
UC San Diego
Technical Reports

Title
Synchronous Consensus for Dependent Process Failures

Permalink
https://escholarship.org/uc/item/19h274ng

Authors
Junqueira, Flavio
Marzullo, Keith

Publication Date
2002-10-03

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/19h274ng
https://escholarship.org
http://www.cdlib.org/

Synhronous Consensus for Dependent Proess Failures

�

Flavio P. Junqueira

flavio�s.usd.edu

Keith Marzullo

marzullo�s.usd.edu

University of California, San Diego

Department of Computer Siene and Engineering

9500 Gilman Drive

La Jolla, CA

Abstrat

We present a new abstration to replae the t of n assumption used in designing fault-tolerant

algorithms. This abstration models dependent proess failures yet it is as simple to use as the t of

n assumption. To illustrate this abstration, we onsider Consensus for synhronous systems with

both rash and arbitrary proess failures. By onsidering failure orrelations, we are able to redue

lateny and enable the solution of Consensus for system on�gurations in whih it is not possible

when fored to use protools designed under the t of n assumption. We give lower bounds for the

number of rounds and repliation requirements that are suÆient to solve Consensus. We show

that, in general, the lower bound for number of rounds in the worst ase assuming rash failures

is di�erent from the lower bound assuming arbitrary failures given the same system on�guration.

This is in ontrast with the traditional result under the t of n assumption.

Keywords: Distributed Systems, Fault Tolerane, Correlated Failures, Consensus,

Time Complexity

1 Introdution

Most fault-tolerant protools are designed assuming that out of n omponents, no more than t an

be faulty. For example, solutions to the Consensus problem are usually developed assuming no more

than t of the n proesses are faulty where \being faulty" is speialized by a failure model. We all

this the t of n assumption. It is a onvenient assumption to make. For example, bounds are easily

expressed as a funtion of t: if proesses an fail only by rashing, then the Consensus problem is

�

This work was developed in the ontext of RAMP, whih is DARPA projet number N66001-01-1-8933.

1

solvable when t < n if the system is synhronous and when t < 2n if the system is asynhronous

extended with a failure detetor of the lass 3W . [1, 2℄

The use of the t of n assumption dates bak to the earliest work on fault-tolerant omputing. [3℄

It was �rst applied to distributed oordination protools in the SIFT projet [4℄ whih designed a y-

by-wire system. The reliability of systems like this is a vital onern, and using the t of n assumption

allows one to represent the probabilities of failure in a simple manner. For example, if eah proess

has a probability p of being faulty, and proesses fail independently, then the probability P (t) of no

more than t out of n proesses being faulty is:

P (t) =

t

X

i=0

�

n

i

�

p

i

(1� p)

n�i

If one has a target reliability R then one an hoose the smallest value of t that satis�es P (t) � R.

The t of n assumption is best suited for omponents that have idential probabilities of failure

and that fail independently. For embedded systems built using rigorous software development this is

often a reasonable assumption, but for most modern distributed systems it is not. Proess failures

an be orrelated beause, for example, the same buggy software was used. [5℄ Computers in the same

room are subjet to orrelated rash failures in the ase of a power outage.

That failures an have di�erent probabilities and an be dependent is not a novel observation.

The ontinued popularity of the t of n assumption, however, implies that it is an observation that is

being overlooked by protool designers. If one wishes to apply, for example, a Consensus protool in

some real distributed system, one an use one of two approahes:

1. Use some o�-line analysis tehnique, suh as fault tree analysis [6℄ to identify how proesses

fail in a orrelated manner. For those that do not fail independently or fail with di�erent

probabilities, re-engineer the system so that failures are independent and identially distributed

(IID).

2. Use the same o�-line analysis tehnique to ompute what the maximum number of faulty pro-

esses an be, given a target reliability. Use this value for t and ompute the value of n that,

under the t of n assumption, is required to implement Consensus. Repliate to that degree.

Both of these approahes are used in pratie. [6℄ This paper advoates a third approah:

3. Use the same o�-line analysis to identify how proesses fail in a orrelated manner. Represent

this using our abstration for dependent failures, and repliate in a way that satis�es our

2

repliation requirement and that minimizes the number of replias. Instantiate the appropriate

dependent failure protool.

We believe that our approah and protools are amenable to on-line adaptive repliation tehniques

as well.

In this paper we propose an abstration that exposes dependent failure information for one to

take advantage of in the design of a protool. Like the t of n assumption, it is expressed in a way

that hides its underlying probabilisti nature in order to make it more generally appliable.

We then apply this abstration to the Consensus problem under the synhronous system assump-

tion and for both rash and arbitrary failures. We derive a new lower bound for the number of rounds

to solve Consensus and show that it takes, in general, fewer rounds for rash failures in the worst ase

than for arbitrary failures. This is in ontrast to the t of n assumption, where the number of rounds

required in the worst ase is the same for both failure models. [1, 7℄ We show that these bounds are

tight by giving protools that meet them. These protools are fairly simple generalizations of well-

known protools, whih is onvenient. Proving them orret gave us new insight into the struture

of the original protools. We also show that expressing proess failure orrelations with our model

enables the solution of Consensus in some systems in whih it is impossible when making the t of n

assumption.

There has been some work in providing abstrations more expressive than the t of n assumption.

The hybrid failure model (for example, [8℄) generalizes the t of n assumption by providing a separate

t for di�erent lasses of failures. Using a hybrid failure model allows one to design more eÆient

protools by having suÆient repliation for masking eah failure lass. It is still based on failures in

eah lass being independent and identially distributed. In this paper, however, we do not onsider

hybrid failure models.

Byzantine Quorum systems have been designed around the abstration of a Fail-prone System [9℄.

This abstration allows one to de�ne quorums that take orrelated failures into aount. This ab-

stration has been used to express a suÆieny ondition for repliation. Our work an be seen as

generalizing this work, whih applies only to Quorum Systems.

The remainder of this paper is divided as follows. Setion 2 presents our assumptions for the system

model and introdues our abstration that models dependent proess failures. Setion 3 de�nes the

distributed Consensus problem. In Setion 4, we state a theorem that generalizes the lower bound on

the number of rounds in our model. Setions 5 and 6 desribe tight weakest repliation requirements

3

and algorithms for Consensus on the rash and arbitrary failure models, respetively. A disussion

on the implementation of our abstration in real systems is provided in Setion 7. Finally, we draw

onlusions and disuss future work in Setion 8.

Due to lak of spae, we give proof skethes for some lemmas and theorems and omit them entirely

for others. Detailed proofs an be found in [10, 11, 12℄.

2 System Model

A system is omposed of a set � of proesses, numbered from 1 to n = j�j. The number assigned to

a proess is its proess id, and it is known by all the other proesses. In the rest of the paper, every

time we refer to a proess with id i, we use the notation p

i

. Additionally, we de�ne Pid as the set of

proess id's, i.e., Pid = fi : p

i

2 �g. We use this set to de�ne a sequene w of proess id's. Suh a

sequene w is an element of Pid

�

.

