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Abstract

We present an unbiased method for generating caustic lighting using importance sampled Path Tracing with Caus-

tic Forecasting. Our technique is part of a straightforward rendering scheme which extends the Illumination by

Weak Singularities method to allow for fully unbiased global illumination with rapid convergence. A photon shoot-

ing preprocess, similar to that used in Photon Mapping, generates photons that interact with specular geometry.

These photons are then clustered, effectively dividing the scene into regions which will contribute similar amounts

of caustic lighting to the image. Finally, the photons are stored into spatial data structures associated with each

cluster, and the clusters themselves are organized into a spatial data structure for fast searching. During rendering

we use clusters to decide the caustic energy importance of a region, and use the local photons to aid in importance

sampling, effectively reducing the number of samples required to capture caustic lighting.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism; I.3.6 [Computer Graphics]: Methodology and Techniques

1. Introduction

The term “global illumination” describes a class of algo-

rithms that simulate complex light behavior within three-

dimensional scenes, including soft shadows, color bleeding,

illumination where no luminaire is visible, and caustic light-

ing. As part of the full global illumination solution, caustic

lighting is important to capture accurately because it gener-

ates effects that dramatically impact rendering realism. Well-

known caustic effects include distorted patterns on the bot-

tom of a swimming pool, light streaming through stained

glass onto a floor, and the cardioid-shaped light on the bot-

tom of an empty coffee mug. These effects are generated by

light paths that interact with one or more specular materials,

such as water, glass, or metal.

The costly nature of global illumination algorithms can

have a limiting effect on scene complexity. In order to accel-

erate the computation of complex illumination effects, bi-

ased illumination estimations have often been used. How-

ever, scene realism can be negatively affected by inaccurate

illumination approximations. Thus, our work is motivated

by the need for fast, unbiased methods to capture complex

global illumination effects.

Stochastic processes are often used to estimate global illu-

mination solutions. It is common in these algorithms to han-

dle caustic illumination in the same manner as indirect light-

ing – typically leading to areas with caustic effects that con-

verge much slower than areas without caustics. Techniques

that accelerate caustic illumination computation have been

introduced, however, the price paid is often bias in the final

image (bias is systematic error in an estimator, and is dis-

cussed further in Section 2).

We extend a highly efficient global illumination tech-

nique, Illumination by Weak Singularities (IWS), to account

for unbiased caustics. The IWS algorithm is unbiased for

non-caustic lighting, and very efficient. To calculate full

global illumination, however, IWS must be paired with an-

other algorithm to calculate caustics. To match IWS’s rapid

convergence, Photon Mapping has typically been used in a

combination we call IWS+PM. While Photon Mapping con-

verges rapidly, it is a biased rendering method. In this paper,

we pair IWS with a modified Path Tracing algorithm called
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2 Budge et al. / Caustic Forecasting

Caustic Forecasting that uses caustic power clustering to de-

fine splitting rules, and the n-nearest neighbor photons to

build CDFs for importance sampling. The combination of

IWS with Caustic Forecasting, IWS+CF, creates a global il-

lumination algorithm that is unbiased and has rapid conver-

gence for both caustic and non-caustic lighting.

2. Background

The rendering equation represents global illumination math-

ematically in terms of the radiance L transmitted from point

y to x [Kaj86]:

L(y → x) = Le(y → x)

+
Z

A
f (a → y,y → x)G(y ↔ x)L(a → y)dA,

where A is the space of surfaces in the scene, f is the BRDF,
and G is the geometry term. Here, we have folded the visi-
bility term V into G:

G(x ↔ y) =







V (x,y)
(~Nx·~xy)(~Ny·~yx)

|~xy|4
if dot products > 0

0 otherwise.
(1)

Numerical methods, such as Monte Carlo [HH64], are of-

ten preferred for global illumination, where analytic solu-

tions would be difficult or impossible to derive. To numeri-

cally approximate the integral

I =
Z b

a
f (x)dx

using Monte Carlo, we use the stochastic estimator

〈I〉 =
1

N

N

∑
i=1

f (xi)

p(xi)
,

where x1, . . . ,xN are N random samples from the domain of

integration, sampled with probabilities p(x1), . . . , p(xN), re-

spectively.

We can derive the bias of an estimator:

B = I −E [〈I〉] .

