2 1e-2 1e-2 1e-2
DWNT 1e-1 4e-1 1e-1 4e-1
DGDF 1e-2 1e-2 1e-2 1e-2
DGREM 1e-2 1e-2 1e-2 1e-2
VRAo 8e-6 4e-6 4e-6 4e-6
VR 2e-6 2e-6 2e-6 2e-6
VGREM 1e-6 5e-6 1e-5 5e-6
BRAo 1e-1 1e-1 1e-1 1e-1
BWNT 0 0 0 0
BGDF 0 0 0 0
BGREM 0 0 0 0
BCYP 5e-2 N/A N/A N/A
BBP 1e-1 N/A N/A N/A
radeg 1 1 1 1
rdeg1 1e-4 1e-4 1e-4 1e-4
rdeg2 1e-5 1e-5 1e-5 1e-5
bpdeg1 1e-4 1e-4 1e-4 1e-4
bpdeg2 1e-5 1e-5 1e-5 1e-5
rabpdeg 1e-1 1e-1 1e-1 1e-1
wntdeg 1e-4 1e-4 1e-4 1e-4
gdfdeg 1e-4 1e-5 1e-4 1e-5
gremdeg 1e-4 1e-4 1e-4 1e-4
ron 1e-3 1 1 1
roff 1e-6 1e-3 1e-3 1e-3
mon 1 1 1 1
moff 1e-3 1e-3 1e-3 1e-3
jα 1 1 1 1
jβ 1e-3 1e-2 1e-2 1e-2
kp 5e-1 5e-1 5e-1 5e-1
k1 1e-2 1e-2 1e-2 1e-2
k2 1e-1 6e-3 1e-1 6e-3
k3 1e-2 1e-2 1e-2 1e-2
k4 4e-3 4e-3 4e-3 4e-3
k5 3e-1 1e-2 7e-4 1e-2
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Parameter

Chicken
primary
remige

Chicken
breast
plume
(with after-
feather)

Ostrich
primary
remige

Emu
primary
remige

n1 2 2 2 2
n2 1 1 1 1
n3 -1 -1 -1 -1
n4, n5 -2 -2 -2 -2
β 0 0 0 0
vcyp 4 N/A N/A N/A
vbp 3 5 N/A N/A
vwnt1, vwnt2 5, N/A 15, 150 6e-1, N/A 50, 50
vgdf1, vgdf2 10, N/A 50, 50 10, N/A 50, 50
acyp 5 1 1 1
abp 1 1 1 1
awnt 4e-4 4e-4 4e-4 4e-4
agdf 8e-6 4e-6 4e-6 4e-6
ηwnt -2 2 -2 2
ηgdf N/A 2 N/A 2
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Appendix C

A Single-Cell Tracking Model for

Irregular Cell Shapes

All simulations are run using MATLAB 2016a. To solve for cell movement a TVD 2nd order

Runge-Kutta is used with a time step of ∆t = 0.1. The continuous ODE’s (eqs) were solved

using a forward Euler scheme with a time step of ∆t = 1. For all simulations:

Variable Value

µ 0.1

V0, U0 1, 1

σ 0.1

Figure 3.5:

For the three cell types, red, blue, and black, their rectellipse values are:

Red- s = 0.9, a = 1, b = 1 Blue- s = 0.9, a = 1.2, b = 0.6 Black- s = 0, a = 1, b = 1

Figure 3.6:
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An value of C0 = 50 was used to initialize the system.

Variable Value

pr0, p
a
0, p

s
0 0.1, 0.9, 0

pr1, p
a
1, p

s
1 0.1, 0.7, 0.2

ν0, ν1 0.1, 0.1

d0, d1, d2 0.01, 0.01, 0.5

Figure 3.7:

An value of C0 = 15 was used to initialize the system.

Variable Value

pr0, p
a
0, p

s
0 0.1, 0.9, 0

pr1, p
a
1, p

s
1 0.1, 0.7, 0.2

ν0, ν1 0.1, 0.1

d0, d1, d2 0.01, 0.01, 0.5
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Appendix D

Notch Signaling as a Strategy for

Robust Barb Formation in Feathers

All simulations are run using MATLAB 2016a. To solve for cell movement a TVD 2nd order

Runge-Kutta is used with a time step of ∆t = 0.1. For all simulations:

Variable Value
Da 8e-3
Db 2e-1
ra 1e-2
rb 15e-3
rc 3e-4
ba 1
bb 2e-2
bc 5e-4
s 1e-2
sa 1.8
sb 1
sc 0.3
sg 1e-3
ng -2
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Notch Serrate Model A and B have parameters:

Variable Value

sN , sS 0.1, 0.1

bN , bS 0.1, 0.3

degN , degS 0.01, 0.01

nN , nS 2,2

γN , γS 100,100
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Appendix E

A Discrete Modeling Framework for

Zebrafish Jaw Formation

All simulations are run using MATLAB 2016a. To solve for cell movement and growth TVD

2nd order Runge-Kutta is used with a time step of ∆t = 0.1, to solve for gene-expression a

TVD 2nd order Runge-Kutta is used with a time step of ∆t = 0.005. For all simulations:

Variable Value
U0, V0 0.1, 0.1
ξ, η 0.1, 0.3
ζ 200
DE, DB 10, 1
rE, rB 0.2, 0.2
αE, αB 1, 1
JM , NM , DM , HM 0.1-1, 0.5, 1, 0.4
bJ , bN , bD, bH 0.4, 0.1, 0.1, 0
rJ , rN , rD, rH , rS 0.1, 0.1, 0.1, 0.1, 1
kon 1.1
γJ1, γJ2, γJ3, γJ4 0.3, 0.03, 0.3, 1
γN1 0.3
γD1, γD2, γD3, γD4 0.4, 0.3, 0.1 0.3
γH1, γH2 0.3, 1
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