A proess ommuniates with others by exhanging messages. Messages are transmitted through

point-to-point reliable hannels, and eah proess is onneted to every other proess through one

of these hannels. Proesses, on the other hand, are not assumed to be reliable. We onsider both

rash and arbitrary proess failures. In ontrast to most previous works in fault-tolerant distributed

systems, proess failures are allowed to be orrelated.

Eah proess p 2 � exeutes a deterministi automaton as part of the distributed omputa-

tion [2, 13℄. A deterministi automaton is omposed of a set of states, an initial state, and a transi-

tion funtion. The olletion of the automata exeuted by the proesses is de�ned as a distributed

algorithm. An exeution of a distributed algorithm proeeds in steps of the proesses. In a step,

a proess may: 1) reeive a message; 2) undergo a state transition; 3) send a message to a single

proess. Steps are atomi, and steps of di�erent proesses are allowed to overlap in time. We assume

that there is an external devie that provides the time a proess takes a step. The time a proess

takes a step an be used in proofs, but proessors do not have aess to this devie. The range of

time is the non-negative integers.

As disussed later in this setion, we assume that the omputation an be split into synhronous

rounds. The algorithms we desribe here proeed in rounds.

4

2.1 Replaing the t of n Assumption: Cores and Survivor Sets

In our model, proess failures are allowed to be orrelated, whih means that the failure of a proess

may indiate an inrease in the failure probability of another proess.

Assuming that failed proesses do not reover, to ahieve fault-tolerane in a system with a set of

proesses �, it is neessary to guarantee in every exeution that a non-empty subset of � survives.

A proess is said to survive an exeution if and only if it is orret throughout that exeution. Thus,

we would like to distinguish subsets of proesses suh that the probability of all proesses in suh

a subset failing is negligible. Moreover, we want these subsets to be minimal in that removing any

proess of suh a subset makes the probability that the remaining proesses in fail not negligible.

We all these minimal subsets ores. Cores an be extrated from the information about proess

failure orrelations. In this paper, however, we assume that the set of ores is provided as part of the

system's spei�ation. We present in Setion 7 a disussion on the problem of �nding ores.

By assumption, at least one proess in eah ore will be orret in an exeution. Thus, a subset

of proesses that has a non-empty intersetion with every ore ontains proesses that are orret in

some exeution. If suh a subset is minimal, then it is alled a survivor set. Notie that in every run

of the system there is at least one survivor set that ontains only orret proesses. The de�nition of

survivor sets is equivalent to the de�nition of a fail-prone system B [9℄: the set of all survivor sets is

the omplement of B.

We now de�ne ores and survivor sets more formally. Let R be a rational number expressing a

desired reliability, and r(x), x � �, be a funtion that evaluates to the reliability of the subset x. We

de�ne ores and survivor sets as follows:

De�nition 2.1 Given a set of proesses � and rational target degree of reliability R 2 [0; 1℄, the set

of proesses is a ore of � if and only if:

1. � �;

2. r() � R;

3. 8p 2 , r(� fpg) < R.

Given a set of proesses � and a set of ores C

�

, s is a survivor set if and only if:

1. s � �;

2. 8 2 C

�

, s \ 6= ;;

3. 8p

i

2 s, 9 2 C

�

suh that p

i

2 and (s� fp

i

g) \ = ;.

5

We de�ne C

�

and S

�

to be the set of ores and survivor sets of �, respetively.

The funtion r(�) and the target degree of reliability R are used at this point only to formalize the

idea of a ore. In reality, reliability does not neessarily need to be expressed as a probability. If this

information is known by other means, then ores an be diretly determined. For example, onsider

the following six proess system:

Example 2.2 :

� � = fph

1

; ph

2

; pl

1

; pl

2

; pl

3

; pl

4

g

� C

�

= ffph

1

; ph

2

; pl

1

g; fph

1

; ph

2

; pl

2

g; fph

1

; ph

2

; pl

3

g; fph

1

; ph

2

; pl

4

gg

� S

�

= ffph

1

g; fph

2

g; fpl

1

; pl

2

; pl

3

; pl

4

gg

In this system, ph

1

and ph

2

are highly reliable and both fail independently of every other p 2 �.

On the other hand, proesses pl

1

; pl

2

; pl

3

; pl

4

fail dependently among eah other. That is, for every

pair of proesses pl

i

, pl

j

, 1 � i; j � 4 and i 6= j, we have that if pl

i

is faulty in some exeution of

the system, then pl

j

is also faulty. Thus, a subset with maximum reliability ontains proesses ph

1

,

ph

2

, and at least one proess pl

i

. Suppose that the maximum reliability ahievable for a subset of

proesses satis�es the intuitive notion of target degree of reliability for this system. We an therefore

infer that for eah i, 1 � i � 4, fph

1

; ph

2

; pl

i

g is a ore. From the set C

�

of ores, it is straightforward

to identify the survivor sets in S

�

.

In the following setions, we assume that these subsets are provided as part of the system's

representation. A system is heneforth desribed by a triple h�; C

�

; S

�

i, where � is a set of proesses,

C

�

is a set of ores of �, and S

�

is a set of survivor sets of �. From this point on, we all h�; C

�

; S

�

i

a system representation.

2.2 Failure Models

We assume two di�erent models for proess failures: rash model and arbitrary model. In the rash

model, proesses fail by rashing. A rashed proess does not send or reeive messages. We say that

a proess is alive at time t either if it is orret in the run or it has not rashed at any time t

0

� t. In

the arbitrary model, a faulty proess an take any ation, inluding not reeiving messages, sending

messages that are not legal under the protool spei�ation, and sending orret messages at inorret

times. The arbitrary model is stritly weaker than the rash model.

6

Independently of the assumption for proess failures, hannels are assumed to be reliable. A

reliable hannel is one that satis�es the following properties:

Validity: If p; q 2 � are orret proesses and p sends a messagem to q, then q eventually deliversm;

Integrity: A proess p 2 � reeives a message m from proess q 2 � if and only if proess q sent it

to p.

Our Consensus algorithm for rash failures relies on the Validity property to detet rashed pro-

esses. This property enables a solution that requires fewer steps of proesses in the ase of a small

number of failures. For arbitrary proess failures, the Integrity Property prevents faulty proesses

from impersonating other ones. Consequently, a faulty proess p

i

annot send a valid message with

the id of another proess p

j

to other proesses.

2.3 Synhronous Model

A synhronous system imposes bounds on message delay, proess speed, and lok drift. These

bounds, however, are not neessarily based on absolute time. As in the model of Dolev et al. [14℄,

steps of an algorithm are used to de�ne these bounds. One an then organize an exeution into rounds

of message exhange. In eah round, a proess: 1) sends messages at the beginning of the round; 2)

reeives messages that other proesses send at the beginning of the round; 3) hanges its state.

The algorithms for synhronous systems desribed in Setions 5 and 6 are round-based. This

format failitates understanding, sine it abstrats several details of the system model. The algorithms

are also not desribed in an automaton format, sine the desription would be longer and would not

improve larity. Instead, we use sequential ode to present the algorithms. States and transitions,

however, are easily observed from the hanges of the values stored by the variables of the algorithm.