Unbiased Monte Carlo estimators, where B = 0, will con-

verge to their true integral solutions with enough samples.

Biased estimators, B 6= 0, are not guaranteed to converge to

the correct solution, however, consistent biased estimators

exist which can converge to the correct solution as algorith-

mic parameters are changed. Example sources of bias in im-

age synthesis include artificial bounds, cutoffs, and inaccu-

rate simplifying approximations. It has been suggested that

in order for a rendering algorithm to be truly robust, it should

be unbiased [Vea97].

It can be informative to classify stochastic global illumi-

nation methods based upon their bias. Unbiased methods

for full global illumination include Path Tracing [Kaj86],

Bidirectional Path Tracing [LW93, VG94], and Metropo-

lis Light Transport [VG97]. Biased estimators have been

used in global illumination algorithms in order to render im-

ages more rapidly. Two such examples include Irradiance

Caching [WRC88] and Photon Mapping [Jen01]. Instant Ra-

diosity [Kel97] is not algorithmically biased, however most

implementations place artificial bounds on point light com-

putation in order to avoid blooming effects; this bounding is

an example of bias.

The Illumination by Weak Singularities (IWS) method by

Kollig and Keller [KK04] is an example of a method that

splits the rendering equation into two parts: one for diffusive

illumination Ld and another for caustic illumination Lc:

L(y → x) = Ld(y → x)+Lc(y → x)

Ld(y → x) = Le(y → x)

+
Z

AD

f (d → y,y → x)G(y ↔ x)L(d → y)dAD

Lc(y → x) =
Z

AS

f (s → y,y → x)G(y ↔ x)L(s → y)dAS

The IWS algorithm (as described in Section 3.1) provides

a rapid unbiased estimator for the non-caustic illumination

part of the global illumination solution Ld . It does not, how-

ever, handle caustic lighting Lc. As a result, IWS is most

often paired with Photon Mapping (IWS+PM) to capture

caustics because Photon Mapping can rapidly capture caus-

tic lighting [LC04]. This results in a technique that con-

verges quickly, but with bias due to the use of Photon Map-

ping [Jen01].

We present a new, unbiased importance sampling method

for caustic illumination estimation called Caustic Forecast-

ing. This method influences the tracing of paths in two im-

portant ways: it detects regional caustic importance to con-

trol splitting and tracing, and it performs directional impor-

tance sampling via a method similar to that presented by

Jensen [Jen95]. We replace Photon Mapping with Caustic

Forecasting in the IWS framework to produce a rapidly con-

verging, fully unbiased global illumination scheme called

IWS+CF which handles all paths commonly handled by Path

Tracing.

3. Method

Our IWS+CF algorithm splits the rendering equation into

two parts. We evaluate diffusive illumination Ld using IWS,

while Lc is estimated by stochastically tracing paths with

Caustic Forecasting.

3.1. Illumination by Weak Singularities (IWS)

The IWS algorithm is in the class of Bidirectional Path Trac-

ing algorithms, and is based directly on the Instant Radiosity

algorithm [Kel97,KK04]. IWS is a multi-pass algorithm. In

each pass two steps are performed. In the first step, the scene

is populated with point lights by particle tracing from the
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Budge et al. / Caustic Forecasting 3

Figure 1: Photon shooting. Direct point-lights are mustard

colored, indirect point-lights are white, and caustic forecast-

ers are black.

light source(s). These point lights are then used in the sec-

ond step to estimate lighting along diffuse vertices of light

paths from the eye.

The particle tracing preprocess is very similar to Photon

Mapping, and is illustrated in Figure 1. Direct point-lights

(mustard colored in the figure) are generated by sampling on

the surface of all light sources in the scene. At each direct

point-light location, a sample direction is chosen probabilis-

tically, and a new particle is shot into the scene. If the par-

ticle intersects a diffusive surface, a new indirect point-light

is stored (white), and the path is continued.

During the rendering phase of the algorithm, diffusive il-

lumination Ld is calculated at a point p by tracing rays to all

of the direct and indirect point lights in the scene, comput-

ing the geometry term G(p ↔ xi) from Equation 1 (includ-

ing visibility), and then bounding G to b, a fixed bounding

term, if necessary. All values are then summed as a biased

estimate of the non-caustic lighting. To unbias this estimate,

a new ray is shot, typically in a direction determined by im-

portance sampling the surface BRDF, and upon intersection,

the path is terminated if G(p ↔ y) < b, otherwise, the path

is accepted, and any incident radiance is attenuated by G−b
G .