2.4 Exeutions

We de�ne an exeution � of an algorithm A with the tuple hF

�

; I

�

; E

�

; T

�

i. This de�nition is based

on the one by Chandra and Toueg [2℄ and Charon-Bost et al. [15℄. F

�

(t) evaluates to the subset of

proesses that have failed by time t. A diret impliation of this de�nition is that F

�

(t) � F

�

(t+ 1).

Beause an exeution depends on the initial state of the proesses, we have that I

�

provides the initial

on�guration of the system. This initial on�guration depends on the problem being solved. The

7

Consensus problem, for example, requires every proess to have an initial proposed value. E

�

is an

in�nite sequene of steps of the proesses in �. The time t at whih a step e 2 E

�

is exeuted is

given by T

�

(e). For every orret proess p

i

in �, we assume that E

�

ontains an in�nite number of

steps of p

i

.

1

Although we do not use expliitly this de�nition of exeution throughout the paper, we refer

several times to exeutions of algorithms. Therefore, this de�nition makes lear to the reader what

we mean by an exeution.

3 Consensus

The Consensus problem in a fault-tolerant message-passing distributed system onsists, informally,

in reahing agreement among a set of proesses upon a value. Eah proess starts with a proposed

value and the goal is to have all non-faulty proesses deide on the same value. The set of possible

deision values is denominated V throughout this paper. For many appliations, a binary set V is

suÆient, but we assume a set V of arbitrary size, to keep the de�nition as general as possible.

In the rash failure model, Consensus is often spei�ed in terms of the following three proper-

ties [16℄:

Validity If some non-faulty proess p 2 � deides on value v, then v was proposed by some proess

q 2 �;

Agreement If two non-faulty proesses p; q 2 � deide on values v

p

and v

q

respetively, then v

p

= v

q

;

Termination Every orret proess eventually deides.

The Validity property as spei�ed above assumes that no proess will ever try to \heat" on

its proposed value. This is true in the rash failure model, but unrealisti in the arbitrary failure

model. Although a faulty proess might not be able to prevent agreement by heating on its proposed

value, it may prevent progress of the system as whole. For example, assuming that the only possible

deision values are either write or abort, with the above Validity de�nition, a faulty proess may

prevent orret proesses from writing and onsequently making progress. Thus, in a byzantine

model, Strong Validity is usually onsidered instead of Validity [17, 18℄. Strong Validity is stated as

follows:

1

Distributed Consensus requires that proesses eventually deide. Beause we are assuming that every orret proess

takes an in�nite number of steps, every orret proess exeutes null steps one it halts.

8

Strong Validity If the proposed value of proess p is v, for all p 2 �, then the only possible deision

value is v.

Strong Validity only onsiders the ase in whih all proesses have the same initial value. In-

tuitively, this is suÆient to prevent a byzantine proess from disrupting the normal behavior of a

system when all non-faulty proesses are enabled to make progress. When the system is faing prob-

lems and not all of the proesses propose the same value, however, this property allows the deision

value to be arbitrary in the set of possible deision values. That is, the deision value v 2 V of orret

proesses an be either the value proposed by a faulty proess or even a value that was not proposed

by any proess, assuming the set of deision values is not binary.

4 Lower Bound on the Number of Rounds

Consider a synhronous system in whih the t of n assumption holds for proess failures. In suh

a system, t is the maximum number of proess failures among all possible exeutions and f is the

number of failures of a partiular exeution. It is well known that for every synhronous Consensus

algorithm A, there is some exeution in whih some orret proess does not deide earlier than f +1

rounds, where f � t � n� 2. [13, 19, 20℄ Furthermore, there is some exeution in whih some orret

proess does not stop earlier than min(t+ 1; f + 2) rounds, for t � n� 2. [21℄

These lower bounds were originally proved for rash failures, but they have to hold for arbitrary

failures as well beause the arbitrary model is stritly weaker than the rash model. In our model

for dependent failures, however, the lower bound on the number of rounds in general di�ers between

these two models.

Before generalizing the lower bound on the number of rounds for our model of dependent failures,

we de�ne the term subsystem. Let � be some prediate that de�nes the proess repliation requirement

for a given failure model. For example, assuming t of n arbitrary proess failures, the repliation

requirement is n > 3t. Examples of suh prediates in our model for dependent failures are provided

in Setions 5 and 6. A subsystem of a system that satis�es � is then de�ned as follows:

De�nition 4.1 Let � be a repliation requirement and sys = h�; C

�

; S

�

i be a system representation.

A system sys

0

represented by h�

0

; C

0

�

; S

0

�

i is a subsystem of sys if and only if �

0

� �, C

0

�

� C

�

, and

sys

0

satis�es �.

9

A subsystem sys

0

represented by h�

0

; C

0

�

; S

0

�

i is minimal if and only if there is no other subsystem

sys

00

represented by h�

00

; C

00

�

; S

00

�

i of sys suh that j�

00

j < j�

0

j or jC

00

�

j < jC

0

�

j.

The following theorem generalizes the lower bound on the number of rounds:

Theorem 4.2 Let sys = h�; C

�

; S

�

i be the representation of a synhronous system, sys

0

= h�

0

; C

0

�

; S

0

�

i

be the representation of a minimal subsystem of sys, A be a Consensus algorithm, and � = j�

0

j �

minfjsj : s 2 S

0

�

g. There are two ases to be onsidered:

i. If j�j � � > 1, then there is an exeution of A in whih f � � proesses are faulty and some

orret proess takes at least f + 1 rounds to deide;

ii. If j�j � � = 1, then there is an exeution of A in whih f � � proesses are faulty and some

orret proess takes at least min(�; f + 1) rounds to deide.

To illustrate the utilization of this theorem, onsider a system sys = h�; C

�

; S

�

i under the t of n

assumption rash failure model. If we assume that j�j = n � t+2, then jC

�

j � 2 and every ore has

size t + 1. A minimal subsystem represented by sys

0

= h�

0

; C

0

�

; S

0

�

i has n

0

= j�

0

j = t+ 1, jC

0

�

j = 1,

and jS

0

�

j = t+1 (eah survivor set s 2 S

0

�

ontains a single proess). From Theorem 4.2(i), for every

Consensus algorithm A, there is an exeution with f � � failures in whih no proess deides before

round f + 1. The value of � is j�

0

j � minfjsj : s 2 S

0

�

g = t + 1 � 1 = t. This result mathes the

one given by theorem 3.2 in [20℄. If we instead assume that j�j = t + 1, then C

�

ontains a single

ore and sys is already minimal. By Theorem 4.2(ii), we have that � = j�j � 1. For some exeution

� of A with f � � failures, there is some orret proess that does not deide earlier than round

min(j�j � 1; f + 1).

We use Theorem 4.2 in Setions 5 and 6 to derive lower bounds on the number of rounds for the

rash and arbitrary models respetively.

5 Synhronous Consensus with Crash Failures

Consensus in a synhronous system with rash proess failures is solvable for any number of fail-

ures. [20℄ In the ase that all proesses may fail in some exeution before agreement is reahed,

though, it is often neessary to reover the latest state prior to total failure for reovery purposes. [22℄

Sine we assume that failed proesses do not reover, we don't onsider total failure in this work.

That is, we assume that the following ondition holds for a system representation h�; C

�

; S

�

i:

10

Property 5.1 C

�

6= ;

Property 5.1 implies that there is at least one orret proess in any exeution. A ore is hene a

minimal subsystem in whih Consensus is solved. Consider a synhronous system with rash failures

sys = h�; C

�

; S

�

i, and a subsystem sys' = h�

0

; C

0

�

; S

0

�

i of sys suh that �

0

=

min

,

min

2 C

�

and

(8

0

2 C

�

; j

min

j � j

0

j). By de�nition, sys' is minimal. From Theorem 4.2(ii), if j�j = j�

0

j, then there

is some exeution with f � j�j � 1 proess failures suh that a orret proess does not deide earlier

than round min(�; f + 1). On the other hand, if sys is not minimal, then there is some exeution

with f � j�

0

j � 1 proess failures suh that a orret proess does not deide earlier than round f +1

by Theorem 4.2(i).

We now desribe a protool for a synhronous system represented by h�; C

�

; S

�

i, assuming that

Property 5.1 holds for this system. The protool is based on the early-deiding protools disussed

by Charron-Bost and Shiper [20℄ and by Lamport and Fisher [19℄. Algorithms that take the atual

number of failures into aount are important beause they redue the lateny on the ommon ase

in whih just a few proess failures our. An important observation made by Charron-Bost and

Shiper [20℄ is that there is a fundamental di�erene between early-deiding protools and early-

stopping protools for Consensus. In a early-deiding protool, a proess may be ready to deide, but

may not be ready to halt, whereas an early-stopping protool is onerned about the round in whih

a proess is ready to halt. One onsequene of this di�erene, whih was already noted in Setion 4,

is that the lower bounds for deiding and for stopping are not the same.

Our algorithm SynCrash di�erentiates the proesses of a hosen ore 2 C

�

from the rest of

the proesses in ��. In a round, every proess in broadast its knowledge of proposed values to all

the other proesses, while proesses in �� just listen to these messages. Proesses in from whih

a message is reeived at round r, but from whih no message is reeived at round r+1, are known to

have rashed before sending all the messages of round r+1. This observation is used to detet a round

in whih no proess rashes. Proess p

i

2 � keeps trak of the proesses in that have rashed in a

round, and as soon as p

i

detets a round with no rashes, p

i

an deide. An important observation

is that when suh a round r with no rashes happens (by assumption it eventually happens), all

alive proesses are guaranteed to have the same array of proposed values. One eah proess p

i

in

deides, it broadasts a message announing its deision value v

i

. All undeided proesses reeiving

this message deide on v

i

as well. Thus, only two types of messages are neessary in the protool:

messages ontaining the array of proposed values and deision messages. Beause proesses in

11

broadast at most one message in every round to all the proesses in j�j, the message omplexity is

O(jj � j�j). This is, in general, better than the protools in [19, 20℄, designed with the t of n failure

assumption, whih have message omplexity O(j�j

2

).

If = �, then in every exeution of SynCrash with f proess rashes, every orret proess

deides in at most min(jj � 1; f + 1) rounds. Otherwise, every orret proess deides in at most

f +1 rounds. Thus, the lower bound on the number of rounds disussed in Setion 4 is tight for rash

failures.

The idea of using a subset of proesses to reah agreement on behalf of the whole set of proesses is

not new. The Consensus Servie proposed by Guerraoui and Shiper utilizes this onept. [23℄ Their

failure model, however, assumes t of n failures, and onsequently the subset used to reah agreement

is not hosen based on information about orrelated failures. This is the main point where our work

di�ers.

Before presenting a pseudo-ode of the algorithm, we show a table desribing the variables used

in the protool. Table 1 desribes the variables, and the pseudo-ode of SynCrash is presented in

Figure 1. A detailed proof of orretness for SynCrash is provided in [12℄.

 2 C

�

Core set hosen as the one responsible for the deision.

de

i

2 V [f?g A proess p

i

deides one it sets de

i

.

d 2 ftrue ; falseg Boolean variable indiating whether the proess

deided in the previous round or not.

v

i

[1 � � � jj℄, v

i

[j℄ 2 V Array of proposed values.

e

i

[1 � � � (jj � 1)℄, e

i

[r℄ � Array of failed proesses. e

i

[r℄ stores the subset of

proesses deteted by p

i

as rashed at round r.

Table 1: Variables used in the algorithm SynCrash

The set of rounds assigned to proesses in j�j � is only e�etive if this subset is not empty, and

sending a message to an empty set of proesses is a no-op.

By haraterizing orrelated proess failures with ores and survivor sets, we improve performane

both in terms of message and time omplexity. For example, onsider again the six proess system

desribed in Example 2.2. By assuming t of n failures, t must be as large as the maximum number of

failures possible in any exeution, whih is �ve. Thus, it is neessary to have at least �ve rounds to

solve Consensus in the worst ase. By exeuting SynCrash with a minimum-sized ore as C, only

three rounds are neessary in the worst ase. In addition, no messages are broadast by the proesses

in � � . This is di�erent from most protools designed under the t of n assumption [19, 20, 21℄,

12

Algorithm SynCrash for proess p

i

:

Input: set � of proesses; set C

�

of ores; initial value v 2 V

Initialization: 2 C

�

; de

i

 ?; d false

v

i

[1 � � � jj℄, v

i

[k℄ =?, 8k 2 [1 � � � jj℄, k 6= i. If p

i

2 , v

i

[i℄ v

e

i

[1 � � � (jj � 1)℄, e

i

[k℄ = , 8k 2 [1 � � � (jj � 1)℄

Round 1 � r < jj, 8p

i

2 :

if (d = false) then

send(i; v

i

) to all proess in

send(i; v

i

) to all proess in ��

else

send(Deide ,de

i

) to all proesses in

send(Deide ,de

i

) to all proesses in ��

halt

upon reeption of (m = (Deide ,de

j

)) do

de

i

 de

j

d true

upon reeption of (m = (j; v

j

)) do

e

i

[r℄ e

i

[r℄ � fjg

for k = 1 to j�j do

if (v

j

[k℄ 6=?) then v

i

[k℄ v

j

[k℄

if (((e

i

[r � 1℄ = e

i

[r℄) ^ (d = false)) _ (r = jj � 1)) then

de

i

 min(v

i

[k℄)

d true

Round jj, 8p

i

2 :

send(Deide ,de

i

) to all proesses in ��

halt

Round 1 � r � jj, 8p

i

2 �� :

upon reeption of (m = (Deide ,de

j

)) do

de

i

 de

j

halt

upon reeption of (m = (j; v

j

)) do

e

i

[r℄ e

i

[r℄ [fjg

for k = 1 to j�j do

if (v

j

[k℄ 6=?) then v

i

[k℄ v

j

[k℄

if ((e

i

[r � 1℄ = e

i

[r℄)) then

de

i

 min(v

i

[k℄)

halt

Figure 1: Synhronous Consensus for Dependent Crash Failures

although the same idea an be applied by having only a spei� subset of t+1 proesses broadasting

messages.

6 Synhronous Consensus with Arbitrary Failures

Given a system representation h�; C

�

; S

�

i, onsider the following properties:

Property 6.1 (Byzantine Partition) For every partition (A;B;C) of �, at least one of A, B, and

13

C ontain a ore.