To ensure that all possible paths are considered, the direct

and indirect point-light sources must be changed on occasion

in order to avoid bias. Typically, a full image of the scene is

computed with a single sample per pixel, followed by the

re-computation of the direct and indirect point-lights with

another particle trace.

The original IWS algorithm does not handle caustic light-

ing Lc. In order to approximate the full global illumination

solution, IWS has typically been paired with Photon Map-

ping (IWS+PM). To use Photon Mapping with IWS, addi-

tional caustic photons are stored during the particle tracing

stage when a particle interacts with a specular object and

then intersects a non-specular surface. These caustic parti-

cles are shown as black dots in Figure 1. The estimation of

caustic lighting is then performed as described in the work

of Jensen [Jen01].

Due to the use of Photon Mapping for caustic lighting,

IWS+PM is a biased estimator of the full global illumina-

tion solution. In the next part, we detail a novel, unbiased

estimator of caustic lighting that couples well with diffusive

illumination estimators like IWS.

3.2. Caustic Forecasting (CF)

In IWS+PM, caustic points are used to build a photon map,

which is then used to estimate the caustic lighting term. We

use caustic point lights differently than in Photon Mapping;

in our algorithm, the caustic points are used to determine a

rough estimate of the history of caustic particles. This his-

tory is used to aid in importance sampling, and as part of a

cluster-based power heuristic to determine a splitting factor.

Preprocessing

The first step in the Caustic Forecasting preprocess is to trace

particles through the scene starting from the light sources.

Caustic points are stored when a particle interacts with a

specular object and then intersects a non-specular surface

(shown as black points in Figure 1). No interactions are

stored at specular intersections. The goal of tracing particles

and storing caustic points is to obtain the raw data needed

to estimate the distribution of caustic lighting energy within

the scene.

To refine our estimate of the distribution of caustic energy

we perform clustering over the caustic particles. We cluster

over the six dimensional space formed by caustic particle

position and corresponding surface normal (i.e., two three-

component vectors). Clustering simply groups nearby parti-

cles with similar surface normals into the same class, which

allows for the calculation of aggregate statistics over many

particles. By incorporating the surface normals – rather than

just clustering based upon position – the classification is sen-

sitive to the underlying scene geometry (e.g., creating cluster

boundaries at 90◦ angles, multiple clusters on rounded ob-

jects, etc.). We have tried both k-Means [Mac67] and Vec-

tor Quantization (VQ) [AKCM90] clustering of the particle

positions, and have found that VQ produces more intuitive

clustering results – in particular, clusters were better dis-

tributed with particle density and more uniformly sized.

After clustering, we calculate the energy density of each

cluster (i.e., total photon energy versus cluster area) in order

to rank the clusters into levels of importance. The ranking of
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(a) Rank 0 (50% Total Energy)

(b) Rank 2 (87.5% Total Energy)

(c) Rank 4 (96.88% Total Energy)

(d) Rank 8 (99.80% Total Energy)

Figure 2: Caustic photons are grouped into clusters us-

ing Vector Quantization (VQ). The clusters are then ranked

based upon their energy contribution to the scene: the frac-

tion of energy within rank [0,n) is 1−0.5n.

a cluster is calculated based upon its caustic energy contribu-

tion to the scene: low rank clusters have high power, while

higher rank clusters are decreasingly powerful. Consider a

list C of k clusters, sorted in descending order power based

upon the cluster power (i.e., most powerful first). Math-

ematically, a cluster C j is assigned rank n if all clusters

(C0, . . . ,C j) account for at most 1− 0.5n of the total frac-

tional energy of all clusters.

Our eventual goal is to use the energy estimation provided

by the clustering to tune our sampling strategy for evaluat-

ing caustic lighting during rendering. If the cluster has very

low energy, we perform a number of simple cosine samples

determined by the diffusive ray depth. In high-energy clus-

ters, we use information from the gathered photons to drive

a local importance sampling strategy. Because our sampling

strategy is more expensive than cosine sampling, we clamp

the maximum rank of a cluster for which importance sam-

pling will be considered a priori. Figure 2 provides insight

into the energy distributions defined by the clusters: clusters

drawn in color are considered during importance sampling,

while black and white clusters have been culled.

Caustic points near centroids of the remaining clusters –

which often account for over 99% of the scene’s total caus-

tic energy – are added to a kd-tree called the cluster map.

This structure allows for rapid cluster membership testing

when calculating the caustic illumination. Additionally, we

build per-cluster kd-trees called forecast maps containing the

caustic points within the cluster and up to a surrounding ep-

silon.

Finally, the preprocess ends by using the remaining high-

energy clusters to design a maximum search radius r for

forecast map lookups. The radius is a heuristic based upon

the average photon density over the clusters: we aim to find

approximately n neighboring photons in regions of average

density. This ensures that for very important clusters we will

find at least n neighbors, while in less important clusters we

will cull more distant photons.

Caustic Forecast Importance Sampling

To calculate the caustic lighting contribution at point p, we

begin by searching for the closest cluster to p in the cluster

map. If no valid cluster is found, we simply take some num-

ber of samples from a cosine distribution. Otherwise, p is in

a high-energy cluster and we will employ Caustic Forecast-

ing importance sampling.

Importance sampling begins by gathering the n-nearest

neighbor photons to point p. Here n is the maximum num-

ber of forecasters to gather, and we say k ≤ n is the actual

number gathered within the search radius r. For k gathered

forecasters, the incoming power of each forecaster is modu-

lated with the BRDF and the cosine to add weight to a bin

in a 2D table (azimuth versus cosine of zenith) as done by

Jensen [Jen95]. Next, we calculate the number S of splitting
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samples to take over the table based on the importance of the

cluster (i.e., its energy) and our current diffusive ray depth.

Due to the computational cost associated with large num-

ber of photons and large n gathers, the table size is gener-

ally much larger than n, and many of the table bins have

zero energy deposited within them. Because some bins are

empty, one cannot simply create a CDF based on this ta-

ble for unbiased sampling (some valid regions of the hemi-

sphere would be unreachable). Jensen’s solution was to in-

sert a small amount of energy into the empty bins before

summing the table. We found that by cosine-weighting the

small unbiasing contribution, variance can be reduced. An-

other approach which works slightly better for caustics is to

split the integral yet again. Instead of filling in the zero bins,

we leave the bins zero, and create a dual table which has ze-

ros where the original table has non-zero values (and only

those bins). The values we fill into the new table are propor-

tional to a representative cosine for the bin multiplied by the

BRDF for the same representative outgoing vector.

At this point, the valid directional sampling tables are nor-

malized and summed into discrete CDFs that can be sam-

pled. Because these CDFs are monotonic, they can be sam-

pled by first choosing a uniform sample and then using a

binary search to find the corresponding CDF bin. For full

details on the directional sampling, we refer the reader to

the paper by Jensen [Jen95]. Finally we sample both tables

S times (based on our original cluster importance estimate

and the diffusive depth), and add the contributions together.

(Notice the distinction; when sampling S times over a whole

domain, the estimate is the sum of the evaluated samples

divided by S, but when splitting the domain, each part is in-

dependently estimated, and the estimates are summed).

Finally, we make two observations that can speed up

rendering. The first is that, while direct and indirect light

sources must be refreshed in IWS to avoid bias, this is not

necessary for the caustic forecasters. In fact, as long as the

entire hemisphere is accounted for (by filling in zero bins as

in Jensen’s work, or splitting the domain as in this paper),

the use of the CDF table(s) for importance sampling will

produce unbiased results. This is of great benefit because the

initial photon casting phase can be quite costly.

Second, because our use of CDF sampling is unbiased,

we can shoot directly from the light source(s) toward specu-

lar objects in order to increase the number of caustic points

gathered during the preprocess. As long as we correctly con-

struct the sampling table(s) as described above, this will in-

crease the quality of the forecast maps for importance sam-

pling without introducing bias.

A good example of this can be seen in the Glass Figurines

scene (in Figure 3). The scene itself is very large, however,

we primarily focus on the two glass figurines and the metal

tin. We can place a (non-visible) box around these objects,

and start our particle paths from the light source toward the

box. It is important to note that the distribution of these par-

ticles will be biased! However, because sampling from our

CDF will remain unbiased, and properly employed, splitting

will always be unbiased, this causes no bias in the image.