Property 6.2 (Byzantine Intersetion) 8s

i

; s

j

2 S

�

, 9

k

2 C

�

,

k

� (s

i

\ s

j

).

The following theorem states that these two properties are equivalent.

Theorem 6.3 Byzantine Partition � Byzantine Intersetion.

Proof sketh:

� Byzantine Partition) Byzantine Intersetion.

We prove the ontrapositive. Assume that there are two survivor sets s

i

; s

j

2 S

�

suh that (s

i

\ s

j

)

does not ontain a ore. Consider the following partitioning: A = � � s

i

, B = (s

i

\ s

j

), and

C = (s

i

�B). Subset A annot ontain a ore beause it has no element from s

i

. By assumption, B

does not ontain a ore. Beause C ontains no elements from s

j

, we have that C does not ontain a

ore. Thus, none of A, B, or C ontain a ore.)

To prove the other diretion, we make use of two observations. First, if the Byzantine Intersetion

property holds, then every survivor set s ontains at least one ore. Otherwise the intersetion

between s and some other survivor set s

0

2 S

�

, s 6= s

0

, annot ontain a ore. Seond, if a subset A of

proesses ontains at least one element from every survivor set, then A ontains a ore: by de�nition,

in every exeution there is at least one survivor set that ontains only orret proesses. If A ontains

at least one element from every survivor set, then in every exeution there is at least one orret

proess in A.

� Byzantine Intersetion) Byzantine Partition.

We prove this relation by ontradition. Assume that Byzantine Intersetion holds and there is a

partition (A;B;C) suh that none of A, B, and C ontain a ore. If none of these subsets ontains a

ore, then none of them ontains either a survivor set or one element from eah survivor set s

0

2 S

�

.

Thus, there has to be two distint survivor sets s

1

and s

2

suh that there are no elements of s

1

in

C and no elements of s

2

in B. Suppose the ontrary. If there are no suh s

1

or s

2

, then one of two

possibilities has to take plae, both in whih at least one subset ontains a ore: 1) s

1

= s

2

. In this

ase, A ontains s

1

; 2) (8s 2 S

�

; (s \B) 6= ;) _ (8s 2 S

�

; (s \ C) 6= ;).

Assuming therefore that there are suh survivor sets s

1

and s

2

, we have that (s

1

\ s

2

) � A.

By assumption, A does not ontain a ore, and onsequently s

1

\ s

2

does not ontain a ore. This

ontradits, however, our assumption that Byzantine Intersetion holds.)

2

14

The utility for having two equivalent onditions beomes lear below. We use the Byzantine

Partition property to show that this repliation requirement is neessary to solve Consensus in a

synhronous arbitrary failure system. The Byzantine Intersetion property is assumed by our protool

SynByz.

Byzantine Intersetion along with the de�nition of S

�

is equivalent to the repliation requirement

for bloking writes in Byzantine Quorum Systems identi�ed by Martin et al. They show that this

requirement is suÆient for suh a protool. [24℄ Both our requirement and the one identi�ed by

Martin et al. are weaker than the repliation requirement for masking quorum systems. [9℄ A masking

quorum system requires that in every exeution at least one quorum ontains only orret proesses

(that is, it ontains a survivor set). In addition, for every quorum in a masking quorum system and

every pair of failure senarios, there is at least one proess that is not faulty in both senarios. The

Byzantine Intersetion property, on the other hand, only requires that the intersetion of two survivor

sets ontains at least one proess that is orret in the exeution.

6.1 Requirement on Proess Repliation

Byzantine Partition is neessary to solve Strong Consensus in a synhronous system with arbitrary

proess failures. The informal proof we provide here is based upon the one by Lamport for the t of

n assumption. [7, 25℄ We show that, for any algorithm A, if there is a partition of the proesses into

three non-empty subsets suh that none of them ontain a ore, then there is at least one run in whih

agreement is violated. This is illustrated in �gure 2, where we assume the onverse and onsider three

exeutions �, �, and .

In exeution �, the initial value of every proess is the same, say v. All the proesses in subset

B are faulty, and they all lie to the proesses in subset C about their initial values and the values

reeived from proesses in A. By Strong Validity, running algorithm A in suh an exeution results in

all the proesses in subset C deiding v. Exeution � is analogous to exeution �, but instead of every

proess beginning with a initial value v, they all have initial value v

0

6= v. Again, by Strong Validity,

all proesses in B deide v

0

. In exeution , the proesses in subset C have initial value v, whereas

proesses in subset B have initial value v

0

. The proesses in subset A are all faulty and behave for

proesses in C as they do in exeution �. For proesses in C, however, proesses in B behave as

they do in exeution �. Beause proesses in C annot distinguish exeutions � from , proesses

in C must deide v. At the same time, proesses in B annot distinguish exeutions � from , and

15

therefore they must deide v

0

. Consequently, there are orret proesses whih deide di�erently in

exeution , violating the Agreement property of Strong Consensus.

B:v’, C:v
A:v, B:vA:v,

 C
:v

A:v’, B:v’

A:v, C:v
B C

A

B:v,
 C

:v

Scenario α

B:v’, C:v
A:v, B:v

B:v’
, C

:v

A:v’
, C

:v’

A:v’, B:v’

A:v, C:v
B C

A

Scenario γ

A:v’, B:v’

B:v’
, C

:v

A:v’
, C

:v’

A:v’, B:v’

A:v, C:v
B C

A
B:v’, C:v’

Scenario β

Figure 2: Exeutions illustrating the violation of Consensus. The proesses in shaded subsets are all

faulty in the given exeution.

6.2 Number of Rounds

In every synhronous system with rash failures it suÆes to have a single ore to solve Consensus.

In general, this is not the ase for synhronous systems with arbitrary proess failures. The only

partiular ase in whih Consensus an be solved with a single ore is the ase that the system has a

single reliable proess p

i

that does not fail in any exeution. For suh a system, a minimal subsystem

under Byzantine Partition is represented by hfp

i

g; ffp

i

gg; ffp

i

ggi. In every other ase, a system has

to ontain multiple ores. Although fault-tolerant systems may rely upon a single reliable proess,

this is a speial ase.

Assuming a minimal subsystem h�

0

; C

0

�

; S

0

�

i under Byzantine Partition with multiple ores, every

survivor set for suh a subsystem ontains at least 2 proesses. Otherwise, there is a ore ontaining a

single proess, and it redues to the partiular ase desribed above. By Theorem 4.2(i), the minimum

number of rounds required in the worst ase is �+ 1, where � is de�ned as j�

0

j �minfjsj : s 2 S

0

�

g.

In ontrast, all survivor sets of a minimal subsystem have size 1, assuming rash failures.

To illustrate the di�erene on the total number of rounds in the worst ase between the rash and

the arbitrary models, onsider the following example:

Example 6.4 :

� � = fp

a

; p

b

; p

; p

d

; p

e

g

� C

�

= ffp

a

; p

b

; p

g; fp

a

; p

d

g; fp

a

; p

e

g; fp

b

; p

d

g; fp

b

; p

e

g; fp

; p

d

g; fp

; p

e

g; fp

d

; p

e

gg

� S

�

= ffp

a

; p

b

; p

; p

d

g; fp

a

; p

b

; p

; p

e

g; fp

a

; p

d

; p

e

g; fp

b

; p

d

; p

e

g; fp

; p

d

; p

e

gg

16

For the rash model, a minimal subsystem h�

0

; C

0

�

; S

0

�

i is suh that j�j

0

= 2, jC

0

�

j = 1, and a

minimum-sized survivor set ontains a single proess. By Theorem 4.2(i), the lower bound on the

number of rounds is 2 in the worst ase (� = 1 and j�j � � > 1). In the arbitrary model, h�; C

�

; S

�

i

is already a minimal subsystem: if any proess or ore is removed, then the remaining subsystem

does not satisfy Byzantine Partition. By Theorem 4.2(i), the lower bound on the number of rounds

is 3 in the worst ase (� = 2 and j�j �� > 1). Thus, for the same system on�guration, fewer rounds

are required assuming rash failures.

6.3 An Algorithm to Solve Strong Consensus

We desribe an algorithm that solves Strong Consensus in a system sys= h�; C

�

; S

�

i that satis�es

Byzantine Intersetion. This algorithm is based on the one desribed by Lamport to demonstrate

that it is suÆient to have 3t+ 1 proesses (t is the maximum tolerated number of faulty proesses)

to have interative onsisteny in a setting with arbitrarily faulty proesses [7℄.

In our algorithm, all the proesses exeute the same sequential ode. Every proess reates a tree

in whih eah node is labeled with a string w of distint proess identi�ers and in whih is stored a

value. The value stored in a node labeled w orresponds to the value forwarded by the sequene of

proesses named in w. At round r+1, every orret proess p

j

sends a message ontaining the labels

and values of the nodes stored at depth r of the tree to all the other proesses. Every orret proess

p

i

that reeives suh a message stores the values ontained in it in the following manner: if there is

a node labeled wj, with w 2 Pid

�

; jwjj = r+1, then store at this node the value in the message sent

by p

j

orresponding to w.

A simple example will help to larify the use of the tree. Suppose that a orret proess p

i

reeives

at round three a message from proess p

j

that ontains the string lk and the value v assoiated to

this string. Proess p

i

stores the value v at the node labeled lkj and forward at round four a message

ontaining the pair hlkj ; vi to all the other proesses.

The leaves in this tree are survivor sets. More spei�ally, if we use Node(w) to denote the node of

the tree labeled with the string w and Proesses(w) the set of proesses named in w, then Node is a leaf

if and only ��Proesses(w) does not ontain a survivor set. Consequently, if Node(wi) is a leaf and

we denote with Child(w) the set of proesses fp

i

jNode(wi) is a hild of Node(w)g, then Child(w) is a

survivor set

2

. For every non-leaf Node(w), we have that �� Proesses(w) has to ontain a survivor

2

Observe that the tree struture is the same for all orret proesses, and hene none of Proesses(�), Node(�), or

17

set. A onsequene of this de�nition is that the depth of the tree is j�j � minfjs

i

j : s

i

2 S

�

g + 1.

Figure 3 gives an example of a tree for the system representation in Example 6.4.

bac bad bae bca bcd bce

ba bc

b

bd be

cab cad cae cba cbd cbe

ca cb cecd

c

abc abd abe acb acd ace

ab ac

a

ad ae ea eb ec ed

e

da db dc de

d

Figure 3: An example of a tree built by eah proess in the �rst stage of the algorithm.

The �rst stage of the algorithm builds and initializes the tree. The seond stage runs several

rounds of message exhange. In the �rst round, eah proess broadasts its initial value, and in

subsequent rounds, eah proess broadasts the values it learned in the previous round. As proesses

reeive the messages ontaining values learned in previous rounds, eah node populates the nodes of

its tree with these values. Beause the depth of the tree is (j�j � minfjs

i

j : s

i

2 S

�

g + 1), this is

exatly the total number of rounds required for message exhanging. Finally, in the last round, eah

proess traverses the tree visiting the nodes in postorder to deide upon a value. When visiting a leaf,

the algorithm does not hange the value this node stores. On the other hand, when an internal node

of proess p

i

with label w is visited, we use a replaement strategy to determine its value. Suppose

there are there are two survivor sets s

1

and s

2

suh that (s

1

\ s

2

) � Child(w) and for every proess

p

j

2 (s

1

\ s

2

), we have that p

i

:Value(wj) = v, for some v 2 V [f?g. In this ase, we replae the

value of Node(w) with v. Otherwise we replae with the default value (?). In the original protool,

the replaement strategy is based on the majority. [13℄

The pseudo-ode of the algorithm is desribed in Figure 4. In the algorithm, we use Value(w) to

refer to the value assoiated to w both in the tree of a proess and in a message some proess sends.

To di�erentiate one ase from the other, we use a pre�x: x:Value(w) is the value v stored at node

labeled w of proess p

i

if x = p

i

, whereas it is the value v in the pair hw; vi in a message m if x = m.

This is a slight abuse of notation, but it is onvenient and the di�erentiation between the ases will

be lear from ontext.

Instead of providing a formal proof of orretness for SynByz, we illustrate the deision proess

for the system desribed in Example 6.4. For a proof of orretness, we point the interested reader

Child(�) need to be assoiated with any partiular proess.

18

Algorithm SynByz for proess p

i

:

Input: a set of proesses �; a set of ores C

�

; a set of survivor sets S

�

; an input value v

i

2 V

Variables:

Let s

min

be a smallest survivor set in S

Let r be the urrent round number

Let root be a referene to the root of proess i's tree

Let M be a set of messages

Let P; P

0

be sets of pairs hw; vi, where w 2 Pid

�

, and v 2 V

initialization:

root CreateNode(;, v

i

)

BuildTree(root)

P fh;; v

i

ig

rounds 1 � r < (j�j � js

min

j+ 1):

SendAll(i, P)

let M be the set of messages reeived by p

i

at round r

P ;

for every message m = (j; P

0

) 2M do

for every node at depth r labeled wj, w 2 Pid

�

, jwj = r do

p

i

:Value(wj) m:Value(w)

if node labeled wj is not a leaf then P P [fhwj ;m:Value(w)ig

round r = (j�j � js

min

j+ 1):

SendAll(i, P)

let M be the set of messages reeived by p

i

at round r

for every message m = (j; P

0

) 2M do

for every node at level r labeled wj, w 2 Pid

�

, jwj = r, do

p

i

:Value(wj) m:Value(w)

Traverse Tree in postorder, exeuting the following steps when visiting a node labeled w:

if Child(w)6= ;

then let I Child(w)

if(9s

1

; s

2

2 S suh that ((s

1

\ s

2

) � I) ^ (8p

j

2 (s

1

\ s

2

); p

i

:Value(wj) = v, v 2 V)))

then p

i

.Value(w) v

else p

i

.Value(w) ?

Auxiliary funtion

Funtion BuildTree(w)

let � Proesses(w)

8p

j

2 � suh that p

j

62 �

if (9s

1

2 S suh that s

1

� (�� �))

then node CreateNode(wj, ?)

Child(w) Child(w) [fnodeg

BuildTree(wj)

Figure 4: Synhronous Consensus for Dependent Arbitrary Failures

to [12℄.