The direct point lights and indirect point lights in IWS must

not be generated from this distribution, as bias would cer-

tainly be introduced.

4. Results

Our test scenes can be seen in Figures 3, 4, and 5. Figure 3

shows our Glass Figurines scene which contains a glass

horse and dragon next to a metallic box. Figure 4 is a Cornell

Box scene with a metallic sphere (left side of the scene) and

glass sphere (right side). Figure 5 is our Ring scene which is

designed to create a partial cardioid-shaped caustic effect on

the interior of a metallic ring.

All images were produced using 20 CPU cores via MPI

on a small cluster consisting of 5 nodes, each having two,

dual-core Opteron 2216 processors and 4 GB of RAM. The

nodes run 64-bit Linux, and the software uses MVAPICH2

for interprocess communication. It should be noted that our

renderer was built for maximal flexibility; because of this,

our renderer is typically about 50 times slower than a state-

of-the-art non-packet-based ray tracer. On the other hand,

since flexibility is not compromised, operations such as pho-

ton map lookups and CDF creation are heavily optimized. A

breakdown of algorithm runtime is shown in Table 1.

The Glass Figurines scene in Figure 3 consists of sev-

eral hundred thousand triangles with multiple materials, in-

cluding Dirac (the figurines), Lambertian, and Phong-like

glossy material. The scene is very large when compared to

the figurines, and is a difficult case for photon shooting algo-

rithms when attempting to render caustics because the natu-

ral density of photons reaching the figurines is small. The

images were rendered at 640x360 resolution for 60 min-

utes. In that 60 minute time frame, IWS+CF produced 1442

samples per pixel, Path Tracing produced 8891 samples per

pixel, and IWS+PM with 500K caustic photons collected

produced 1108 samples per pixel. Our method, IWS+CF,

produces an unbiased rendering like Path Tracing, however

the entire IWS+CF image is better converged. The caustics

using Photon Maps (IWS+PM) are fully converged, but are

clearly incorrect. More accurate, but still biased, caustics us-

ing Photon Mapping would have required the collection of

many times more photons, which would have taken longer

than the 60 minute rendering window allowed in our test.

The Cornell Box scene in Figure 4 was rendered at

640x640 resolution for 4 minutes. This simple scene con-

tains only a handful of objects, but nicely shows primary

as well as secondary caustic lighting. In 4 minutes, IWS+CF

completed 60 samples per pixel, Path Tracing completed 405

samples per pixel, and IWS+PM completed 99 samples per

pixel. IWS+CF captures the secondary caustic on the green
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6 Budge et al. / Caustic Forecasting

(a) IWS+CF

(b) Path Tracing

(c) IWS+PM (200K caustic photons)

Figure 3: Glass Figurines scene rendered in 60 minutes

using (a) our method, IWS+CF, (b) Path Tracing, and (c)

IWS+PM.

wall with greater fidelity than Path Tracing. To get compara-

ble fidelity of the secondary caustic using IWS+PM, 1 mil-

lion caustic photons had to be collected. This also has the

unfortunate effect of causing some bright blooming effects

in the image, which could be removed by further biasing the

image with more aggressive filtering for our density estima-

tion. The other, lighter blooming effects could likely be re-

moved by casting photons for each IWS+PM pass, but this

would be computationally prohibitive. A close up compari-

son of IWS+CF and Path Tracing is shown in Figure 6.

The Ring scene in Figure 5 emphasizes a partial cardioid-

shaped caustic within the ring. The ring is composed of just

over 12,000 triangles. This tessellation is what leads to the

Cornell Box Ring Figurines

Total Without Caustics 306 s 869 s 27600 s

Total With Caustics: 2290 s 2610 s 71600 s

Tracing Photons 5.4 s 15.7 s 117.3 s

Clustering Caustics 9.4 s 47.1 s 3.5 s

Building kd-trees 4.9 s 21.7 s 1.28 s

Creating CDFs 190 s 172.1 s 2321.6 s

Forecast Photons 200 K 1 M 75 K

Table 1: We show the breakdown of timings for different

components within the algorithm for images presented in

this paper (the ring image corresponds to the eight minute

MPI timing). The total time without caustics was measured

separately by turning off caustic calculations. For ease of

timing, these measurements were taken in a single-processor

environment.