After j�j � js

min

j + 1 = 5 � 3 + 1 = 3 rounds of message exhange, every orret proess has

populated its tree with values reeived from other proesses. The values stored at non-leaf nodes are

19

not important, beause they are replaed aording to the strategy de�ned for the algorithm during

the traversal of the tree. We illustrate this proedure for the subtrees rooted at both Node(a) and

Node(b). This is shown in Figures 5 and 6. White nodes are the ones that have the same value aross

all the orret proesses, whereas shaded nodes are the ones that have possibly di�erent values aross

orret proesses. A node is shaded if the last node in the string that labels the node is a faulty

proess. Note that if two nodes w and w

0

are white, it does not mean that they ontain neessarily

the same value. It only means that every orret proess has value v at node w and v

0

at node w

0

.

Consider the partiular senario in whih proesses p

a

and p

are faulty and p

b

, p

d

, and p

e

are

all orret. First, we disuss the subtree rooted at Node(a). At Time 1, only the nodes at the

last level have been visited. From the algorithm, when a leaf is visited, its value does not hange.

Thus, the state of the tree at Time 1 is the same state as right before starting the traversal of the

tree. Time 2 orresponds to the state of the tree exatly after all the nodes at Level 2 are visited.

Beause proesses p

b

, p

d

, and p

e

are orret, Node(abd) and Node(abe) ontain the same value aross

all orret proesses. By the replaement strategy of the algorithm, the new value of node ab is the

value of nodes abd and abe, beause fp

d

; p

e

g � fp

a

; p

d

; p

e

g \ fp

b

; p

d

; p

e

g and Node(abd) ontains the

same value as node abe. Similarly, the new value of node a is the one of ab, ad, and ae. The

values of Node(ad) and Node(ae) aross orret proesses have to be the same, beause p

d

and p

e

are

orret. At Time 3, the value of Node(a) beome the same for all orret proesses. Sine the value

of Node(ab), Node(a), Node(ad), and Node(ae) are the same aross all orret proesses, the new

value of node a has to be the same.

ad ae
ab

a

ac

abc abd abe acb acd ace

ad ae
ab

a

ac

abc abd abe acb acd ace

ad ae
ab

a

ac

abc abd abe acb acd ace

Time 1 Time 2 Time 3

Figure 5: An example of traversing the subtree rooted at Node(a). Time i orresponds to the state

of the tree exatly after all the nodes of Level 4� i are visited.

For the subtree rooted at Node(b), the value of Node(ba) may still not be the same aross all orret

proesses at Time 2. Both fp

d

; p

e

g and fp

; p

d

g are ores and are subsets of proesses ontained in

some intersetion of two survivor sets. Thus, if the value of Node(ba) is the same of Node(bad) in a

20

orret proess p

i

, but di�erent in another orret proess p

j

, then p

i

and p

j

may replae the value of

Node(ba) with di�erent values, depending on Node(bae). Note that one value must be the default ?

and the other some v 2 V . Similarly for Node(b) at Time 2. The values of Nodes(bd) and Nodes(be),

however, have to be the same aross all orret proesses. In Time 3, fp

d

; p

e

g is the only ore in

Child(b) to ontain the same value in their respetive nodes at Level 1, unless ba and b have the

same value as Node(bd) and Node(be). Furthermore, this ore is in the intersetion of fp

b

; p

d

; p

e

g and

fp

a

; p

d

; p

e

g. Consequently, the new value of Node(b) has to be the same for every orret proess at

Time 3, by the value replaement strategy.

bd be
ba

b

bc

bac bad bae bca bcd bde

bd be
ba

b

bc

bac bad bae bca bcd bde

bd be
ba

b

bc

bac bad bae bca bcd bde

Time 1 Time 2 Time 3

Figure 6: An example of traversing the subtree rooted at Node(b). Time i orresponds to the state

of the tree exatly after all the nodes of Level 4� i are visited.

By doing the same analysis for the subtrees rooted at nodes , d, and e, we observe that every

node at Level 1 of the tree rooted at ; has the same value aross all orret proesses. Therefore,

the deision value, whih is the value at node ; after visiting it, has to be the same for every orret

proess. One important observation is that the value at Node(i) aross all orret proesses is the

initial value of proess p

i

, if p

i

is orret. In the ase that every proess has the same initial value v,

then the deision value has to be v.

To illustrate the bene�ts of using our abstrations, onsider one more the �ve proess system

of Example 6.4. If the t of n failure assumption is used, then Strong Consensus is not solvable: the

smallest survivor set ontains three proesses and so the maximum number of failures in any exeution

is two. With the t of n assumption, the repliation requirement is j�j � 3t + 1, and for t = 2, it

is neessary to have at least seven proesses. With our model, however, algorithm SynByz solves

Strong Consensus.

21

7 Pratial Considerations

Two important issues onerning the use of ores and survivor sets are (1) how to extrat information

about these subsets and (2) how to represent them.

To extrat ore information (suh as �nding a smallest ore) using failure probabilities is an NP-

hard problem in the general ase. [10℄ This result need not be disouraging, however. First, this

is a problem that is already addressed for many safety ritial systems, and tehniques have been

developed to extrat suh information [6℄. Furthermore, for many real systems, there are simple

heuristis for �nding ores that depend on how failure orrelations are identi�ed. Suppose a system

in whih proesses are tagged with olors. In this model, all proesses have idential probabilities of

failing, but those with the same olor have highly orrelated probabilities of failing while proesses

with di�erent olors fail independently. A ore in suh a system is omposed of proesses with di�erent

olors, and the size of a ore depends on the probability of having olors failing. To �nd ores in suh a

model, one has to interatively add proesses with di�erent olors to a subset and verify whether this

subset is a ore. The veri�ation proedure onsists in multiplying the probability of failure for every

olor that has a representative in the subset. This learly an be aomplished in polynomial time.

For real systems, a olor would represent some intrinsi harateristi. For example, all omponents

in a ertain part of an airplane are damaged if there is a strutural damage on that partiular part.

Computers in the same room are subjet to orrelated rash failures in the ase of a power outage.

One an go further in extrating ores based on harateristis of the system and propose the

utilization of several attributes, instead of one as in the olor model. It turns out that in the general

ase, this problem is also NP-hard. Some simplifying assumptions suh as �nding orthogonal ores

(ores in whih proesses do not share attributes) make the problem tratable. Finally, fault tree

analysis is an option in the design of reliable systems.

Representing ores or survivor sets is relevant for arbitrary failures. As disussed in Setion 5,

to solve Consensus assuming rash failures, it suÆes a single ore. Spae omplexity is hene O(1)

in this ase, and onsequently is not a problem. For arbitrary failures, however, multiple survivor

sets are usually neessary. An important observation is that the number of proesses in fault-tolerant

systems is usually not large. Thus, for a small number of proesses, spae omplexity is still O(1),

even if there is an exponential number of survivor sets. In partiular ases, it is possible to determine

algorithmially whether a subset of proesses is a survivor set. Considering the olor model one

more, a subset s of proesses is a survivor set if ��s does not ontain a ore. Whether ��s ontains

22

a ore or not is veri�able in polynomial time, as disussed previously.

8 Conlusions and Future Diretions

Cores and survivor sets are abstrations apable of using dependent proess failure information in the

design of fault-tolerant algorithms in a simple manner. We showed this by desribing two Consensus

algorithms. The main strutures of these algorithms were proposed in the literature assuming t

proess failures out of n proess. With simple modi�ations, we obtained new algorithms that in

several ases perform better than the original ones. An important observation is that the algorithms

we presented improve performane only if there is failure orrelation. If all proess fail independently,

then the protools behave as the original ones for the t of n assumption. In either ase, they never

have worse performane.

The trade-o�, however, is in �nding and representing ores or survivor sets. In the general ase,

�nding and representing them require exponential time and spae. As we disussed in Setion 7,

however, this need not hinder the use of ores and survivor sets. Their equivalent are already used

in the analysis of safety ritial systems. Moreover, there are heuristis that make these problems

tratable when the number of ores is not suÆiently small. We believe that many real systems that

an bene�t from our model either have a small number of ores or are amenable to the appliation

of simplifying heuristis.

So far, we have identi�ed a few real senarios that would bene�t from the appliation of our

model. We believe, however, that our tehniques are widely appliable. Aside from identifying other

real appliations, we are interested in investigating the utilization of ores and survivor sets for other

problems of interest in fault-tolerant omputing. We already have orresponding results for Consensus

in asynhronous systems.

Referenes

[1℄ I. Keidar and S. Rajsbaum, \On the Cost of Fault-Tolerant Consensus When There Are No

Faults - A Tutorial," Teh. Rep. MIT-LCS-TR-821, MIT, May 2001.

[2℄ T. Chandra and S. Toueg, \Unreliable Failure Detetors for Reliable Distributed Systems,"

Journal of the ACM, vol. 43, pp. 225{267, Marh 1996.

23

[3℄ J. von Neumann, \Probabilisti Logis and the Synthesis of Reliable Organisms from Unreliable

Components," in Automata Studies, pp. 43{98, Prineton University Press, 1956.

[4℄ J. Wensley, \SIFT: Design and Analysis of a Fault-Tolerant Computer for Airraft Control," in

Proeedings of the IEEE, vol. 66, pp. 1240{1255, Otober 1978.

[5℄ R. Rodrigues, B. Liskov, and M. Castro, \BASE: Using Abstration to Improve Fault Tolerane,"

in 18th ACM Symposium on Operating Systems Priniples (SOSP'01), vol. 35, (Chateau Lake

Louise, Ban�, Alberta, Canada), pp. 15{28, Otober 2001.

[6℄ Y. Ren and J. B. Dugan, \Optimal Design of Reliable Systems Using Stati and Dynami Fault

Trees," IEEE Transations on Reliability, vol. 47, pp. 234{244, Deember 1998.

[7℄ L. Lamport, R. Shostak, and M. Pease, \The Byzantine Generals Problem," ACM Transations

on Programming Languages and Systems, vol. 4, pp. 382{401, July 1982.

[8℄ P. Thambidurai and Y.-K. Park, \Interative Consisteny with Multiple Failure Modes," in IEEE

7th Symposium on Reliable Distributed Systems, (Columbus, Ohio), pp. 93{100, Otober 1988.

[9℄ D. Malkhi and M. Reiter, \Byzantine Quorum Systems," in 29th ACM Symposium on Theory

of Computing, pp. 569{578, may 1997.

[10℄ F. Junqueira, K. Marzullo, and G. Voelker, \Coping with Dependent Proess Failures,"

teh. rep., UCSD, La Jolla, CA, Deember 2001. http://www.s.usd.edu/users/avio/

Dos/JuMaVo2001.ps.

[11℄ F. Junqueira and K. Marzullo, \Lower Bound on the Number of Rounds for Synhronous Con-

sensus with Dependent Proess Failures," teh. rep., UCSD, La Jolla, CA, September 2002.

http://www.s.usd.edu/users/avio/Dos/lb.ps.

[12℄ F. Junqueira and K. Marzullo, \Consensus for Dependent Proess Failures," teh. rep., UCSD,

La Jolla, CA, September 2002. http://www.s.usd.edu/users/avio/Dos/Gen.ps.

[13℄ H. Attiya and J. Welh, Distributed Computing: Fundamentals, Simulations, and Advaned Top-

is. MGraw-Hill, 1998.

[14℄ D. Dolev, C. Dwork, and L. Stokmeyer, \On the Minimal Synhronism Needed for Distributed

Consensus," Journal of the ACM, vol. 1, pp. 77{97, January 1987.

24

[15℄ B. Charron-Bost, R. Guerraoui, and A. Shiper, \Synhronous System and Perfet Failure Dete-

tor: solvability and eÆieny issues," in IEEE International Conferene on Dependable Systems

and Networks (DSN'00), (New York, NY), pp. 523{532, June 2000.

[16℄ A. Doudou and A. Shiper, \Muteness Detetors for Consensus with Byzantine Proesses," in

Proeedings of the 17th ACM Symposium on Priniple of Distributed Computing, (Puerto Val-

larta, Mexio), p. 315, July 1998. (Brief Announement).

[17℄ K. Kihlstrom, L. Moser, and P. M. Melliar-Smith, \Solving Consensus in a Byzantine Environ-

ment using an Unreliable Failure Detetor," in Proeedings of the International Conferene on

Priniples of Distributed Systems (OPODIS'97), (Chantilly, Frane), pp. 61{76, Deember 1997.

[18℄ D. Malkhi and M. Reiter, \Unreliable Intrusion Detetion in Distributed Computations," in

Proeedings of the 10th Computer Seurity Foundations Workshop (CSFW97) , (Rokport, MA),

pp. 116{124, June 1997.

[19℄ L. Lamport and M. Fisher, \Byzantine Generals and Transation Commit Protools," teh.

rep., SRI International, April 1982.

[20℄ B. Charron-Bost and A. Shiper, \Uniform Consensus is Harder Than Consensus," teh. rep.,

�

Eole Polytehnique F�ed�erale de Lausanne, Switzerland, May 2000.

[21℄ D. Dolev, R. Reishuk, and H. R. Strong, \Early Stopping in Byzantine Agreement," Journal of

the ACM, vol. 37, pp. 720{741, Otober 1990.

[22℄ D. Skeen, \Determining the Last Proess to Fail," ACM Transations on Computer Systems,

vol. 3, pp. 15{30, February 1985.

[23℄ R. Guerraoui and A. Shiper, \Consensus Servie: A Modular Approah for Building Fault-

tolerant Agreement Protools in Distributed Systems," in 26th International Symposium on

Fault-Tolerant Computing (FTCS-26), (Sendai, Japan), pp. 168{177, June 1996.

[24℄ L. Alvisi, P. Martin, and M. Dahlin, \Minimal Byzantine Storage," in 16th International Sym-

posium on Distributed Computing (DISC 2002), (Toulouse, Frane), Otober 2002.

[25℄ M. Pease, R. Shostak, , and L. Lamport, \Reahing Agreement in the Presene of Faults,"

Journal of the ACM, vol. 27, pp. pp. 228{234, April 1980.

25