bright lines within the cardioid. We rendered images us-

ing IWS+CF, Path Tracing, and IWS+PM across four run

times: 4, 8, 16, and 32 minutes. IWS+CF produces nearly

converged results after only 4 minutes. The caustic effects

within the Path Traced images have noticeable grain through

32 minutes. IWS+PM with one million photons converges

quickly, but exhibits visual artifacts including light bleeding

from the wrong side of the ring, and the caustic “fingers”

in the middle of the ring that are too dark and blurred. Ad-

ditionally, it is not possible to render the IWS+PM image

with one million photons in 4 minutes, as the photon trac-

ing phase barely finishes within that time frame. A faster

ray tracer would have allowed the tracing phase to finish

more quickly, however, results from the other two techniques

would also benefit from faster ray tracing. Figure 6 shows

a close up comparison of IWS+CF and Path Tracing. No-

tice how quickly the high frequency features converge when

compared to strict Path Tracing.

Finally, we have compared the use of a modified single-

table method to the two-table method described in Sec-

tion 3.2. Although the extra cost of sampling two tables led

to a 16% reduction in the number of image samples per sec-

ond, the image root mean squared error measured against

path tracing with 20,000 samples, was reduced by just over

1% when compared to the single table method. We addition-

ally tried the single table method with a gaussian smooth-

ing of the energy into neighboring table cells. The conver-

gence of this method was very poor compared to the other

two methods. We attribute this to the fact that, although our

tables are larger than Jensen’s, our tables are still relatively

coarse (typically we use 32×16 bins). This means that each

bin covers a large portion of the hemisphere, and a naive bin-

based smoothing scheme can place energy into bins where

none is justified.

Conclusion

We have presented Caustic Forecasting, a technique which

can be paired with Illumination by Weak Singularities (IWS)
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(a) IWS+CF (b) Path Tracing (c) IWS+PM

Figure 4: Cornell Box scene rendered in just over 4 minutes with (a) our method, IWS+CF, (b) Path Tracing, and (c) the

the original IWS+PM algorithm. IWS+CF has converged better than both methods; IWS+PM even exhibits a number of light

blooming artifacts caused by the large number of caustic photons required to capture the secondary caustic on the green wall.

to create a totally unbiased rendering algorithm for rendering

images with global illumination. In this paper, we have re-

ferred to this combined algorithm as IWS+CF. The IWS+CF

method allows for convergence at nearly the same rate as the

original IWS algorithm with Photon Mapping (IWS+PM),

but with correct, unbiased caustic lighting.

IWS+CF has proven to be fairly robust and competitive in

terms of speed and quality. IWS+CF has a comparable rate

of convergence to IWS+PM, with the benefit of being unbi-

ased, and typically converges much faster than Path Tracing.

Even with the strengths of our method, there is room for im-

provement; computing caustics is still the bottleneck in our

global illumination calculations. IWS without caustics, for

example, converges very quickly – several times faster than

when paired with our technique (or with Photon Mapping).

It is possible that through tuning of our heuristics even more

efficiency might be derived from the algorithm.

Finally, a potential limitation of our method is one that is

shared by Path Tracing: we cannot compute caustic lighting

if the original light sources are point lights. Although point

light sources are not completely realistic, in computer graph-

ics they are widely used, and it would be useful to be able

to compute “unbiased” caustics in scenes containing point

lights.
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Figure 5: The Ring scene emphasizes a partial cardioid-shaped caustic within the ring. IWS+CF, Path Tracing, and IWS+PM

across four run times. IWS+CF produces nearly converged, unbiased results after only 4 minutes. The caustic effects within the

Path Traced images have more noticeable grain. IWS+PM converges quickly, but with an incorrect, biased result. (The photon

shooting phase for IWS+PM with one million photons runs for nearly the entire allotted 4 minutes, leaving no time for image

rendering.)

(a) Cornell Box (b) Ring

Figure 6: Closeups of (a) the Cornell Box after 4 minutes and (b) Ring scenes after 8 minutes. For each scene, the results of

IWS+CF are to the left of Path Tracing.
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